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MONOGRAPH SERIES
FOREWORD

In 1993 the Mineralogical Society of America (MSA) began publishing its Monograph
Series with a major work by Frank S. Spear, entitled Metamorphic Phase Equilibria and
Pressure-Temperature-Time Paths. MSA’s second monograph was a reprinting of a
slightly revised version of the 1971 book, Crystallography and Crystal Chemistry, by
F. Donald Bloss.

This volume by Michael O’Keeffe and Bruce G. Hyde is the third contribution. As
Series Editor, 1 was responsible for obtaining reviewers. Mike O’ Keeffe prepared the entire
camera-ready text and the figures which were all drawn specially for the book. As noted in
the Preface below, a second volume, Crystal Structures II. Inorganic Materials is
anticipated-in the near future.

Paul H. Ribbe
Blacksburg, Virginia

PREFACE

This book (the first of two volumes) is devoted to the topic of the description of
strixctures, especially periodic structures, and their symmetries. Much of the material is a
prerequisite for serious students of solid state chemistry and related sciences {e.g.
mineralogy, materials science and solid state physics). Earlier drafts served as part of the
lecture notes used for some years for a course in solid state chemistry at Arizona State
University; the order of presentation of topics, occasional repetitiveness and the sometimes
hectoring tone to some extent reflect this origin.

From a chemist’s point of view, probably the most fundamental piece of information
about a chemical compound is the way its atoms are arranged in space. For small molecules
this information can be fairly readily assimilated, but the task becomes increasingly difficult
for macromolecules, as any student of biochemistry can attest. For crystaliine solids (which
are really “infinite” molecules) the difficulty is equally great, and requires leaming the
methods appropriate to describing infinite periodic objects. These methods are generally
unfamiliar to those who are not professicnal crystallographers (a fact that greatly hinders
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the development of solid state chemistry) and one of the primary aims of this book is to
provide a usable introduction to them. This leads inexorably to a discussion of symmetry
(translation is a symmetry operation) so we devote the first three chapters to an introduction
to point and space symmetry groups using crystallographic conventions.

These three chapters are intended to introduce the language of space groups, and are
neither rigorous nor complete. The goal is to enable the reader to be in a position to be able
to extract and understand useful information from the crystallographic literature that is the
primary source of information about the structure of solids and which contains enormous
quantities of buried treasure,

Chapter 4 treats crystal geometry and includes a discussion of transformations of
coordinate systems (unit cell transformations). This topic is essential to aspects of crystal
chemistry such as describing structural relationships. The chapter also contains a
compendium of formulas useful for crystallographic calculations. They are given without
proof, but the derivations are, for the most part, elementary and to be found in standard
crystallographic texts. '

Chapters 5-7 are devoted to the description of simple geometrical patterns that underlie
crystal structures. The development proceeds from simple to more complex: polyhedra,
clusters of polyhedra, plane patterns, layers of polyhedra, sphere packings, cylinder
packings, nets and infinite polyhedra, Many examples are given of the occurrence of these
patterns in crystal structures. Most of the more common binary -and ternary crystal
structures are introduced along the way and, to enhance the value of the book as a self-
contained text, we summarize them and their occurrence in chemical compounds in
Appendix 5 at the end. (The second volume of this series, which is longer than this one, is
devoted to a more complete account of crystal structures.)

Each chapter ends with sections entitled “Notes™ and “Exercises.” The former are often

extended footnotes, somewhat peripheral to the main theme, but considered useful or-

amusing (or both); they often contain useful reference material or refer to some more-
advanced topics. The Exercises are “homework”, designed to provide a diagnosis of the
understanding of the material in the chapter and also often contain useful resudts,

The first four appendices are “Notes” that became too long for inclusion in individual
chapters. We hope that they will whet the appetites of more-adventuresome readers. The
relegation of some material to Notes and Appendices necessitates some cross referencing.
This seems to us to be a small price to pay for having a boek that can serve both as a
textbook for courses and as a general reference. A book with these aspirations has of
necessity a split personality. In Chapters 5-7, some sections could well be omitted in a
formal course at the instructor’s discretion. The same is true of the material in the Notes.

No novelty {except perbaps for the errors) is claimed for the first four chapters, although
we hope that even some experienced readers might find one or two items that provide food
for thought. The later chapters do (we believe) contain some material of interest that has not
been published before. :

Although the book has a distinct crystallographic flavor, it is definitely not a textbook on
crystallography and we do not discuss, except peripherally, topics such as quasicrystals

and incommensurate crystaks that are currently of active concern to inorganic crystailo-
graphers and sometimes even the occasion for controversy. .

We have spent some years on the study of structures, a delightful pursuit that would not
have been possible without the generous support, for which we are indebted, of our
respective institutions. M. O'K. aiso gratefully acknowledges the support of the US
National Science Foundation which has funded a program of research in crystal chemistry
for a number of years. We came to the study of crystal structures indirectly and in complete
ignorance. Over the years we slowly collected a body of information needed to pursue
research in the field. We often wished that someone had provided us with this material, and
the present text attempts to provide such a package for students who may be in the position
we were in 40 years ago.

The text has benefited particularly from the sure touch of Paul Ribbe, who read it ip its
entirety, identified errors, solecisms, and infelicities, and alse made valuable suggestions
for improving the presentation. We owe him special thanks.

The book could not have been written without the seemingly infinite patience and
forbearance of our wives, Lita O’Keeffe and Marie Hyde, and we dedicate it to them.

Michael O Keeffe
Tempe

Bruce Hyde
Canberra
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A Note to the Reader

Matrices are represented by bold capitals thus: A; and often written row-by-row on one
line as {ayy a1z a13 / az1 ax ax f as asy ass}, At is the transpose of A. Column vectors
are lower case as: a. The corresponding row vector is at. The magnitude of aisa. Eis a
unit matrix {(with elements e = 1, eij = 0).

Bold face is also generally used for names of structures. Thus bee refers to the
arrangement of points on a body-centered cubic lattice and NaCl refers to the structure of
NaCl and all iso-structural compounds.

Braces around an atom symbol indicate that reference is being made to its coordination
polyhedron. In quartz GeOs3, the coordination of Ge is a {Ge}Oy4 tetrahedron, ie., a
Ge-centered Q4 tetrahedron, :

Prefixed lower case Roman numeral superscripts in chemical formulas refer to
coordination numbers as in ¥Si;iN>0, Upper case Roman numerals in parentheses after
chemical symbols refer to oxidation states as in Ag(T)Ag(IINO;. Arabic numerals in
parentheses refer to an arbitrary numbering to distinguish crystallographically-distinct, but
chemically-identical, atoms as in B20(1)20(2).

The notation (¥) after interatomic distances or angles means that there are N equivalent
{(symmetry-related) distances or angles of the same magnitude {read “N times”). Thus the
lengths of the six Ti-O bonds formed by a Ti atom in rutile TiO7 are 1.948 (4x) and 1.980
29A (1A=1010m)

We sometimes want o distinguish between compounds with (&) bonds formed between
electropositive and electronegative elements (such as metal oxides and halides) (b) bonds
between electronegative elements (such as in diamond) and (c) bonds between
electropositive elements (as in brass, CuZn). For want of better terms we call these (a)
ionic, (b} covalent, and {c) intermetallic. The use of these terms should not be construed to
mean that we think that any particular theory of bonding is or is not applicable. Indeed they
are merely labels of convenience, and in this book we g0 to some pains to describe
structures and to resist, as far as is humanly possible, the temptation to interpret them. The
reader is free from such constraints, of course,

We draw atiention to the fact that conventions in crystallography are occasionally subject
" to change so that readers of the older literature can be misled. For example the short
symbols for some cubic point groups and space groups were aliered some years ago (see
§ 3.3.6). The method of describing unit cell transformations requires some care (see
§ 4.7.5). Our own view on conventions is that it is not so important that they should be
logical (which, of course, is desirable), than that their users be consistent, and that changes
should be made only for very compelling reasons. ‘

Students of solid state chemistry would be well advised to obitain {or write!) a computer
prograrn that caleulates distances and angles in crystal structures and another that assists in
making drawings. On occasion, structures of lesser interest are simply presented as lists of
coordinates—it is often tedious to convert these to drawings or models entirely by hand
(although we have done just that for many years). Several good programs that do one or

vii

another of these things are now available CO{ntrCially. At ASU and ANU we use a
progrant, EUTAX, that will, among other things, do most of the numerical exercises
in.1

pre;;;ri;dn}llglr:cular graphics programs can be “trick.ed” into accepting fragmen-ts.of crystal
structures as molecules. Usually all coordinates will have to‘ be entered explicitly so we
generally give all the coordinates of symme.try-rglated atoms in crystal structures. For t.hls
pUrpose We use a condensed notation explametfl in § 3.4. For some conpnents on (,kawmé
structures see § 4.6, All the drawings in this book were mfide using a Macmtos?
computer and Cricket Draw® with, in the case of structure drawings, the help of C?Itesxan
coordinates generated by EUTAX. ‘ .

At several places we give advice on the construction of mod‘ci_s. Our experience is that
the best way to learn a structure is to make & modei of it (fmlmg_that, at least 1:nal§e a
grawing or two). One should then look at it rep?:atedly, especially down principle
symmetry axes, until it can be visualized clearly w1t:h one"s eyes f:lqsed. Contra}'y toa
common belief, learning thiee-dimensional structures is a skill not c_hfflcult to acquire but,
like that of riding a bicycle, requires seme initially fmstrat‘ing practice. The rc;w.ard is that,
not only will a knowledge of crystal structures bfs acql}u’ed, but also one will learn to
appreciate the sometimes stunning beauty of th.ree-_d1mensmna.l structures. S

We entreat the reader working aloné not to be discouraged if some_m.atenal is difficult to
understand at first reading. The book is not “bedside” reading but is 1nten(_ieq to be. read
with pencil and paper at hand to verify the statements made. The l?vel of difficulty is not
aniform and we include some material (especially in the Notes) in condensed form for
future reference if needed. Our advice (we follow it ourselves con‘stantly) to those
confronted with a topic that appears incomprehensible, is simply to read_ it, to 'read on, and
then to return to the topic later. Be aware also that virtually every book (including th}s one)
has some errors (M. O'K. would be very grateful if informed of these). If all c?lse fails, get
another book! Readers new to the subject who do not have such difficulties-have our
unstinted admaration. ) .

The Exercises in many instances illustrate important aspects of crystal chelmst‘ry. (We
call them Exercises to emphasize that a solid state scientist who aspires to obtain some
virtuosity needs to exercise constantly, just as does a violinist or a tennis player.) Some of
them are cast as statements; one should interpret these as a requirement to demonstrate the

validity of the statements made. Yet others simply present interesting siructures for the

reader to explore. The lazy reader who is unwilling to do this may stili find some of the

. results useful and should at least read them. Some Exercises will be found simple, some

are more challenging. Sometimes we give hints and partial answers and some are answera?d
later in the text. We emphasize though, that it is not sufficient to do a problem andl olbtam
the correct answer. One must do a problem, get the correct answer, and-know that it is tl'.lf:
correct answer. After all, this is the situation faced by a practicing scientist {and by us in
setting the Exercises).

& Macintosh® version of this program is available from EMLab Software, 16203 S, 26th Place,
Phoenix AZ 85048. A Windows® version is planned.



The book contains crystallographic data for two kinds of structure. Data of the first kind
are found mainly in Chapters 6 and 7 in which we describe sphere packings and nets. In
these cases the coordinates and unit cell parameters given are such as to have unit distai-nce
between sphere centers, or between the vertices of pets. These data can easily be
recognized because the unit cell parameters are dimensionless. In most instances they have
been calculated specially by us and published herein for the first time. On the other hand
crysta_llograph‘ic data for real compounds are given throughout the text (specially in
Exercises and in Appendix 5). In this second case unit call edges are invariably given in A
and the data refer to structures published in the open literature. All these data come from
one or other of the data bases lsted in Section D of the Book List (p. 446); these (or similar
sourcgs) should be consulted for references to the original literature, The formula index
contatns a complete listing of compounds for which crystallographic data are given.
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CHAPTER 1

SYMMETRY IN TWO DIMENSIONS

1.1 Point symmetry operations in two dimensions

The concepls of symmerry, symmetry operations and symmetry elements play
essential roles in the description of the structure and properties of matter, and it is very
difficult to understand the crystallographic literature without some knowledge of symmetry
theory and its jargon. In this and the next two chapters a brief account is given of the
symmetries of objects with particular emphasis on the approach and sym‘bohsr.n that has
been adopted as standard by crystallographers. No attempt is made to be either rigorous or
complete—that would take us too far afield. ;

For pedagogic reasons we begin with a discussion of the symmetries of tlwo-
dimensional objects. In this case it is not too difficult to give an account of the various
symmetries that are possible in a way that is plausibly complete, We can thep proceed to a
discussion of three-dimensjonal symmetry using the analogy to two dimensions as a prop
to understanding. Two-dimensional symmetries are often encountered in prac':tice (the
surface of a crystal and the image of a crystal structure observed in an electron microscope
are two-dimensional, for example). .

A square confined to a plane looks exactly the same if it is rotated 90° aroupd the point at
its center—we say that this operation, which leaves the object unchanged in aspect, isa
symmetry operation. Thus consider the shaded square shown below (Fig. 1.1).°R0tat1ngn
the square about its center point (the small black square) by 90°, 180° (= 2 X 90°) or 270
(= 3 x 90°%) leaves it unchanged. Note that the fourfold repetition of rlotanon b 90° is
equivalent to rotation by 360°. Any object is left unchanged after a rotation of 360° about
any point and this operation is called the identity ope.ration. We generally refer to a
symmetry element that entails rotation by 360°/N (N is an integer) as N-fold.

Fig. 1.1. Symmetries of a square.

The point at the center of the square is the location of a 4-foid rotation point and this
one of the symmetry elements of the square. Distinguish between the symmetry element
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and the symmetry operations (in this case repeated rotations by one-fourth of a circle, by

convention! anticlockwise, about a point). Note also that the application of any symmetry
operation on a finite object will always leave at least one point unmeoved; for this reason
such symmetries are referred to as point operations (or point isometries).

The square has other symmetry elements. Reflection of the sguare in the vertical line
(labeled “1” in the figure) going through the center will again leave the square unchanged.
The vertical line is a mirror line. There is another mirror line {labeled “27) at right angles to
this (i.e. horizontal) as the square has 4-fold rotation symimetry. :

There is also a second set of mirror lines among the symmetry elements of the square;
these (labeled “3” and “4” in the figure) are at 45° to the first set. The reader might try to
show that these are generated by contbinations of 4-fold rotaltons and one or other of the
first set of mirrors. (We will find a simple way to show this later.)?

Repeated application of any point symimetry operation will always eventually result in
the identity operation (thus: two successive reflections in the same mirror line or four
successive rotations of 90° about the same point), For mathematical reasons it is important
to always consider the identity as one of the symmetry elements of any object.

We have identified the entire set of operations of the symmetry elements of the square. It
forms a representation of a mathematical group3, and is therefore called the symmetry
group—or in this case the point symmetry group because at least one point is left invariant
by all the symmetry operations.

Tt is easy to show (we do it below) that in a periodic object (such as a crystal) there is a
restriction to point groups that include only 1-, 2-, 3-, 4- or 6-fold rotation symmetry
elements, There are ten of these groups in two dimensions; they are called the
erystallogiraphic point groups. We enumerate them and show patterns with each of the
symmetry groups in Fig. 1.2. The patterns are generated by the action of all the symmetry
operations of the group on an asymmetric object (in this case a 7).

There are five groups with only rotation points (we include the group that contains only
the “one-fold” rotation = identity}. A rotation point is symbolized by a number equal to the
order of the rotation. For the groups without mirrors, these numbers become also the
symbols for the groups which are therefore 1, 2, 3, 4 and 6. These are called the pure
rotation groups, as the symmetry operations are rotations only. A pattern with pure
rotation symmetry will be different from its mirror image and so can be said to have a
hand. (I the object is left-handed, its mirror image is right-handed and vice versa)

Additional groups are obtained by adding mirror symmetry to the pure rotation groups,
The simplest such group is just thal obtained by addition of a mirror line (symbol m) to
group 1 to give group 1m. This is the symmetry group of a plane object that has but one
mirror line. An example is an isosceles triangle or the letter V. Note that group 1m consists
of two operations: reflection in the mirror line and the identity 1.

IThis is the convention in crystallography. Many computer graphics programs consider positive
rotations to be clockwise.
2For example rotation by $0° anticlockwise followed by reflection in the horizontal mirror is equivalent

to reflection in the mirroc line running from top left to bottom right.
3The reader unfamitiar with group theory may find the Notes (§ 1,10.2) for this chapter useful.
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Fi.g 1.2. Nustrating the 10 two-dirmensional crystallographic point groups.
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If the symmetry group of an object contains mirror lines, the object is the same as its
mirror image and thus will not have a hand. The reader should compare the patterns on the
left of Fig. 1.2, which have a hand, to those on the right, which do not.

Next we combine a mirror with a 2-fold rotation (see Fig. 1.2 again), We find in fact
that combination of a 2-fold rotation and a mirror resuits in a second mirror line at right
angles to the first, so the group is symbolized 2men to indicate the presence of the two sets
of mirror lines {gach set consists of one line). Conversely, if we had started with two
mirror lines at right angles we would find that we generated a 2-fold rotation point at their
intersection.! This is the symmetry group of a rectangle or of the letter H,

Proceeding in this way we next generate group 3m from a mirror and a 3-fold rotation.
This is the symmetry of (for example) an equilateral triangle. Combining a mirror with 2
4-fold rotation produces the symmetry group of the square which we have already
discussed. The symbol is 4mm with two m's to signify the presence of two sets (of two
each} of mirrors, In each set the two mirror lines are related by symmetry. Thus (see Fig:
1.1) a quarter turn takes mirror 1 into mirror 2; mirror lines 3 and 4 are similarly related.
On the other hand there is no symmetry operation in the group that converts either mirror 1
or 2 to mirrors 3 or 4—this is why we say there are two sets of mirror lines.

Finally we combine a mirror with a 6-fold rotation, Again we get in the symimetry group
two sets (now of three each) of mirrors. Accordingly the symbol of the group is 6mm. A
regular plane hexagon has this symmetry. The location of the mirror lines is indicated in
Fig. 1.3 below in which the two sets of mirrors are shown as dashed and dotted lines
respectively. As in 4mm, we have a syminetry operation (now rotation by a muitiple of a
sixth turn) to relate mirror lines in a set, but there is no symmetry operation in the group
relating mirrors in one set to any of those in the other set, {(Mirror lines of one set are at 30°
to those of the other set, i.e. related by a rotation of 360°/12; but rotation by 1/12 of a circle
is not a symumetry operation of the group). :

Fig 1.3. Dlustrating 6mm. Dotted and broken lines indicate the location of the two sets of mirrors.

Lifting the restriction to crystallographic symmetry (i-, 2-, 3-, 4-, or 6-fold rotations)

~ we get non-crystallographic point groups. These are rotation groups N with N = 5 or > 6,

and the point groups Nm with N > 3 and odd (a reguiar pentagon has symmetry 5m), and
Nrmm with N> 6 and even (a regular octagon has symmetry Smm). )

1The three-dimensional occurrence of this phenomenon is familiar to those who have looked at them-
selves in two mirrors at right angles, If vou kave never done this please (ry! :
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1.2 Coordinate systems and symmetry operations

Let us consider a Cartesian coordinate system with the x axis pointing down the page
and the y axis horizontal as in Fig. 1.4. Further, let the origin be at the 4-fold rotation point
of 4mm, Three of the symmetry elements of that group are indicated: the 4-fold rotation
point by a square and two mirror lines by heavy lines.

X, ¥

Fig. 1.4, Tllustrating the effects of rotations and reflections on a point {see text).

Imagine now the operation of a quarter turn (90" rotation anti-clockwise about the origin)
on the point x.y. The point will be translated to a position -y,x, This means that the new x
coordinate is equal to minus the old y coordinate and the new y coordinate is equal to the
old x coordinate; thus if the original point had coordinates 0.2,0.1 the new point would
have coordinates —0.1,0.2. The transformation can be represented by multiplying the
column vector (x /y) (representing the coordinates x,y) by a matrix to give new coordinates

xyh
x 0 -1yx ¥
¥ 1o vy, lx
The matrix can be written on one line as {0 1/ 1 0), with I representing -1, and this is a
convenient way of representing the symmetry operation. The matrix corresponding to

reflection in the diagonal mirror is (0 1 /1 0).1 This transforms the point x,y to y,x as

IThe reader who is not entirely familiar with matrices and their multiplication is well advised to work

out the examples given here and subsequently, See the Notes at the end of the chapter (§ 1.10.4) for help .

with manipulating matrices,
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shown in the figure. Finally the operation of reflecting in the horizontal mirror transforms
%y io X,y with the corresponding matrix (1 0 / 0 1). We may now verify by matrix
multiplication that rotation by 90° followed by reflection in the horizontal mirror is
equivalent to reflection in the diagonal mirror shown in Fig 1.4

(0700 T/ 10 (/) =©1/10)x/y) = (v/%)

as should be obvious from ari inspection of the figure.

Instead of using the matrices to represent the symmetry operations, we could use the
transformed coordinates themselves. The resulting coordinates are sometimes known as the
Jones symbol. We list in Table 1.1 the matrices and coordinates for all the operations of
4mm. Reference to Fig 1.2 shows that the original asymmetric object is transformed to
eight such objects, so there are eight syrmetry operations (eight is the order of the group).
It is common to symbolize an anticlockwise rotation by a quarter of a circle by 4t or 41,
rotation by two quarters of a circle (= one halfl circle) by 42 (= 21) and by three quarters of
acircle by 43 or 4-, The last case emphasizes that rotation anticlockwise {the positive sense)
by 3/4 of a circle is equivalent to rotation clockwise (the negative sense) by 1/4 of a circle.

Table 1.1. Symmetry operations of group 4mm.

operation matrix coordinates
identity = 1 (10/01) xy
90° rotation = 41 ©is10) y.x
- 180" rotation = 42 = 21 de/00) %7
270° rotation = 43 0/im %
reflection in horizontal mirror (10/01) Xy
reflection in vertical mirror (10/0D %y
reflection in mirror 3 (Fig. I.1) (O1/10) ¥,x
reflection int mirror 4 (Fig. 1.1) (©i/lo ¥,

In erystallography we does not always use coordinate axes at right angles, In the case of
3-fold or 6-fold symmetry, it is more convenient 1o take axes inclined at 120° to each other
as shown in Fig. 1.5. The figure illustrates the effect of 3-fold rotations on a point x,y from
the rotation point taken as origin. The long and short dashed lines have lengths equal to the
magnitudes of x and y respectively. Noté¢ that to get to the point x,y from the origin, we
translate by a distance x parallel to the x axis and then by a distance y parallel to the y axis.

It should be obvious from the figure that after rotation by one-third of a circle (120°)
about the origin, the new x coordinate is equal to —y, and that the new y coordinate is equal
to x—y. We therefore write the coordinates of the new point 7,x—y. If the original point
were at x = (.4 and y = 0.1, the coordinates of the point generated by the rotation of 1/3 of

INote that the order of matrix multiplication is important. Reversing the order of the two matrices is
equivalent o teversing the order of carrying out the two symmetry operations. (What symmetry operation
does one get then?)
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a circle (anticlockwise) would be x =-0.1, y = 0.3. Repeating this operation takes ¥,t—y to
y-x.% (le. -0.1,0.3 to -0.3,-0.4).

Fig. 1.5. Illustrating a coordinate system with axes (x and y) at 120°,

The symmetry operations of point group 3 can hence be represented as shown in Table
1.2. As there are three symmetry operations, the order of the group is three.

Table 1.2. Representations of the symmetry operations of group 3.

operation matrix coordinates
identity = 1 (10/91) Xy
120° rotation =31 =3+ (01/ 11) FX-y
240 rotation=32=3% (11/10) y=x,%

It is important to note that the matrices and (transformed) coordinates only have the
particular form given for the particular basis (coordinate system) chosen. A recommended
exercise {see Exercise 7 at the end of the chapter) is to find the corresponding matrices and
coordinates for a 120° rotation using a Cartesian basis (axes at right angles).

Even with axes at 120" we have to be careful when we consider the point group 3m.
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There is more than one way we can orient the axes with respect to the mirror lines.! There
are two ways that prove to be useful in practice as shown in Fig. 1.6. On the left there are
mirror lines parallel to the x and y axes; on the right they are perpendicular to the axes.
Now it is imiportant to realize that the crystallographer's syrbols for symmetry groups not
only signify the symmetry elements present, but also their orientation with respect to a
coordinate system. Accordingly the symbols in the two cases above are different viz. 31m
and 3ml. (The full significance of the symbols will be made clear later—Tfor now it is
important to note that the two symbols refer to the same point group with the coordinate
axes in two different orientations with respect to the mirror lines.)

¥ oK

Fig 1.6. Illustrating iwo orientations of the x and y axes with respect to the symmetry elements (mirror
lines) of 3m.

For the record note that the three mirror reflections operating on x,y give

for3lm: Ty-x; x-¥3; y.x
for 3ml: xx-y; y-xy, 7,%

These, combined with the three points produced by the 3-fold rotation point (given in _

Table 1.2} produce a total of six peints, so the order of the group is six.

1.3 Translational symmetry: lattices and unit cells

We now turn our attention from finite objects to infinite objects with translational
symmetry. The first important concept that we need is that of a lafrice. A lattice is an
infinite array of points each of which is identically surrounded, In two dimensions a lattice
is generated by repeated translations of a point by two non-coltinear vectors a and b, Thus
starting from an arbitrary origin we generate a lattice as the infinite set of points at the end
of the vectors ma + nb where m, n are positive, negative or zero integers. The lattice is
completely determined by the magnitudes, a and &, of the vectors a and b and the angle y

In a periadic object (crystal) there is translational symmetry and we use axes parallel to translation
vectors, so the orientation of the axes is determined by the crystal lattice.

Symmetry in Two Dimensions 9

between them.!
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Fig 1.7. The five 2-dimensional Bravais lattices.

The parallelepiped defined by a and b is the basic repeat unit of the lattice and is known
as the unit cell. As illustrated in Fig. 1.7(a), more than one unit cell {with corresponding
lattice vectors a and b) can be chosen with lattice points only at the comers. Such unit cells

IThe term “lattice” is widely abused, Crystallographers, in particular, become very upset when lattice is
used to mean structure as in "the diamond lattice” or "the wurtzite lattice” (in neither case do all the atoms
fall on lattice points). Such usage is considered a gross solecism. However terms such as laztice dynamics
and lattice defects are in such common usage that one caniot avoid them. The word “lattice” is also used
in 4 quite different sense by mathematicians. :
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contain one lattice point per cell (each point at each of the four corners is shared by four
cells), so no matter how they are chosen each cell has the same area, Usually the shortest
pair of vectors with ¥ 2 90° are chosen as shown by the shaded parallelogram. The
quantities a, b and yare referred to as the unit cell parameters.

Lattices are classified by their symmetries. Every point in a general two-dimensional
lattice is a site of 2-fold rotation symmetry (remember that a lattice extends to tee in both
directions). For some special relationships of the unit cell parameters, the lattice points are
at points of higher symmetry. This is illustrated in Fig. 1.7 which shows the different two-
dimensional lattices (known as Bravais lattices). The lattices shown in (b) and (c) also
have mirror symmetry (the points are at sites of symmetry 2mmy), that shown in (d) has
4-fold rotational symmetry and that shown in (e) has 6-fold rotational symmetry. After we
have discussed space group symmetry we will see that the lattices (b} and (c) have different
Space groups (p2mm and e2mm respectively), and hence are clagsified as different Bravais
lattices. Every two-dimensional lattice has one of only five possible space group
symmetries and thus is one of the Bravais lattice types illustrated.

The point symmetry operations that leave a lattice invariant (and one lattice point
unmoved) form the point symmetry group of the lattice. As lattice translations leave the
lattice invariant (the lattice extends infinitely) the translations are also symmetry elements
and the full syminetry group {space group) includes the infinite number of iranslations.

The constraints on a, b and yin the five lattices, and names descriptive of the shape of
the umit cells are listed in Table 1.3. The table also lists the Symumetry at a lattice point.

Table 1.3. Properties of the two-dimensional Bravais Jattices.

constraints system

point symmetry
(2) none oblique 2
(b) ¥=90° rectangular 2mm
() a=b rectangular 2imm
(d) a=b, y=00 square 4mm
{e) a=b,y=120" hexagonal 6mm

It may be objected that the unshaded unit cell in (c} is not rectangular, and that is true,
_ but we can take an alternative unit cell that is rectangular (shown shaded in the figure) with
lattice points at the corners and one at the center. Most commonly this is done and the
constraint for lattice (c) above could have been stated as 7= 90" for a cell with lattice potints
at the corner and in the center.

Note that the unit cefls with only one lattice point per unit cell are primitive. On the
other hand the rectangular unit cell shown in {c) contains two lattice points (one
corresponding to the corners, and the one at the center) and is called cenrered. The unit cell
parameters for the centered cell in (c) have a = b, y= 90° as in (b) but, as noted above, the
two latices have different space group symmetries. Two-dimensicnal lattices represented
by a primitive cell are symbolized by p and that conventionally represented by a centered
cell is symbolized by c.
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The terms oblique, rectangular, square, and hexagonal refer to the crystal system.
Clearly there are four crystal systems in two dimensions.

1.4 Allowed rotational symmetries of lattices

We pause now to prove the assertion that the only rotational symmetries allowed in
periodic structures are I-, 2-, 3-, 4- and 6-fold rotations. Certainly one or more of the
lattices (a)-(e) of the previous section have one or more of these symmetries (note that e.g.
a 6-fold symmetry tacludes 1-, 2- and 3-fold). . ‘ o

A proof, which is very old, proceeds as follows, We take an arbitrary lattice and identify
the shortest lattice vector a. Now consider two lattice points A and B separated by 4 (see
Fig. 1.8). Let there be N-fold rotation points at A and B. Let B’ be the irilage of B after:
rotation by 360°/N about A, and A’ the image of A after rotation by -360°/N about B. A
and B’ must also be lattice points, The distance B'A’ is equatl to q[1-2c0s(360°/N)] and
must be equal to 0, a or >a (if B'A’ < a then a was not the shortest lattice vector). We
consider each of these possibilities in tum:

BA' =0 F-2c0s(360°/NM)=0 N=6
BA'=a: 1-+2cos(360°/N)=1 N=4
BA'>a: 1-2co8(360°'M>1 N<4 (e 3,20rl)

Thus the only possible values of Nare 1,2, 3,4 0r 6. Q.E.D.1

Fig. 1.8. Illustrating the proof that only 1-, 2-, 3-, 4- or 6-fold rotations are ailewed rotational
symmetries of lattices.

1.5 Unit cell coordinates: describing structures

Fora periodic structure we now know how to specify the unit cell. To compietely define
the structure the next thing we have to do is o specify what is in the unit cell.

IThe unconvinced reader is invited to consider the case _of N=3.
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The reference coordinate system is always taken with the x axis parallel to a and the y
axis parallel to b. Usually the y axis is drawn horizontal and the x axis down the page so
that the origin of coordinates is af the top left corner of the unit cell. The scale of x is in
units of & (the magnitude of the vector a) and the scale of ¥ is in units of . In these terms
the coordinates of the unit cell corners are 0.0;0,1:1,0and 1,1. Note that x and y are
dimensionless; for example the distance from the origin at 0,0 to-a point x,0 is xz and a has
dimensions of {ength. :

Any point in the unit cell will be specified by x,y where x and y will be in the ran ge O to
<l. It is important to note that coordinates equal to, or greater than, 1 are not used, This is
because (for example) the existenee of a point at 0.y implies a point at Ly. Both these
points are shared with two unit cells so we would be counting points twice if we gave the
coordinates of both points. Likewise x,0 implies x,1 and 0,0 implies 0,1 and 1,0 and 1L

Semetimes crystallographers use negative coordinates such as X or ¥. These should be
interpreted as 1-x and 1-y respectively. It should be clear that adding (or subtracting) an
integer to either x or y will always produce an identical point in another unit cell (remember
that we have translational symmetry). The point in the reference cell will always have
0 <y < 1. It should be noted, however, that when Hlustrating unit cells of stmctures it
is conventional to show points (if there are any) on all edges and corners.

We now cosider some examples: A certain pattern has a rectangular unit cell with g =
1.73 (actually ¥3) and & = 2.0. There are three points per unit cell with coordinates A:
0,0.5 ; B: 0.5,0.25 ; C: 0.5,0.75. Fig. 1.9 shows (on the !eft) a unit cell with the points
plotted as circles (note. that the point at 1,0.5 corresponding to A is also shown). In the
center is part of the patiern obtained by repeating the unit cell, To make the pattern clearer,
on the right the points nearest to each other have been Joined together and the outline of the
unit cell omitted. This pattern is observed in layers of atoms in some crystal structures.

This example illustrates what is generally the case—although the pattern is completely
specitied by the shape and content of the unit cell, it can only be fully appreciated by
drawing a number of unit cells. :

¢ ole o]lo o
b
e
o S SN
A
alle o © o|o oo o
B C

Fig. 1.9. Left: a unit cell of a pattern. Middle: nine unit ceils. Right: the same paltern with nearest
neighbors joined by lines. ’

A second example involves a hexagonal cell. Now b.= ¢ and ¥=120°. Points are at
0,0.5; 0.5,0 and 0.5,0.5. Fig 1.10 shows {on the left) a unit cell, in the center nine unit_
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cells and on the right, the pattern outlined by joining nearest neighbors in the same wa%r as
in Fig. 1.9. This pattern is one that is encountered repeatedly in crystal cherms.try. tk is
often cailed the kagome pattern after the Japanese word for bampoo weaves used in basket
making. It is also very frequently encountered in ornamental designs.

Fig. 1.10. Left: a (hexagoral) unit cell of a pattern. Middle: nine unit celfs, Right: the kagome pattern
3.6.3.6.

Note that in the kagome pattern every point has the same surroundings in the sense that

. the polygons in sequence meeting at the vertex are hexagon, triangle, hexagon, triangle.

By contrast in the pattern of Fig.1.9 there are two kinds of poin.t; at one kind h(A) lt1he
sequence is the same as in kagome (hexagon, triangle, hexagon, triangle) but at t clot elt:
kind (B and C) it is hexagon, hexagon, triaﬁglc, tr1anfgle. E;oth gg;tgzr;l: are examples o
i1 ellations of the plane by a combination of regular p -
nhiggic;rrézgon on tilings: prthe plane is covered completely by just one ‘kmd of tll'iiula;
polygon, we have a regular tiling. It is not difficult to prove thgt there are just Fhed 36.et1?
these, The first, in which six triangles (3-gons) meet at fip()%nt, is oftep symgc.)hzc > ,d le
second, in which four squares {4-gons) meet at a pom@, is symbol{zed 4-, the third in
which three hexagons (6-gons) meet at a poin; is symbolized 63. (6Th1i last 1sﬁa[so kkrriown
as the honeycomb pattern, for an obvious reason.) The symbols 3 , 4% and 6° are known
ifli ols.! ‘
” llgfcgllgg;a?é?: similasly covered by more than one kigd of regular polygon, and all p(tJlmts
at which three or more polygons meet are of the same kind (related by symme?try), ;A;)e -aw;.
the semiregular or Archimedean tilings of the planc._The kz.lgome pattern (F1g.h1. _) :s ;:-e
this type and is symbolized 3.6.3.6 as the polygons in cyclu': order aI'(?U:nd e:ac %om e
3-gon, 6-gon, 3-gon, 6-gon. There are eight different semx-regu}ar tlh-r.lg.s, wcb ?scgnd
them later {Chapter 3). [t is also convenient to refer to them by their Schlifli symbols.
o %ir?asxlfznﬂoted that the pattern in Fig. 1.9 contains two kinds of point‘. The kagomg
pattern in Fig. 1.10 contains only one kind of point, as in this patiern the pomts._are r;latf
by symmetry. Thus starting from one point we can generate two more }Jy rotatmgda out a
3-fold point (there are 3-fold rotation points in the cenlers of all the trlan_g[es) an gei an
equilateral triangle of points. Repeating the pattern of three points by the translation vectors

‘e . 6
1 Afier the great Swiss mathematician, Ludwig Schlifli (1814-1895). Matherinam.::ans }vrtte 3% {for
example) as (3,6) as this allows easier extension to higher dimensions {as in Schlifli’s pioneering work),
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a and b recovers the pattern of points. This array of points however is not a lattice (this is
an important point)—a lattice is generated by translations alone. !

1.6 Glide symmetry

We have identified three kinds of symmetry operation: rotation, reflection and
translation. It transpires that we can combine two of these operations to give a new
symmetry operation: translation + reflection = glide. The translation direction and the
rnirror line must be parallel to each other and to one of the Iattice translation vectors. The
symmetry operation is the compound one of first reflection in a line (a glide line) and then
translation parallel to the line by a distance d.2 Repetition of this operation will produce a
pattern that is periodic with a period 24. The vector of length 24 must therefore be a lattice
vector. Fig 1.11 illustrates nine successive glides of a triangle initiatly on the left: the glide
line is shown in the conventional representation as a dashed line. The symbol for a glide
line is g (compare with m for a mirror line). If you walk in a steaight line, and with a
uniform step, along a beach, your footprints will be related by glide symmetry.

Fig. 1.11. Tilustrating glide. The glide line is shown as a broken line.

1.7 Two-dimensional space groups

We are now in a position to cnumerate the symmetry groups that are obtained in two
dimensions by combining the point operations with those that involve translation. We will
find that there are 17 such two-dimensional space groups. We first combine the point group
operations of rotation and reflection with translation and then consider the cases where
reflection lines are replaced by glide lines. Groups obtained by the combination of point
operations with translations are called symmorphic. Additional non-symmerphic groups
are obtained by replacing (where appropriate) mirror lines by glide lines. The diligent
reader will work through each example by letting the symmetry operations act on an
asymunetric object; Exercise 8 shows how to proceed. If this is dene, patterns similar to
those shown in the different parts of Fig. 1.12 (below) will be obtained.

INote that points (or atoms esc.) related by lattice translations are often referred to as identical (a lattice
is an infinite atray of identical points). Points that are related by symmetry operations other than pure
translations are sometimes called equivalenr. )

ZActually in this case the order in which these operations is carried out is unimportant; one could
translate and then reflect.
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1.7.1 Obligue system

We start with the simplest case in which there is translational sym{netry only with an
oblique lattice. This is the symmetry of the pattern obtained from periodic trans_lauons of an
asymmetric object in two dimensions. The symbol for the_ symmetry group is pl. The p
symbeolizes the lattice (primitive) and the ! the associated point group. '

As already noted, an obligue lattice by itself has 2-fold rotation symme'try at thf: lattice
points, so it is also compatible with the pattern obtained by repeatin‘g an obj_ect (which may
be ¢.g. a collection of points) with 2-fold rotation symmetry by_ obhqge lattice vectmts. Tt}e
symmetry group consisting of the combination of the translations with 2-fold rotations is
symbolized p2. . .

No other symmetries are possible with an oblique laitice so we have found thle two
possible space groups in the oblique system: p1 and p2. Patierns with these symnetries are
shown in Fig. 1.12 (). Note that in the parts of Fig. 1.12, the patterns are gelnerated by
the symmetry operations operating on a single asymmetric object (a scalene triangle) a}ld
the number of such triangles per primitive unit cell is the same as the order of the point
group from ‘which the space group is derived.!
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Fig. 1.12 (a)..I]]ustrming the ablique and rectangular two-dimensicnal space groups. Each pattern has
different symmetry (which shouid be identified).

IThe device of using a scalene triangle as an asymmetric object is old [SE:E- e.g. L. ‘Weber, Zeits.
Kristatlogr. 70, 309 (1929}] and patterns similar to those in the varicus parts of Fig. 1.12 are o be found
for example in Elementary Crystallography by M. I. Buerger [Wiley, Nx.e-w York (1963)]: T_‘he space
‘groups are deliberately left unidentified in the figure. The reader should provide the Jabels. This is an easy
exercise, but it should be done.
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Fig. 1.13. This figure is continued on the next page (see the caption there).

Symmetry in Two Dimensions 17

AT
phmm 0‘:& ":}',.‘:/:'1;?:'
LAy

Fig. 1.13. The symmetry elements of the two-dimensional space groups. Light lines outline a unit cefl.
Heavy solid lines indicate the location of mirror lines and broken lines indicate the positions of glide lines.
2-, 3-, 4 and 6-fold rotation points are represented by “lenses”, triangles, squares and hexagons respectively.
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Figure 1.13,shows the location of the symmetry elements in one unit cell for the space
groups. In p1, there are only translations, but in p2, in addition to the 2-fold rotation points
at the corners of the cell, there are also 2-fold rotation points (whose locations are indicated
by the two-pointed symbols} in the middle of the edges and the center of the unit cell. Note

that all the symmetry elements of p2 are obtained by combining one rotation point with
translations.!

1.7.2 Rectangular system

The rectangular lattice p has mirror symmetry and the lattice transtations can be
combined with point group Im to give a symmetry group plml (often abbreviated to pm).2
The symmetry elements of this group consist of orthogonal lattice translations and a family
of mirror lines parallel to one of the axes. The spacing between the mirror lines is one-half
of the lattice repeat.

We can also combine the elements of 1m with the translations of the centered rectangular
lattice ¢ to get space group clsml (abibreviated symbol cm). Note in Fig. 1.13 that the space
group also contains glide lines interleaved with the mirror lines. These should be identified
in the appropriate part of Fig. 1.12.

Point symmetry group 2mm is also compatible with a rectangular lattice, so we have
space groups pZmm and c2mm (often abbreviated to prmm and cmm respectively). These
are the space groups of the primitive and centered rectangular lattices respectively, Note that
they are different symmetries and in particular c2mm contains glide lines that are absent in

P2mm (Fig. 1.13 again). _

Now that we have mirror lines in the space groups, we must consider the possibilities
that arise when mirror lines are replaced by glide lines. Thus the mirror line in the
symmorphic group p1ml can be replaced by a glide line to give the non-symmorphic group
plgl (often abbreviated pg). Again the symmetry elements should be identified in Figs.
1.12 (@) and 1.13.

We remarked that the symmorphic group clm| already contains glide lines so there is
rot a new group “clgl” to be obtained by replacing the myirrors of ¢lm1 by glide.3

From the symmorphic group p2mm we get the non-symmorphic groups p2mg and p2gg

{often abbreviated pmg and pgg) as illustrated in Fig. 1.13. .

As explained below, the symbol p2mg refers to the space group in which there are
mirror lines perpendicular to a and plide lines perpendicular to b, The group p2em is the
same symumetry group but now the axis perpendicular to the mirror lines is b and the axis
perpendicular to the glide lines is a. Thus p2mg and pP2gm are two different setrings of the

YA reminder that here, and throughout the rest of § 1.7, the reader who is unfamiliar with the material
will: (a) Verify that the patterns in Fig. 1.12 are indeed genetated by the basic point group operations plus
translations. {&) Verify the existence of the symmetry elements shown in Fig. 1.13 from the patterns of
Fig, 1.12.

The significance of the “1”s in the symbol is explained below. The novice may well wish to reread this
section after reading § 1.8.

3The skeptical reader should aevertheless do the experiment. It will be found that replacing the mirror
lines in c1m1 by glide lines will produce mirror lines where the old glide lines were,
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same space group with the first arbitrarily chosen as the standard settin:g..This illustratfes

that symbols for space groups can change with relabeling of the axes. T!us is not mucl:h of a

problZm in two dimensions, but we will need to devote careful attention to the analogous
tion in three dimensions. o

qu‘;‘f is important to recall that glide lines already exist in em and c2mm so there are no new

groups cg, cmg or c2gg. We have therefore identified all the rectangular space groups.

1.7.3 Square system

In the square system, we can combine the ranslations of the square lattice with the4poin(§
symmetries that inctude a 4-fold rotation, i.e. 4 and dmm, gett;lng spagt? gficz)l:]pz fPlat?;;e
in Fi a
4m). It should be seen in Fig. 1.13 that the combin

B O T i igi tes a second 4-fold point at the center of
translations and a 4-fold point at the origin genera o of

ints i i . The pattern of symmetry pdm

2-fold points in the middle of the cell e.dges : -

;lklleoﬁfci]t?:(iidentiﬁeg in Fig. 1.12 (b) and the glide lines paralle! to the unit cell diagonals

in Fig. 1.13) identified. . )
(Sh;:en;:isteice of one set of glide lines parallel to the spcond set of mirrors (sgmb?ilhzsg
by the second “m™) in pdmin meatis that although there is a new SP?CCE froup P z::) i

. Again identify the space
4.0} there are not new groups p4img or pdgg ! the

\c}?:glbfllg (i)) and locate the symmetry elements. We have now identified all the square

space groups.
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Fig. 1.12 (§). llustrating the square two-dimensional space groups. Ea¢h pattern has different symmetry

1.7.4 Hexagonal system

In the hexagonal sysiem we can combine the translations of the hexagonal lattice with the

i etries 3, 3m, 6, and Gmm. ‘ . .
POlztS Sz?{f-zlz:iy explained (see Fig. 1.6) 3m can be oriented in two ways with :_:s};?ectt ';c; ;22
i i - ice translations) to give two aistinc
dinate axes (which are paraliel to the lattice ns 0 dis .
C:))ll.;ps p3ml and p3lm. Patterns with these two symmetries are shown m#ﬁg. léfn gcgs
'gfo determine which is which (a) cutline a unit cell, {b} 1dentng th‘la ir?t’l}rror ines. p
i i dees (compare Fig. 1.15)
e that has mitror lines normal to the cell edg : .
th(:Tol?e other symmorphic space groups are p3, p6 ‘and pbmm (sometimnes abprev;;lt';zilg
p6m). Note again in Fig. 1.13 the presence of additional symmetry elemegs, inp
in the hexagonal system we always have 3-fold points at 1/3,2/3 and 2/3,1/3,
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. The. groups p3ml fmd p?lm both already have glide lines so there are no new groups to
e derived by replacing mirrors by glides in these instances. Finally there are lidef'

parallejl to both sets of mirrors in p6rmm so again there are no new groups to be o%tain énbes
rejplacxr-ng the mirrors by glides.! We have therefore concluded the enumeration ail o
dimensional space groups. ronallthe twe-
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Fig, 1.12 (c}. Mlustrating the hexagonal two-dimensional space groups.

i . . .
In the centered rectangular lattice ntirror lines and giide lines are interleaved throughout space, The

texagonal lattice may be considered as a i i
o 2 26 special case of a centered rectangular laitice (ses Table 1.3,p. 10
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1.7.5 Synopsis of the two-dimensional space groups

Tabie 1.4 below summarizes the two-dimensional space groups. The final column Lists
first the symmorphic groups and secondly the non-symmeorphic groups obtained when
mirror lines are replaced by glide lines. Note that the system 1s determined by the shape of
the conventional unit cell, or equivalently by the point symmetry at a point of the lattice
(Table 1.3). The point group from which a space group is derived is the class.

Table 1.4. Synopsis of the two-dimensional space groups (short symbols in parentheses)

system point group space group
(class) symmorphic m =g
oblique 1 pl
p2
rectangular 1m plml (pm) plgl (pg)
clml (cm)
2mm p2mm {pmm) p2mg {pmg)
_ pgg (pgg)
c2mm (crmm)
sqﬁare -4 p4
dmm phmm (pdm) pdgm (p4g)
hexagonal 3 p3
im p3ml
p3lm
6 76
6mm - pomm (pbm)

1.8 Construction and interpretation of space group symbols

We now summarize the rules for constructing and interpreting space group symbols, It

is emphasized that the space group symbol both identifies the space group and specifies the

" orientation of the reference axes with respect to the symmetry elements. In specifying the
direction of mirror or glide lines we actually specify the directions of the normals to them
(for reasons that will become apparent in Chapter 3}. Note that in interpreting the space
aroup symbol, we have first to identify the system (oblique, rectangular, square or

hexagonal).
The first letter of a space group symbol refers to the lattice type and must be “p” or “¢.”
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In the oblique system we have either p1 or P2 as space group symbol.

In the rectangular system there are (in the long, or full, symbol) three places after the
lattice symbol. The first of these three places has a symbol which refers to the nature of the
rotation point and is either “1” or “2.” The next symbo! refers to the nature of the symmelry
line (“m” or “g”") normal to a (the ttormal to the mirror or glide line is parallel to a}. The last
symbol refers to the nature of the symmetry element normal to b and is either “1", “m” or
“g.” Note the use of “1” as a place marker to avoid ambiguity when no symmetry element
is present. The standard setting for pm is with the mirror planes normai to a hence the long
symbol plml; if for some reason we wished to label the axis normal to the mirror plane b,
the space group symbol would now be written plim,

In the square system the first position of the space group symbol is for the lattice (must

be p). The second is for the rotational symmetry (must be 4) the third (if present) is for _

symmetry elements along x and y (i.e. parallel to a and b—because of the 4-fold symmetry
these symmetry elements must be the same) and the fourth position (in the full symbol)

signifies the presence of symmetry elements at 45° to x and y (i.e. along the directions
ath),

In the hexagonal system the first position of the space group symbol is again p. The
second indicates the rotational symmetry (3 or 6). The third position. signifies SyImmetry
elements along the x and y directions (which are at 120%), i.e. parallel to a and b and to the
third equivalent direction which is parallel to —(a+h). The fourth positions refer to
symmetry elements at $0° to x and y. Recall that the orientations of mirror lines are
specitied by the directions of their normals and note again the use of 1 as a place marker in
p3m1 and p31m. Accordingly in p3m1 the normals to the mirrors are parallel toa and b
[the mirror lines are normaf 10 a and b and —(a+b)]; in p31m the normal to the mirrors are
at right angles to a and b [the mirror lines are parallel to a and b and —(a+hb)].

1.9 Using the International Tables

" Volume A of the International Tables Jor Crystallography (see the Book List) is the
standard (and indispensable) source of information about space groups.! Fig. 1.13 closely
follows the diagrams in that book which we often refer to just as the International Tables.

The International Tables also gives ihe coordinates of the points in one unit cell
obtained by the operation of the symmetry operations of the space group on an arbitrary
point x,y. These are the coordinates of the general positions. The number of general

positions will equal the order of the point group multiplied by the number of lattice points
per unit cell (1 for p and 2 for ¢).

ITwo points to note here about the Tables: (a) The two-
groups”. (b) The short symbois (which are widel
of the Tables for more on this point).

dimensional space groups are there caled “plane
y used elsewhere) are not used for these groups (see p. 16
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There are also special positions in the unit cell. Thcse correspond to pointls: .tha; zirae
either at rotation points or on mirror lines. Thus consider ?he gr:)jup pénzlfg r!(s;:;: thleg.6 éolci
i igin is on a 6-fold rotation point and opera -
e o contonts any 2o ints. Likewise the same point is also on the mirror
rotation will not generate any new paints. LIKewis s
i ts. In fact the symmetry operatl
o the mirror planes produce no new poin ct o perd
gizr&?c: no new points at all, This may be vertfied by substititing x = 0 and y = 0 in the
dinates of the general positions listed below: .
Cmgth?:? special pisitions of p6mm are on the 3-fold points at 1/?{,2/?1 emg1 2;'?;,8 lflé;"l;‘;
i i i ilf produce only the othe
operations acting on one of these points wi : 8 ma
ff?:i?eilugy sriﬁ)stimting x = 1/3 and y = 2/3 in the coordinates of the general pt:>s1tfaons.-tionS
Tn Table 1.5 below we give for pémm (short symbol p6m2j: fﬁst tltlg numb;c;; I?atgsoséf 0
] ! i then the coor
iven kind, then the Wyckoff notation (a, b, etc.) an : ]
Of(‘);t;g;:;senRefer to Fig. 1.13 to see that the positions 6 e correspond to pomt-s_consérz;n;rt:
Eo lie on -one set of mirror lines and thus at sites of symn*:{]etry m. '{h_t:e;;(;?iﬁt;sm .
ikewi i i d set of mirror lines and again at 51 X
likewise arbitrary points on the secon ‘ _ : ety
iti i i ts and at the intersection of two mi ,
Positions 3 ¢ are points on 2-fold rotation points A A
i i i Positions 2 b are on 3-fold rotation p
so are at sites with point symmetry 2emnr. : : o B o the
i i i t-sites with symmetry 3m. Pomn
intersection of three mirror lines so they are a e axout 1o
igi m. The letters a, b, etc. have no special signific
O e ety aceen roup will have special and general
as (umiversally accepted!) labels. Each space group ve
Sers‘;:iens (labeled from a (for the highest symmetry pomts),. alphabctlca_lly t10 wt{atet;:r 10.2;:;:11;
?sonecessary for the general positions. The last entry in the table below 1s p
symmetry ateach kind of site. o

Table 1.5. Special and general positions of pGmm

wyckoff notation coordinates : symmetry
12f Y Ty YT L X EYX VY 1
T 5 9Y-X; Y X VK XY YKy

Ge T ox2x; 28X a0 %,2% m
6d £0;0x;%%3;%0:0% ;xx m
3¢ 1/2,0;0,1725 172,172 2mm
2b 1/3,2/3 ; 213,1/3 63m
la 0,0 . Hrm

Having available the coordinates of the general and speci_al positions afllao::f Oa;
considerable economy in specifying structure. Thus only t:e coordmzcllt?:s ogfi:j:: gxpﬁcmy
iti i ordinates need be .

I positions need to be given. In some cases no £oort o
%‘ir;esriopcompletely specify the positions of the pomtsé;g the; I:;g(gr;eg 15?35?0 E?trh6e ?,1 Ifl)t

it i 1 1 mnt}, the
described above, it is sufficient to give the space group ' e o
i tions ¢. The points of the honey:

ameter (¢) and to state that points are at posi : : :

;f;l;f:;f (63) ang at b (make a quick sketch). Another example using this space group 15

Igemember that x = —1/3 is equivalent to x = 2/3 etc.
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given in Exercise 3 at the end of the chapter.
In a space group with a centered lattice the existence of a point x

of an identical point at 172+4x,1/2+y because transkation by 1/2,1/2 is a symmetry operation.
In the International Tables the positions of cm are given as shown in table 1.6.

Table 1.6. Special and general positions of cm.

0.0;1/2,1/2) +
4b  xy.xy
2a 0y

Thus the coordinates of the general pbsitions are xy ; Xy 3 V24, 124y 5 1/2-2,1/2+y
and the coordinates of the special positions a are 0,y ; 1/2,1/2+y (i.e. on the mirror lines at
x=0and x = 1/2).

1.10 Notes
1.10.1 Symmetry operations

The symmetry operations we have discussed are special cases of general geometrical
transformations or mappings. They are those which preserve distances and angles and
hence the term isomerry. There are many mappings in which there is a one-to-one
comrespondence between the object before and after the transformation. A similarity
transformation is one in which angles, but not distances are conserved. It may be
considered as the result of an isometry followed by an expansion or contraction in scale.
Another transformation of interest is inversion or reflection in a circle. For examples of the

remarkable patterns that can arise from repeated reflections in a system of circles see

R. Courant & H. Robbins, Whar is Mathematics?, Oxford University Press, Oxford
(1941) p. 162,

1.10.2 Groups

Intreductions to symmetry group theory! are F. A, Cotton, Chemical Applications of
Group Theory, 3rd Edition, Wiley, New York (1990) and Boisen & Gibbs (Book List).

A group is a set of (at least one) things with the following properties.

*There is defined a binary operation symbolized by * such that c*p = ¥, where @, f
and yare all members of the group. In the case of symmetry operations,
operation 3 followed by operation ¢, and Y is also a symmetry operation.
general o+ and B+o are not equal (but may be). If for every pair of elements
0*P = Bt the group is said to be commutative or abelian,

o+f means
Note that in
in the group

INote that in this chapter we haven’t done an

¥y group theory (nor shall we in subsequent chapters). All
we have done is to enumerase certain kinds of 5¥!

mmetry group.

.y implies the existence
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. o ros [8),‘
. #v) = (oex)=y (this is the associative ru -
%:12?'8 ?xisfs al? )elZment € in the group such that ;*0& ~—l-l otjl:ie -t ‘? io;e(;; :i:ggal to any
. to the identity .
up. In symmetry groups £ corresponds to t e
mﬁ‘ri:l:beraif ﬂ;fe%:;nfa in the group there is another {§ (thq inverse of o) suc?l t()ii_a:e (:UI? =
* Srs ayand p may be the same (for example two reﬂectlclms nl the :l:,amadn;)mmtatim o
Bheai;en.tity) or different [rotation by one-third of a circle (3 = 3 )'f:;l C?J:e (33; Rl
tt thirds of a circle (32 = 3), or vice versa, again results in the identity
WO _
- ' i implest
B {lz}l‘e number of distinct elements in the group is the order of the group. The simple: .
i of order 1) contains only &. ' e aron
Poiijfxiiﬁgfe(gf a finite group (of order thre_e) is the numbers O,dé;)in%hZu;fweehive:p_
operation * is defined as "addition modulo 3", Le. oxf = (o) mod(3).

050 =0 1%0=1 2+0 =2

_ -0
o¥l=1 . 1¥l=2 221
¢2=2 1¥2=0  2%2=1

Here 0 COI[CSPOHdS to and 1 alld 2 are the IMYEIsSes Of each OthEr. We can write out
2
the above Ielatlonshlps as a ﬂlultlphcatloll table. I\‘IultlpllCatlon refers to the gI()up

operation, in this case “addition modulo 3.7

0 1 2
0 0 1 2
1 1 2 0

is g has the same siructure as (is isomorphic v\'fith) the point s:yl?réletg agrcc?:é)l 2
one e ts are the identity and rotations by one-third anc.l by two-thirds 2.
¥£§:: :vlveonf;issof things with their appropriate group operation (*) form two di
representaﬁ(?ﬂs Otft:hteusﬂzrg::il:zgﬁrgsr;ﬁew operations (see e.g. the case of 4mm Ttgblllz
ks mami'ees re:entation of the same abstract group as do t-he. symmetry operatio
tlliix)nizgzsaif t}?e group operation now is identified as matrix multiplication.

1.10.3 Two-dimensional space groups and decoration

) . . ITH - . .t . A
The occurrence of periodic patterns in decoration \;s fanuharda;;cilaiasti; ftrl-(l);n 5?:3;; ryz'l 4
iodi i fury g

iki e of periodic patterns is the XI cenl he A o

G Sél'llﬁlﬂgsﬁzlilrl;c Morg recently, the Dutch artist M. C_. Escher was 1ns§1;:inbzi e

igzﬁbi;rtlo pixj'odl.t.ce some remarkable periodic designs whlchAhavi‘ gezr} L;;e e

i Symmetry Aspe . C. .

. taltography [C. H. MacGillavry, ' - e

?j:ii;tiili% ;)?c(aivingsg, Olgsl?’hoek, Utrecht (1963)]. Escher's art also provides some be
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examples of repeated similarity transforms.

The Moors did not use all the two-dimensional Space groups in the decoration of the
Alhambra, It is interesting that the explicit enumeration of the 17 two-dimensional groups
was only done after the 230 three-dimensional Space groups were enumerated. The
symmelry groups of three-dimensional objects with translations in only two dimensions are
the 80 layer groups which are sometimes of use in crystal chemistry. We refer to these
again in Chapter 3 (see also Appendix Al).

1.10.4 Matrix manipulations

The reader entirely unfamikiar with matrix manipulations will have to consult one of the
very many elementary mathematics texts that deat with such matters. In this chapter we use

only 2 x 2 matrices such as A = (@11 @12/ agy ax9) and 2 x 1 matrices (2 rows and 1
column; also known as coluran vectors) such as x = (x) / xy).

Multiplication of a 2 x 1 matrix by a 2 x 2 matrix give a new 2 x 1 matrix asin Ax =y,
where y= (a11x1+a12x2 / 1X1+ag0x7).

Multiplication of a 2 x 2 matrix by a2 x 2 matrix gives a new 2 x 2 matrix as in AB=C,
where C = (aub11+a12b21 a11b12+a12b22fa21b11+a22b21 a21b12+a22b22). Note that
the order of multiplication is important and in general AB=BA (recall that the order in
which symumetry operations are carried ont may be important).

1.}1 Exercises

L. Circles of unit diameter are packed as closely as possible on a plane. A fraction nv12
of the area of the plane is covered, The symmetry is pGmm and the centers of the circles are
on the points of a hexagonal lattice. (Do this by packing coins of one kind on a table top.)

2. A hexagonal lattice can be described by a centered rectangular cefl with b = V3. (The
centered cell is sometimes called orthohexagonal).

3. A pattern often encountered in crystal chemistry and in omarment is the Archimedean
tiling 3.4.6.4 which has symmetry pbmm. If the edges of the polygons are equal to 1, the
unit cell parameter is & = 1493 aod the points are in 6 ¢ (Table 1.5) with x = 143+3).

Verify by plotting the pattern. [Hint: if you have difficulty plotting with hexagonal axes see
Fig. 4.10, p. 121.}-

4. The symmetry of the face of a conventional brick wall-is c2rmm,

3. A pair of pa.ra.llel miirror lines separated by a distance d produces an infinite set of

mirror lines with spacing d and translational symmetry with period 24 (the barber shop
phenomenon).

6. Use the matrices given in Table 1.1 to construct a multiplication table for 4w,
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i i *y, rotation by 120” about the origin of a
. Referred to Cartesian coordinates (axes at 90°), ro |
oi‘]nt xcyegivcs a new point at /23912, {3x 212, The- trace (sul_n f’f diagonal teLf*‘n:;)
Ic')f the I;mtrix generating the new coordinates from the lold is -1, gnd is mdepe;:gg?t_ of the
choice of coordinate system {compare the matrix given in Table 1.2 for axes at ).

3. In Fig. 1.14 (below) the broken lines represent two glide lines at ritfiht a;lgit:i,? )tl':f1
ight T it cell of edges a and b. Start with an asymmetric obj
light rectangle represents a unit ce _ \ " e 1o

1l and use the glide reflections and tran ' )
the upper left corner of the ce d ‘ " T et
i iginal object. This process has been begun 1 L !
generate images of the onigina ; e
i latjons and the bent ones represent g
straight arrows represent translati : e iy al the syrametry
ill generate all the symmetry eleme.nts of pge (plgg). 1

ggym:ftswiln tﬁe unit cell {(objects of every pair must be related by a symmetry operation}.
Compare with Fig. 1.13 (in which the unit cell origin is taken at a different point).

4

e

Fig, 1.14. See Exercise 8.

9. The orders of the point symmetry groups can be found by counltir21g ’;‘t;e numb;;f 2?
. i 'Fi num
i ic object that are in the patterns of Fig. 1.2. The ;
e e chime ooatant o i it cell of the patterns of Fig. 1.12 will be the
tric objects (scalene triangies) in a unit cell o e p of Fig. 1. t
:an?;l: the orgler of the point group of the space group if the cell is primstive, and twice
that if the cell is centered. Verify for each space group.

10. Many examples of twe-dimensional patterns (tilings) appear in Chapter 5. Identify
the symmetry elements and verify their space groups.

ked for the next letter in the sequence

i tory of the crystallographer who was as ) _ t

Xh;ncll'gr; _lsl;ger:sporlse naturally was K as this is the next letler in the alphabe;16 wig-: sg‘nérr;e(tgnrsnw(enrzl
e);ac.tly’ in' the font used here!). What are the symmetries of F,G,HLJ S+ #* ?

1, 1, 2mm, 2mm, 1, 2, 4mm, 3, 8mm, 5m, 2.}




CHAPTER 2

THREE-DIMENSIONAL POINT GROUPS

2.1 Point Symmetry operations in three dimensions

i LR .
o Er;ﬁgeo%)ergnons Is equivalent to a proper operation. We shall see that a mirror reflection
4n IMproper operation) can be consi inati
lus oame (o : onsidered as combination of a 2-fold rotation
As i o .
o mjnset]g t;;e; .c?se of two dmengons, we are restricted to 1-, 2-, 3-, 4-, and 6-fold
e & ls 1;1 crys.tal Symrmetries. There are therefore five proper and five improper
. al of ter different kinds of point symmetry element. We will see that there gre

co:_}‘lglete. Tt.le dis_satisﬁed reader is directed to § 2.5.3,
o tzzi t‘;:fﬁlgd in I:rlolecu[ar chemistry wiil be familiar with point group symmetry, and
- Will be mainly to learn new symbols for these groups, although some point g'roup

acquire a useful working knowledge of poi i
é re ; . dge oI point group symmetries is to const i
identifying the symmetries of objects such as molecules and polyhedra.? O?]Iisywir:rf ttl;i:

groups are well known is it possible to i i i
o il not domcte p Apprectate a rigorous mathematical treatment (which

II . . .
& one dimension the enly poini symmelry element is a mirror point

We use several examples of polyhedra in thi §
them e s o polyhedra in this chapter. The reader unfamiliar with such objects will find
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The discussion of point symmetries in terms of pure rotation and roto-inversion axes is
the approach that proves most useful in crystallography. An alternative approach, using
rotation-reflection axes, is embodied in the Schoenflies system that is favored by molecular
chemists; as it leads to a more elegant mathematical treatment. the latter is also preferred by
mathematicians. The crystallographic system with its associated symbolism (Hermann-
Maugnin symbols} is distinctly betier for space groups and is now in universal use by
crystallographers and solid state chemists. A concordance between the Hermann-Mauguin
symbols and the Schoentlies symbols for the crystallographic point groups is given in the
tables at the end of the book, and for non-crystallographic groups (those involving
rotations of order different from 1, 2, 3,4 or 6) in § 2.5.6. )

The five proper axes should provide little difficulty. If coordinate axes are chosen so that
the z direction is along the rotation axis, the x and y coordinates will transform as in the
two dimensional case of rotation about a point, and z will remain unchanged. The positive
sense of rotation is anticlockwise when viewed along the +z to — direction. We will

discuss the improper eperations individually.

2.1.1 Inversion in a center

Inversion in a center! at the origin 0,0,0 will convert a point at x,,z to a point at X,5,Z
regardless of the coordinate system used, Fig 2.1 illustrates the inversion of an asymmetric
object through a center at the origin of coordinates (we always take the origin at the center if
it is present). Inversion is symbolized 1 (1-fold rotation plus inversion). This would also
be the symbol for the point group if the inversion center were the only symmetry element
{other than the identity) of the object. Objects that include an inversion center in their
symmetry are said to be centrosymmetric. Those that do not are acentric.?

Fig. 2.1. Tlustrating the inversion operation.

I'The term center is synonymous with inversion cenfer in this context. )
20bjects (including molecules) other than erystals betonging to symmetry group 1
idensify some). A pair of shoes (or gloves) can be arranged so that the assembly has 1 symmetry.

are rather rare (try to
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Figure 2.1 also ilustrates the choice of a ri h
. 2 . t handed set i is i
standard” choice). Interchanging any two ; it e axes {thi s the

axes will cha i
system unless the direction of one of the ax o G of the coordinate

es is also reversed. Cyclic permutati
_ . tions suc
48X — y = 7 — x or the reverse will not change the hand of the coordil;ate system )

2.1.2 Rotation plus inversion: axes N

pla€$ g:nxima?inaz}iion of a Z-fpld rotationl w:'ith inversion is equivalent to reflection in the
Plane norma inoFi ; ;-goli f;mfs 1ac?d containing the inversion point. The combined operation
. - <2 A 2-1old rotation axis through the origin and pagall
a point at x,y,z to X,y,z. Inversion throu i o2 e
toXy.z. gh a center at 0,0,0 will ¥ Z
o L 4 ¢ L0, convert X,¥,z to x,y,7.
he :t?(t, ;e::utlé 1slto ‘traxies_form Xa¥h2 0 x,y,7—it should be clear that this is equivale:tzto
raenon in me( E, l:_me_z = 0) 'll"lllushsyirymetry element which could be symbolized Z is in fact
. mirror). In the figure it may be seen that rotat )
axis shown, followed by inversion, is al inversion follomay Lo ihe
. , s0 the same as inversion followed b i
. - . - r
about the axis, and in either case equivalent to reflection in the plane normal to yﬂleaéﬁl?o(}g

axis. The orientation of a mirror plane is aj i ivi i
ax o s Plane is always specified by giving the direction of the

Fig 2.2. (Left) Nlustrating that  is ¢
fol.d axis (arrow) to give a similar obji
object (black). (Right) showing the tw

quwal.em to reflf:ction. An object (white} is rotated about the two-
ect which is the inverted through the center to give a mirror-

ted image
© symmetry-related points in projection along z. ¢

obji-); ;ti?; ‘x;igtf;]t inIFig 2.20;1 stylized view down the z axis ié shown where the original

¢ plane z = { is shown as an open circle and its reflecti i

shown as a smaller filled circle, Such dia ol 10 o the ey Biene s

. grams are very useful to show the effects of

symimetry elements and combinations of syminet is i o rocoae
) : : ry elements. It is important to i

thaIt thlt:, circles in such. diagrams really represent a general asymmetric ol‘;jects eoenize

" t $ ould be clear that an object (such as a chair) that has only one mirror plane (and the

identity) for symmetry elements, has neither a 2-fold axis nor a center of symmetry. In
general an ¥-fold inversion axis only contains a separate N-f y ry-

: _ old rotation axis and a separat
mversion center for N odd. Indeed, as explained in the next paragraphs, 3 is theponal;
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crystallographic symmetry operation (other than I itself) that contains a separate .

Fig 2.3 shows the effects of 3, 4 and & axes on a point. The 3 operation (rotation by
one-third of a circle followed by inversion) has to be carried out six times before the
original point is returned to. The reader should verify the separate existence of a 1 and a 3
axis.! In the diagrams in Fig. 2.3, the symbol in the center is the symbol for the symmetry
element. The small circles represent a general asymmetric object and thus in these
examples, filled and open circles should really be replaced by asymmetric objects related
one to the other by inversion or reflection (i.c. of opposite hand).

@

@
3 &

Fig. 2.3, Mustrating the effects of 3, 4 or 6 axes (see fext). Filled and empty circles are points on
opposite sides of the horizontal plane {the plane of the paper). In 6 such poinis are superimposed in
projection and the heavier cutline of the circle indicates the presence of a horizontal mirror plane.

A 4 axis (Fig. 2.3) generates four distinet points on repeated application; two above and
two below the plane. It should be clear that an object with only 4 symmetry is not
centrosymmetric (but does have a 2-fold rotation axis).

A 6 axis generates six points (Fig. 2.3 again}, Note again the absence of an independent
inversion center. This symmetry element includes a separate 3 axis and a mirror normal to
that axis (indicated in the figure by a heavier outline for the circle).? .

1t should be obvious that in order to completely specify the position of 2 3, 4 or 6 axis
we have to specify the direction of the axis and the location of the inversion point even
though 4 and 6 do not contain a separate inversion center.

A quick sketch should convince the reader that whether one rotates and then inverts, or
first inverts and then rotates, is immaterial, The combined operation is the same; i.e. the
component operations commute.

A word on terminology is in order. We refer to an N ‘axis as N-fold as in “2-fold,”
“3-fold,” etc. More commenly perhaps (as in the International Tables) the usage
“twofoeld,” “threefold,” etc. is seen. We find our usage clearer in such phrases as “four
3-fold axes.” Other authors refer to I-, 2-, 3-,4- and 6-fold rotation axes as “monads,”
“diads,” “triads,” “tetrads,” and “hexads” respectively. A difficulty arises in the case of 3

and 6. As can be seen from Fig. 2.3 both these operations require six repetitions to
produce the identity yet we refer to the forner as a “3-fold inversion axis” and the latter as a

IThe reader is urged to verify that (a} applying the rotation+inversion operation three times is equivalent
to inversion alone and (b} applying the combined operation four times is equivalent to rotation alone.
(Remember that rotations are by convention anticlockwise when viewed from the +z direction.)

2An N-foid rotation axis with a mirror normal to it is written N/m so 6 is sometimes written as 3/m.
However this obscures the 6-fold nature of the axis and this notation should be avoided.
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“6-fold inversion axis.”! Crystals with parailel 3-fold axes (including 3) but without 6-fold
axes are classed as trigonal. Crystals with 6-fold axes (including &) are classified as
hexagonal. 3 is also referred to as an “inversion triad” and & as an “inversion hexad.” The
ditficulty is compounded by the fact that in the Schoenflies system (see Exercise 173 is
labeled Sg and 6 is labeled S3.

2.2 Enumeration of the point gfoups

There are 10 point groups corresponding to the presence of Just one of the symmetry
elements we have described, These are 1, 2, 3, 4,6,1,m, 3, 4 and 8. There are 22 more
{crystallographic) groups to be obtained by combining several symmetry elements. We will
not derive these groups very systematically, but it is worth seeing why there is only a
relatively small number of them. The serious student of solid state science will get to know
them all intimately. The material in this section s rather condensed—-the reader interested in
fully appreciating it would be well advised to have a pencil and paper at hand to make
sketches to verify some of the stalements. We find sketches of the sort shown in Fig. 2.3
to be particularly helpful.

2.2.1 Pure rotation groups: dihedral groups N2(2)

We start by considering just those cases in which we have proper rotation axes only.
The groups in this case are the pure rotation groups, We will have to consider two
intersecting rotation axes. inclined to each other. Combination of two such rotations always
produces a rotation about a new axis through the point of intersection of the first two axes.2
{Remember we are considering point group Symmetry so there must be one point at which
all symmetry elements intersect). It is important to recognize that we consider the rotation
axes to be fixed with respect to the coordinate system and only the rotated object to move.

Fig. 2.4 shows two 2-fold axes (labeled 1 and 2) lying in 2 plane and inclined at an
angle ¢. Rotation of the point q above the plane about axis 1 will produce point b below the
plane. Rotation of & about axis 2 will now produce point ¢ above the plane. Tt should be
clear that the transition 2 — ¢ is equivalent to a rotation by 2¢ about an axis normal to 1
and 2 and passing through their poittt of intersection {small shaded circle in the diagram).

In general we consider rotation about an axis X by an amount p; followed by rotation
by an amount p; about an axis Xy inclined to X by an angle ¢3. This is equivalent to

1Curiousiy, the fnternationai Tables (which usually is our arbiter in such matters) names other
Symmetry axes (p. %) but avoids the issue for inversion axes as in “Inversion axis: ‘3 bar’” for 1. The
fraction of the wosld population that cares, appears to be approximately equally divided into those who use
“bar three” and those who use “three bar” in speech for 3. We prefer the former, as “bar” is to be considered
as standing for “minus”,

As rotations are proper operations they will not change the hand of an asymmetric object. The
operation corresponding to two rotations about axes intersecting in a point must be another proper
operation feaving that point invariant and thus can only be a rotation. The result of combining rotations
about axes without a common point will also include a component of translation {also a proper operation),
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rotation by an amount o3 about a third axis X3 inclined to axes X| and fX'g by[angles of ¢,
and ¢ respectively. These angles are related by an equation due to Rodrigues:

cos(03/2) = cosepgsin(pi/2)sin(p2/2) — cos(p1/2)cos(pa/2) 2.

Two additional equations are obtained by cyclic permutation of indices 1 =2 — 3 — 1.
This gives us three equations for the unknowns g, ¢; and ¢.

Fig. 2.4. Two 2-fold rotations about axes at an angle of ¢ to each other (about 1 to take ato b, the;l
about 2 tc take & to ¢) are equivalent to rotation (by 2¢) about an axis orthogonal to the 2-fold axes (a to ¢).

Eqﬁation 2.1 is general, but if the rotations are limited (as they.wtili be fr-om now on) to
integral fractions of a circle so that 360%/p; = p; (an integer) then it is no_t difficult to s.how
(see § 2.5.1) that all possible pure rotation groups are generated? by rotations such that:

ii>1 (2.2)

i i i 2.2 fall into two classes: {a) the
Further analysis shows that the possible solutions of Eq. : !

dihedral groups in which there is an N-fold axis with 2-fold axes at right angles to thz?t axis
(p3 =N, p1 = pz = 2 which gives in turn from Eq. 2.1, ¢3 = 360 {ZN). {b) the cubic and
icosahedral groups in which there are more than one rotation axis of order greater than
two, . ] .
Consider category (a) first. When ¢ = 360°/N with ¥ an integer, the two 2-fold axes
generate a finite humber of symmetry elements as shown in Fig. 2.5 for the case ¢ = 45°,

['This equation is often ascribed to Euler. For a nice account both of the historical importan.ce gf theE
equation and of Rodrigues see feons and Symmetries by 5. L. Altmann (Oxford, 1992}. For a derivation of

. 2.1 and 2.2 see the Note § 2.5.1 at the end of this chapter. ) ' )
Eqsz&rictly speaking only (wo rotation axes are needed to generate all the rotations of the group: the third

rotaticn entering into the sum in Eq. 2.2 being generated by the other two.
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1 (x direction)

Fig. 2.8. Group dmm. b is the image of & obtained by reflection in line 1 and ¢ is the image of &
obtained by reflection inline 2. a — ¢ comresponds to rotation by a fourth of a circle about the center point.

[¢] (o

Le; (=]

mm2

o] (o]

Fig. 2.9. Iustrating the symmetry elements of groups mm2, 3m, 4num and 6mm. The heavy lines are the
traces of mirror planes normal to the paper. Compare with Fig. 2.6.

2.2.3 Groups Nim

In the next set of point symmetry groups, mirrors are added normal to the rotation axes
of groups N giving groups Nim. As we will see later, it is convenient to consider Nim to
be one symbol (because the N-fold rotation axis and the normal to the mirror are in the
sarme direction),

1/m is the same as m so that is not a new group. 3/m is the same as 6, so that is not a
new group either. Thus the new groups are 2/m, 4/m and 6/m. Note that the combination of
an even order rotation axis (which contains a 2 axis} with a mirrer plane normal to it
generates an inversion center at the point of intersection (refer back to Fig. 2.1) so that 2/m,
4/m and 6/m all contain such a center. In particular 2/m is of order 4: the syminetry
operations being the mirror reflection, the 2-fold rotation, the inversion and the identity.
Fig. 2.10 illustrates these groups in the same way as used in Figs. 2.6 and 2.9. It should
be apparent from the figure (compare with Fig. 2.3) that 4/m includes a 3 axis, and that 6/m

includes 3 and 6 axes.
A usefu]l mental exercise is to imagine a two-dimensional object (such as a letter S) with

il
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symmetry 2. Now give it some thickness in the third dimension by U§nslatiop normal to the
plane—the three-dimensional symmetry is 2/m. Repeat for pl_ar}e objects with symmetry 4
and 6. Although 2/m is an unusual symmetry for molecules, it is one of the most commeon
point symmetries of crystais (the crystal class).

Fig. 2.10. INustrating, from left to right, symmetry groups 2/m, 4."m‘ and 6Im.. Symbois have the same
significance as in Figs. 2.6 and 2.9. Note that in each case there is a horizontal mirror plane whose presence
is indicated by the heavy outline of the large circle (contras: e.g. Fig. 2.9).

2.2.4 Groups Nim 2im 2/m

Fig. 2.11. Grouph;’mmm. The 4-fold r'(;nation axis is vertical, arrows show the location of 2-fold rotation
axes and rifrror planes are shaded.

The next set of groups is obtained by adding mirrer planes normal to rotation axes in
N22 giving N/m 2/m 2/m. Again it is helpful to consider N/m as one symbol carrespom%l‘;g
to a single axis. The possibilities here are 2/m 2/m 2/m, 4/m 2/m 2/m and 6/m Z/m 2/m-. 1 e
symbols for these groups are often abbreviated mmm, 4/mmm and 6/mm_m respectively.
rmmm i§ the syrametry of a brick with three different edge lengths. 4/mm:m is the symmeiry
of a right square prism (a brick with a square cross secFlon). The arrangement of symmetry
elements of this group is illustrated in Fig. 2.11 in which 2-fold axes are shown as arrows
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The 2-fold axes 1 and 2'in that figure generate the 4-fold axis which in turn generates the
other 2-fold axes shown (note that co-linear axes are really just one axis). The set of
symmetry elements form a group symbolized 422. The first position is for the principle

* axis and the second and third positions in the point.group symbol are for the two sets of 2-
fold rotation axes.!

I (x direction)

Fig. 2.5. Group 422. Arrows represent 2-fold rotation axes. See also Fig. 2.6,

222 32 422 622

Fig. 2.6. Illustrating the symmetry elements of groups 222, 32, 422 and 622. Lines lerminating in arrow
heads represent 2-fold rotation axes in the plane of the paper. Small circles are sets of points generated by
the group operations acting on an arbitrary point, Filled and open circles are on opposite sides of the plane
of the two-fold axes. The symbol in the center of the farge circle is that for the N-fold axis (also a 2-fold
axis for 222) normal to the plane of the 2-fold axes.

Likewise there are groups'222, 32 and 622 generated by 2-fold axes at 90°, 60° and 30°.
Note that there is only one distinct set of 2-fold axes in 32. This is because 2-fold axes
inclined to each other by 60" are also inclined to each other at 120°. These groups (together
with 422) are called the dihedral groups. It should be obvious that pure rotation groups
contain only proper operations and so do not contain a center of symmetry. In Fig. 2.6 the

1t the discussion in § 1.1 of the sets of mirror lines in (wo-dimensional point groups such as 4mm.
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location of the symmetry elements of these groups is shown. A set of points generated by
the symmetry operations acting on an arbitrary point s also shown. Notice that (in contrast
to the case of Fig. 2.3) the filied and open circles now represent asymmetric objects of the
same hand.

2.2.2 Groups Nm(m)

In Fig. 2.7, the two 2-fold axes of Fig. 2.4 are replaced with vertical mirror planes. It
should be clear that two reflections in mirrors with normals in the same plane and at an
angle ¢ also produce a rotation 2¢. (The point b, which was a filled circle in Fig. 2.4, is
now an open circle in Fig. 2.7).

Fig. 2.7. Two reflections (in mirrer 1 to take a to b, then in mirror 2 to take & to ¢} are equivalent to
rotation about an axis along the line of intersection of the mirrors (a to ¢). Compare with Fig, 2.4 above.

The result of having two mirrors at 45° is to generate group 4mm shown in Fig. 2.8
(which should be compared with Fig 2.5). :

Analogously we can generate the groups 2mm (usually written mm2) from two mirrors

at 90°; 3m with mirrors at 60° (now just one set of mirrors related by 120° rotations); and
6mm from mirrors at 30” (giving two sets each of three mirrors analogous to the two sets
of 2-fold rotation axes in 622).1 Fig 2.9 illustrates these groups in a way similar to Fig.
2.6. :

Symmetry mm2 is commonly encountered; it is for example, the symmetry of the water
molecule. If the writing were to be erased, a book would have symmetry mm2 also. The
{(non-planar) NH; molecute has symmetry 3. More generally Nm(m) is the symmetry of a
pyramid with a regular N-gon as a base. The groups Nm(m) do not contain a center of
symmetry (think of the pyramids).

U1t can be rewarding to experiment with two small rectangular mirrors hinged together at one edge with
sticky tape and inclined at different angles to generate these rotations.
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and mirrors as planes. 6/mmm is the symmeétry of a right hexagonal prism; a diagram
representing its symmetry elements would be similar to Fig.'2.11 but there would be six

" mirror planes intersecting in the 6-fold axis and six 2-fold rotation axes in those planes and

" normal to the 6-fold axis.

Fig. 2.12 illustrates the symmetry elements of these groups in a projection down the

principle axis in a way that should now be familiar {(compare Figs. 2.6, 2.9 and 2.10).

oo S0 SO,
)
' 5
_ \ele eleX - ele?

O/mmm
Fig. 2.12. Illustrating symmetry growps mmm, 4mmm and 6/mmm. Note the presence of a mirror plane
in the plane of the paper.

4/mmm

As a 2-fold axis normal to a mirror generates a center of inversion, these groups all
include a center of symmetry among their symmetry elements. Indeed the groups may
alternatively be generated by adding an inversion center to 222,422 and 622. If a center is
added to 32 the group 3m is generated as discussed in the next section.

2.2.5 Groups 3m, 32m and 6m2

There are no new (in the sense of not being already encountered above) symmetry
groups to be obtained by adding mirrors normal to inversion axes (do Exercise 11 to verify
this statemnent). But we get new groups by adding mirrors with their normals perpendicular
to the N axis so that the mirror planes contain the N axis. This procedure also generates 2-
fold axes normal to the ¥ axis.

The case of N = 2 corresponds to mirror planes at right angles (recall that Z = m) and
generates mm2, which is not new.

The other possibilities (¥ = 3, 4 or 6} generate 32/m (often abbreviated to 3m), 42m and
6m2 which are new.! The reader is urged to demonstrate this by starting with a N axis N
=3, 4, or 6} and a mitror plane containing this axis aad to allow the symmetry operations
of these symmetry elements to operate on an arbitrary point (i.e. one not on the mirror
plane} and identify the generated syminetry elements. If the roto-inversion axis and the
mirror plane are vertical you should generate diagrams like those in Fig. 2,13, in which the

IThe sigaificance of the order of the symbols in the last two groups is explained below. For the
moment note that in 42m and 6m2, the 2 and the a2 respectively refer to 2-fold axes and to mirrors with
normals not parallet to the 2 axes as iliustrated in Fig. 2.13.
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symmetry elements of these groups are shiown in projection. Note also the symbols used to
represent 3, 4 and 6 axes (compare Fig. 2.3).

3, 2m 6m2

Fig 2.13. lusirating groups 3m, #2m and 6m2. Mirror planes are shawn as heavy lines and 2-fold axes as
lighter lines. terminating with airow heads. See also the legends of Figs. 2.6 and 2.9.

An example of 3m symmetry is the ethane (C;Hg) molf:cule in its st-aggered
conformation (Fig. 2.14, right). A right triangular prism and eclipsed c?thane (Fig. 2'.14,
left) have symmetry 6m2. A tetrahedron with only one pair 'of oppesite cd.ges at right
angles! (see Fig. 2.15) has symmetry 42m. A baseball or tennis ball (taking into account
the seams, but not any other markings that may be on it) also has symmetry 42m.

Fig. 2.15. Tetrahedra with symmetry 42m. The & axis runs up the page.

3 already contains a center of symmetry, therefore 3m does also. It should be clear from
the pattern of points in Fig. 2.13 as well as Figs. 2.14 and 2.15 that 42m and 6m2 do not

include & center of symmetry.

IThis is a necessary, but not a sufficient, condition for a tetrahedron to have 42m symmetry.
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2.2.6 Summary of the non-cubic crystallographic point groups

. . ' 2
Table 2.1 lists the 27 crystallographic point groups we have enumerated so far. The i 3 3
columns in the Table correspond to the order in which the groups have been described in : ' 3
the indicated sections. A feature of these groups is that they contain at most one N-fold axis
for N> 2. For an extension of the table to non-crystailographic groups see § 2.5.6.
Table 2.1. The non-cubic crystaliographic point groups. Symbols in parentheses are short symbols 2

comesponding to the long symbols immediately above them.

N N N2(2) | Nm(m) Nim Nim2tm2im N+m
§2.1 §21 | §221) §222 | §22.3 §2.2.4 §2.2.5
1 i
2 m 222 mm?2 2im 2mdim2im
(mmm)
3 3 32 3m 'SZglm
(3m)
4 3 422 dinm 4/m &im2im2im 32m
(d/mmm)
6 [ 622 | Gmm 6im Gfm2im2im 6m?2
(6/mmm)

2.2.7 Cubic and icosahedral rotation groups

The dihedral rotation groups result from the solutions of Eq. 2.2 (p. 33) with p;, po and
P3equal to 2, 2 and N. Three other possible solutions for Pl p.pyare2, 3,3:2.3,4
and 2, 3, 5 and these will lead to three new pure rotation groups. The last possibility
containing 5-fold rotations will not give rise to a crystallographic point group, but is of
sufficient interest to detain us briefly. :

Consider the case p; =2, ps=3 and p; = 3, i.e. 1= 130%, pa = p3 = 120°. Equation
2.1 shows that ¢; = cos"1(1/3) = 70.53" and that ¢ = ¢5 = cos ! {1A/3) = 54.74°. Tt is
remarkable that starting with two of these three rotation axes (at the angles indicated!) we
generate a finite group with four 3-fold and three 2-fold axes. Their orientations can be
visualized with reference to a cube (Fig. 2.16). The 3-fold axes are parallel to the body
diagonals and the 2-fold axes parallel to the cube edges. Of course all the rotation axes have
& point in commen. This symmetry group, symbolized 23, is in fact one of the five cubic

Fig.2.16. Group 23. 3-fold rotation axes are symbolized by *“3” and 2-fold by “2.”

Now consider the case py =2, pz=3andpy =4, 1e. p) = 180", py = 12(3" and p3 =
90°, Equation 2.1 shows now that ¢; = cosl(13) = 54.74.",. ¢y = 45 and ¢3 =
CQS'I(\I'2/‘\[3) = 35.26°. Again we get a finite group, this time contal‘mng three 4—folfi axes,
four 3-fold axes and six 2-fold axes, and again the axes are oriented along prmcxpk,
directions of a cube. The 4-fold axes are parallel to the cube edges (i.e. as the 2-fold axes in
group 23, Fig. 2.16), the 3-fold axes are parallel to the body diagonal:s (as in 23) agd the 2-
fold axes are parallel to the face diagonals as shown in Fig. 2.17. This second cubic group
is symbolized 432. As discussed below, the order of the numbers (such as 23 or 432) in
the group symbol indicates the orientation of the rotation axes.

Fig 2.17. The-. 2-fold axes of group 432 (compare Fig. 2.16).

The last pure rotation group has pq = 2, p2 = 3 and p3 = 5. The generated group has six
5-fold, ten 3-fold and fifteen 2-fold axes. Their orientations can be _rf:'!a‘ted to a lregul.ar
icosahedron (see Fig. 2.18). The 5-fold axes are along tl}e directions joining the six pairs
of opposite vertices, the 3-fold axes are along lines joining the centers of the ten pairs of

1A point group is cubic ifit contains exactly four 3-fold axes among the symmetry elemenis.
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opposite faces and the 2-fold axes are along lines joining the midpoints of the fifteen pairs
of opposite edges. The smallest angle between S-fold axes is 63.43°, the smallest angle
between 3-fold axes is 41,81°, and the smallest angle between 2-fold axes is 36°. The
smallest angle between a 2-fold and .a 3-fold axis is 20.90° and between a 2-fold and a 5-
fold axis it is 37.38". The group is the icosahedral rotation group, often symbolized I; we
will also use the symbol 235. Note that although, for simplicity, we use an icosahedron to
iltustrate the orientation of the axes of 235, the icosahedron has additional symmetry
elements (mirror planes and a center), For more on this group (including the angles
between axes) see Exercises 15 & 16, and see Appendix 4 for some examples of objects
with symmetry 233, '

Fig. 2.18. The location of some of the symmetry axes of group 235 shown with respect to an
icosahedron. For a regular icosahedron the axes marked “2” are 2/m, those marked “3” are 3, and those
marked 5" are 3,

2.2.8 Cubic and icosahedral groups m3, m3m, 33m and m35

The remaining symmietry groups to be considered are obtained by adding mirrors to the
icosahedral and the two cubic rotation groups in a way that is suggested in Table 2.2 below
in which the last two groups are icosahedral, The results (with short symbols! in
parentheses) are: 4/m3 2/m (m3m), 2/m3 (m3) 43m, and 2/m33 (m33). Underneath each
Hermann-Mauguin symbol is the Schoenflies symbol. _

We generate 2/m3 (short symbol m3) by adding a center to 23. The combination of a
center and a 2-fold axis generates mirror planes normal to the 2-fold axes and converts 3 to
3. ‘

Similarly 4/m 3 2/m (short symbol m3m) is generated from 432. In this case we generate
mirror planes normal to the 4-fold and 2-fold axes of 432 and again convert 3 to 3.

The final cubic group 43m is obtained as a subgroup of m3m and is not centro-
symmetric.

The group 2/m33 is similarly obtained by adding a center to the icosahedral rotation

IThe short symbols follow the usage in Volume A of the fnternational Tables (1983). Previcusly, the
bar was removed over the 3 in m3 and m3m so in the older literature the short symbels were written as m3
and m3m respectively.

4
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group 235, The 2 axes become 2/m and the 3 and 5 axes become 3 and 3 respectively. Th%s
is the group of all the symmetries of a regular icosahedron (Figs. 2.18 and 2.25) and is
also symbolized Ip.

Table 2.2. The cubic and icosahedral poiat groups.

rotation group plus center other group
23 2/m3 (m3)
T Ty
432 4/m3 2m (m3m) 43m
0 On Ty
532 2m35 (m33)
I In

We now adduce examnples of familiar objects with these cubic symmetries.

4% is the symmetry of a regular tetrahedron or of the molecule CHjy. The tetrahedron
has three 4 axes along the lines joining the centers of opposite edges and four 3 axes allong
the lines joining the vertices to the centers of opposite faces. There are also six mirror
planes, each of which contains an edge and the center of the oppeosite edge. ‘These
symmetry elements should be identifiable in Fig. 2.19 which shows (froq left to rlxght') a
clinographic projection of a regular tetrahedron, a projection down a 4 axis, a projection
along a 3 axis and a projection normal to a mirror plane.! Objects with 43m symmetry are
often said to have terrahiedral symmetry. Note the absence of an inversion center and the
fact that 4 includes a 2 axis.

Fig. 2.19. Different views of a tetrahedron.

Fig 2.20 shows how the six mirror planes of 43m are arranged with respect to the
framework of a cube. The 3 axes are parallel to the cube edges and the 3 axes are parallel to

IThere is really no substitute for holding a model of 4 polyhedron and identifying its symmetry
etements, The reader who finds cubie symmetry difficult is urged to make models of a tetrahedron, an
octahedron and a cube by taping or gluing together equilateral triangles or squares of light cardboard.
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the body diagonals. The same set of mirror planes also occurs (together with others parallel
to the cube faces) in m3m.

Fig. 2.20. The mirror planes of 43m.

4/m3 2/m (abbreviated to m3m) is the symmetry of a cube itself. A regular octahedron
and an octahedral molecule such as SFg also have symmetry m3m. Objects with this
symmetry are said to have octahedral symmetry, Fig 2.21 shows different views of an
octahedron similar to those of the tetrahedron in Fig. 2.19. Second from the left is a view

down a 4/m axis, third from the left is a view down a 3 axis and on the right is a view
down a 2/m axis.

Fig 2.21. Different views of an cctahedron.

(a) ) © ' {d)

Fig. 2.22. (a} A cube with parallel markings (light lines) on each face (opposite faces are marked in the
same direction) to produce an object with m3 symmetry. (5) A projection on a cube face {down a 2/m axis
of the marked cube). (¢} A view down a body diagonal (3 axis). (d) A projection down a face diagonat (note
the absence of a 2-fold axis normal to the paper in this projection).
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To summarize the symmetry efements of m3m (the most complex of the crystallographic
point groups-—the order is 48): there are three 4/m axes {by this is meant a 4 axis with a
mirror plane normal to it) parallel to the edges of a reference cube, four 3 axes parallef to
the body diagonals of the cube, and six 2/m axes paraile! to the face diagonals of the cube.

m3 is quite a common symunetry in crystals but rare for molecules. Crystals of pyrite
(“fool’s gold” = FeS3) often crystallize as spectacular cubes but if examined closely,
striations will be noticed on the faces. Fig 2.22 shows schematically how these markings
remove the 4-fold axes of the ciibe and also eliminate the symmetry elements paralle] to the
face diagonals. The pyritohedron described on p. 195 (Fig. 5.68) has this symmetry.

2.3 Point groups by system

" In the next chapter we will discuss three-dimensional lattices and unit cells. We will
identify crystal systeras just as in two dimensions, and find seven of them (see Chapter 3).
For reference the point groups are listed by system in the tables at the end of the book
(p. 440). Also given in the list is the Schoenflies symbol for each group. )

A crystal symimetry is obtained by combining translations with point symmetries. The
point group of the crystal is its class. If the crystal point group contains an inversion center,
the crystal will be centrosymmetric. The table lists the space group numbers corresponding
to each class and also indicates whether that class is centrosymmetric. '

2.4 Coordinate systems and the order of symbdls

The symbols for the point groups assume a reference coordinate system which may
differ from one crystal system to another. Ins a crystal, the axes are always chosen parallel
to lattice vectors and this determines the reference coordinate system used. This in turn
determines the symbols of the derived space groups, so it is very well worth the little effort
it requires to memorize the system. Remember that the orientation of a mirror plane is
specified by the direction of its normal.

In the triclinic system there is at most an inversion center which is at the origin of
coordinates. Triclinic point groups are ¥ and 1.

_ In the monoclinic system there Is a unique 2-fold axis. The point groups are 2, m and

" 2/m. Coordinates are usually chosen so the y axis is parallel to the 2-fold axis (normal to

the mirror in m). Occasionally other choices are made: then symbols for the symmetry
elements parallel to the x, ¥, and z axes are used, as illustraied for 2/m. {1 means no
symmetry parallel to that axis and acts as a place marker).

2/m parallel 10 x 2/ml1
2/m parallel to ¥ 12/m1 (or just 2/m)
2/m paralle] to z 112/m
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In the orthorhombic system there are three mutually perpendicular 2-fold axes. The
axes (parallel to the symmetry axes) are also mutually at right angles.The point groups are
222, mm2 and mmm. The first position in the symboi for the group refers to a symmetry
element parallel to x, the second parallel to ¥ and the third parallel to z. It should be clear

that 2mm, m2m and mm?2 refer to the same point group but with the direction of the 2-fold
rotation axis labeled x, y and z respectively.

In the tetragonal system there is a unique 4-fold axis and the z axis is always chosen to
coincide with it. The first position of the point group symbol is the symbel for this axis (4
or 4). The x and y axes (at right angles to each other and to z) are equivalent by symmetry
and the second position of the point group symbal is the symbol for symmetry elements (if
present) along x and y. The third position refers to symmetry elements at 45° to x and y,

+ Note in particular that 42m can-also (with a 45" rotation of the coordinate system about z}
be written 4m2, so there are two different symbols for the same point group.

Tetragonal point groups are 4, 4, 4/m, 422, 4mm, 32m, and Hmmm.

In the trigonal and hexagonal systems there is a unique 3-fold or 6-fold axis and the 2
axis is always chosen to coincide with it. The first position of the point group symbol is
occupied by the symbol (3,3, 6 or 6 ) for this axis. The x and y axes are chosen at right
angles 16 z and at 120" to each other, so that the x and ¥ axes are equivalent by symmetry.
The second position of the group symbol is then taken by the symbol for symimetry
elements parallel to x and y [and to the third equivalent direction at 120° to both x and ¥,
i-e. =(x+3)]. The third position is reserved for the symbel for symmetry elements at right

angles o x or y. Fig. 2.23 should make clear the directions referred 1o in the second and
third positions.

Fig, 2.23. The directions corresponding 1o the second (solid lines) and third {broken lines} positions in
the symbols for the trigonal and hexagonal symmetry groups.

Note that 3m can also be written as 3m1 and (with a 30° rotation of the coordinate
system about ) as 31m (see Fig. 1.6). Likewise 32 can be 321 or 312 and 6m2 can also be
62m.

Some trigonal crystals can be referred 10 a rhombohedral unit cell with equi-inclined
axes. We defer a discussion of that case uniil later {Chapter 3.

Trigonal point groups are 3. 3, 32, 3m and 3m.

Hexagonal point groups are 6, 8, 6/m, 622, 6mm. §m2 and 6/mmm,
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In the cubic system we always use axes at right angles to each other. Imagine these
axes imbedded in a cube with the origin as the center and x, ¥ and z parallel to the cube
edges. The first position in the point group symbol refers to symmetry elements parallel to
x, y and z. The second position refers to symmetry elements paraillel o tpe four bOd'y
diagonals (so the second symbol will always be 3 or 3—this is diagnostic of a cubic
group). The third position refers to symmetry elements (either 2, m or 2/m) parallel to the
six face diagonals if they are present. _

Cubic point groups are 23, 432, m3, 43m and m3m.

2.5 Notes

2.5.1 Rorations

Eq. 2.1 is derived by Boisen & Gibbs (see Book List). A L.lseful express'fon in th%s
regard is that for the Cartesian rotation matrix which determines hovt_' a point x,y,z is
transformed by rotation about an axis. Let i, j and k be unit vector§ in Ll.le x,yand z
directions respectively. A unit vector from the origin is given by r={li+ mj + .nk where
2+m2+n2=1. (I, mand n are the direction cosines of r.) Consider a rotation by an
angle p about this axis; the new coordinates x', y"and z' are given by:

x’ Hl=c+c Im(l-cy—ns m(l-c)+msyx
Y l=imll—c}+ns mm{l—c)+c¢ mn(l-c)-Isl y (2.3
z’ nl(l—-cy—ms nm(l—c)+Is nrl~c)+c Az

Here ¢ = cosp and 5 = sinp and, as a mnemonic aid, [2 is written as I/ ete. Eor the
special case of rotation about the z axis [=m=0,n=1), Ltfe matrixl greatly smlph{:es to
{(c-s O/s. ¢ 0/0 © 1). Note that the inverse of a rotation rpamx {corresponding to
rotation in the opposite sense) is the transpose of the original matrix. o

For a roto-inversion, change the sign of all the matrix elements. For reflection (2),
¢ =-1 and 5 = 0 and remember that /, m, and n are the direction cosines of the normal to
the mirror. Thus for reflection in the plane z = 0, the matrix is (100/010/00 1}.
[Compare with (1 00/0 10700 1) for a 2-foid rotation about Z] ) .

If we imagine the three rotation axes (X1, X7 and X3; § 2.2.1) to intersect a unit sl?hexte
and the points to be connected by arcs of great circles, then the surface of th.e sphere is di-
vided into congruent spherical triangles. This is illustrated in Fig. 2.24 which shows two
2-fold rotation axes separated by an angle of p/2 in a horizontal plane. Th<? gem_arated
rotation axis is a 360°/p—fold axis. It should be clear that the angles of the spherical triangle
(heavy outline) are 180°/2 (twice) and p/2. If 360°/p is an integer, the sphere can be exactly
covered by triangles congruent to the one shown. ) .

More generally, the spherical triangles on a unit sphere corresponding to any rotation
group will have sides equal to ¢, ¢ and @3 {the angles between the axes) and angles
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P1/2, p2/2 and p3/2 (using the same symbols as in Eq. 2.1). As p/2 = 180°/p; and s0 on,
Eq. 2.2 then follows from the fact that the sum of the angles of a spherical triangle must be
greater than 180° (i.e. p1/2 + p2/2 + p3/2 > 180,

Fig. 2.24. See text.

Equaiion 2.1 refers to rotation axes fixed with respect to the coordinate system. Usually
when tilting something, such as a crystal on a gonfometer stage, by sequential rotations, the
rotation axes move with the crystal. The net rotation is. usually described in terms of
rotations by Euler angles about such moving axes. A useful text is Mathematical Methods
Jor Physicists [3rd ed. Academic Press, New York (1985)] by G. Arfken who warns that
“There are almost as many definitions of Euler angles as there are authors.” '

2.5.2 Groups of symmetry operations and their orders

A group of symmetry operations consists of all the operations associated with the
symmetry elements. Thus the group 4 consists of four members: a quarter-turn (4! = 4%),
two quarter-turns (42 = 21), three quarter-turns (4% = 4°) and four quarter-turns (44 = 1)
Any combination of these will produce another. As there are four symmetry operations the
order of the group is four.

The order of 1 is two (the two symmetry operations are the identity and the inversion).
Reference to Fig. 2.3 (p. 31) should make it apparent that the order of 3 is six, the order of
4 is four and of 6 is six. .

The group 2/m consists of four elements: a haif-turn (2'), two half-turns (1), reflection
(m) and alse an inversion (1) which is the result of combining the rotation with reflection
(and of course a reflection is the result of a half-tum combined with inversion).

The group 4/ requires a little more thought. The 4-fold axis along z will generate four
points with the same value of z. Reflection in the plane z =0 will generate four more for a
total of eight so the order of the group is eight. The symmetry operations are the four
rotations 41, 42 (= 21), 43, 44 (= 1) and the result of combining these with the mirror
reflection which are: (4! then m) =43, (42 then m) = 1, {43 then m) =41, (44 then m) = m.

Now consider the group 23. There are three 2-fold axes and four 3-fold axes. In
enumerating the different symmetry operations, we agree not to count the identity for a
moment, The symmetry operations are 2! in three different directions and 37 and 32 in four
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' directions for a total of 3 + 4 x 2 = 11 different rotations. Counting also the identity we see

that the order of the group is 12.

The largest erystallographic point group is m3m for which the order is 48. The full
symbol is #/m32/m. There are three 4/m axes, four 3 axes and six 2/m axes. We agree now
not to count the identity and the point of inversion until we have counted the other
operations. Besides the identity and inversior each 4/m contains six operations (see above)
so we get 3 x 6 = 18 distinct operations from the three of them. A 3 axis contains six
operations which again include the identity and inversion (34 = 1) which we agreed not to
count for the moment, so from the four 3 axes we get 4 x 4 = 16 new operations. From the
six 2/m we get (counting only the m and 2!) 6 x 2 = 12 new operations. Addiag in the
identity and inversion we find 18 + 16 + 12 + 1 + 1 = 48 for the order of the group.

The order of 432, 6/mmm, 43m and m3 is 24 in each case; all other crystallographic
groups are smaller (their order is a divisor of 48). The order of 235 (I) is 60 and the order
of m33 (I,) is 120. '

It is worth noting that 432 and 43m are isomorphic to each other (as are several other
sets of groups) so they do not represent different abstract groups.:

2.5.3 Derivarion of the point groups

The enumeration of the crystallographic point groups can be done starting from the
eleven pure rotation groups. The eleven centrosymmetric groups are then obtained by
adding an inversion center (in mathematical terms this corresponds to group multiplication
of the rotation groups by the group 1). Ten subgroups of the centrosymmetric groups that
do not contain a center, but that do contain elements other than pure rotations, can then be
found. This scheme is outlined in Table 2.3.

Table 2.3. The crystallographic point groups as pure rotation groups,
centrosymmetric groups and other groups.

rotation group| centrosymmetric group | other groups

1 i

2 2/im m

3 3

4 4/m 4

6 6/m [
222 mmm mm?2
32 3m 3m
422 4/mmm dmm 42m
622 6/mmm Gmm Gm2
3 m3
432, m3m 43m
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A good aécount of the derivation of the groups in this way is given by M. B. Boisen &
G. V. Gibbs, Amer. Mineral. 61, 143-165 {1976). For the more mathematically inclined
Geometry and Symmetry by P. B. Yale {Dover, New York 1988] is recommended.

2.5.4 Curie’s law, Friedel’s law, Laue classes, optical activity and polarity

Curie’s law states that an effect cannot have lower symmetry than its cause so that any
asymmetry of an effect must be found in its cause. Thys the resuit of an experiment can
give information about symmetry, but Symmetry arguments should not be used to predict a
priori the result of an experiment.! In X-ray diffraction it is often found that the three-
dimensional diffraction pattern is of higher symmetry than that of the crystal (but never of
lower symmetry), In the absence of anomalous dispersion the diffraction pattern is in fact
always centro-symmetric (Friedel's taw). The point group of the diffraction pattern is
therefore that obtained by adding a center of Symmetry to the point group of the crystal and
the apparent crystal class is that of one of the centrosymmetric groups, The Laue Classes
are comprised of those groups that result in the same centrosymmetric group when a center
is added. In Table 2.3 (p. 49), each Laue class consists of a centrosymmetric group and the
non-centrosymmetric (acentric) groups on the same line (thus one of the eleven Laue
classes consists of groups 422, 4mm, ¥2m and 4/mmm). '

The enantiomorphous groups consist of those in the first column of Table 2.3. Crystals
belonging to these classes will have lefi- and right-handed forms (that cannot be
superimposed on their mirror images). They will also be optically active (rotate the plane of
polarized light). Contrary to a belief popular among chemists, enantiomorphism is not a
necessary condition for optical activity, which may also be found in crystals of classes m,
mm?2, 4, and 42m. In these latter cases, both left- and right-handed rotations will occur,

The acentric crystal classes are often referred to as polar by crystallographers, but this
term is correctly given a more restricted meaning: those classes in which a spontaneous
electric polarization is possible.? In this more restricted sense {which we use subsequently)
the polar classes are 1, 2, m, mm2, 4, 4mm, 3, 3m, 6 and 6mm. In all but 1 and m, there
is a definite polar axis: b in class 2, cin the rest. :

In piezoelectric crystals (quartz is a notable example) a polarization can be induced by
stress; piezoelectricity is possible in all adentric classes except 432,

Good references to symmetry constraints on crystal properties are Physical Properties
of Crystals by J. F. Nye (Oxford, 1955) and Tensors and Group Theory for the Physical
Properties of Crystals by W. A. Wooster (Oxford, 1973).

ICrystallogrzq:nl-u-:rs., who are otherwise admirable people, sometimes put the cart before the horse, and
say that a certain structura] feature (such as an 180 bond angle) is required by symmetry. The structure,
and its symmetry, is determined by the often inscriutable interplay of interatomic forces, and if these dictate
a certain symmetry, so be it.

28ee the discussion in the International Tables A, p. 782. The polarization is defined as dipole moment
per unit voiume. )
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* 2.5.5 Cubic and icosahedral groups; generators

Objects with symmetry 43m and m-frg are commonly found. Four ‘points at the vertices '
of a regular tetrahedron have symmetry 43m and six points at the_ vertices of an octahedron
have symmetry m3m. By contrast 2 minimum of twe_:lye points is requm‘:d make an
arrangement with symmetry 23 or m3 so it is not surprising that this group is not oftc_n
encountered in molecular chemistry; as a minimum a moleculle of the form 412 or ABy3 is
needed—a possible candidate is neopentane, C(CHz)4. A minimum of 24 poth is neec}ed
to make an arrangement with symmetry 432—the vertices of a snub cube (34.4) provide

“the simplest example (see Fig. 2.26). Very few examples of crystals in this class are

known (§-Mn is one). Twelve points at the ve::tices (?f a regular icosahedron ha‘ve
symmetry m33 (fz) but a minimum of 60 points is required to generate a pattern]wnh
symmetry 235 {I) so examples of molecules with this symm_etry are also hard -to ﬁnc'l. Tt}e
snub dodecahedron, 34.5 (§ 5.1.3, p. 136) with 60 vertices_ is the simplest object \N:lth th{s
symmetry. Further information (and other useful information about subgroup relations) is
to be found in a classic paper by H. A. Jahn & E. Teller, Proc. Roy. Soc. {London},
0 (1937). B

AZTGk}e; ffnm(ie?ry zlements of 432, 43m and m3. are all to be fopnd ifl m3m so they are alll
subgroups of m3m. The symmetry elements of 23 are contained in all the other cubic
groups so they are all supergroups of 23, The cubic subgroups of m33 are m3 and 23 and
23 is also a subgroup of 235. The group hierarchy is therefore;

order =5
120 — m
' N

60 — 2335
48 — mim

1IN !
24 432 43m_ m3
iz — 23

We mentioned in § 2.2.1 that rotations about two axes at an angle and th.rough a
common point would generate ail the pure rotation groups. The two rotations are
generators of the group. We can specify the orientation of an axis through the origin 0,0,0
of a Cartesian coordinate system by giving the coordinates of another point. Thus in group
23 we can take as generators a 2-fold rotation about an axis passing through },0,0 and a 3-
fold rotation about an axis passing through 1,1,1. We can label positive rotations about the
these axes as 2*(100) and 3+(111) respectively. The ten other operations of the group are

'In Appendix 4 we mention a possible “fuflerene” molecule lem w_ilh symmetry /. However,
theoretical studies indicate that this molecule will undergo a Jahn-Teller distortion to lower symmetry.
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then generated as combinations of these two. Thus a rotation first about the 3-fold axis and
then about the 2-fold axis is equivalent to a positive rotation about a 3-fold axis passing
through -1,1,-1. We can symbolize this as 2H(100)*3+(111) = 3+(11 1). Other examples
are: :

2H(1I12+H11D) = 1
I3+ 11} =3-(11D '
I(11D#3H111) = 3+(111)#3+(11 B*2+100)#3+(111) = 2+(001)

The other cubic and icosahedral groups are similarly generated starting from two
generators. Particularly convenient sets involving a 3-fold and a 2-fold axis are given
below. Note that the orientation of mirror planes through the origin are specified by a point
ont the normal to the plane from the origin and that g = (3-v5)/2,

m33 3140 m(100)
235 3+{140) 2(100)
m3m 3+(111) m{100)
432 3(111) 2(110)
43m 311D m(110)
23 3H111) 2(100)

2.5.6 Non-crystallographic point groups

Molecules with a non-crystallographic symmetry are common and their symmetries are
almost invariably described by the Schoenflics symbol. Right prisms with a regular N-
gonal base have symmetries Dyy, in the Schoenflies notation. Cyg (see Appendix 4) is an
example of a molecule with Dsj, symmetry. A special case of interest is a cylinder for
which N = e and for which the symmetry 18 Doop. Linear molecules with a center of
symumetry such as Oz or COz have this symmetry. So does a cricket ball {a ball with an
equatorial seam), .

Pyramids with a regular N-gon base have symmetry Cy, in the Schoenflies notation. A
cone is the special case with N = s and has symuetry Ceoy. A linear molecule without a
center such as CO also has this symmetry.

Other group symbols worth knowing about include X & for the symmetry of a sphere. C3;
{3) is sometimes labeled Sg and D7 is sometimes labeled V.

The symmetry of an antiprism with a regular N-gon base is Dy in the Schoenflies
notation. The symmetry of a regular square antiprism (§ 5.1.4, p- 139) contains a § axis
and may be written 82m (D44 in Schoenflies notation). Thus the only regular antiprism that
can occur in erystal structures is the triangular antiprism (symmetry 32/m = D4y) although

figures approximating square antiprisms are rather common. Ferrocene, Fe(CsHs)y,

should be familiar (to chemists at least) as an example of 2 molecule with the symmetry of 2
pentagonal antiprism (Ds,;).

"To generalize Table 2.1 to axes of arbitrary order N and to show the correspondence to
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the Schoeenflies notation we have to consider three cases (here n is an integer?: ga) The order
of the axis is 4n. (b) The order of the axis is 4n+2. (¢) The order of the axis is 2n-|:1. The
first two cases (V even) result in identical Hermann-Maugin symbols, but require c!;fferent
Schoenflies symbols when there is a N axis (see exercise !7). Table 2.?1- below gives the
Hermann-Maugin symbol with the corresponding Schocn‘fhes s;_rmbol directly undern?ath
under the same headings as in Table 2.1. Table 2.4 combined w1t1:1 Tablie 2.2 (p. 43) gives
a complete listing of all the finite point symmetry groups in three dimensions. .

‘What happens as N goes to infinity? See Appendix A.1 (§ Al.5) for the surprising
answer.

Table 2.4. Point symmetry groups other than cubic or icosahedral.

N=| N N N2(2) |Nm(m) | Nim |Nim2m2im [N +m

4n | N | N | N22 | Nmm | Nim |Nim2im2/m | N2m
Co | SN Dy | Cw | Cnn Dy Dniad

4n+2 | N N N22 | Nmm | Nom |[Nim2im2im | N2m

C, |Cnnk | Dn Civw Ch Dy Durzn
2+l | N b N2 Nm N2m
Ce | O Dy Chy Dy

2.5.7 Symmetry, and relations between polyhedra

We take axes oriented as described in § 2.4 for cubic Symmetry. The operations of m3
on an arbitrary point x,y,z will produce a pattern of 24 points with symumetry m3. K t;le
point is on a mirror plane (e.g. 0,y,z) only 12 points are p{odu_g:ed. For special v?lues of ¥
and z the symmetry may be higher. Thus if the point is 0.1.1 the erru.ces of a
cuboctahedron (symbol 3,4.3.4) are produced with symmetry m3m. ij the point is 0%111,1
[7is the golden ratio (1 + V5)/2 = 1.6180] the vertices ‘of a regular icosahedron (3°) are
produced with symmetry m335. This illustrates that m3 is a su!agroup of both m3m (the
symmetry of the cuboctahedron) and m35 (the symetw of the 1cosahedr9n). .

Fig. 2.25 shows on the left a cuboctahedron and in thfa center 2 regular 1cos§1hedr(gl.1l2 61:
{Si}Cry icosahedron in the Cr3Si structure (§ 6.6.4) is Obtﬂlfled from a point at 0, id
and is illustrated on the right in the figure. The darker-shaded triangles are notmal to 3-fo

case. ‘
ax?lt"s};: zggrlations of 432 applied to a point x,y,1. will produce a snub cube (34.4}, see Fig.
2.26) if x is the solution of x3 + a2 + 3x=tand y = (1 - x)/(1 + xf)3 [The solution of the
first equation is x = g — 8/9g ~ 1/3, where g = (26/27 + REETNp5Y giving x.= 0.2936, y
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=0.5437.] Interchanging x and y produces the tirror iﬁlage ‘polyhedron.

Fig. 2.25. Relationship between a cuboctahedron (left) and an icosahedron (see text).

Fig 2.26 shows on the left a snub cube and on the right its enantiémorph. In the center is
an intermediate case with x =y =2 — | = 0.414. This polyhedron is a rhombicub-
octahedron (symbol 3.43) and it is centrosymmetric (symmetry m3m). This illustrates that

432 is a subgroup of m3m. In the diagram the triangular faces normal to 3-fold axes are
darker shaded.

Fig. 2.26, Relationship between a thombicuboctaliedron (center) and a snub cube (see text).
2.5.8 Antisymmetry: magnetic or bluck-and-white groups

We have been discussing transformations of a point whose position is described by three
coordinates {x, y and z). Students of quantum mechanics wiil know that in addition to
positional coordinates an electron has a fourth (spin) coordinate that can take one of two
values (commonly signified and B or L and T). We could consider the set of symmetry
operations that change not only cocrdinates, but which also change a to B and vice versa.
Such an operator is called an antisymmetry operator. The disciission is often in terms of
black-and-white symmetry groups in which the antisymmetry operation changes black to
white or magnetic symmetry groups in which the antisymmetry operation reverses- the
direction of magnetization.

Let us signify an antisymmetry operation by underlining; so that for example an
antimirror is m and an anti-2-fold rotation is 2. An antimirror reflects in a plane and
changes black to white and vice versa. The symimetry operation 3 cannot occur as it will
repeatedly change a black point at a given place to a white point at the same place and then
back to black and a given point must be either black or white (but not black ard white), In
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fact there is an antisymmetry operation corresponding to all the crystallographic point
operations except'! and 3 (the only ones of odd period). ‘ .
Some simple binary crystal structures AB have antisymmetry in the sense that
interchanging A and B produces the same structure. Examples are the structures of CsCl,
and the polytypes of SiC.
Naﬁ; well asrzheyggssical group 2/m there are the black and white groups 2/m, 2/m and
2/m. In all there are 58 crystallographic antisymmetry groups for a total of 90 (= 38 + 32)
cr%tallographic black-and-white (or magnetic) point groups. .
If the fourth coordinate can have a finite number (>2)-of values the polychromatic
symmetry groups are obtained. If the fourth coordinate can have any value we have of

course reached four dimensions. ‘ . ]
A good place to start reading about such groups is Shubnikov & Kopstik (Book LlSt.).
Magnetic space groups are obviously of interest in the description of ordered mggneuc

structures in solids.

2.6 Exercises

1. A right triangular prism with equilateral faces has symmetry 6m2. Locate the
symmetry elements.

2. The square antiprism (see § 5.1.4, p.139) has symmetry Dy . It has a § axis. What
are its other symmetry elements?

3. Another common 8-coordination figure is one with atomls at the vertices of a bis-
disphenoid (see § 5.1.6, p. 141). The symmetry of this figure is 42m and there are two
sets of bonds with bonds of one set unrelated by symmetry to those of the other set. Locate
the 2-fold axes in this polyhedron.

4. Show that adding an inversion center to 622 will produce 6/mmm.

5, For 2-fold rotations about the x, y and z directions respectively the matrix in Eq. 2.3
becomes:

(toos0io/000), (100/010/000), (i00/010/001)
Thus the transformed coordinates for 222 are x,y,2 ; x,¥.2 1 T.Y,Z 1 X.¥.2

6. For a rotation by one-third of a circle about a body diagonal in the_ +X, 1Y, +2
direction the matrix in Eq. 2.3 reduces to (00 1/ 100/0 1 0). .For a two-thirds totation
the matrix becomes {0 1 0/00 1/ 1 0 0}, Operation of these matrices corresponds to cyclic
permutation of the coordinates. .
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7. The transformed coordinates for the operations of group 23 are now easily derived
from the matrices (given above) for the identity and rotations about the three 2-fold axes
followed by rotations about a 3-fold axis, They are:

TYL 5 TEY Y2 VI LAY Vo
ADERE S SRR I32:2%7:5.0.%

8. For each of the symbols given in Exercise 7 identify the ‘Symmeétry operation that
generates it from x,y,z. Incidentally, we have confirmed that the order of 23 is tweive,

9. Multiplying the matrices carresponding to the symbols in Exercisa 7 by the identity:
(100/010/001) and by the inversion: (1 00/010/0 0 I) will now produce the
symbols for m3. They are simply the twelve given above plus the twelve obtained by
changing the signs of alt coordinates.

by this matrix (interchanging the first two coordinates in each triplet) and by the identity
will now produce the transformed coordinates for m3m. They are all the 48 permwtations of
tx,xy, 47 '

11, Verify the assertion that adding mirrors normal 1o inversion axes will not preduce
new groups. In particular “3/m” = 6/m and “Bim” = 4fm. What is “6/m”7 A simpie way to
do this is to construct diagrams like those shown in Fig. 2.3 and 2.10. (Hence 4/m
includes 4, and 6/m includes 3.)

13. We have seen that combinations of rotation by a 1/2 circle (01 = 180°) and by 1/3
circle (p; = 120} can result in rotation (p3) equal to 360°/N, where N = 2,3, 4 or 5. Find
the angles between the three rotation. axes in each case. Hint: from Eq. 2.1, Cosy =
(21N3)cos(py2).

4. If yon dor’t have one, make or borrow a model of a regular icosahedron (which has
symmetry I). Convince yourself that the lines joining opposite vertices are 5 axes, the
lines joining the centers of opposite faces are 3 axes and the lines joining the mid-points of
opposite edges are 2/m axes. We therefore wtite I, as 2/m33 (short symbol m35).

15. The smatlest angle between two 5-fold axes in J = 235 (or I = m353 is 63.435" =
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Qtan'l(llr) where 7=(1 + 3)/2. The combination of a fifth turn about each these two axes
is a third turn. .

16. With three of the 2-fold axes of 235 aligned atong Fartesian x,yandz axes (astifor
23}, a 5-fold axis is in the yz plane at tan'l(ll.’r).= 31.717° from z, The szartejlaII'llzr(‘)?ca C()r)t
matrix (Eq. 2.3} for a fifth turn about this axis is R = (¢1~¢3 172 /.cz 1 61.}2 L t :)f 223
where c| = cos(#/5) = (v-1)}/2 and ¢ = C(;sl({r&())l;rﬁ.s Tlie;nsiic;rfué}g ‘;l:; pmlzic::esthc P

i multiplying by powers o , R4 R3, R, R? = ] ' .
ﬁiﬁﬁi‘g :gordinat%sy forg 23y51;0r this orientation_ of Cartesian axes. Addmgggan nggsgzz
(reversing the signs of all coordinates) will result in the 120 symbols for m35. [Hint;

the drawing of an icosahedron in Fig, 2.18.]

17. Instead of using rotation + inversion axes N, the pei.nt groups can be ;glentt?rate;i
ﬁsing rotation + reflection axes Sy which involve N-fold rotation follovt;led by re ic:] (1;::1 i
a plane normal to the rotation axis (this is _the Schoenflies syste.nf). The corresp
between the Sy symmetry elements and the N symmetry elements is:

Sjom=2); Kol ;306 5,07:5<73

Generalize for Sy, (Hint: there are three cases to consider, N = 4n, N = 4n+2 and N =
2n+1, where n is an integer).

18. What is the result of combining 1/6 turns about intersecting axes at right angles?




CHAPTER 3
THREE-DIMENSIONAL SPACE GROUPS

We now proceed to generate three-dimensional space symmetry groups by a procedure
analogous to that followed in the case of two dimensions. Three-dimensional lattices are
described and then the symmeiry operations (glide and screw) that combine peint
operations with translation are discussed. Finally it is shown how the three-dimensional
space groups arise. No effort is made to be systematic or complete {there are 230 three-

dimensional space groups), however the ideas involved should be clear to the those who
have read and understood Chapters 1 and 2.

31 Three—diniensional lattices

A unit cell of a three-dimensional lattice has edges that are three non-coplanar vectors a,
b and ¢ with magnitudes a, b and ¢. The angle between a and b is % that between b and ¢
is crand that between ¢ and a is §, The uait cell of the Iattice is specified by the parameters
a. b, ¢, o, fand y. There are 14 three-dimensional Bravais lattices each having a different
space group symmetry (compare five in two dimensions). '

As in the two-dimensional case, centered cells are sometimes chosen for convenience!
(see Fig. 3.1 below). Symbols are given to the lattices according to the kind of centering
(recall the symbols p and ¢ for two-dimensionat lattices). These are given in Table 3.1,

Table 3.1. Symbols for three-dimensional lattices. n is the aumber of lattice points per unit cel

symbol name description n
P primitive fattice points at comers only i
R rhombohedral lattice points at corners only 1
A A-centered fattice points af corners and centers of b,c faces | 2
B B-centered lattice points at corners and centers of a,cfaces | 2
C C-centered lattice points at corners and centers of a,b faces | 2
I body-centered lattice points at corners and body center 2
F face-centered lattice points at cormers-and all face centers 4

The symbal R is reserved for the lattice having a primitive cell of a particular shape
{a=sb=c, o= =1 as explained below,
The 14 Bravais lattices are divided into seven crystal systems according to the

'We emphasize that a primitive cell can atways be used for any lattice. The advantage of using centered
cells is that it allows the use of orthogonal axes where they would not otherwise be possible.
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7‘constr'aints on the unit cell parameters imposed by symmetry, These are summarized in

Table 3.2. The parameters are considered to be able to take any valule within the copstraints
imposed. Note that there are 15 entries in the table. The reason is that the lastice for a
crystal with trigonal symmetry and ¢ = $=90°, y=120°, a = b is the same as that for a
hexagonal crystal. The other lattice (R) listed as trigonal is often referred to a centered
hexagonal unit cell.!

cubic (P, I, F) E

tetragonal (P, I) ) P
orthorhombic (P, I, F, C)
monoclinic (P, C)
triclinic (P)

]
@ |

Fig. 31 Primitive and centered unit cells for lattices (see text).

Conventional unit cells for lattices are shown in Fig. 3.1 in which the shape of the unit

IDifferent definitions of crystal system are found. If the classification is by .lhei symmetry of the lattice,
then the hexagonal and trigonal symmetries with a primitive hexagonal iatt{ce (P} belong 1o the &:.amj
system, but there is a separate system for symmetries with 2 rhombohedral lfamce (R).In Lhe_ Inte.ma]txgrza
Tables the classification (adopted here) is by space group symmetry. _Trlgonall symmetries (including
rhombohedral) possess only 3-fold axes (all paraltel)-—hexagonal symmetries contain 6-fold axes.
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cell is not necessarily cubic; for example a cell with just one face centered cannot have cubic
symmetry. The data for the space groups in the faternational Tables rofer to these celis.

Table 3.2. The three-dimensional Bravais lattices.

system constraints lattices
triclinic ‘ none . P
monoclinic a=y=90 PC
orthorhombic a=f=zy=9) P, C:, ILF
tetragonal a=f=y=90"a=ph P I,
[tigonal | @=f=50", y= 120", 0 = b P
trigonat a=b=c,a=f=y R
- hexagonal C=B=00", y= 120", a<h P
- cubic o=l=y=90a=b=¢ B ILF

A monoc‘linic lattice has 2-fold axes in one direction only and the standard choice of axes
for mopochnic cells is with b parallel to the 2-fold axes. However other choices are found
in the Ilteratu{e. The conventional choice of axes for a centered monoclinic cell is such that
the a,b fa:ce (i.e. the face containing a and b) is centered, so that the lattice symbot is C.
However Interchanging the names of a and ¢ (and reversing the direction of b to maintain a;
right-handed coordinate system) will result in the b,c face being centered and the iattice
symbol' now becomes A. Yet another choice of axes will give a body-centered cell as
shown in Fig. 3.2. This means that the same lattice can have different symbols (4, C, or
1) according to the labeling of the axes and/or choice of unit cell vectors. o

Fig 3.2. Three choices of unit cell for a centered monoclinic lattice. b is normal to the plane of the paper.

Open circles are at y =0 and fitled circles are at y = i
{ ¥y=1/2.Onthe top leftis a C- i
1§ a bedy-centered (1) cell and below is an A-centered cell, Plflisn Coentered cell on the 1op right

The coordinatfe axes for conventional choices of cell for orthorhombic lattices are
mutually perpendicular, '.I‘he one-face-centered orthorhombic lattice is normaily labeled C;
this means that the ¢ direction is normal to the centered face. It should be clear tha;
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relabeling the axes can again resuit in the lattice being & or A.

Rhembohedral crystals are often described using a centered hexagonal cell (i.e. one with
o= f=90", y=120°, a = b} with lattice points at 0,0,0 (the unit cell corners) and at
1/3,2/3,2/3 and at 2/3,1/3,1/3. We will discuss this again, but note now that the R lattice
does not have 6-fold symmetry (the symmetry at the points of the lattice is 3m) even though
the cell is referred to as “hexagonal.” In the bottom of Fig. 3.1 we show on the left a
primitive hexagonal cell and on the right we show (heavy lines) a primitive rhombohedral
cell with a centered hexagonal cell lightly outlined (for more detail see Figs. 4.4 and 4.5);
the hexagonal cell contains three lattice points (filled circles). ‘

The cubic F lattice can be described using a primitive rhombohedral cell with o = 60°,
and the cubic [ lattice by a primitive rhombohedral cell with o = cos H{—1/3) = 109.47°.

Table 3.3. Names and exteaded symbols for Bravais lattices.

symbol  point symmetry name
1. aP 1 primitive triclinic (anorthic)
2. mP 2/m primitive monoclinic
3. mC 2/im one-face-centered monoclinic
4. of mmm primitive orthorhombic
5. oC Hrmm one-face-centered orthorhombic
6. of mmm body-centered orthorhombic
7. oF mutm (all) face-centered orthorhombic
8. P 4/mumm primitive tetragonal
9. i 4fmmm body-centered tetragonal
10. nP 6immm primitive hexagonal
1. kR 3m rhombohedral [using a hexagonal cell]
12. cP m3m primitive cubic
13. ¢l m3m body-centered cubic
4. cF m3m (all) face-centered cubic

Lattices are sometimes given extended symbols that consist of first (in lower case) a
letter that indicates the unit cell shape and then a symbol (upper case) that indicates the
centering. Using this system! the symbols for lattices are given in Table 3.3 which also
lists the point symmetry at a lattice point. The space group symmetry of the lattice (see
Exercise 3) is simply found by combining the lattice symbol with the point group symbol
{so that for example the face-centered cubic lattice has symmetry Fm3m). Note that every
lattice is centrosymrnetric.

lan example of the use of this system is in Pearson’s Handbook of Crystallographic Data for
Intermetallic Phases (see Book List). In this work structures are classified by a Pearson symbol which is
one of the lattice symbols followed by the number of atoms in the unit cell. Thus the rutile structure
(§ 3.4) is found under the heading rP6. The Inorganic Crystal Structure Database (Book List) can also be
searched by Pearson symbol. .
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Note that in Table 3.3 above trigonal is subsumed und i
7 >-2 above, trig er hexagonal, In practice there is
}lsuaﬂy no prob}em w1}h c'hstmguxshmg trigonal and hexagonal symmetries, but when the;e
15 a wish to avoid ambiguity the following are usefirl: ,

hexagonal (sensu lato) includes trigonal Symmetry
hexagonal (sensu stricte)  only Symmetry groups with a 6-fold axis

3.2 Glidé and screw axes

. ;E;t as in Fwo di:_nensions, before obtgining Space groups by combining translational
ymmetry with point Symmelry operations, we have to consider the possibility of

;r;rilslz}tl;og. .Two cases are recognized. These are: glide, which we met in two dimensions
which is a combmgtm}l of reflection and translation; and a new operation, that of
screw, which is a combination of rotation and translation,

3.2.1 Glide

Gligi: combines reflec?ion in a plane (the glids plane) with translation. The translation
lust parglle? to the ghc%e plane and in a direction paraliel to 2 lattice vector, The mag-
nitude of the glide transtation must be one-half that of the corresponding lattice vector so

X
LY¥Z x+lf2, -y ¢
L —= g glide

X -y HUZ k2, -y, 24102
® ®

/ ¢ glide \r_z glide

Fig. 3.3, IIlustratingrglide in the monoclinic s i .

¢ ystemn (b is normal to the page). The glide plane is i
p;ane of the paper and the coor_dmates of poinis produced by one operation of each of cgz ¢ al:t; ne l?i:lz ;2:
shown (open circle to a filled circle). The origin has been chosen so that the glide plane i's z,u ¥y=0 ®

If the glide is parallel to a_ b orcthe s i
i . b, ymbol for the glide plane that appears in a spa
-gro;:p syx_nbol isa, b or ¢ respectively. This case is called gxiaf glide. A fuprt;er possibri’lii;
is .it_ ;t with (e.g.? a glide plane parallel to the a,b plane, the glide js along the direction
at b (also a lattice vector!), The glide translation is then (@£ b)/2 and the symbol is ».
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Likewise if the glide plane is parallel to the a,c plane, the glide translation may also be
(a £ ¢)/2 and if the glide plane is parallel to the b,¢ plane, the glide translation may be
(b £ ¢)/2. The symbol is n in each of these cases also as the direction of the glide
translation (now called diagonal glide) is clear from the orientation of the glide plane.

In lattices with centered cells there are primitive [attice vectors shorter than those defining
the unit cell edges. The glide direction may be along 2 primitive cell vector such as
{a £ b)/2 etc. (face-centered cells) or (a £ b % ¢¥/2 (body-centered cells). In these
instances the magnitude of the glide vector is one-half that of the primitive-lattice vector and
the symbol is d. Glide of this sort is called diamond glide as it is one of the symmetry
elements of the diamond structire (which is face-centered cubie).

3.2.2 Screw

Screw axes are a combination of proper rotations with translation. The translation must
be along the rotation axis (why?). Let the axis be ¢; the combined operation is then a
counterclockwise rotation about ¢ followed by a translation t along the +¢ direction.! Now
consider an N-fold screw axis. Repeating the screw operation N times must result in the
transformation of a point to an identical point separated from the original one by nc, where
n is an integer less than N.2 Thus we have at once that Nt = nc¢ or t = (n/N)c. The
symmetry element corresponding to these symmetry operations is called an N, screw axis.
Figure 3.4 illustrates the case of a 31 axis (N=3,n=1).

Z+Ht, Z441t
(3

¢z, 2+3¢, 7+6¢

&
421, 7451

Fig. 3.4, Nlustrating the effect of six applications of a 3| screw axis with translation ¢ on a point
originally with height z. The 7 axis is normat to the page with the +z direction up.

In general then we have screw axes N, with 1 £a <N and N = 2, 3, 4, 6. The

As in the case of glide, the order of carrying out the components of the combined operation is
snimportant.

2This should be obvious from the definition of an N-fold axis. For a point symmetry element, carrying
out the N-fold operation ¥ times is equivalent to the identity operation. For the corresponding screw axis,
carrying out the operation N times must be equivalent to a lattice translation, as we consider points
separated by a lattice translation (which may be a multiple of a primitive translation) also to be identical,
The case of » = N is the same as a pure rotation followed separately by a lattice translation.
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possibilities are:

2 2]
3> 3], 32
6 6,62, 63, G4, 65

Rec’all that .tha translation is n/N of the lattice repeat vector along the axis.

Let S examine 31 and 3; in more detail. Referred to axes with z along the screw direction
_a_md w1t'h x and y at right angles to z, and at 120° to each other {compare Fig. 1.5, p. 7
successive applications of 3| along the axis z = 0 will send a point at x,y.z to F,a—y z,+1/3 .
y?-x,x,z+2/3 ; %,¥,2+1 (note that, as usual, we are measuring z in units of thc; repeaé
distance F)' The fourth point is identical to the first as it is Just a lattice translation ¢ away,

32 acting on x,y,z will give F.x—y.z+2/3 ; y-x,%.z+4/3 ; x,y,z+2. But note that we can
always add or subtract an integer from the z coordinate so we could equally express the
new‘coordinates asYx—y,2+2/3 ; yx,%.2+1/3 ; x,y,z+1.

.Flg. 3.5 shows schematically a plot of these points. If the ¢ axis were to be ascended by
sing successively higher points of 3; as steps, the path would be counterclockwise and .a

righ't-handed screw. Conversely, ascending 3y in the same way would result in clockwise
motion along a left-handed screw.

—

sy
3,3

Fig. 3.5. Hll..lS[lj-':lting tl'_le op?rations of 31 {left) and 35 (right). The bottom portion is a projection down
¢. Numbers indicate heights in multiples of ¢/3. Notice the symbols for 3-fold screw axes.

The same discussion wouid hold for 41 and 43 {Fig. 3.6) except that now we use a

Three-Dimensional Space Groups 635

quarter turn and it takes four steps up the staircase to go up a height c. 4y is right-handed
and 41 is left-handed. What about 4,7 Reference to the figure shows that at each point there
are higher steps at the same height on the left and on the right so the ascent could be either
clockwise or anticlockwise and 44 does not have a hand.

2 ‘ 0,4 2
i 2 3
3 2 1
0,4 0,4 0,4
4 4 43

Fig. 3.6. Hlustrating 4-fold screw axes. The numbers are elevations in multiples of ¢/4. Note that 41 and
43 inclode a 27 and that 47 includes a 2 axis. Notice aiso the symbols for 4-fold screw axes.

For 6-fold screws the possibilities are 61, 62, 63, 64, 65 (Fig. 3.7). 61 and 65 give right-
and left-handed stairs related as mirror images (analogous to the pairs 31, 37 and 41, 43}
but now there are six steps for each revolution. 63 is neutral (analogous to 21 and 4z2). 6
and 64 show a new feature: the peints fall on two intertwined circular helices {double
nelices) as shown in Fig. 3.7. 6 is right-handed and 64 is left-handed.! )

Some properties of screw axes (which also should be verified from the figures) are:

41, 43, 6y, 63 and 65 axes (only) include a 2 axis.
45, 67 and 64 axes (only) include a 2 axis.

6> and 65 axes include a 35 axis.

61 and 64 axes include a 31 axis.

A 63 axis includes a 3 axis.

Points generated by 6; or 64 lie on a double helix.

Also to be noted is that there can be a mirror normal to 24, 42, and 63 but not to 31, 33,
44, 43, 61, 62, 64, and 65 as the latter group have a hand.
It is important to realize that gur Jabels “left-handed” and “right-handed” are arbitrary,

" just as they are for right- and left-handed nuts and bolts and coordinate systems. We could

have used terms such as “positive™ and “negative” (as in electricity) or even “north” and
“south” (as in magnetism). Indeed, when talking about pure rotations, we used the terms
“positive” and “negative.” Thus we saw that the “right-handed” screw 67 contains a “left-

1A “spiral” (better “hetical™) staircase is a familiar example of an object with a screw axis. If the
staircase continued indefinitely the axis would be Ny (right-handed)} or My.| (left-handed). The famous
“miraculous” staircase in the Loretto Chapel in Santa Fe, New Mexico is 1615. There is a nice double helix
stairway in King’s Park, Perth (Western Australia) that is 569,
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hax}ded” screw 3;. Our stair climber could have ascended the 3, screw in an anti-clockwise
(“right handed™) sense if he took not the next hi ghest step (up /3) but the step in the other
direction (up 2¢/3—see Fig. 3.19, p. 87).

3
4 2
63
5 1
0
3
2 4
65
1 5
0
3
0 0
63
3 3
0

Fig. 3.7. Hlustrating six-fold screw axes. The numbers are elevations in multiples of ¢/6. The double
helices in 67 and 64 are suggested by heavy lines in the sketches in the top left {which correspond to the
projections immediately below them). ¢ is the repeat vector along the screw axis.

In this connection we quote from a famous lecture by Weyl!: “the inner structure of
space does not permit us, except by arbitrary choice, to distinguish a left from a rfght
screw...on {this fundamental concept] depends the entire theory of relativity....” If we
were to pursue the subject here we would soon find ourselves in deep water,

Notice also that an asymmetric periodic object may well have screw axes of opposite
hand as symmetry elements. An example is the cylinder packing labelled 8-Mn in § 6.7.3
{p. 265). I4{ is discussed as an example of a space group with 4; and 45 axes in § 3.3.4
(p. 74). For more on screw axes and the “hand”’ (left or right) of crystals see § 3.6.

1Chapter 1 in Symmerry by H. Weyl [Princeton University Press (1952)]. This was written before the
“non-conservation of parity” was discovered. On the latter topic in connection with hand, a readable aceount,

that discusses Weyl's lecture, is Chapter 3 in Elementary Particles by C. N. Yang [Princeton University
Press (1962)).
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3.2.3 Comparison bf screw and glide

In our illustrations of the effect of symmetry operations, for simplicity we show their
effects on a point {(a small circle). The reader should mentally replace the point with an
asymmetric object. In Fig. 3.8 we contrast the effect of glide (arbitrarily labeled a) with the
effect of a 21 axis on an asymumetric object (a scalene triangle that is black on one side and
white on the other).

.‘+ "" "i' "1' ""

ol O o 0 a

Fig. 3.8. Contrasting glide with 2j. Figures marked “+" are above the plane of the paper, and those
marked “-" are below.

33 Three-dimehsional space' groups

- We now consider how the space groups arise. We will consider just some of the simpler
possibilities—our aim is to suggest how to proceed rather than to be rigorous. We
emphasize that the immediate goal is that of being able to interpret (and use) space group
symbols. The reader will find it helpful to work through the examples provided. It would
also be very useful to have International Tables A at hand.

3.3.1 Triclinic space groups

In the friclinic systemn we have just a primitive lattice (#) to combine with the point
groups with 1-fold axes. The only possibilities are therefore P1 and P1.

3.3.2 Monoclinic space groups

In the monoclinic system we have to combine the P and C lattices with the point groups
that have just one 2-fold axis (2, m and 2/m). We then get the symmorphic groups P2,
Pm, P2im, C2, Cm and C2/m.

The next thing to do is to consider the possibilities that arise when 2 axes are changed to
2y axes and/or when mirrors are changed to glide. In the latter case we note that the mirror
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Planes are necessarily normal to b so that the glide planes are either «, n or ¢. However the
labeling of the axes normal to b is arbitrary, so we adopt the convention (not universally
adhered to) that the glide, if present, is ¢ (see Fig. 3.12 below for the choice of axes that
converts Pc to Pr or Pa). The distinct cases are listed in Table 3.4,

Table 3.4. The monoclinic space groups.

class P lattice Clattice

2 P2 P2y 2

m Pm Pe Cm G
2/m Pilm  PZym Pc P2ic Cm CUe

The reader interested in confirming that this is indeed a full list might note that the
combination of a C lattice with 2-fold rotation axes generates 2| axes parallel to and
interlaced with the 2 axes. Thus (see Fig, 3.9) C2| is the same as 2.

In Fig. 3.9, the two black triangles at the top left (at height y shown as “+”) are related
by a 2-fold rotation axis. The pair to the right (at 1/2+y) are generated by C centering
[(1/2,1/2,0)+]. On the right the tigure shows the symmetry elements generated by the
combination of 2-fold rotations (symbolized by eilipses) and primitive unit cell translations
f(atb)/2 and c]. Note the 2| axes (symbolized by ellipses with two arms)—the reader
should verify their existence in the pattern on the left in Fig. 3.9. The same pattern and

symmetry elements would have been generated by starting with a 2 axis and primitive unit
cell transiations.

+ 172+ +
4 4

==t
/o/ NN /0/ C2
A A 4 =4

172+

Fiz. 3.9. Iliustrating a unit cell of space group C2. b is the unique axis normal to the paper, a is
horizontal and ¢ runs down the page. Left: The pattern generated by 2-fold rotations, £ centering and umit
cell translations. Right: The generated symmetry elements, :

We now consider space group C2/m (a rather common symmetry for crystals). Fig. 3,10
illustrates this space group in much the same way as Fig. 3.9 illustrated C2. A major
difference is that a mirror plane at ¥ =0 generates pairs of triangles above and below the
planc and superimposed in the projection down b (and shown as gray triangles). This
situation is symbolized by giving elevations as +. The ¢ centering operation produces
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corresponding triangles at elevations 1/24. Note that there is also a mirror plane at y = 1/2.
On the right the mirror plane is symbolized by a heavy bent line with arms parallel to the
cell edges; by convention no elevation is shown for mirror planes at heights. 0 and 1/2. Afdso
on the right the generated centers are shown as small open circles. Those with no elevations
marked are at y = 0 and y = 1/2 and the site symmetry at these points is 2/m. The lother
centers with elevations marked as “1/4” are at y = 1/4 and 3/4 and the symmetry at these
points is 1. In a centrosymmetric crystal there are always eight ceniters per primitive cell (so
in this case there are sixteen in the centered cell of twice the volume). Tt shoulc_l be seen that
C2/m also contains glide planes normal to b. These are symbolized in the same way as the
irror planes but with an arrow head pointing in the glide direction whi_ch. can be seen to be
a. These planes are at 1/4 and 3/4 (again by convention the elevation is just given as 1./4).
The reader should verify the presence of the a glide operation noting that reﬂecuqn ina
plane at y = 1/4 will transform an elevation “4” to “1/2-" and so on. When we discuss
subgroups of space groups, it will be seen that knowic_dge of the existence of the extra
symmetry elements (2 axes and a glide in this example) is very useful.

e i ///T—:%ro“cm?@

z 12+ /o ¢‘.'4 o clm o o
‘ 4 4 St —7 "

4
* 12+

W=

Fig. 3.10. Illustrating a unit cell of space group C2/m. b is the unique axis. normal to_the paper, a is
horizontal and ¢ runs down the page, Left: The pattern gererated by the 2/m axis, C centering and unit cell
translations. Right: The generated symmetry elements.

Although C2/m contains glide planes, they are a glide, and Cj2/c is a distinct space
group. Fig. 3.11 illustrates C2/c¢ in the same way th.at Fig. 3.10 :llufstrated C2/m. Now
triangles do not superimpose in projection with their mirror images, which are glenerrilted by
the ¢ glide plane at y = 0. The mirror images of black triangles are shown as };vhlte tnaggles
and vice versa. The reader should work through this example as for C2/m d1scussc_d in .thc
previous paragraph. Note now the existence of n glide planes (as indicated by the direction
of the arrow) at y = 1/4 and y = 3/4. In contrast to C2/m, in C2/c the 2-fold axes do not
intersect centers and there are no mirror planes (only glide planes). )

Even with b unique the three possibilities of choosing a and ¢ {see e.g. Fig. 3.2) result
in a variety of possible symbols for monoclinic space groups th.at are centered and/or have
glide planes. Thus C can become A or . In a similar way a glide ¢ can become a or n as
itlustrated in Fig. 3.12. _ o

Because there can be ambiguity abont which axis is chosen as the unique axis it is a
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comumon practice to use extended symbols with 1°s ag place markers (cf. § 2.4, p- 45} and
the symbol is to be interpreted the same way as that for an orthorhombic Syinmetry group,
Thus with b unique P2 becomes 2121 (2-fold axis parallel to y) and with ¢ unique it
becomes P112 (2-fold axis parallel to z). Pc is written Plecl or Plla and so on.
Fortunately the International Tables {vol. A) considers all these possibilities, The various
symbols encountered for monockinic Space groups are listed in the tables at the end of this
book. The different choices of axes are referred to as different settings of the space group.

Fig. 3.11. Ilfustrating a unit cell of space group C2/c. b is the unique axis normal to the paper, a is
horizontal and ¢ runs down the page. Left: The pattern generated by the 2-axis, ¢ glide, ¢ centering and unit
cell translations. Right: The generated symmetry elements. .

@)

glide
vector

o
O
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O
O

Fig. 3.12. MMustrating three choices of unit cell for Pe. b is the unique axis normal to the plane of the
Ppaper and the glide pfane is in that plane. The glide vector is ¢/2 (Pc)=a/2 {Pa) = (@ + c)2 {Pn).

3.3.3 Orthorhombic space groups

In the orthorhombic system there are three axes at right angles with 2-fold symmetry
elements along each axis. The point groups to consider are therefore 222, mm2 and mmm.
There are also four types of lattice (P, C,F and /) to consider, so the number of
possibilities becomes much greater (it turns out that there are 69 distinct orthorhombic
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space groups). Thus in contrast to the monoclinic pair P2 and P2, we have P22, P222,
P212;2 and P242;21.] Mirrors can become glide (a, b, ¢, 1, or d). Because of this
complexity it would take us much too long to systematically generate all the orthorhombic
space groups in the manner suggested in the monockinic case,

x Pnam ¥ Pmnb z Pemn

Fig 3.13. Different settings of the space group Prmg. The ﬂiagrams show the orientations of the # glide
plane (shaded, front face), the axial glide plane (unshaded, top face) and the mirror, m (black face) with
tespect to the axes. The arrows show the directions of the axes for a right-handed systern.

- Again we have to adopt some conventions for the labeling of axes. These are outlined in
the International Tables and will not be given here., The conventions adopted there we call
the standard setting; it is important to tecognize that other settings are often chosen.? The
significance of the order of symbols in a Space group symbol is the same as that given in
§ 2.4 for point groups except that the first symbol represents the lattice type. Thus in the
symbol Prma the “P” tells us that the lattice is primitive. The next three symbols indicate
that there are respectively: an n glide plane normal to x, & mirror plane normal to y and then
an a glide plane normal to z.3 As there are six possible permutations of the x, ¥ and z axes,
this space group can have six different symbols: Pnma, Pbnm, Pmcn, Pram, Pmnb and
Pcmn. Fortunately 2 concordance of symbols is given in the International Tabley (see
also the Tables at the end of the book). Figure 3.13 illustrates the arrangement of the

INote that when there is an "odd man out" it is labeled the ¢ axis in the standard setting. Thus P222
not P2122 ese. similarly we have Pmm2 and not Pm2m etc, as the standard setting, N

2ifvlinoara]ogists (and some others} often use the convention that ¢ < a < b. Another recommendation,
which we prefer, is to use standard seltings, and to use @ < b < ¢ when there is flexibility of choice of all
three axes (as in Pmmim efc.) and a < b in cases such a3 Prum2 where two axes can be chosen arbitrarity,

3The orieniation of glide planes (as that of mirror planes) is given by the directions of their normals.
Thus the direction of the normal to the glide plane is parallel 1o the x direction (the » glide plane is
normat to the x direction as stated).
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symmetry elements with respect to the axes in this paticular case.!

The full symbol for Pruna is P21/n21/m2 /a. If the inversion center is removed one of
the acentric space groups °2;2121, Pam21, Pr21a or P2\ma (see § 3.5) is obtained. It is
not uncommen for materials with closely related structures to have one or other of these
symmeiries. Note that the standard settings for the last three groups (which are polar) result
in the symbols Pnm2;, Pna2) and Pmc2,.

Fig. 3.14 shows how the symmetry elements of Pama are illustrated in the
International Tables in the standard orientation of a down the page, b horizontally on the
page and ¢ normal to the page. Light lines outline a unit cell and small circles show the
locations of 1 points {centers) at z = 0 and z = 1/2. The full heavy lines represent the traces

of mirror planes normal to b and the dot-dash lines represent the traces of n glide planes |

norial to a. The bent arrow at the top right shows that there is a glide plane at z = 1/4 (i.e.
normal to ¢) with the glide direction along the arrow (i.c. @). As the spacing between
mirror or glide planes is haf the translation normal to them, there is also an g glide plane at
7 =3/4. The ovals with two arms represent 2; axes parallel to ¢, and the arrows with half
heads are 2; axes in the plane of the paper. Those parallel to b are at 7 = 0 (and necessarily
also at z = 1/2), and these paraliel to a are at 7 = 1/4 {and at z = 3/4).

/4 1/4 1/4
¥

2oy

—

» Prnma

- O -

L—-AO—M‘--—O

T—'—o—-—o
e

L o

Fig. 3.14. The symmetry elements of Pnma. For an interpretation see iext,

Recall that monoclinic space groups with centered cells have additional symmetry
elements that do not appear in the space group symbol. Thus C2 also has 21 axes, and
C2/m also has 2| axes and 2 plide planes. Similarly orthorhombic space groups with
centered cells have additional symmetry elements that do not appear in the space group
symbol. In the International Tables a useful table (Table 4.3.1) lists these extra symmetry
elements as in the following examples: Cmcm I mmm

b noan nonn
This means that in Cmem, normal to a there are also b glide planes, and normal to b and

ISymmetry Prma is particularly commen, occurring for mere than 8% of inorganic structuses. For
more on the occurrence of particular symmetry groups see § 3.7.7 (p. 94),
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¢ there are also r glide planes. Likewise in Immm there are # glide planes normal to all
three axes. We could write Cmem as Chnn or even Crmicn, etc. and write Jmmm as Innn.
Tortunately practical, if arbitrary, rules were long ago decided on for preference of symbols
(e.g. m has preference over glide). Fortunately also, in this instance, the rules are
universally obeyed by crystallographers.! But note that with permutation of axes the
symbols of the other symmetry elements may also change as in (for example) two different
settings of Cmen: Cmem Amma

b nn ncn

3.3.4 Tetragonal space groups -

In the tetragonal system there is normally no ambiguity about the choice of axes. The z
axis is always parallel to the 4-fold axis, and x and y are normal to z and to each other. The
symbol for the space group is again a symbol for the lattice type followed by a three-
position symbol derived from the point group symbol (see § 2.4}, Thus with a body-
centered Jattice there ate in the class 4/mmm (among others) the space groups [4/mmm and
Id1famd. '

In the class #2m there are two distinct space groups Pdm?2 and P42m. In the first of
these the mirror planes are normal to x and y, and 2-fold axes at 45° to x and ¥; in the
second the mirrors are normal to directions at 45° to x and y, and the 2-fold axes along x
and y. (Compare the positions of “2” and *m™ in the space group symbols.) Recall that the
orientation of the axes is determined by the lattice translations.

Fig 3.15. A body-centered tetragonal lattice (projected down ¢) with four unit cells indicated with light
lines and a face-centered cell (heavier lines, shaded). Open circles are lattice points at z =0 and filled circles
are lattice points at z = 1/2.

Occasionally a body-centered tetragonal crystal is described in terms of a face-centered
tetragonal cell of twice the volume. As shown in Fig. 3.15, the x and y axes are rotated by
45" when the cell changes. The last two symbols in the space group symbol have then to be
interchanged. Thus J32m becomes Fam2 and I3m2 becomes F32m. Sometimes the

IBut see P. M. de Wolff et al., Acta Crystallographica A48, 727 (1992) for proposed changes to five
orthorhombic space group symbols. Although logical, we hepe these suggestions are not adopted.
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charige is more subtle; /41/@md becomes Fa/ddm.}

There are primitive tetragonal space groups P4, P41, P45 and P43, but only two
corresponding body-centered tetragonal groups J4 (which contains an equal density of 44
axes) and /4; (which contains an equal density of 44 axes). This means that an acentric
structure that has symmetry /4| (and hence has distinct right- and left-handed forms) will
have both 4, and 41 axes, but the arrangement around the two axes will not be related by
mirror symmetry. Contrast the situation in the centrosymmetric space group I41/a where
there are again 41 and 44 axes but they are now related by the o glide operation.

3.3.5 Trigonal and hexagonal space groups

In the trigonal and hexagonal systems one setting is usually adopted. Except as noted
below for crystals with a thombohedral lattice, the 7 axis is taken parallel to the 3- or 6-fold
axis, The x and y axes are perpendicular to z and at 120° to each other. Again the
significance of the last two positions of the space group symbol is the same as for point
groups (§ 2.4). Thus in P31m the normals to the mirrors are at 90° to the x and y axes
(ie. the x and 'y axes are parallel to the mirrors) whereas in P3m1 the normals to the
mirrors are parallel to the x and ¥ axes (compare p31m and p3m! in Fig. 1.13). Note also
the two distinct space groups P6a/mme and Pbafmcm,

In the case of thombohedral crystals the 3-fold axis is along a body diagonal of the
primitive unit cell—parallel to a + b + ¢, The lattice symbol is now always R. Thus we
have the space groups R3, R3, R32, R3m, R3¢, R3m and K3c. It is worth noting that the
R lattice already contains both 3 and 37 axes.?

Rhombohedral crystals are very often deseribed in terins of a hexagonal unit cell with
three times the volume and with ¢ paraliel to the 3-fold axis as described in § 3.1 and in
more detail later (§ 4.4.2, p. 104). In this case the space group symbol is unchanged. The
nature of the cell chosen is always clear from the Pparameters given (a and ¢ for a primitive
cell; g and ¢ for a hexagonal cell). It never hurts to be explicit however.

3.3.6 Cubic space groups

In the cubic system there is a universal choice of axes. In the space group symbol, after
the symbol for the lattice, the signiticance of the positions is the szme as given for the point
groups (§ 2.4, p. 47). Thus in the class m3m there are (for example) Fd3m and Ia3d. It
might be noted that in the older literature these symbols are Fd3m and la3d respectively
(ie. the bar over the 3 is dropped just as in the short symbeols for the point groups). The
full symbols for these space groups are F41/d32/m and 141/a32/d. Other points to notice
include the fact that there arc four separate groups P432, P4132, P4732 and P4332 but
only groups /432 and F432 (both of which already contain 49 axes) and /432 and F4,32

IThe a glide planes normal to the 4-fold axis have translations alternately a/2 and b/2 in the I cell.
These directions become (a + b4 in the F cell so now the glide is d instead of . .

Thus there are not separate space groups R3| or R32, Contrast the three separate space groups P3, P3
and P3;, i

-1
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(both of which already contain 43 axes}—cf. the discussion of tetragonal groups above,

The group 723 also contains 2; axes but there is nevertheless a separate group 121'3
which also contains 2 axes. The difference between them (as discussed below) is that in
123 the 2 axes all intersect (as do the 2; axes) in I213 they do not. In this case the symbols
for the two space groups have to be assigned arbitrarily.

1/4 i/2
el | Tl
77 AR SR
* . D ’ —_— 14
23
_ G T T O R
V | d — s
I sl ¢
AZ‘(B ¢
AKX A K
1/4 1/4 /4
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— 4 — 14
'T_R i i =

Fig 3.16. The symmetry elements of 23 and /213. The meaning of the symbols is explained in the text
(§ 3.3.6).
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In addition to the 3 or ¥ axes in four different directions, the cubjc space groups have 3;
and 3; axes each in four different directions. Their location will depend on the space group.
There are two different cases to consider. In the first case the 3 or 3 axes intersect (at the
origin) and the 31 and 3y axes intersect in pairs. In the second case the 3 or 3 axes do not
Intersect, and in fact there is no intersection of any of the three-fold axes,

Figure 3.16 iltustrates this point for 123 (first case) and 1213 (second case). To interpret
the figure, note that x is down the page. y is horizontal (left to right) and z extends up out
of the plane. 3-fold axes (shown as short lines through triangles) intersect the plane z = 0 at
the points shown as small filled tircles and go upwards from there parallel to body

axes. Thus in 1213, 3; axes along! [111] intersect the plane z =0 at 1/3,2/3,0 and 32 axes
along [111] intersect the plane z = 0 at 2/3,1/3.0. 2-fold axes are symbolized as described
above (§ 3.3.3, p. 70 and Fig. 3.14); those parallel to the plane of the paper are either at »
=0and 12 (no height shown) or at z = 1/4 and 3/4 (height shown as 1/4).

Note also that in /2,3, the 2 axes do not intersect with themselves or with any of the
3-fold axes. The same is true of the 2; axes, but the 2 and 2y axes do intersect. Cubic
crystal structures with space groups that have non-intersecting Symmetry axes are often
rather hard to understand and depict, but can sometimes be described as based on packings
of cylinders whose axes are along non-intersecting Symmetry axes (§ 6.7). In space groups
with non-intersecting 3-fold axes there is 10 site of cubic point symmetry (which can only
be at a point where four 3-fold axes intersect). .

The locations of the symmetry elements in cubic groups are shown in a similar way in
the International Tables. Tt is rewarding to learn the symbolism and to practice reading the

of the 3-fold axes and is therefore at a site of cubic symmetry (43m, 432 or 23). The
second choice is at a site of inversion Symmetry; see § 3.7.4 (p. 91) for details.

3.3.7. Space group and crystal class

It should be obvious that to obtain the crystal class (the point group from which the
space group was derived) from the Space group symbol, one should (a) drop the lattice
symbol, (b) drop all subscripts, and (¢) change alt glide symbols to “m.” Thus fa\/amd —
d/mmm, P21/c — 2m ete. If the point group is centrosymmetric then the space group is
also (do Exercise 4).

3.4 Using the Internationgl Tables

The International Tables provide a wealth of information abont the space groups
including the nature and location of all symmetry elements in the unit cell. The tables

Tye explain notation such as [11 1] in the next chapier, [L11] refers to the direction from 0,000 1,1,1.
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should also be consulted for the symbols for synmunetry elements. All that are needed for
our immediate purposes are the coordinates of equivalent‘points'in a unit cell, 01.?[’ first
example 1s for P21/c; the special and general positions are given with Wyckeff notation (a,
b, etc.) in Table 3.4. Note that the origin of coordinates is taken on a center of symmetry:

Table 3.4. Special and general positions of P2y/e.

general: qe X323 XY A U2+, 122 5 x, U2-9,1/242
speciat 2d 1/2,0,1/2 5 1/2,1/2,0

2¢ 6.0,1/2 ;0,120

26 U200 12,172,107

2a 0,0,0:0,1/2,12

It is important to recogﬁize that in order to derive the general positions (4 e in this
example) the location of the symmeiry elements in the unit cell must be known. Fortunately
this has been done for every space group in the International Tables. The symmetry
operations are in the present case:

inversion through the origin X,z = ILy.5
¢ glide about plane aty = 1/4 1 X¥,2 = x,12-y, 1724z
rotation about 21 along x = 0, z = 1/4 xy,2 — _7c,1/2+y,1/2~—z

The structure of AgO has symmetry P21/c and a crystallographic description of AgO is:

AgD P2/e,a = 5859, b =3484, c = 5.500 A, B = 107.51°
Ag(l)in 24; Ag(2)in24; QO in 4 e, x = 0.296, y=0.3457=0222

It may be seen that there are two kinds of Ag atom in the structure. When atoms of a
given element appear on sites that are not related by symn}etry, we say that they are
crystallographically distinct and distinguish them by numbz?rlng. We translate the ;?bove
description as follows: There is one kind of Ag atom at positions 0,0,0 and 0,1/_2,1/2 it the
unit cell and a second kind of Ag which is at 1/2,0,1/2 and 1/2,1/2.0. In AgQ it turms out
that the compound is really Ag(D)Ag(II1)O and that Ag(lyis Ag(D) and Ag(2) is Ag(IIl).2

The O positions in the unit cell are obtained as;

0.296, (1,345, 0.222
0.704, 0.655, 0.778
0.704, 0.845, 0.278
0.296, 0.155, 0.722

0.296, 0.345, 0.222
~0.296,-0.345,-0.222
-0.296, 0.845, 0.278
0.296, 0,155, 0.722

U mom

LCompare this case with Fig. 3.3 where the glide plane is at y=0. _ o _
%Be sure to note that Arabic numerals (1 and 2 in this instance) are used as arbitrary identification
numbers, but Roman aumerals (I and I in this case) refer to oxidation states which are inferred from

structural details (see Exercise 4.7.3).
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In the first column the values of %, ¥ and z have been substituted into the expressions for
the 4 ¢ positions; in the second column 1.0 has been added to any negative coordinates to
bring the atoms all into the same unit ceil (ie.so that 0 < x < LO0=y<1,05z< .

As a second example we take a crystallographic description of the mutile form of TiO»,

TiO, Payimnm, a =4.594, ¢ = 2,958 4
Tiin2a;0indf, x=0305

We recognize the symmetry to be tetragonal, Turning to the Frternational Tables we
find for this space group that 2 a correspond to 0,0,0 and 172,172,112, so this is where the
Ti atoms are located in the wunit cell. The 4 fpositions are given as x,x,0 ; %.%,0 ;
12+4x,1/2-x,1/2 ; 112-x,1/24x,1/2. Proceeding as for the O atoms in AgO we determine
the coordinates of the four O atoms in the unit cell of rutile are:

0.305, 0.303, 0 ; 0.665, 0.695, 0 ; 0.805, 0.195, 0.5 ; 0.195, 0.805, 0.5

Sornetimes there is a remarkable economy in this type of description, For example the
structuze of spinel, MgAlyO4 has 56 atoms in the unit cell, yet it is completely specified by
Symmetry information and just two numbers (a and x):

MgAl,0y Fdim, a=8.080 A
Mgin8a Alin16d Oin32 ¢ x=0262

From the International Tables we find that the coordinates of 32 e are:

0.00:0.12,142 ;112,017 ; 12,12, ¢
XK 52,1040, 14-x ; 1/d—xe x, 1/d—x 3 W=y, 14— x
IXF ;X.3/M44x5/44x ; 34+x. % 3/4wx ; 3/4+x,3/ 44,5

The interpretation of this is that to the coordinates in the second and third lines above, we
must add in turn 0.0,0 5 0,1/2,1/2 ; 1/2,0,1/2 and 1/2.1/2,0. The last three quantities are in
fact primitive lattice translations for a face-centered cell (Fd3m is face-centered cubic). The
coordinates of O in the unit celf are then (please verify, noting that ¥ = 1—r = 0.738; l/dwx
=—0.012 = 0.988; 3/4+x = 1.012 = 0.012; ete.): )

0.262, 0.262, 0.262
0.262, 0.988, 0.988
0.988, 0.262, 0.988
0.988, 0.988, 0.262
0.738, 0.738, 0.738
0.738, 0.012, 0.012
0.012, 0.738, 0.012
0.012, 0.012, 0.738

The metal atom positions are found from the Inte
coordinates for positions 8 a and 16 4. These are;

0.262, 0.762, 0.762
0.262, 0.488, 0.438
0.988, 0.762, 0.488
0.988, 0.488, 0.762
0.738, 0.238, 0.238
0.738, 0.512, 9.512
0.012, 6.238, 0.512
0.012, 0.512, 0.238

0.762, 0.262, 0.762
0.762, 0.988, 0.438
0.488, (.262, 0.488
0.488, 0.988, 0.762
0.238, 0.738, 0.238
0.238, 0.012, 0.512
0.512, 0.738, 0.512
0.512, 0.012, 0.238

0.762, 0.762, 0.262

0.762, 0.438, 0.988
0.488, 0.762, 0.988
0.488, 0.488, 0.262
0.238, 0.238, 0.738
0.238, 0.512, 0.012
0.512, 0.238, 0.012
0.512, 0.512, 0.738

rrational Tables by obtaining the
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(0,00 ;0,172,112 ; 1/2,0,1/2 ; 1/2,1/2,0) +
8a 1/8,1/8,1/8 ; 7/8,7/8,7/8
16d 12,172,172 ; 1/2,1/4,1/4 ; 174,112,144 ; 1/4,1/4,1/2

We now know where all the atoms are, but are not reatly much wiser about the structure.
In fact the situation of the would-be crystal chemist at this point may be likened to that of a
student of architecture who is given coordinates of bricks, rather than an architectural

"drawing. Accordingly, the next steps are to draw the structure (or make a model}, to find

nearest neighbors and coordination nurmbers and to caleylate bond lengths and angles.
Because we realize that it would be tedious for the reader to have to reach for the
International Tables every time that he/she wants to draw or do calculations on a structure
(which we hope is often), we usually give explicitly the coordinates of special and general
positions of a space group when reporting a structure. Especially for cubic groups it is
desirable to have some concise way of doing this. We use the following conventions.

1. The origin is always taken at a center of symunetry if present.

2. £ means plus and minus
* (x,y.z) means x,y,z and 7,7
tx,y.z means x,y,z and x.),2
* (£x.y,2) means x,y.2 ; X.y,2; %.3.055 1,5,

3. Centering is expressed as a letter followed by + or +
I refers to (0,0,0 ; 1/2,1/2,/12)
F refers to (0,0,0 ; 0,1/2,1/2: 142,0,172; 1/2,172,00
A refers to (0,0,0 ; 0,1/2,1/2)
B refers to (0,0,0 : 1/2,0,1/2)
C refers to (0,0,0 ; 1/2,1/2,0)
R refers 10 (0,0,0 5 1/3,2/3,2/3 : 2/3,1/3,113)

4. Cyclic permutation is expressed as {..)x
(x.¥.2)K means x,y,z ; z,x,y ; ¥,2,x
(This corresponds to the operation of a threefold axis through the origin and along
[111])

We now give examples {crystal structure information is usually given in this format
subsequently): 1 :

MgAl204 Fed3m, o = 8,080 A
Mgin 8 a: F + (1/8,1/8,1/8) )
Alin 16 &: F + (1/2,1/2,172; (1/2,1/4,1/4)%)
Oin32e Ft(xxx; {2, 1/4-x,1/4-6)%), x = 0.262

The first line always has the space group and lattice parameter(s).
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Ca3AlzSiz0O1; Iadd,a=11.846 A
Cain24 c: 7+ (1/8,0,1/4 ; 5/8,0,114)¢
Alin 16 a: T+ (0,0,0 ; 1/4,1/4,1/4 3 (0,1/2,1/2 5 1/4,3/4,3/4)K))
Siin24d: [+£(3/8,0,1/4 ; 78,0, Lidyx
Cin%6 kI (xyz; U2-x1/2+y 2 P %129, W24z 5 142y 12—
Vdex, 17442, 144y 3 3/44x,1/4—2,3/4—y ; 3/d—x,3/4+2, 14—y ;
1/4-x,3/4-2,3/443)K, x = -D.0381, y = 0.0449, 7 = 0.1514

Ca3Alz8i301 is one of a large group of natural and synthetic materials known as
gamets. Note that although this is a complex structure with 160 atoms in the unit cell, most
of the structural information is contained in the symmetry and only four numbers (a, x, v,
2) are necessary to specify the structure. For the O atoms in the structure we get 96

" coordinate triplets. Any one of these could be given as the coordinates of the typical atom.
Which to choose? Often the choice is that which corresponds to a minimum of xay2e2,

In a cubic crystal this is an atom closest to the origin. In the case of CazAlLSizOpallsix O

atoms closest to an Al atom at the origin (Al has six equidistant O neighbors) have at least
one negative coordinate, and the coordinates given above for Q are the coordinates of one
of thern. It might be verified that x, v, z = 0.0381, 0.0445, 0.6514 are also coordinates of
one of the O atoms obtained from the first by [ + ( 1/2-x,1/2+y,z) and could equally have
been given (and often are: some authors avoid negative coordinates and use the smallest set
of positive coordinates) as the O coordinates to generate the other 95. Remember that you
can always add an integer to, or subtract an integer from, any coordinate.

3.5 Sub- and sunper-groups of space groups

A subgroup H of a group G is one that contains some, but not all, of the elements of GG.
Conversely G is a supergroup of H. The number of elements in the supergroup is always
an integer (r) times that of the subgroup. In the fargon, 7 is the index of H in G. I n is
prime then H is a maximal subgroup of G.

The International Tables give information on subgroups and supergroups of the space
groups that is of interest in many contexts. For example a small distortion of a symmetrical
crystal structure may result in a lower symmetry whick is a subgroup of the parent
structure. Knowing the possible symmetries can be an invaluable aid to determining the
structure.

The full symbeol for Prma is P2y/n21/m2 /a and the point group is 2/m2/m2/m with
order 8. Systematically removing half of the symmetry elements will result in a space group
with point group of order 4 that is a subgroup of 2/m2/m2im (i.e. mm2, 222 or 2/m).
There are eight possibilities which are given in the Tables. We give first the symbeol for the
axes labeled as for Prma and in parentheses the symbol in the standard setting,

These are the maximal subgroups of Prma. In this instance each point group has an
order (4) half that of the parent so the index is 2. Lower order subgroups are subgroups of
the maximal subgroups and so on until finally P1, which is a subgroup of every space
group, is reached.
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Pnm2, {Pmn2)
Pn2;a (Pra2q)
P2ima (Pmc2y)
P21212¢ (P212127)
P112¢/a (P2y/c)
Pl12y/ml (P21/m)
P2y/nl1 (P21/e)

In the above example, the subgroups retain the same lattice translation symmetry; such
subgroups are called translationengleiche (“translationally equivalent”~—gleich means
“equal” or “same” in German) or ¢ subgroups, #, is used to denote a translationengleiche
subgroup of index #. ’

Another kind of subgroup is possible for space groups with centered lattices in which

{the centering is lost but the point group (crystal class) remains the same—these subgroups

are called kiassengleiche (“same class™) or & subgroups. Thus for Cmem we find listed as
maximal subgroups, eight  subgroups with a C lattice and eight k subgroups with a P
lattice. An examiple of the latter is Pbnm (standard setting Pama). That Pbnm is a
subgroup of Cmcm is by no means obvious unless it is known that Cmem has b glide
planes normal to a, and » glide planes normal to b (and so could also be written, Chmn as
explained in § 3.3.3, p. 72). Providing such information is yet another invaluable service
provided by the Internarional Tables. ky, is used to denote a klassengleiche subgroup of
index n.

The reader is urged to use Fig. 3.10 (p. 69) to see that the #, subgroups of C2/m are C2,
Crmand C1. In the last case the symmelry is triclinic and with the conventional (primitive)
cell the symbaol is P1. '

Similarly it shouid be apparent that the k» subgroups of C2/m are P2/m, Piy/m (Clim
contains 21 axes), P2/a (C2/m contains a glide), and P2y/a. In the last two cases
interchanging the labels of the a and ¢ axes gives the “standard” symbols P2/c and P2;/c
respectively.!

A special kind of k subgroup is an isomorphic subgroup (or i subgroup for short). This
is one that has the same space group as its parent, but because some of the translational
symmetry has been lost, the unit cell is enlarged. An example is given below.

In Chapter 6 we discuss how symmetrical, low-density sphere packings can be
smoothly distorted into denser, lower-symmetry forms. The space group of the latter will
be a subgroup of that of the low-density parent. An example is the distortion of an
l1-coordinated sphere packing (described in § 6.3.1) with symmetry Pda/mnam (full
symbol P42/m?2/n2im) to a denser version with symmetry Prunm. The International
Tables lists as a ¢ subgroup of Pdy/m21/n2/m the non-standard space group P2/m2y/nl,
This symbol is to be interpreted as if it referred to tetragonal symmetry (the symbol is
called the “tetragonal version™): thus parallel to z we have 2/m, and parallel to x and y we
have 21/n. We see that in fact there are 2-fold axes along x, y and z and the synumetry is

1For a detaileg discussion of the subgroups of C2/m (including isomorphic subgroups with a doubled ¢
axis) see § 7.13 of Geomerrical and Structural Crystallography by 1. V. Smith (Book List).




82 Chapter 3

actually orthorhombic. The “orthorhombic version” of this space group symbol is
P21/n21/n2im (short symbol Pnnm). The symmetry of the distorted structure is thus
shown to be indeed a subgroup of the parent structure,

The symmetries of the structures of rutile (Ti07) and CaCly are the same as in the above
example, and indeed the anion arrangements are related in much the same way as the two
sphere packings. :

Another structure related to that of mutile is the trirurile structure such as that of tapiolite,
TazFeOg. In this compound the Ta and Fe atoms order in layers along ¢ in a sequence
FeTaTa..., compared with TiTiTi... in rutile, thus tripling c. The space Zroup remains the
same so this is an example of ordering producing an isomorphic subgroup. The space
group of trirutile is a subgroup of that of rutile becanse 2/3 of the translations (along ¢)
have been lost; accordingly the index of the subgroup is 3 (it is an i3 subgroup).

Another example of a parent structure being reduced in symmetry is provided by the
structure of sodalite, N a4Al38i3017CL. We consider just the (ALSO, part of the structure
which consists of a framework of {ALSi}0y4 tetrahedra sharing comers, and for the
moement we consider the (ALSi) atoms to be disordered in a random manner. In its most
symmetrical arrangement the O packing is as described in § 6.8.5 with symmetry Im3m,
but as discussed in that section, can distort to a denser arrangement with symmetry [43m
which is a #) subgroup of Im3m. In both cases the tetrahedron centers (disordered Si,Al
are at the same positions: 7 £ (1/4,0, 1/2yx. Ordering of the Si and Al atoms into two sets
£(1/4,0,1/2)x for one atom and (1/4,1/2,0)x for the other removes the body centering and
reduces the symmetry further to P43n: a ky subgroup of 33,

A phase transition in KH,PO4 has been intensively studied.! The room temperature
phase (with disordered H atoms) has symmetry /424 and the low-temperature phase (in
which the H atoms are ordered) has symmetry Fdd2, If the high temperature phase is
described by a doubled cell as shown in Fig, 3.15, the space group symbol becomes F442
and the unit cells of both phases have very nearly equal dimensions.2 The H ordering
reduces the 4 axis to a 2 axis and removes the 2 axes normal (o ¢. The space group symibol
written as if the system were still tetragonal (it is actually orthorhombic) is now F2d1
(“tetragonal version) which becomes Fdd2 (“orthorhombic version™). Note that both the
last two symbols imply that the 2-fold axis is paralel to ¢. Note also that the translations of
1424 are retained in Fdd?2 so the latter is a translationengleiche subgroup of the former, For
comments on coordinates in these structures see §3.74.

There is something apparently paradoxical in the observation that ordering reduces
Symmetry and disordering increases it. One’s intuitive idea is surely that high symmetry is
associated with “orderly” patterns. The solution to the paradox lies in recognizing that the

359 (1955)].
2For the room temperature phase with the Fdd?2 cell g = 10.54, 6 =6.98 A, At 77 K the Fdd? structure
has a = 10.54, 5 = 10.46, c = 6.92 A,
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symmetry we talk about in crystals is the average symmetry as reveated, for example, l:':y
diffraction of radiation from a large volume (many unit cells) of the crystal. Thus in
disordered sodalite the tetrahedral sites are occupied on average by one half Al and one h.alf
Si and thus are considered equivalent and related by symmetry.! In the ordered version
there are two sets of sites, one occupied by Al and the other by Si, and there cannot be a
etry operation relating the two sets,

Syr'?’lrﬂart;yis I;f:)me interest ;gn knowing which cubic groups have non-intersecting 3-fold
axes. These will be the symmetry groups of cubic structures constructed of non-
intersecting rods of atoms aligned parallel to the cube body diagonals (§ 6.7.3). In Fl}e table
below the groups in each column are subgroups of the ones above thfem. In addition the
groups in the center column are subgroups of the ones in the left and right columns of the
row above.

/ Iz3d
f
Ia3 T 34 14432
N i

3 1213 7 P4432, P4;332

\ P2I13 /

3.6 Symmetry and the quartz structure—a case study

The a-quartz form of Si0; is an important mineral (comprisiqg about 15% of .th.e
continental crust of the earth), it also has valuable physical properties (for example it is
piezoelectric) that are a consequence of its symmetry, The structure is based on a
framework of corner-sharing {Si}O4 tetrahedra and has occasioned a great deal of
discussion, here we just focus on the symmetry aspects. The discussionlillustra.\tes_ several
topics: the use of non-standard origins, subgroup-supergroup relationships, twinning, and
the relationship between the hand of enantiomorphs and symmetry.

We start with a description of the structure of the high-temperature or B-quartz form.

Bquartz P6y22,a=501,c=5524A
: CSiin3 e (120,05 012,23 1 1/2,12,13) .
Oin 6 (x2x,1/2 283,106 3 £,8,5/6 ; T,20,1/2 ; 20,146 5 ¥,x,5/6), x = 0.208

“We recogrize the symmetry to be hexagonal and the crystal class (622) to ‘Pe one of the
enantiomorphous classes so that quartz exists as left- and right-handed forms (in essentially

10only crystallographers really believe in fractional atoms. In a disordered cr)istal there may be no
symmetry at all on an atomic level (i.e. on a specific as opposed to average site). In parl}ct':lar the
microscopic translational symmetry is lost (if a translation is from a Si atom to an Al atom it isnota

sSymetry operation).
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equal amounts as the o form in naiure). As discossed below, the form we have described
is called right-handed.! The left-handed enantiomorph has symmetry P6422. The
description of that structure is:

Baquartz P6422, 0 =501,c=552 A
Siin3e: (U200 012,13 ; 12,12,23)
Oin6j: (241125 253516 5 F,1/6 ; £,28,102 ; 20,%,5/6 ; F,x,1/6), x = 0.208

The only difference from the right-handed form is that we have replaced all the z
coordinates by 1-z This corresponds to reflection in an imaginary mirror plane at z = 1/2,
s that the two enantiomorphs are related as mirror images as expected.

46,213
11356 0.1y 113546 0.l

0!
/ 2\\i‘ //’ 1 /3,5 6 ” ,2/3

_ X
‘_/_if_'_i\/'/ A/ 4 :/ |

Fig. 3.17. The location of some of the symmetry elements of P8,22 and P3521. ¢ is vertical out of the
plane of the paper, and numbers represent elevations in fractions of c. The locations of 2] axes
perpendicular to ¢ are not showa, Note that the origin chosen for P3721 in ot the same ag that in the
International Tables.-

As well as the 67 axis (represented by a hexagon with three arms) at 0,0,z, P6,22
contains 33 axes (represented by triangles with three arms) at 1/3,2/3,z and 2/3,1/3,z as
shown in Fig. 3.17. In the structure of right-handed quartz the {Si}04 tetrahedra spiral
around the 33 axes as shown in Fig. 3.18. We earlier described a 37 axis as “left-handed”
and indeed the P6222 (right-handed) enantiomorph of quartz is sometimes described as
“structurally left-handed.” On the other hand, the 6 axis was described as “right-handed”
and if we focus instead on the helix of tetrahedra around that axis we would say that we
have a right-handed steuctural unit;-so it is not appropriate to refer to a structural “hand.”
Why then do we call the P6522 form of B-quartz “right-handed”? The answer lies in the
fact that the hand of a crystal is determined from its optical activity {rotation of the plane of
polarization of light); clockwise rotation {when viewed looking towards the light source,
Le. light coming to the viewer) being called right handed (this is the Biot convention) or

Ut is sometimes said that X-ray diffraction cannot distinguish between enantiomorphs of a crystal. This
is not true when anomalous dispersion (absorption} is taken into account, and the absolute configuration of
a number of enantiomorphic crystals has been determined by this technique. For an evaluation of the
literature see A. M. Glazer & K. Stadnicka, J. Appl. Crystaliogr. 19, 108 (1986).

Three-Dimensional Space Groups 85

dextrorotatory (+). This is the sense of the rotation of the plane of polarization of light
when passing through a slice of P6722 quartz in a direction parallel to «. (Rec-all t.ho'ugh
that in a right-handed screw the rotation is anticlockwise when the translation is in a
direction towards the viewer.) The opposite of “dextrorotatory” is “levorotatory” ().!

Below about 573 °C, the f form transforms to q-quartz, the main difference in the low-
temperature structure {Fig. 3.18) being that the Si-O-Si angle is decreased by rotating the
{S1}Qy4 tetrahedra in a concerted way about 2-fold axes perpendicular t(_) c. In the P6,22
enantiomorph this destroys the 2-fold rotation axis contained in the 6;-axis at 0,0,z and the
latter is degraded to a 3 axis. The symmetry of the crystal becomes P32%1. Reference to
Fig. 3.17 shows that the 37 axes at 1/3,2/3,z and 2/3,1/3,7 remain. P3,21is 2ty subgrc:up
of P622. A description of right-handed o-quartz often seen is (note that we do not give
the Wyckoff symbols for the positions for reasons to become apparent later):

arquartz P3521,a=492,c=541 A
Siat (x,0,0;0,52/3;,5%,1/3), x=0470
O at {xy,z; y-x 31340 ¥x—92034z  xp. 5.7 20,2032 ; ¥ y—x,173-2)
x=0413,y=0.266,z=0.119

Fig. 3.18. Top: the oxygen atom positions in S-quartz (P6422). Botfﬂm.: on the left oxygen atom
positions in ¢ and oa the right ¢ twins of a-quartz (P3321). The projection is along ¢ and Og ictr.ahedra
are oaflined. Silicon atoms (not shown) center the tetrahedra. In order of increasing depth of shading the
tetrahedron centers are at z =0, 1/3 and 2/3.

18ee the discussion by Glazer & $tadnika (op. ciz. previous footnote), The sign of the: optical agtivity
associated with a helix of polarizable atoms depends on the orientation of the axis of maximum
pelarizability with respect to the helix. If the polarizability of the atoms were to be isotropic there would be
no optical activity. For an account of the confusing history of the descn[‘}non of the quartz structure see P.
J. Heaney in Silica [Reviews in Mineralogy 29 (1994), p. 1-40], According to }_Ie.apey dextrorotary quartz
is morphologically right-handed {i.e. a macroscopic crystal of dextrorotary quartz is right handed).
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It should be apparent that if xg; = 0.5 in G-quartz, the silicon atoms in the o~ and §-
forms would then be in the same positions. In Table 3.5 below, the oxygen atom positions
(rounded off for simplicity) in f-quartz are listed in the first column, and those given above
for a-quartz are listed in the second column. These differ only slightly. The oxygen
positions in the two structures would be exactly the same if x,y,z in the P3521 form were
0.416,0.208,0.167.

Rotating the o structure (by 180°) around a 2-fold axis (now nonexistent in the crystal)
along 0,0,z will change the sign of the x and ¥ coordinates to give the coordinates in the
third column of the table. They correspond to substituting x = 0.585, y = 0.784, 7 = 0.119
for the oxygen positions given above for P3;21. We have of course exactly the same
structure, but in a different orjentation.

As fquartz is cooled to transform it to the o form, these two rientations (which we call
1 and @) nucleate at random points in the crystal, In the region of the interface where
domains of o and o eventually meet, presumably there is an average structure, which is
Jjust a siranded element of B. When a crystal is composed of two parts related by a
symmetry operation that is not a part of the structure {in this case a 2-fold rotation axis
along 0,0,z), we say that it is composed of twins and the phenomenon is known as
twinning. Quartz can be twinned in a number of different ways, the example we have just
discussed is known as Dauphiné twinning. The situation where left- and right-handed

forms are intergrown is known as Brazil twinning--here the twins are related by reflection

(which again is not a symmetry element of the structure).

Table 3.5. Oxygen atom positions (xy.2) in right-handed quartz.
Replacing all the z coordinates by 1-z will give coordinates for Yefi-handed quartz,

B ay o
0.21, 0.42, 0,50 0.27, 042, 0.55 0.15, 0.42, 0.45
0.58, 0.79, 0.17 0.58, 0.85, 0.21 0.58, 0.73, 0.12
0.21, 0.79, 0.83 0.15, 0.73, 0.88 0.27, 0.85, 0.79
0.79, 0.58, 0.50 0.83, 0.58, 0.45 0.73, 0.58, 0.55
0.427 0.21, 0.17 0.42, 0.27, 0.12 0.42, 0.15, 0.21
0.79, 0.21, 0.83 073, 0.15, 0.79 0.85, 0.27, 0.88

We haven’t finished our sto
is chosen differently in the International Tables—it
the position used above to describe o
atong x,0,0 in P6322 but, with the ori
the same axis runs along x,0,-1/3. The
by quartz aficionados (who are legion) as it makes the
transparent. Unfortunately they do not always make ¢

In the International Tables the relevant positions in #3421 are given as:

Siin 3 a: (x,0,2/3 5 0.x,1/3 XXM

Oin 6 c: (%3, F-y,2+2/3 ; YEXZ+H3 5 v T xey, 7,103 ; Xy=x.2/3-7)

“non-standard”

ry. For inscrutable reasons the origin of coordinates in
is displaced by 0,0,1/3 from
quartz. Thus the 2-fold axis in the x direction runs
gin chosen for P3,21 in the International Tables
origin is almost invariably chosen
relation between the ¢ and -forms
his clear to outsiders.
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To describe right-handed ¢-quartz using this origin we can use the same valus:s_ of x and
¥ and subtract 1/3 from (or add 2/3 to) the value of z given above (0.119). Specifically for
o we have for Si: x = 0.470 and for O: x = 0415, y = 0.266, z = 0.786. For ¢z we have
for Si: x = 0.530 and for O: x=0.585, y = 0.734, z = 0.786.

To describe left-handed erquartz using the origin given in the International Tables for
P3121 use the coordinates in the previous paragraph but with z replac?:d by 1-z. ‘

Many framework silicates have analogs in which 25i are replaced, in an ordered fashion,
by Al and P. The analog of quartz is the berlinite form of AIPO4 in which Al and P alternate
along the three-fold helices of the quartz structure. If the helices in the parent structure were
37 the symmetry along the helix of ordered atoms becomes 37 (with a doubled ¢) as

illustrated in Fig. 3.19.

Fig. 3.19. Ordering on a 37 helix (shown oa the left) produces a structure with a 33 axis (on the right)
and with doubled repeat distance.

In right-handed ¢-quartz the silicon atoms are in positions 3 g of P3;21: %,%,0; 0,x,1/3;
x,0,2/3 with x = 0.47. If the ¢ axis repeat is doubled these positions become:

TEO  OxlU6 x013  xX12 0x23  x05/6
Si Si Si Si Si St
Al P Al P Al P

The Al positions are in fact 3 a of P3721 and the P positions are 3 & of P3,21. In AIPQ4
xai= xp = 0.46. - .

P3121 is seen to be an isomorphic subgroup of index 2 of P3lzZl (agd vice versa).
Note that as P321 quartz is optically right handed, 73121 berlinite is also right handed.

One of the major uses of quartz is as a piezoelectric oscillator in watcl}es and other
timing devices. It would be ironic if digital clocks using quartz oscillators entirely replaced
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traditional clocks with their analog display of time, so that future’ generations lost sight of
the meaning of the term “clockwise.”!

3.7 Notes
3.7.1 Additional symmetry elements in the unit cell

Let there be an inversion center at Xg.Yo.Zo- A point at x,y,z will be transformed to
Lxg-x,2y0-y,270-2 by the inversion operation. Inversion centers with coordinates obtained
by adding 1/2 to xy and/or Yo and/or z will produce points with the same coordinates with
1 added on to the new values of x andfor ¥ andfor z (i.e. in adjacent unit cells). In particular
if there is an inversien center at 0.0.0 there will also be centers at 1/2,0,0 ; 0,1/2,0 ;
0,0,1/2; 0,1/2,1/2 - 1/2,0,1/2 ; 1/2,1/2,0 ; 1/2,1/2,1/2. These operating on a given point
will always produce points identical with Tespect {o a lattice translation. Thus the spacing of

inversion centers is always one-half that of the primitive lattice translations and there are

always exactly § per primitive cell.

Similar reasoning shows that mirror and glide planes are always spaced at intervals of
one half the shortest lattice translation normal to the mirror and that the spacing between
2-fold axes is one-half of a lattice translation vector.

When elevations are given for ceaters, 2-fold axes, and symmetry planes in the
International Tables, 1/2 should always be added to these elevations. Note that when no
elevation is given it is implied to be zero and 1/2.

Trigonal and hexagonal space groups will always have a 3- or 6-fold axis along
1/3,2/3,z and 2/3,1/3,z in addition to the one at 0,0,z .

In tetragonal space groups there are always 4-fold axes of the same kind (4, 41, 4 etc.)
with axes displaced by 1/2,1/2.0. Be aware that the origin is not always chosen on a 4-fold
axis in tetragonal space groups. ‘

3.7.2 General and special positions and lattice complexes

General positions are points at which there is no symmetry. The coordinates of general
positions completely specify the space group. If " is a point group then the general
positions of the space group PT also provide the coordinate symbols for the point group
operations. The nomber of general positions in the primitive cell is the order of the point
group. The maximum number of general positions will therefore be 4 x 48 = 192 for a

1Peizoelectrici:y is the production of electric polarization by an applied mechanical stress. It can occur
for all non-centrosymmetric crystal classes other than 432. In class 321 {that of o-quartz) the a and b
directions are polar and reversing their directions reverses the sign of the piezoelectric coefficents. Recall
that the forms that we have called ¢ and o are related in just this way (replacing x and y in one by X anrd
¥ in the other) so that a crystal composed of equal amounts of each form would not be piezoelectric. To
exploit the piezoelectric properties of quartz one must therefore avoid having both forms present (i.e.
Dauphiné twinning——often calied electrical twinning in this context). By convention the piezoelectric
coefficients are referred to the o form. ‘
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face-centered cubic cell in class m3m.

Points lying on mirror planes, but otherwise unrestricted, will have two degrees. of
freedom (will be bivariant) and will thus have coordinates of the sort x,y.20, where zp is 0
or a simple fraction (the mirror plane is z = z), or x,x,z (the mirror plane is x = ¥), etc.
The site symmetry at such a point wilt be m and there will be only one-half as many such
points as general positions. o .

Points lying on rotation axes will have only one degree of freedom (univarians) and wilt
thus have coordinates such as x,0,0 or x.x.%, etc. There will be at most one-half as many as
there are general positions, but there may be less if the axis also coincides with tpe
intersections of mirror planes and/or the order of the rotation axis is greater than 2. Tl}e site
symmetry will now be N or Nm(m). As univariant points lic on a rotation axis the
coordinates can be construed as specifying the line of intersection of two planes. Thus
x,0,0 is the line of intersection of the planes y = 0 and z = 0; likewise x,x,x represents the
intersection of the planes x =y and y = z. . ‘ ]

Points lying on centers, or at the intersections of rotation axes, or the intersection of a
rotation axis and a mirror, will have no free parameters (invariant). The site symmetry at
such points will be one of the crystallographic point groups (it must of course be the same
as, or a subgroup of, the crystal point group).

The fact that a point lies on a glide plane or a screw axis dees not on the other pand
reduce the number of points as the translational compenent will always take a given point to
a new position, Thus (to take a random example) there are no special positions for Pea2,
because it contains ne point operations (those that leave at least one point invariant). .

Sets of symimetry-related points are sometimes called lattice complexes (but the term is
sometimes used differently, so beware), '

Thete is special interest in the cubic invariant lattice complexes which crop up in many
different contexts, and they have been given symbols in the International Tables although

these have not yet achieved wide currency (they are given in § 6.8.7). As an example, the
positions 8 a of Fd3m (symbol [} are the positions of the atoms in the diamond forn:l of
carbox, silicon etc. as well as in a large number of compounds (Mg in MgAl2Oy cited
above}. The positions 16 d of the same space group (symbol 7}, which are the Al positions
in MgAlzQy4, are also the Cu positions in the important structure type MgCuz (§ 6.6.3).
Many other examples of the recurrence of common motifs will be adduced in later chapters.

3.7.3 Matrix representations of symmetry operations!

A symmetry operation acting on a point x,y,z produces another point at x',.y’,z'. Using
the conventional coordinate systems, the set of new points in a unit cell resulting from all
the symmetry operations in a space group are given as the general positions in the
International Tables. Let x be the column vector (x /y/ z) and x' be the column vector
(x"/y7z7, then X' = Ax + t where A is the matrix corresponding to a point symmetry
operation about the origin and t is another column vector {ty / £,/ ). i.e.:

I'This note is not for those who are uneasy with matrix manipulation; as we do not use the results jater
it may be omitted. See § 4.6.5 for some help with matrices.
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X a4y G a, ) x Ix
Y=y ay Oy y+ty

< Gy 4y ay hz z

z

This equation is sometimes expressed in terms of a four-dimensional matrix:

2

X a, d 2 alS tx x
¥’ % B Gy iy
4 G @y 4y iz
1 0 0 o0 1,1

A compact symbol for the above matrix | "= i
o Seifz opgm;g,—, atrix is {Alt} such that x' = {Alt)x. {Alt] is known
With conventional choices of bases all the elements of A are *1 or 0. The nature of the
Symmetry operation can be found as follows [H. Wondratschek & J, Neubtiser Acta
Crystallogr. 23, 349-352 (1967)): Let t be the trace (sum of the diagonal elements’) of A
and A the determinant of A, then the point symmetry element s determined as shown

below:
TA = 3 -1 0 I 2
A= 1 2 3 4 6
A=l i m 3 3 §

The space group operation is identified as follows:
If A= [ there is an N-fold rotation o screw axis aleng axis q given by the solutions of

(A-E)g=0 (Eisthe identity matrix)
with transkation d (parallel to q) given by
| d=(UNBt (B=ANL4AN2, +E)
points x on the axis are the solutions of

(A -E)x = (B/N - E)t

If A = -1 then there is:
() TA =3 an inversion center.
(b) TA = -1 a mirror or glide with transiation d given by

d = (1/2)(A - E)t
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and the points x on the plane are the solutions of
(A -E)x = (1/2)(A - E)t
(é) TA =0, 1 or 2 there is a3, 4 or 6 axis along g given by
A+E}=0
and the inversion point x is given by the solution of:
(A-Ex=-t

It wilk be found that working through one or two examples (see .g. Exercise 2) will
make the above clear.

The inverse problem of finding the matrix corresponding to a given space group
operation is easily solved from the above equations. For a clear and thorough exposition
see M. B. Boisen & G. V. Gibbs, Canadian Mineralogist, 16, 293 (1978).

3.7.4 Alternative origins and unit cells

There are advantages to taking the origin at a center of symmetry in space groups that
have them. Computer programs that generate space group coordinates often do it for a
centric space group by adding a center to an acentric space group by also reversing the sign
of all the coordinates (in getting Prmm from P222 for example). They then require that
you use such an origin. Properties such as the electron density distribution [p(x,y,z)] of 2"
centrosymmelric crystal become an even function [p(x,y,2) = p(—x,~y,~z)] if the origin is
taken at a center. Expression of p(x,y,z) as a Fourler series requires only cosine terms in
this case.

Why then ever take an alternative origin? Consider the diamond structure. The symmetry
is Fd3m and with origin at the center (half way between two neighboring C atoms, site
symmetry 3m) the C atom positions are & a: F + (1/8,1/8,1/8); however if the origin is
taken on an atom (with site symmetry 43m) the coordinates are (again 8 &)} F + (0,0,0 ;
1/4,1/4,1/4). Now consider the cubic form of SiC. The structure is derived from that of
diamond by replacing haif the C atoms by Si destroying the inversion center and the

" symumetry is now F43m (an acentric subgroup of Fd3m). The point that was the old

inversion center now has symmetry 3m and the natural origin is the site of $3m symmetry
where the atoms are located, and which is chosen as the standard origin for F43m. The
description of the structure is: Siin 4 a: F +(0,0,0) and C in 4 1 F + {1/4,1/4,1/4), The
relationships between the two structures are more readily apparent if the origin is chosen at
the site with 43z symmetry in both cases. '

‘When alternative origins are given, the first choice used in the International Tables is at
xo.y0.zo from an inversion center (the second choice is on the center). To convert
coordinates appropriate for the first choice to those appropriate for the second choice,




92 Chapter 3

X0:Y0.2p must be added to the first set. Values of Xo,Y0.Zo are given in Table 3.6 below.
See § 3.6 (p. 86) for choice of origin in #3121 and P3,21.

Table 3.6, Coordinates X0:¥0:20 te add to convert from origin “choice 1" to “choice 2" in the
International Tables

Pann 144,174,114
Pban, Ptmn 1/4,1/4,0
Ccea o i 0,1/4,1/4
Fddd, Fd3, Fd3m -1/8,~1/8,~1/8
Pdin, Padinmm, P4{5:cc -1/4,1/4,0
Pdy/n, Pdinne, Pa3, Pn3n, Pr3m -1/4-1/4,-1/4
M/a 0,-1/4,-1/8
ylamd, 141/acd 0,1/4,-1/8
Pdinbm -1/4,-1/4,0
Pdoinbe, PAyinnm, Pdafnme, Paginem =-1/4,1/4,~1/4
Fd3c -3/8,-3/3,--3/8

_ A more subtle (and maddening) cause of confusion can arise in some polar space groups
(1.6: Fhose belonging to one of the polar crystal classes—see § 2.5.4). The general
positions of Fdd2 (class mm?2) are given in the fnternational Tables ag:

F+(xy,z 55725 Ve, Ud=y, 114+ ; UA—x,1/44y,1/4+2)

The second position is generated from the first by rotation about the 2-fold axis parallel
to ¢ and passing through the origin. The next two Positions are generated from the first two
by diamond glide: reflection in the plane y = 1/8 followed by translation by a/d+c/4.

One of the most studied of all crystals with this symmetry is the low-temperature phase
of KH,POy. For reasons of their own, people who work with this material reverse the ¢

component of the glide (so that it is a/4 — ¢/4) and the general positions become (with —1/4
replaced by 3/4): '

F + (x,y,2 ;3,725 Wd+x,1/4-y,3/4+7 ; 1dx,1/4+y,3/4+7)

To use their coordinates with the positions given in the International Tables the sign of
all values of z must be reversed This is simple enough to do if you are told, but
compilations of structural data ofien neglect to make clear the choice of direction of z. The

- same problem can arise in [41md and f41cd which are polar supergroups of Fdd?.

The high-temperature phase of KHyPOy is often described as having space group F4d2
which is 1424 using with a doubled cell (see Fig. 3.15).1 Your computer program quite
possibly does not recognize F4d2 either! We explain in Chapter 4 how to transform
coordinates when a unit cell is transformed. To transform coordinates x,y,z for a face-
centered tetragonal cell to x',y",z' for a body-centered tetragonal cell use x' = x—y, y' =

The reason for this is that the unit cells and coordinates of both phases are then very nearly the same.
See § 3.5,
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x4y, z = z. You may still have to be careful about choice of origin!
Occasionally a primitive tetragonal crystal is described by a similar doubled cell which is
now C centered. The same rule applies.

3.7.5 Standardized description of crystal structures

Frequently crystal structures are determined and not recognized as the same as one
previously determined for a different compound (for an example see Exercise 11). Among
the reasons for this are choices of different settings of axes and choice of different origins
as described in § 3.7.4, or (less frequently) assignment of a wrong space group, .

Even if the “standard” settings of the International Tables are chosen there can still be
freedom of choice of axes; for example space group Prumm has the same symbol for any
permutation of the axes. There can also be freedom of choice in assigning atoms to
Wyckoff pasitions: for example in the structure of PtS with symmetry P4y/mmec, the Pt
atoms occupy the positions 2 c. The S atoms can be placed in either 2 e or 2 f resulting in
identicat structures but described with different origins. (in both cases on a center).

With an increasing number of structures being published and entered into computer
databases, it is important that they be reported in as “standard” as possibie a way. Sensible
proposals for this and a computer program to implement them have been described
[E. Parthé & I.. M. Gelato, Acta Crystallogr. A40, 169, (1984); L. M. Gelato &
E. Parthé, J. Appl. Crystaliogr. 20, 139 (1987)]. Unfortunately relationships between
structures of different symmetries are sometimes obscured if standard descriptions are
used. In those cases it would seem appropriate to use two descriptions, '

To Hlustrate that this is not a trivial problem for non-crystallographers we recount an
anecdote about the crystal structure of zircon (ZrSi0y4). Two structure determinations in
essential agreement were reported, but with different choices of origin (see Exercise 10). A
structure simulation was subsequently carried out (by a third party) to determine which was
correct! The reader is urged to do Exercise 11 (taken from Parthé & Gelato) which provides
a more subtle example.

3.7.6 Other symmetry groups with translations

The enumeration of the classical space groups was performed 100 years ago. Most of
the credit goes to E. S, Fedorov (Russia) and A. M. Schoenflies {Germany) who worked
independently, but it should be noted that the finat correct tally was only achieved by cross-
checking each other’s work. We should also mention in this connection the remarkable
work at the same time of W. Barlow. (England) who a (possibly apocryphal) tale has
arranging hundreds of gloves (asymimetric objects!) on racks to simulate the space groups.!

The symmetry groups of three-dimensional objects with only two-dimensional

{Barlow (who has been called “one of the last great amateurs of science™} also contributed greatly to cur
knowledge of sphere packings and invented some simple crystal structures, such as those of NaCl and CsCL
This last work was just what W. H. & W. L. Bragg needed for their early investigations of crystal
structures (that of NaCl was the first determined). The proof in § 1.4 is atiributed io Barlow.,
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periodicity (layers) or one-dimensional periodicity (rods) are sometimes of interest, The
restriction to 1-, 2-, 3-, 4- or 6-fold rotations does not apply with one-dimensional
periadicity, so the rod groups subject to that restriction are called crystallographic (as for
the point groups). As the crystallographic one-dimensional and two-dimensional groutps are
also subgroups of space groups, information about them is implicit in the International
Tables. Appendix 1 lists these groups and gives some hints for using the Tables to obtain
the general and special positions for these groups and to locate their symmetry elements.
Layer groups are of special interest to electron microscopy and we use the rod groups in the
discussion of cylinder packings in Chapter 6. :

3.7.7 The occurrence of symmetry groups

Experienced crystallographers often have a knack of knowing what kind of structure to
expect once they know the symmetry and unit cell parameters. It is useful therefore to have
some ideas about the factors determining the occurrence of symmetry groups.

Organic and many inorganic molecules are often assembled with great skill piecewise
and are generally of low symmetry (and metastable). The crystals they form have

. Symmetries suitable for efficient packing of such molecules: generally this requires the
absence of pure rotation axes and mirror planes, but allows a low density of screw axes
and glide planes. Thus in a survey! of about 40,000 organic crystal structures it was
observed that about one third have symmetry P2y/e but there was not a single cxample of a
structure with symmetry P2/m. Only 64 examples of cubic symmetry were found and
almost a third of these had symmetry Pa3 which is a favorable symmetry for packing of
molecules {like CO; and “congressane™ (§ 5.1.10)] with large quadrupole moments. The
same symmetry is found for pyrite, FeSy, which contains Sy £roups.

The inorganic crystals with which we are largely concerned in this book are very often
the stahle configurations (at a given temperature and pressure) of combinations of atoms in
predetermined ratios and generally have higher symmetries. Pearson’s Handbook (see
Book List) contains about 50,00 inorganic structures and about 2500 structure types. The
distribution of symmetries among the latter and the more common space groups {in percent)
are: :

friclinic 2.8

monoclinic 20.1 C2m 6.1 P2/e 5.5
orthorhombic 29.7 Prma 6.1 Cmem 3.1
tetragonal 5.1

trigonal 10.7 Rim 3.7

hexagonal 12.1 Pbyimme 4.3

cubic 9.5

About three-quarters of the structure types are centrosymmetric. Of course some
structure types have hundreds of representatives (they are usually of high symmetry) and
many others have just one. With reference to the above table, note that Crmcm is a maximal

ISes the article by A. 1. C. Wilsen in International Tabies C, p. 792.
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subgroup of index 3 of P6s/mmc and that Prma and Cm are maximal subgroups of order
2 of Cmem. Likewise P21/¢ is 4 maxirnal subgroup of index 2 of Prmag and C2/m is a
maximal subgroup of index 3 of R3m. The most common cubic symmetries are Fm3m and
Fd3m (both supergroups of R3m).

The presence of high symmetry means that apparently complex structures (such as
spinel and garnet; see § 3.4) can often be described by just a few parameters and
appreciation of possible reasons for adoption of a particular symmetry can be a great aid to
understanding such structures. For this reason we spend some time on the symmetries of
sphere and cylinder packings in Chapter 6 (see especially § 6.8.1 and 6.8.10). For the
symmetries of certain types of layer structure see § 5.6.14.

3.7.8 Incommensurate (modulated) crystals, quasicrystals and non-classical
symmetries!

We should mention that in this book we are only concerned with structures that have
symumetries described by one of the classical symmetry groups, in particular for “infinite”
solids the symmetry is one of the 230 space groups. Corresponding to the lattice of these
structures there is a reciprocal lattice (§ 4.5.1) in the space {reciprocal space or Fourier
space} of the diffraction pattern of the structure. The diffraction pattern is conveniently
indexed in terms of three non-coplanar reciprocal lattice vectors. The reader should know
however, that the diffraction patterns of maany solid materials (incommensurate crystals and
quasicrystals) cannot be so indexed, but require more than three (sometimes as many as
six) vectors to be indexed.

A simple kind of incommensurate crystal structure can arise as in the following example.
Consider a structure of Na;CO3 composed of Na atoms and CO3 groups in well-defined
pesitions in a unit cell and described by a conventional space symmetry group. Now
imagine the structure to be modutated by rotations of the CO3 groups by an angle whose
magnitude depends on distance along an axis and with a periodicity different from, and
Incommensurate with, the basic lattice periedicity. In addition to the basic unit cell and jts
contents, we have also to specify the modulation function to describe the structu_rf:.2 The
diffraction pattern will have main diffraction spots at positions specified in terms of three

reciprocal lattice vectors corresponding to the underlying lattice and satellite reflections -

whose positions relative to the main reflections are specified in terms of a fourth vector,
and four numbers will be required to index the spots of the diffraction pattern. In #his sense
it may be considered “four-dimensional.”

We mention quasicrystals briefly in § 5.5. The diffraction patterns of these have “non-
crystallographic” symmetries. The first to be discovered (and many others subsequently)
have icosahedrai diffraction patterns that require six digits for indexing.

For crystallographic purposes it is sometimes convenient to consider such structures as
projections onto three dimensions of higher dimensional structures with symmetries of

1Some acquaintance with X-ray diffraction is required to fully appreciate the content of this Note.
?NagCO3 was one of the first incommensurately-modulated crystals discovered. The situation in the veal
crystal is a little more complicated than we have described.
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higher dimensional space groups (see Appendix 2).

A recent interesting development is the recognition that the symmetries of diffraction
patterns are not restricted to “crystallographic™ symmetries (1-, 2-, 3-, 4- and 6-fold) axes.
That restriction in real space came about (§ 1.4) because we restricted ourselves to lattices
in which lattice points could not come arbitrarily close to each other—this is an entinently
sensible restriction in real space, as atoms (which must be related to identical atoms by a
lattice translation) can not approach arbitrarily close to each other. In reciprocal space,
however, there is no physical reason for such a restriction and if it is lifted, axial symmetry
groups with an N-fold axis with arbitrary &, and icosahedral groups are allowed, It turns
out that the derivation of symmetry groups starting from reciprocal space is in many ways
much more simple and elegant than the traditional way hinted at in this chapter, and it is
quite possible that future texts will adopt the teciprocal space approach when the details are
fully worked out. Key references are D. A. Rabson ef al., Rev. Mod, Phys. 63, 699
(1991) and N. D. Mermin, Rev. Mod. Phys. 64, 3 (1992). In these papers the 230 space
groups are derived very elegantly, as are the 11 icosahedral space groups of reciprocal
space. Note that there are no real space lattices corresponding to the icosahedral cases, so
the term “reciprocal™ lattice is unfortunate.

Despite the above remarks, we emphasize that in this hook we are interested primarily in
real space structures (arrangements of atoms in space) and that we use the language of
space groups simply for a convenient, and succinet, method of describing such structures;
and for this purpose a real space description is most intuitive. We also recognize that,
unless one is completely familiar with Fourier transforms and their properties, working in
reciprocal space can be somewhat daunting. Finally we observe that although the
occurrence of incommensurate and quasi-crystais is being found to be quite common, at
present structural details, on the level available for conventional crystals, are available in
only a few cases.

3.8 Exercises

1. By choosing new axes P21/c (§ 3.4, p. 77) becomes P2y/n. The coordinates of
general positions now are (verify from the International Tables):

Y2 EFT 3 U2 1/2-, 1242 5 1/2-x,1/2+y, 112~
2. The general positions of Prma (full symbol P21/n21/m2/a) are
£ (yz; V24x, 129,122 3 %,1/24y,7 ; 1/2-x.3,1/2+3)

From these the locations of the 2| axes parallel to x,y and z and the locations of the

mirror and glide planes can be found. For example, x.y,z — X,1/2+y,7" corresponds to -

_ operation of a 21 axis passing through the origin and parallel to v,
The special positions can be generated by appropriate substitutions for the general
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positions. Thus y = 1/4 (or y = 3/4) will generate positions 4 ¢ on the mirror planes. There
are eight inversion centers in the cell (see Fig. 3.14, p. 72); substitute their coordinates for
the general positions to generate 4 ¢ and 4 b.

- 3. The symmetries of the Bravais lattices are (identify each lattice):

Pi, P2tm, C2im, Pmmrr_:_, Cmmm, Immm, Fmmm, P4/mmm, 14/mmm, R3m,
P6/mmm, Pm3m, Im3m, Fm3m,

4. For the following space groups determine (z) the Bravais lattice, (b) the crystal
system, {c) the crystal class, (¢) whether there is a center of symmetry. (Use the
International Tables to check your answers),

la, Ceca, Amm2, I4(/a, Pdnc, I41/acd, R3¢, P31c, P6amc, 1a3, Fdic

5. Draw a projection down ¢ of the rutile structure (§ 3.4, p. 78). Show that Ti has six
near O atoms and O has three near Ti atoms. Shade in the {Ti}Og polyhedra to see how
they are connected. You should draw af least 4 wnit cells. {Hint: see Chapter 4 for advice
on drawing structures. ]

6. Show that the following sets of points in a cubic unit celf all describe a face-centered
fattice with a different choice of origin;

() 0,0,0; 0,1/2,1/2 ; 172,0,1/2 ; 1/2,1/2,0
by  0,0,1/2:01/2,0; 1/2,0,0; 1/2,1/2,1/2
{c) 1/4,1/4,1/4 ; 1/4,3/4,3/4 5 3/4,1/4,3/4 ; 3/4,3/4,1/4
(d) 374,314,314, 3/4,1/4,1/4 ; 1/4,3/4,1/4 ; 1/4,1/4,3/4

7. Show that the Al atoms in the structure of CazAlpSisQ0y7 structure (§ 3.4, p. 80) lie
on points of a body-centered lattice described by a cell with doubled edge (so the cell
contains 16 lattice points rather than 2).

8. The crystal structure of Cua0 {cuprite) is cubic with:

Cuat 0,0,0;0,1/2,1/2;1/2,0,1/2 ; 1/2,1/2,0
Oat  1/4,1/4,1/4 ; 3/4,3/4,3/4

The Cu atoms fall on the points of a face-centered [attice, and the O atoms fall on the
points of a body-centered lattice. The lattice of the structure is primitive (in fact the space
group is Pn3m). What is the coordination of Cu by O and of O by Cu (i.e. how many
nearest neighbors and how are they arranged)?

9. The crystal structure of cuprite was one of the first determined. From the unit cell
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parameter (a = 4.26 A) and the density (0 = 6.1 g cm-3) show that there must be 4 Cu and
2 O atoms in the unit cell. Now get a copy of the International Tables and show, by
elimination, that the only possible cubic symmetry is Pn3m (in which case the structure
must be that given in Exercise 8) or 233m.! (Why can P23, P4332 and Pn3 be ruled
out?). [Hint: begin by eliminating all space groups in which positions a (which have the
lowest multiplicity) consist of more than 2 points].

10. The structure of zircon, ZrS8i04, has been described as:

Hi/amd, a = 6.607, c = 5.982 A, Origin at #2m
Zrinda:l+ (00,0 0,142,14). Siin 4 b: 1 + (00,142 ; 0,/2,34)
Oin 16 Az T+ (03,2 5 £x,0.7 0,1/ 24, 1/d—7 s, 12, 1/447), x = 0.1839, 7 = 0.3203

Transforming to an origin at a center (see § 3.74,p91):

Zrinda: [ £(0,3/4,1/8). Siin 4 b: [ (0,1/4,3/8)
Oin 16 A: I+ (0,2 ; 0,1/2-x,z ; L, 4,344z ; 3/4-x,1/4,3/442), x = 0.0661, z = 0.1953

11. An important structure type is that of CeCuy; KHg, has been described as having the
same symimetry:

CeCuy Imma, a =443, 5=706,c=748 A
Ceind ¢c: I+ (0,1/4,7), z = 0.538
Cuin &k 1+ (0,25 0,1/252), y = 0.051, z = 0.165

KHg; Imma,a=810,b=5.16,c =877 A
Kindc: I+(0,1/4,2), 7 = 0.703
Hg in 8 i /& (B, 1/4.2), x = 0,190, z = 0.087

Plot both structures in projection down the shortest axis and thus show that they are
essentiaily the same (except for a change of scale).? An exactly equivalent description of the
structure of KHgy is (compare with that given for CeCuz):a=5.16,b=8.10, c = 8.77 A.
Kin4a,z=0457; Hg in 8 2, v = 0.060, z = 0.163. [Hints: for some help with drawing
structures see Chapter 4. These structures are nicely illustrated if the four shortest Cu-Cu or
Hg-Hg bonds are drawn in (two of these superimpose in projection)~-see § 7.3.5]

12. Use the International Tables A to find the maximal nea-polar ¢t subgroups (H) of
G = Pm3m. [Hint: they will be found as maximal subgroups of maximal subgroups; the
two highest symmetries have index 6 and 8 in G respectively. For the polar crystal classes,
see p. 50.] These are the possible symmetries of the polar structures formed when a cubic
perovskite (such as BaTiO3 or Sr1i03) deforms to polar structures at low temperature.

1Systematic absences in the powder pattern immediately point to Pnm. Specifically, reflections with
indices hk( are absent for /1 + k odd (100, 210 ete.).

2This example is taken from Elements of Inorganic Structural Chemistry by E. Parthé (available from
K. Sutter Parthé, 49 Chemin du Gué, CH-1213 Petit-Lancy, Switzerland).

CHAPTER 4
LATTICE GEOMETRY

In this chapter we explain how the directions of lines and the orientations of planes in a
crystal are specified. The description necessarily involves reference to the coordinate
system and if alternative unit cell descriptions are used the description of directions anc_l 50
on. will change, so we next discuss unit cell transformations. Next we give a compendium
of formulas useful for crystallographic calculations. Finally we present some comments
and hints on drawing crystal structures.

4.1 Directions in a crystal
4.1.1 General

A direction in a crystal is specified by three integers u,v,w and is written [zvw]. The

- direction is then that of the vector ua + vb + we where a, b and ¢ are the unit cell (lattice)

vectors. Normally #, v and w are integers that have no common factors other than | {ie.
they are coprime). Thus the direction of the x-axis is [100], that of the y-axis is [010] and
that of the z-axis is [001]. Note that {100} refers to the -x direction. Fig, 4.1 illustrates
these and some other principal directions. In the figure the shape of the unit cell is to be
considered quite general (i.e. not necessarily 2 cube) and the heavy lines meet at the origin;
the filled circle is a point at 0,1/2,1. In crystallography the symbol [uvw] is often said to
represent a zone axis and all planes parallel to {ivw] are said to fall in that zone.

[001]

¢ 012} 1y
(101] ( I[011]

y  [010]

x [100] [110]

Fig. 4.1 Directions in a crystal.
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parameter (a = 4.26 A) and the density (p = 6.1 g cm-3} show that there must be 4 Cu and
2 O atoms in the unit cell. Now get a copy of the fnternational Tables and show, by
elimination, that the only possible cubic symmetry is PnIm (in which case the structure
must be that given in Exercise 8) or P43m.! (Why can P23, P4,32 and Pn3 be ruled
out?). [Hint: begin by eliminating all space groups in which positions a (which have the
lowest multiplicity) consist of more than 2 points],

10. The structure of zircon, Zr8i0y4, has been described as:

HByfamd, a = 6,607, ¢ = 5.982 A. Origin at T2m
Zrind a1 +(0,0,0;0,1/2,14). Siin 4 b: 1+ (00,172 ; 0,1/2,3/4)
Oin 16 A7+ (04,2, £1,0Z 0,1/2%x, 1/ ; x,1/2,114+2), x = 0,1839, 2 = 0.3203

Transforming to an origih at a center (sec § 3.7.4, p.91);

Zrinda:I+{0,34,1/8). Siind b: 1 + (0,1/4,3/8)
Oin 16 k: T+ {0xz; 0,1/2-x,2 ; /d+x, 14,3447 ; 3/14-x,1/4,3/442), x = 0.0661, z = 0.1953

11, An important structure type is that of CeCuy; KHg) has been described as having the
same symmetry:

CeCuy Imma, a=443,b=706,c=748 A
Ceind e I£ (0,1/4,2), z = 0.538
Cuin 8 & F£{0y,z; 0,1/2.2), ¥ = 0.051, z = 0.165

KHg, Imma,a=8.10,b =516, ¢ =877 A
Kind c: f4(0,1/4.2), z = 0.703
Hgin 8 i [+ (+x,1/d,7), x = 0.190, z = 0.087

Plot both structures in projection down the shortest axis and thus show that they are
essentially the same (except for a change of scale).2 An exactly equivalent description of the
structure of KHgy is (compare with that given for CeCus): a=5.16, b= 8.10, c = 8.77 A.
Kindg,z=0457;Hgin 8 &, y=0.080, z = 0.163. [Hints: for some help with drawing
structures see Chapter 4, These structures are nicely illustrated if the four shortest Cu-Cu or
Hg-Hg bonds are drawn in (kwo of these superimpose in projection)}—ses § 7.3.5]

12, Use the Jnternational Tables A to find the maximal non-polar ¢ subgroups (H) of
G = Pm3m. [Hint: they will be found as maximal subgroups of maximal subgroups; the
two highest symmetries have index 6 and & in G respectively. For the polar crystal classes,
see p. 30.] These are the possible symumetries of the polar structures formed when a cubic
perovskite (such as BaTiOs or SrTi0s) deforms to polar structures at low temperature.

ISystematic absences in the powder pattern immediately poiat 16 Pu3nm. Specifically, reflections with
indices hkQ are absent for 4 + % odd (100, 219 erc,),

2This example is taken from Elements of Inorganic Seructural Chemistry by E. Parthé (available from
K. Sutter Parthé, 49 Chemin du Gué, CH-1213 Petit-Lancy, Switzerland),

CHAPTER 4
LATTICE GEOMETRY

In this chapter we explain how the directions of lines and the orientations of planesin a
crystal are specified. The description necessarily involves reference to the ‘coordinate
system and if alternative unit cell descriptions are used the description of directions anc‘l S0
on. will change, so we next discuss unit cell transformations. Next we give a compendium
of formulas useful for crystallographic calculations. Finally we present some comments
and hints on drawing crystal structures.

4.1 Directions in a crystal
4.1.1 General

A direction in a crystal is specified by three integers «,v,w and is written fuvw]. The
direction is then that of the vector ua + vb + we where a, b and ¢ are the unit cell (lattice)
vectors. Normally u, v and w are integers that have ne common factors other than 1 (i.e.
they are coprime). Thus the direction of the x-axis is [100], that of the y-axis is [010] and
that of the z-axis is [001]. Note that [100] refers to the -x direction. Fig. 4.1 illustrates
these and some other principal directions. In the figurc the shape of the unit cell is to P)e
considered quite general (i.e. not necessarily a cube) and the heavy lines meet at the origin;
the filled circle is a point at 0,1/2,1. In crystallography the symbol [uvw] is often said to
represent a zone axis and all planes parallel to [wvw] are said to fall in that zone.

[o01}

z (012} 111
o1 U i

y [010}

x [100] {110]

Fig. 4.1 Directicns in a crystal.
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The set of equivalent {symmetry-related) directions in a crystal is represented. <uyws,
Thus in a centrosymmetric cubic crystal <111> represents the family of specific directions
along the body diagonais:

(111, (iang, (ring, [1dy, (fin, (indy, [111}and [ii1)
For the same symmetry, <100> is similarly the set; -
(100}, [010], [001], 1001, [910] and [00I].

In the jargon <uvw> is a form of zone axes.

Often [uvw] is used to represent not only a direction but is considered to have a
_magnitude associated with it. Usuaily the context makes. this clear. Thus a vector of
magnitude /2 along the x direction is written 1/2[100}, and 1/2[111] refers to
(a+b-c)2. Vector sums can be expressed as (e.g.) 1/6[112] + 1/6{110] = 1/3[111]
which is shorthand for (~-a + b + )e+{~a+by6=(a+h+ c)/3,

4.1.2 Directions in hexagonal crystals

In the hexagonal system two systems are used for specifying directions. The first uses a
four index symbol which we write [UVIW]. The corresponding direction is that of the
vector Uay + Vaa + Jas + We where ay is the x direction, ay is the v direction (at 120° to
each other) and a3 = -(a; + a3) is the equivalent direction at 120° to both a1 and ay (and at
90" to ¢) as shown in Fig. 4.2. An important point is that as ag, a2 and a3 are not
independent there are many choices of U/, V and J that correspond to the same direction.
The choice made is such that ] = —(U + V). Although, as we will see, there are
advantages to this system, it is not intuitive. Thus (see again Fig. 4.2) the y direction ‘
{parallel to ap) is [1210] and the vector ap = 1/3{1210]. '

a3

[-12-101
ay

[01-10)
/ \
[2-1-10] [11-20]

[16-10]

Fig. 4.2. Directions in hexagonal crystals.
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Three-index symbols [ivw] can also be used for directions in hexagonal crystals. These
are also sometimes written as [uv. w] or [uvOw] which can be confusing and definitely
should be avoided. The four-index symbols are casily obtained from three-index symbols
based on a cell with dimensions ai, az, ¢ as follows:

U= Qu=v)i3;V=(Qv-id3;J=~(U+V): Wew (4.1)
Note that U, V, J and W should be converted to the smatlest possible integers by
multiplying or dividing by a constant factor if necessary. Our recommendation is to use

three-index symbols for all calculations (see c.g. sections 4.3 and 4 4) and to convert at the
end to four-index symbols (to avoid ambiguity) for communication.

4.2 Planes and Miller indices

i

() (110) (&) (1-10)=(-110) () top (001), side (010)
front (100)

Fig. 4.3. Miller indices for planes.

The orientation of planes relative to a coordinate system defined by translation vectors a,
b and ¢ is given by three integers A, k, [ (known as Miller indices) and written (hki). The
significance of these numbers is that the intercepts of the plane with the reference axes (in
units of @, b and ¢ respectively) are in the ratio 1/k : 1/k  1/1 Again (as for the indices
representing directions).h, k and ! are inte gers with no factor common to all three, Note that
b, k and { specify only the orientation of the plane, not its location. Thas all parallel planes
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have the same Miller indices.! Planes which intersect lattice points are referred to as lattice
planes or net planes. The equation of the plane in the lattice coordinate system is hx -+ ky +
iz = constant. (kkl) specifies the orientation of the plane and the constant specifies its
Pposition relative to the origin.

Figure 4.3 provides a number of examples of low-index planes with respect to a unit cell
which may be triclinic. In (a) the plane intercepts the axes at 171, 1/1, 1/1 so its indices are
{111). In (b} the intercepts are 1/2, 1/2, 1/2 5o after factoring out a common 2, the indices
are again (111). In (c) the intercepts are 1/1, 1/2, 1/2 so now the indices are (122). In (d)
the plane is parallel to ¢ so the intercept with that axis is at infinity (1/oc = 0), The plane
shown is in fact (110). Part (e) of the figure shows =z plane with intercepts either at 1/1,
/-1, 1/0 or 1/-1, 1/1, 1/0 according to whether the origin is taken at one or other of the two
filled circles shown. These planes are of course the same and thus should have the same
indices which we could write either as (1 i0) or (110). Part (D) shows planes (100), (010)
-and (001); they are parallel to the faces of the unit cell.

A form of planes (a set of planes related by symmetry) is represented by braces as in
{hkl}; thus the faces of a cubic unit cell are {100},

Hexagonal crystals

As for directions, four-index symbols are usnally used for the orientation of planes in
the hexagonat system. There is little chance for confusion now as a plane that intercepts ay
at 1/ and a3 at 11k will inevitably intercept a3 at 1/ where { = ~(h+k). Accordingly the
three-index symbol (hkf) becomes the four-index symbol (hkil) with i = —(h+k). The
superfluous { is sometimes replaced by a point as in (hk.D).
4.3 Relations between zones (directions) and planes

€a) The zone law: A piane (hii) lies in the zone [evw] if:

hu+kv+iw=0 . ' (4.2)

thus both (110) and (101) lie in the [111] zone.

(b) The zone [uvw] corresponding 10 the intersection of Planes (kL)) and (hakyly) is
given by:

u =kib~ki v=lihy— LAy w = bk ~ hoky 4.3

thus the intersection of (110) and (101) is [111] [compare (a) above].

FAuthors of elementary texts often séem to us to get this point wrong, confusing Miller indices with’

Bragg indices which are discussed below (§ 4.7.2). Explicitly for example: no distinction should be made
between a (222) and a (11[) plane.
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{c) Some perpendicﬂlarity conditions in different systems:

orthorhqmbic: [100], [010] and [001] are perpendicular to (100), (010) and (001)
respectively. _ .

tetragonal: [001] is perpendicular to (001) and [7q0] is perpendjcular to (pg0).

hexagonal: [0001] is perpendicular to (0001} and [pgi0] is perpendicular to (pgit).l In
the three-index system one has [2p+g 2+2q O} perpendicular to (pg0) or equivalently, [pg0]
perpendicular to (2p—g 2g-p 0).

More generally (four-index system) [p q { 3a2f2¢2)1) is normal to (pgil).

i'honibohedral: [i] 1] is perpendicular to (111) {(but if a hexagonal cell is used, see
above). ‘

cubic: [pgr] is perpendicular to (pgr).

4.4 Unrit cell transformations
4.4.1 General

There are many reasons why it would be desirable to describe a crystal structure with a
unit cell other than the one provided. For example the original investigaior may have
chosen a "non-standard” setting of the axes, or a rhombohedral crystal might be more
conveniently described using a hexagonal cell rather than a rhombohedral one. Sometimes
structural relationships are made more evident using unconventional cells (such as a
hexagonal ceH for a cubic crystal). )

Let a "new” unit cell defined by translation vectors a', b', ¢ be derived for a structure
with an "old" cell defined by a, b, c. The relationship between the new and old cells is

- given by (using the notation of the 1965 International Tables, Vol I):

a’ =514+ 517b + 53¢ a=rpa +1bh" + ty3c’
- b'=5918 4 535b + §93¢€ b =118 +t0b" + 3¢’
€' = 5313 + 532b + 535¢ ¢ =f1a' + 132h" + 133" (4.4)

Let 8 be the matrix of coefficients syand T the matrix t,j.z Then § and T are the

VThis is one of the advantages of the 4-index system.

?Note that Boisen & Gibbs {Mathematieal Crystallography in Book List} use S and T matrices that
are the transposes of ours, The newer fnternational Tabies (volume A) uses P and Q that are also the
transposes of our 8 and T. These authors consider (more logically) the set of lattice vectors to be a  x 3
(row) vector rather than as a 3 x 1 (column} vector. The system and notation we use appears to us to be
simpler and is also to be found in most texts. This point is addressed in § 4.7.5 (p. 128).
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inverses of each other (i.e. ST =TS = E). As the new and old cells are both unit cells the
elements of the matrices will be rationai numbers.

The ratio of the volumes of the new and old unit cells is det{S) and likewise the ratio of
the volumes of the cld and new unit cells is det(T). Should the determinants be negative,
the hand of the coordinate system has been changed in the transformation.

When the coordinate system is changed the indices representing the orientation of planes
and directions will also transform, as will the coordiates of points in the unit cell. The
rules for the transformations are as given below (Tt, 8¢ are the transposes of T and §
respectively);! '

new from old old from new
a,b, ¢ S T
(hid) S T
[zevw] Tt St
Y.z Tt st
a® b* c* Tt gt

The table shows that axes and indices of planes transform the same way as each other,
and that coordinates of points and indices for lines also transform the same way as each
other but using the transposed reciprocal matrix. The bottom row shows for completeness
how reciprocal lattice vectors (discussed below) transform,

In calculating coordinates of points (e.g. atom positions), it must be taken into account
that if the new and old unit cells have different volumes, the number of points in the cell
will change accordingly. How this is handled shoald be clear from the examples below. To
calcujate the length of the new axes, note that .2 a' = 5118 + s13b + 53¢ S0 that o' is the
distance from 0,0,0 to §11.512,513 in the old coordinate systemn. Likewise o is the angle
between [s27 522 523] and [s3; 852 5331 (again in the old coordinate system). Calculating
distances and angles is discussed in § 4.5.2 and § 4.5.3 and a general expression for unit
cell parameters of transformed cells is givenin § 4.5.4 (p. 112).

4.4.2 Rhombohedral to hexagonal and vice versa

Rhombohedral crystals are often referred to hexagonal axes and the hexagonal cell is
three times the volme of the rhombohedral one. Fig. 4.4 shows the relationship of the
rhombohedral cell to the hexagonal one. The filled circles in the figure are 2t 0,0,0 ; 1,00 ;
1,1,0 and 0,0,1 in the rhombohedral cell and at cell corners (0,0,0 ; 1,0,0 ; etc.) ;
2/3,1/3,1/3 5 1/3,2/3,2/3 in the hexagonal cell (see aiso Fig. 4.5). The open circles are the
remaining corners of the rhombohedral cell that are in adjacent hexagonal cells. It may be
seen that if the thombohedral cell is rotated by 60° about ¢ the hexagonal cell contains

A simple derivation {using the same notation) of these rules is given by A. Kelly & G. Groves
Crysiallography and Crystal Defects, Addison-Wesley {1970),
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points at 1/3,2/3,1/3 and 2/3,1/3,2/3; this is the so-called reverse setting which is not used.
The setting used here (Fig. 4.4) is the “standard” one and is called the obverse setting.

Zp

*h

Fig. 4.4. The relationship between centered and primitive thombohedral cells.

Y

*h

Fig. 4.5. The poinss of Fig. 4.4 projected down ¢ (the z4 direction),

Figure 4.5 shows the same thombohedral and hexagonal unit cells in projection along
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the 3-fold axis. It should be observed that:

ap=a,-bh,
by, = by —¢,
eh=ar+ byt ¢

The transformation matrix is therefore S = (11 0/01 1 /1 1 1) (thombohedral —
hexagonal). Likewise:

ar=2ap/3 + by/3 + /3
by = —ap/3 + bp/3 + /3
¢, =-an/3 -2bp/3 + cp/3

soT= (23 1/31/3/-1/3 1/3 1/3/-1/3 =2/3 1/3) is the corresponding inverse matrix,

The relations between the unit cell parameters in the two cells are:

a = (%)1{(3@? +ch)
=28 e
23+ (ct/al)

a, =2a sin(er/2)

¢, =a,/(3+6cosq)

As we use Tt to transform coordinates, a point with coordinates x,v,z in the
rhombohedral cell will have coordinates (2x-y=z¥3, (x+y-22)/3, (x+y+z)/3 in the
hexagonal cell. Note that 1,0,0 transforms to 2/3,1/3,1/3; 0,1,0 transforms to -1/3,1/3,1/3
= 2/3,1/3,1/3 and 0,0,1 transforms to =1/3,-2/3,1/3 = 2/3,1/3,1/3. 1,1,0 transforms to
1/3,2/3,2/3 and so on. Examination of all the possibilities shows that the rhombohedral
lattice points correspond to 0,0,0 or 2/3,143,1/3 or 1/3,2/3,2/3 in the hexagonal cell.
Accordingly, these quantities must be added to the new coordinates of each point calculated
from the original x,y,z {recall that the hexagonal cell volume is three times that of the
thombohedral cell). The transformations may be summarized (note that we use three-index
symbols for hexagonal):

rhombohedral — hexa-gonal

xy.2 (00,0 ; 2/3,1/3,1/3 ; 1/3,2/3,2/3) +
(2x-y=2)/3, (x+y-22)/3, (xc4y+2)/3
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[evw] — (UBRu—v-—w wtv-2w utviw]
{thus [111}; becomes 1/3[003], = [001))

(hkD  -» (Al b~ Bak+D)
{thus (111); becomes (003), = (00D, ete.]

hexagonal -» rhombchedral
Xy.z - x+Z, —kty+z, —y+z,

[uvw] = [u+tw v4w—u w—v]
{thus [001], becomes [111],)

(kD — (U3 2h+k+] Rl ~h-2he+D
{thus (001)y, becomes (143 1/3 1/3) = (11 I)p etc. ]

When transforming from hexagonal cell to 2 rhombohedral one, and the new coordinates
are expressed modulo 1, it will be found that sets of three points in the hexagonal cell
reduce to one point in the thombohedral cell.

4.4.3 Cubic to hexagonal

Cubic crystals may be considered as special cases of thombohedral symumetry, the P, [,
and F cells having primitive rhombohedral cells with « = 90°, 109.47°, and 60°
respectively. They can also be transformed to hexagonal cells (among other things this is
very useful for drawing cubic structures projected down a 3-fold axis).

For the primitive cubic cell the transformation is exactly the same as outlined above. The
centered cells should first be transformed to primitive cells before being converted to
hexagonal ones. It should be clear that the final hexagonal cell will contain 3/2 times as
many atomns as a body-centered cell, and 3/4 times as many atoms as the face-centered cell.

For convenience the 8§ and T matrices are:

face-centered — primitive S=(1212/12012/ 12 120)
_ T=(11/1i1/11])

face-centered — hexagonal S=(-12120/0-1212/111
T =(4/3-2/3 1137203213 U3 ] 2/3 43 /3

body-centered — primitive S={V2 121727 12172 V21 1/2 112 -1/2)
T=(011/101/110)

body-centered — hexagonal  §=(110/011/1/21/2 1/2)
T=(-2/3-132/3/13-1/3213/ 113213 2/3)
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In the hexagonal description of cubic cells the axes are (with subscript ¢ for cubic and h
for hexagonal):

primitive ap=V2a,  cplap=(3/2) = 1.225

body-centered ap = V'2a¢ cplan = \i(3/8) =0.614

face-centered ap=aJdN2  epfap = N6 = 2.449

4.4.4 Hexagonal to orthohexagonal

Hexagonal crystal structures are sometimes conveniently illustrated in projection normal
to c. A good way to do this is to transform to an orthohexagonal cell as shown in Fig. 4.6
{old cell in light lines, new cell in heavier lines). Asa'=a +b,b'=-a+b, ¢' = ¢, the
transformation matrices are S=(110/110/00 1D,T=(1/2-1/20/1/21/20/00 1).
The unit cell parameters are a' = a, b' = ¥3b and ¢' = ¢. Notice that the new cell is C
centered (Fig. 4.6) so that 0,0,0 and 1/2,1/2,0 must be added to each x',y",z".

Fig. 4.6. Hilustrating derivation of an orthohexagonal cell (heavy lines) from a hexagonal cell.

To plot normal to ¢ usually project down a' (the short axis) of the orthohexagonal cell
[this is on (2120) of the hexagenal cell]. Note that the same transformation i is useful for
plotting a cubic or tetragonal structure on (110) (i.e. along [110D.

If the original cell were thombohedral, it should first be converted to a hexagonal cell

and then to an orthohexagonal cell. The combined operation rhombohedral —
orthohexagonal is described by S=(101/121/11 1), T=(1/2 ~1/6 1/3/0 /3 1/3/
~1/2 -1/6 1/3). Now the new unit cell is six times larger and (0,0,0 ; 1/2,1/2,0 ; 0,1/3,1/3 ;
1/2,5/6,1/3 5 0,2/3,2/3 ; 1/2,1/6,2/3) must be added to the new coordinates.

See § 4.6.3 for some worked examples and for a transformation from face-centered
cubic to orthohexagonal.

4.5 Crystallographic caleulations
4.5.1 Unit cell volume and reciprocal lattice unit cell parameters

The volume of a unit céll is given by

JE—

Lattice Geometry 109

= abeV(1 + 2cosacosfeosy— cosZa — cos2fl— cosZy) (4.5)

Special cases are:
Monoclinic V= abcsinf
Ortherhombic V= abe
Hexagonal  V=v3a2c/2

For many reasons it is convenient to define a lattice reciprocal to the lattice of a crystal.
Let a lattice be defined by vectors @, b and ¢; then we define reciprocal lattice vectors a*,
b* and c* such that a* is normal to the bc plane {i.e. the plane containing b and ¢), b* is
perpendicular to the ac plane and ¢* is perpendicular to the b plane.! The defining
relationships are:

=1 ba*=0 ca*=0
ab*=0 bb*=1 eb*=0
ac*=0 b.c* =0 cc¥=1 (4.6)

From these equations it follows that the dlmensmns of the reciprocal lattice vectors are
1/distance (units e.g. A1),

The volume of the reciprocal lattice unit cell is V* = 1/V.

The magnitudes of the reciprocal lattice vectors and the angles between them (cr*, f*
and ¥ are

a* = besinofV
b* = acsinfilV
<* = absinyfV

cos* = (cosfcosy— cosar)/sinfsiny
cosfi* = (cosacosy— cosf)/sinasiny
cosy* = (cosacosf— cosp/sinasin 4.7)

There is a set of equations anajogous to Eq. 4.7 obtained by interchanging starred and

unstarred quantities. Note the simplification if = = y= 90°; when a* = l/a, b* = /b,
¢* = le, o = B¥ = p* = 90°. Other useful special cases are:

= csinB), B = 180°-B

Hexagonal: a* = 2/(¥3a), ¢* = l/e, § = 60°

Monoclinic: a* = 1/(asinf), 5% =

The lattice reciprocal to bec is foe and vice versa. This may readily be confirmed by
finding the reciprocal unit cell parameters of the primitive cells.2

11t is virtuaily impossible to do practicai crystallography without reference to the reciprocal lattice. The
direct lattice and reciprocal lattice are related as Fourier transforms,
2Thus find the reciprocal lattice parameters if @ = = ¢, ct= = y= 60",
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4.5.2 Interatomic distances and the G matrix

We often need. to calculate the distance between points x(,y|,z; and x4,y3,2; (e.g. to
determine bond lengths in a structure). Let §x = {(x2=x1), 8y = (y~y1) and 8z = (z3-21)
then the distance d between the points is given by:

d?= (8x)2a2 + (8y)22 + (82)2¢2
+ 2(8x)(8y)abeosy + 2(8y)(dz)becosa + 28z)(Bx)cacosf  (4.8)

Remember in using Eq. 4.8 to keep the signs of 8z, 8y and dz. For hand calculations it
is worth taking into account the simplifications that arise for more symmetrical unit cells.

cubic &2 = a2[(8x)2 + (8y)2 + (82)2]
tetragonal 2 = a2[(3x)2 + (6})2] +¢2(8z)?
orthorhombic a2 = a2(8x)2 + b28y)2 + c2(5z)2
hexagonal d? = a2[(8x)? + (5y)? ~ (Bx)(By)] + c2(Bx)2
thombohedral d? = a2[(8x)2 + (8y)? + (82)2 + 2{ (8x)(8y) + (8y)(Bz) + (Bz)(Bx) }cosar]
moneclinic 42 = (Jx)2a2 + (8y)262 + (87)2¢2 + 2(82)(8x)cacosf
Equation 4.8 is conveniently expressed in matrix notation as follows. With

a’ abcosy accosf
. G =| abcosy ¥ beeosor (4.9)
accos i bceoso c?

If & is the column vector (8x / 8y / 8z) and &t the corresponding row vector (i.e. the
transpose of &) then Eq. 4.8 may be written:

d? = $Gé (4.8a)

The matrix G* = G- {the inverse of G) is obtained by replacing the parameters in Eq.
4.9 by reciprocal unit cell parameters. G and G* are known as the metric tensor and
reciprocal space metric tensor tespectively (G is also called the Niggli matrix).

a2 a*b¥cos y* atc*cos f*
£
G™=| gtprcos y* p*? b*c* cos o
a*c*cos B* brc* cos ot c*%
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Note that the unit cell volume is simply given as V2 = det(G) and that V*2 = det(G™).
4.5.3 Angles

The simplest way to calculate angles (especially if distances have already been
calculated) is to use the cosine formula for the angle A between sides b and ¢ of a triangle
with opposite side a:

cosd = (b2 + c2 - a)/2bc 4.10)

A simple, if inelegant, way to calculate the dihedral angle ABCD (ie. the angle between
planes ABC and BCD intersecting in BC) is to find the perpendicular equations of the
planes ABC and BCD in Castesian coordinates from which the angle between them is easily
obtained (see below). Often the interest in dihedral angles lies in molecular chemistry when
Cartesian coordinates are used. A familiar example is that of hydrogen peroxide where
interest focuses on the H-O-0-H dihedral angle.

If the Miller indices of the planes are given and if g is the column vector (hi /&y 7 1) and
h is the column vector (ks / k3 / ), the angle between the planes (Rykf)} and (hokyly) is ¢
given by

cos = gtG*h/V(gtG*g)-(htG*h)] (4.11)
In the case of a cubic crystal the above formula simplifies to
cosg = (hhy + kiko + [N 2 & 2 + 12)(ho? + kp? + 1)) {4.12)
Likewise if the indices of directions are given! and if u is the column vector Gy v/
wy) and v is the column vector {ua / vz / wy), the angle between the lines [u v w;] and
fuzvaws] is @ given by:
cosg = utGvA[(atGu) - (viGv)] (4.13)
In the case of a cubic crystal the above formula simplifies to
008 = (wyitz + vevy + wiwdNI(2 + 012 + w (s + 12 + wed)]  (4.14)
If the solid angle at a vertex I of a tetrahedron ABCD is wanted, it is simplest to
calculate the angles o= ZCDB, = ZADC and y= £ADB. The solid angle at D is then
¥ given by:

tan{@/4} = [tangtan(c - a/2)tan(o ~ §/2)1an(c — 7/2)]172 (4.15)
where o= {a+ f+ y/4

INote that UV WL, #2,v2,w3 do not have o be integers.
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4.5.4 The G matrix and unit cell parameters Jor transformed cells

Let a new unit cell (primed quantities) be obtained from an old one using the
iransformation matrix S as described in § 4.4. The new G' matrix is given in terms of the
old by (see p. 128 for a derivation):

G' = SGSt (4.16)

As gii'= a2, g2 = b2, g33' = ¢2, and gy = a'b'cosy, g31' = a'c'cosf, gy’ =
b'c’coser the new unit celt parameters are readily obtained from the elements of the G
matrix. The elements of G' are:

(;1. 16a)

33
7
&= Z.Zwﬂgu
k=] I=1
4.5.5 Cartesian coordinates

Sometimes it is convenient to transform from crystal coordinates to Cartesian
coordinates; for example, for drawing structures, for caleulating volumes of polyhedra, etc.
We take the Cartesian axis x, to be along the crystal x direction (i.e. parallel to a). The y,
axis (perpendicular to x,) is in the ab plane and the z, axis normal to x, and ¥c. Then:

X, a bcosy ccosfi X
Y. |=|0 bsiny —ccose'sinff )|y (4.17)
% 0o o e z

A useful special case is for 2 monoclinic erystal for which o= ¥=90°, The matrix then
becomes {a 0 ccosff/ 0 50/ 00 csinf). Writing out Eq. 4.17 for this case:
Xe = ax +czcosf); ye = by ; z. = czsinf (4.18)
It may be convenient to change the relative orientations of the Cartesian and crystal axes
according to the task at hand as described in § 4.6.1. The following tabie gives six choices
that we find useful. To use the table, notice that. each quantity on the right in Eq. 4.17
appears on the top row of the table. For the indicated orientation of Cartesian axes replace
that quantity by the corresponding entry underneath in the appropriate row.

Xcalong a, ye inab plane & b c, ¢* o+ B v x ¥ z
Xc aleng a, yc inac plane g ¢ b, bt o Yy B x z -y
X along b, yo in be plane % ¢ a, a* B Y o y z x
Xc along b, yo in ba plane & a ¢, c* feud o ¥ ¥ x -z
Xcalong ¢, yoin ca plane ¢ a b, b* 7 x B 4 x ¥
X along ¢, v inch plane ¢ b a, ot ¥* 8 « 4 ¥ —x
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. Some expressions valid in Cartesian coordinates follow.
The plane through three points x1,y1.2; ; *2,y2,22 ; X3,¥3,23 18 given by:

x y z 1
1
R Y (4.19)
X, n % 1
T Yz |
This can be written
Ax+By+(Cz=D (4.20)
with
v oz 1 REE A | x oy 1 b
A=y, 7 1 B=—x, z, 1| C=lx, y, lD=|x, y 2 {4.21)
v, z; 1 X, 7y |1 A A | b A
Equation 4.20 can be written in the form (the perpendicular equation):
Ik+my+nz=p (4.22)

Here p is the length of the perpendicular from the plane to the origin and I, m and n are the

cosines of the angles of this line with the x, y and 7 axes respectively, If s is the sign (£1)

of Din Eq. 4.21 and Q is (A2 + B2 + C2)1/2 then:
l-—-sAQ;m:sBQ;n:sCQ;p:sDQ (4.23)

The dihedral angle between two planes ljx + my + 112 = 0 and bhx+my+nz=0is

¢ =cos (il + HI M) + H1Rg) (4.24)
The volume of a tetrahedron with vertices x;.y;,2; (i = 1,2,3.4) is:
x o»n oz 1
) (4.25)
6lx, »m oz 1
EFIE R A

In Eq. 4.25 the double lines indicate that the absolute value of the determinant is to be
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taken. Note that Eq, 4.19 follows from Eq. 4.25.

4.5.6 Distances between plares

'Let h be the colum}l vector (&2 / k /1) where /A, 1/k and 1/1 are the intercepts of a plane
with the crystal axes in units of g, b and ¢ respectively. The equation of the plane in the

lattice coordinate system is x + ky + Iz = 1. The perpendicular distance from the or gin to
the plane is then dpgy which is given by

dhit = 1N(htG*h) (4.26)

This aiso gives the interplanar spacing between families of planes with Bragg indices

hid (see § 4.7.2), As such it is useful to have the simplified forms for the more symmetrical
unit cells; -

citbic dpgg = a2 + 12 + 12

tetragonal Aniet = INH2 + k2)/a? + R/c2)
ortherhombic dpiy = TN(RY a2 + B2 + lc2)
hexagonal ikt = LN[AR + b+ B2/3a2 + 12

4.6 Drawing crystal structures and vsing cell transtormations
4.6.1 Orthographic and clinographic projections

B)C far the best way to “learn” a structure is by building a modet; failing that it is good to
draw it oneself. Many complex crystal structures can only be appreciated if a good model
or drawing is available. '

If'a struicture is to be communicated, at least one good drawing is essential, and this
requires that a three-dimensional structure be projected onto the two dimensions of a page.
Finding the best way to do this is a major problem. We have no patience at all with the
crystallographer who determines a beautiful struciure and then presents it as a projection of
a unit cell with circles of different sizes representing the positions of different kinds of
atqms. For some simple low-coordination structures “ball-and-stick” drawings may be
satisfactory, but it is always almost always better to outline coordination polyhedra and to
shade them in. It is a rare structure that does not profit from being drawn in more than one
way; for example many “onic” structures are usefully illustrated separately in terms of hoth
anion coordination and cation coordination polyhedra. It is better to draw (oo many unit
cells than oo few.

Computer programs for drawing structures automatically are available. These will satisfy
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many people, but we have yet to find one that does all that we want. Particularly if it is
wanted to present a structure in a novel way it will be found useful to be able to draw
structures oneself using a drawing program, and the rest of this section is devoted to
providing some guidance in this respect. It will be found essential to use a program that
allows translation of duplicated objects by precise amounts to sirmulate plotting.!

Many complex structures are most readily (and often best) shown as a projection down a
principle axis (orthographic projection). Usually if there is more than one such axis (as e.g
for an orthorhombic crystal), the shortest axis is most appropriate. Sometimes all atoms are
on a set of mirror planes so & projection normal to those planes is appropriate-~the atoms
will be at one of two heights separated by half the repeat distance along that axis. Some
hexagonal structures with large c/a are best drawn in projection normal to ¢. Tn that case
transform 10 an orthohexagonal cell using the transformation for axes described in § 4.4.4

* {p. 108), and project along the new a axis (equal in length to the old a). Other unit cell

transformations that are useful in preparing drawings are described in § 4.6.3.

Sometimes, particulatly when dealing with cubic structures, it may be found that
projections along a principal axis are confusing, as atoms in a unit cell are superimposed.
Then it is best to make a clinographic projection in which the view point is tilted away from
a principal axis. The way to do this is first to obtain Cartesian coordinates as in Eq. 4.17.
This involves just a simple scaling if the crystal is cubic, tetragonal or orthorhombic.

Now imagine the Cartesian coordinates so that x. is horizontal on the paper (the H
direction} and y, is vertical on the paper (the V direction); the 7. axis is coming out of the
paper (the () direction). The view is now along z.; we want to tilt away from this. First tilt
the coordinate systemn by an angle 8 clockwise about the y, axis and then by an amount ¢
anticlockwise about an axis normal to y. but in the plane of the paper (Fig. 4.7). Good
choices of tilt angles are 6 = 20° and ¢ = 10°.2 The new coordinates for plotting the
structure on paper are now H horizontal and V vertical on the paper. The points projected
on the paper are really a distance O above that plane, H, ¥ and O are given by:

H=x,c088 - z.5ind
V= —xsin@sing + y.cos¢ — z,cosfsing
O = x:sinfcosg + ysing + z.cosfcosg (4.27)

IMost modern computer graphics programs have far too many “bells and whistles” to be useful in this
context. All that is needed is the capability to draw {and duplicate) in black and white, simple objects such

a5 lines, <ircles and polygons and to add shading and to control which objects are in front of which. All the

drawings in this book were made using the original (1988) Cricket Draw® on a Macintosh® computer
using coordinates generated by EUTAX. The drawing instructions that follow assume that the reader has
such a program available.

Imagine that we are looking at the coordinate axes ia 2 three-dimensional world with the view along z,
and with ¥, vertical. The rotations are equivalent to moving our peint of view to the right and up. Long
ago many authors chose 6 = tan"L(1/3) = 185" and ¢ = tan1(1/6) ~ 9.5° as a “standard.” For a discussion of
drawing macrescopic crystals (still an important aspect of mineralogy) see Smith (Book List). Another
good discussion is given by de Jong (Book List). The brain soon gets used to clinographic projections at a
certain angle. You have reached this stage when it is found that such illustrations look almost
incomprehensible when viewed upside down.
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Some authors prefer a perspective drawing with parallel lines not parallel on the page;
except for very simple structures or stereo pairs this tends to make the illustration less clcal"
(m.contrast to e.g. architectural drawings) and, except in stereo pairs, we use drawings in
which parallel lines in the structure are parallel on the page (“view from infinity™). Notice
although parallel edges are parallel on the paper in the projection of a cube {Fig. 4.7) none
of the angles between edges is 90°; most drawings in the older literature incorrectly show

the front face of a cube seen in clinographic prajection as a rectangle, indeed commonly as
a square.

Lo

Fig 4.7. O?t'ain.ing a clinographic projection of a cube by rotation from a symmetry ﬁxis. Middle: ¢ =
10°, 8= 17" ; Right: ¢ = 10°, 9= 23°, The filled circle is at the cube body center.

Appro:_gimations to stereo pairs can be made by using two different values of 8 (the pair
of cubx_es in Fig. 4.7 have 6= 17" on the left and 8 = 23° on the right), but many people
h&fve difficulty merging the images.2 In our experience, stereo paits are most effective for
stlf:k models. Some stereo pairs of this sort are presented in § 7.11.8; if only one of each
pair shown there is viewed it will be found to be rather uninformative.

P-’or non-cubic crystals, it is necessary first to decide the point of view. Thus it must be
dec.:ded which crystal plane will be parallel to the plane of the paper and which axis will be
horlz_ontal in that plane before tilting by 8 and . In practice this means choosing one of
the six orientations of Cartesian axes with respect to the crystal axes discussed in § 4.5.5.

4.6.2 Examples of clinographic drawings (ZnS and CaFy)

We now go through the steps of drawing a simple structure, that of sphalerite ZnS. The
procedure is more complicated to describe than to implement, as readers who work through
the s:xampie will find. The structure is cubic with symmetry F43m, a = 5.436 A, Zn atoms
are in4 ot F +(1/4,1/4,1/4) and S atoms in 4 a: F + (0,0.,0). In this case (a cubic structure)

; We l:lave erred several Limes in the past in this respect. But we are in very distinguished company,

i ‘Making a true stereo pair is rather sube. The reader is invited to merge the two images on the tight of
Flg. 4.7 (holding a piece of apaque paper perpendicular to the page so that each eye can only view one
image helps). Most viewers will see the back face and circles of the cube as much larger than the front ones
zven.thou%h thelscr are drawn exactly the same size—the brain is adding perspective that is absent in the

rawings. For references to drawing true stereo images see C. K. i 1 i
(F. R, Ahmed, ed.), Munksgaard, Cgpenhagen (1970{);. & Johnson in Erastaliographic Compuing
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to get Cartesian coordinates we simply have to muitiply all the atomic coordinates by . To
make 4 clinographic projection we will take a horizontal and b vertical and then rotate by 8
= 20" and ¢ = 10°. Coordinates (H, V, and O} for plotting are then calculated as described
in the previous section (Eq. 4.27).! For simplicity we take a scale of 1 cm =1 A for
plotting (the drawings shown below have been subsequently shrunk to fit the page).

The first thing to do is to calculate the unit cefl dimensions on the scale of the plot. The
point at 1,00 has Cartesian coordinates (in A) 5.409,0,0. We then catculate H =
5.409c0s20° = 5.083 cm, V = —5.409sin20"sin10" = —0.321 c¢m. Although not needed for
plotting it is useful to record the “out” coordinate O = 5.409sin20°cos10" = 1.822 to keep
track of what is in front of what in the drawing. The coordinates of this point and the points
0,1,0 and ©,0,1 are listed below. It should be clear that adding the three sets of coordinates
will give the plotting coordinates for 1,1,1 and so on. The calculation of S atom plotting
coordinates from those (1/2,1/2,0 etc.} in the unit cell proceeds similarly and they are also
listed.

x ¥ z Xc Ye I H v 0
10 0 5.409 0.0 0.0 5.083 032t 1822
0 1 0 0.0 5.409 0.0 0.0 5327 0939
00 1 0.0 0.0 5.409 -1.850 -0.883  5.006
1 1 I 5409 5409  5.409 3233 4123 1767
0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
1720 T/ 2705 2705 0.0 2541 2503 1381
-2 B V) 2.705 0.0 2,705 1616 0602 3414
0 12 I 0.0 2705 2.705 -0.925  222: 2972

The top row in Fig. 4.8 shois some stages in the drawing of the structure. On the left,
the § and Zn atoms are shown as open or filled circles plotted with the appropriate values
of H and V relative to the origin of coordinates. Notice that S atoms are at the comers and
face centers of the cell so we actually show 14 atoms. In the middle, Zn-S bonds are drawn
in to make a ball and stick drawing. Notice the use of broken lines as depth cues.? On the
right the same pattern is shown as {Zn}S4 tetraliedra sharing corners. The “tetrahedra” of
the drawing are actually two triangles corresponding to the two visible (front) faces of each
tetrahedron. It is generally best to consider coordination polyhedra to be opaque so the
centering Zn atom and the back faces are omitted. We often (as here) shade the visible faces
of polyhedra with a density that varies from one side to the other as this allows overlapping
pelyhedra to be more easily differentiated.

Notice that the structure is thé same if the Zn and S positions are interchanged (this just
corresponds to a shift of origin by 1/4,1/4,1/4) so the figure on the right could equally be
illustrating {S]}Zny tetrahedra.

IEUTAX will calculate H, V and O for a specified orientation and scale. However this program
recognizes that most computer drawing programs consider the positive direction of vertical coordinaies as
down the page, and reports V coordinates as the negative of those given here.

21n the drawings shown , we actually have slightly thicker opaque white lines immediately behind black
lines, so the white lines occlude black lines that are in turn behind them. All computer drawing programs
that we have examined keep track of which objects are behind which, and usually allow changing the order,
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The structure of fluorite CaF; can be illustrated similarly. The structure is cubic: Fm3m,
a=5463 A Caatoms are in 4 g F + (0,06,0) and Fin 8 ¢: F % (1/4,1/4,1/4). Again we
show metal atoms as filled circles. A ball and stick drawing on the bottom left of Fig. 4.8
shows that F atoms are in { F}Cay tetrahedra, These polyhedra are shown in the center
where it may be seen that tetrabedra now share edges.

As there are twice as many F atoms as Ca atoms, the latter must be in eight coordination.
This is not immediately apparent from the ball and stick drawing, so parts of adjacent unit
cells need to be added as shown in the § gure on the bottom right, which shows that the Ca
atoms are in {Ca}Fg cubes (shown here as three differently shaded quadrilaterals). The
question of how much to include is always tricky—-too little does not show all aspects of
the structure, and too much leads to too great an overlap of the component parts. ‘

Fig. 4.8. Aspects of the structures of sphalerite, ZnS (top} and fluorite, CaFy (bottom). See the iext for
discussion, .

4.6.3. Projections of some structires with octahedral coordination: NaCl, NiAs and
TiP. Using orthohexagonal cells Sor cubic and hexagonal structures :

In this section we consider three structure types of composition AX in which metal
atoms are {4 )Xy octahedra. For the purpose of illustration we use idealized versions of
NaCl, NiAs and TiP (recall that bold face formulas refer to structures not compounds)
with regular octahedra of unit edge. The structures then are:

NaCl Fmlm,a=1414;Naindb: F 4 (0.0.1/2) ; Clin 4 a: F + (0,0,0)
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NiAs Pbymme,a=10,¢=1.633;Niin2a: (0,0,0; 0.0,1/2) ; As in 2 d; %(1/3,2/3,1/4)

TiP  Poymme,a=10,¢=3266; Tiindf £(1/3,2/3,z ; 1/3,2/3,1/2-2), z = 0.125
P(1)in 2 a: (0,0,0; 0,0,1/2) ; P(2) in 2 &: £(1/3,2/3,1/4)

In these structures there are layers of octahedra sharing edges. In NaCl the layers are
normal to {1111, in NiAs and TiP they are normal to ¢. To compare the three structures

- we will project them in a similar way in each case. For the hexagonal structires we project

normal to ¢; specifically along a of the orthohexagonal cell described in § 4.4.4.

For NaCl we convert from fec to hexagonal by 81 = (-1/2 1/2 0/0-1/212/111)
(p. 107) and then from hexagonal to orthohexagonal by §2=(110/116/00 1). In fact
we do not need to do each transformation individually, but instead transform by 8 = 8381
=(-1/201/2/ 1721 1/2/ 1 1 1); the inverse matrix, T= (1 1/3,1/3/0-2/3 1/3/1 1/3 1/3).
The finaf cell has 3/2 the volume of the original and contains 6 Na and 6 CL

Fig. 4.9. Top; projection of NaCl normal to [11%] (vertical on the pagq} showing {Na}Clg octahedra.
Bottom: NiAs (left) and TiP (right) as {Ni}Asg or {Ti}Pg octahedra projected on (1120). See text.
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The hexagonal cell has aj = a/V2 = LO00, and cp = V6a; = 2.450; and the
orthohexagonal cell has a, = a; = 1.000, bo =V3ay = L.732 and ¢, = ¢, = 2.450 (see pp
107-108). We get the CI coordinates using (x'/y' /2y ="Thx/y/ z). (specifically, in this
case, x'=—x+z, ' = x/3-29/3+7/3, 7' = x/34+y/3+7/3.) The set (1/2,0,0 ; 0,122,0 ; 0,0,172
: 1/2,142,1/2) in the cubic cell transform to (12,176,116 ; 0,2/3,1/6 ; 1/2,1/6,1/6 ; 0,0,1/2)
with due allowance for the equivalence of —1/2 and 1/2, ~1/3 and 2/3 etc. Thus we have
three distinct new coordinate triplets. Recalling that the orthohesagonal cell is € centered,
we find the other three CI atoms in the cell by adding (1/2,1/2,0) to the coordinates of the
first three. These, and the transformed Na coordinates, are listed below (notice that the new
Na and €l coordinates differ by 0,0,1/2)." Also listed are plotting coordinates using the
scale b = 5 om; these are simply obtained as & = 5y, V= 5z¢/b = 7.071z.

Na Cl
x ¥y 2z H v x y z H 19
0 0 4] 0 0 0 0 172 o] 3.536
172 172 G 2.5 0 112 172 172 2.5 33536
0 173 173 1.667 2.357 0 V3 56 1.667 5.8972
12 5/6 173 4.167  2.357 172 56 58 4167 5,892
0 A3 23 3.333 4714 0 213 1/6 3333 1179
12 /6 213 0.833 4714 172 176 16 0.833 1179

Transformed coordinates and # and V for the other two structures are obtained in a
similar way using first a transformation from hexagonal (o orthohexagonal,

InFig. 4.9 we show, at top left, a transformed unit cell of NaCl with b horizontal and ¢
vertical. Also shown are the positions of the Na atoms (large circles) and Cl atoms {small
circles}. The elevations of al] ators are either x = 0 (open circles) or x = 1/2 (filled circles).
On the right of that we show a Jittle more of the structure with the {Na) Clg octahedra
outlined. Those with centers at x = 0 are lighter shaded than those at 1 = 1/2. On the top
right just the {Na}Clg octahedra are shown. In the bottom half of the figure NiAs and
T3P are similarly depicted,

Notice that NaCl is the same if Na and C1 are interchanged, so Fig. 4.9 also depicts the
arrangement of {Cl}Nag octahedra. Tn contrast in NiAs there are {A5}Nig trigonal
prisms and in TiP there are both {P) Tig octahedra and triangular prisms. These aspects of
these structures are met again in Chapter 6.

4.6.4. Further example of profections of crystal structures. 203 again

ZnS occurs in two forms known as sphalerite and wurtzite, Sphalerite was discussed
and the structure given in § 4.6.2. Wurtzite is hexagonal, space group P63me, a = 3.823,
¢=6.261 A. Zn atoms are mn2b(1/3,28,2; 2/3,1/3,1/247) with 7 = 0.0 ; S atoms are in 2
b with z = 0.375.1 In both structures there are {Zn}S, tetrahedra linked by sharing
corners, but the topology of linkage is different, We will illustrate the difference by

iNotice that this is an example of a polar structure, In particular z only enters as +z so the position of
the origin on the z axis is arbiteary and it has been chosen so that the Zn atoms are at z= 0 and z = /2.
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projecting wurizite down ¢ and sphalerite down [11 1] of the cubic cell.

To calculate coordinates for plotting a hexagonal structure down ¢ we take a scale fora
{say @ = s cm). Then plotting coordinates are horizontal & = s(y ~ x/2) and verticz}l V=
V35x/2 (see Fig. 4.10). In wurtzite, Zn anod S atoms with the same x and y coordinates
differ in elevation by &c = 0.375¢ = 2.35 A (Zn below S) so we just plot thc.S atoms and
make a mental note that the Zn atoms are underneath them. The plotting coordinates for the
unit cell corners and S atoms are given below.

H= s(y-x/2)

V =\3sx2

Fig. 4.10. Plotting coordinates H and ¥ for a point (x,y,z) in a hexagonai cell with scale a = 5.

Now the sphalerite structure is transformed to a hexagonal cell (§ ft-.4.3, p. 107) for
which it is found that @ = 3.825, c = 9.369 A. The atom coordinates in this new cell are for
Zn: R +(0,0,1/4) and for 8: R + (0,0,0). Notice that Zn and S atoms with the same x and y
coordinates differ in elevation by & = ¢/4 = 2.34 A but now with § belovtf Zn. In order to
compare with wurtzite we would like to have Zn below S (¢f. th'e previous paragraph)
accordingly we reverse the direction of z and, to avoid changing hand of the.axes,
interchange x and y. The S coordinates are now (0,0,0; 2/3,1/3,2/3 ; 1/3,2/3, 1/3) with Zn
underneath by & = 1/4) The S coordinates are also given in the talbie below.

The plotting coordinates (H and V) in the two structures are (with s = 5 cmn) are:

wurtzite sphalerite
atom X ¥ z H 14 atom X ¥ z H v

0 1 ~2.500 4.330 0 1 -2.500 4.330

1 0 5.000 0.000 I 0 5000  0.000

1 1 2500 4.330 1 1 2500 4,330

S 1/3 2/3 0375 2500 1433 S 0 1] 0 G.000  0.000
S 213 /3 0875 0.000 2.887 S 13 2/3 173 2,500 1.433
3 2/3 /3 203 0.000 2.887

When the wurtzite structure is first plotted (Fig. 4.11, top left) the unit cell is outlmgd
and the positions of two § atoms in the cell are plotted with a filled circle for the atom with
z=0.875 and an open circle for the atom at z = 0.375. The Zn atoms be!ow_ thesg two S
atoms are in tetrahedra pointing up (see e.g. Fig. 2.19) and their other three neighbots form
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a triangle at a lower elevation. The two tctrahedra.are drawn in the figure. Notice that the
darkex.' tetrahedron around the Zn atom with z = 0 has three S atoms at the base with
elevation 0.875-1 = -(.125. More of the structure is drawn on a smaller scale at the bottom
left of the figure. -

Fig. 4.11. The wurtzite (left) and sphalerite (right) forms of ZnS as { Zn}S4r tetrahedra. (

The drawing of sphalerite proceeds similarly, Now there are three § atoms in the cell at z
=0, %/3 and 2/3 and these are shown as open, shaded and filled circles respectively in the
top right of Fig 4.11. The tetrahedra about the three Zn atoms in the unit cell are also
drawn. A larger portion of the structure is shown on a reduced scale underneath,

We will discuss these structures again in Chapters 6 and 7,

4.6.5 Drawing monaoclinic structures

Often monoclinic structures are drawn in projection down b (which is normal to a and c)
—see Exercises 6 and 7 at the end of this chapter. Cartesian coordinates are given in
cquation 4.18 (p. 112). All that is necessary to do is to scale by a suitable amount: Thus if
the scale chosen is g = s, the plotting coordinates for a horizontal are H = (s/a)x, and V =
(sfa)zc. TF it is wanted to have ¢ horizontal on the page (Fig. 4.12) then the roles c:f aand ¢
and of x and z must be interchanged in the formulas for H and V., Explicitly:
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ahorizontal: H = sx + {szc/a)cosf V = (szcla)sin B
c horizontal:  H = (sze/a) + sacosf V = sxsinf
a x
x
c
a
z z
c

Fig. 4.12. Two orientations of a menoclinic cell projected down b (the positive sense of b is up out of
the page in both cases). In the orientation on the lefi the coordinates & and V are to the right and down the

- page. In the orientation on the right the coordinates A and V are to the right and up the page.

For a projection of a monoclinic structure on (100) or {001), Cartesian coordinates
should be calculated, but with the tilts & and ¢ set equal to 0 in calculating H and V, An
example of such 4 projection is to be found in Fig. 7.28 (p. 314).

Occasionally a projection down a or ¢ [note: this is rot the same as projection on (100}
or (001}] is required. Such projections should be carried out just like clinographic
projections. The cell in projection is rectangular: for a projection down a it has projected
dimensions (i.e. on the page) & and csinf and for a projection down c¢ it has projected
dimensions b and asinf. The following table of tilts (# and ¢} may be useful (as always
we assumne that &, b and ¢ form a right-handed coordinate system):

Projection down a b horizontal 8=10 ¢=90"-j

b vertical B=90-8 ¢=0
Projection down ¢ b horizontal @#=0 ¢=p-90°
b vertical 0=90"-f ¢=0

To illustrate some of these points we use the structure of MnB4 which was reported as:

MnBy C2/m, a=5503,b=5367,c=2949 A, f=122.71"
Mnin2a: C+(0,00):Bin 8 €k (x,2p.2), x =0.200, y = 0.343, z = 0.197

First we project down b, i.e. on (010), with ¢ horizontal and a scale @ = § cm. We
calculate plotting coordinates A and V using the expressions given above. Thus for Mn at
0,0,0 we have A = 0.000, V = 0.000 and for Mn at 1/2,1/2,0 H = -1.350, V = 2.104. For
B at 0.200,0.343,0.197 we find H = —-0.013, V = 0.841 and so on (the reader may wish to
verify these numbers and continue the calculation). In Fig 4.13 we have plotted the atoms
in the unit cell and some in adjacent unit cells. For the atoms in the unit cell, elevations in
multiples of b/100 are indicated (notice that pairs of B atoms superimpose in projection).
The B atoms form a network in which each is bonded to four neighbors; three of the bonds
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are drawn in, the fourth joins pairs of atoms at y = 0.34 and ¥ =0.66 (open circles labeled
+34) or pairs of atoms at ¥ =30.16 (filled circles). Thus we see that the B atoms are on
puckered 63 2-dimensional nets that are linked by bonds "up" or "down" to similar nets to
form the three-dimensional petwork, Mn atoms (shown as larger circles) are in the cavities
of the B framework,

Fig. 4.13. The structure of MnBy (large circles are Mn). Left prejected down b. Middle: showing a body-
centered (12/m) ceil, Right: projected down . See the text for further details.

Tust a quick glance at Fig. 4.13 shows that the structure appears to be close to
orthorhombic symmetry. In the middle of the figure a body-centered cell obtained by the
transformation S =(101/010/00 1) is indicated, T=(101/010/001)is the
inverse matrix. The description of the structure using this cel] is:

MnB, - f2m, & = 4.630, 5" = 5.367, &' = 2.949 A, B =9031"
Muin2a:l+ ©00) ;B in 8% (k) ' = 000, y = 0343, 2 = -0.003

Actually the atoms are less fhan 001 A away from positions with symmetry Inumm; all
that is needed is for ff to be 90° and 7' to be 0, The description would then be:

MaBy Immm, &' = 4.630, b'=5.367, ¢’ = 2,949 &
Mnin2a: 1 +(0,000;Bin8n 7+ {x'2y'0), x' = 0,200, ¥y =(.343

‘With this description of the structure, it is seen that the short axis {¢') is a Symmetry axis
and a projection of the real structure down the cbrresponding ¢’ axis should be rewarding,
This is made on the same scale {a =35 cm} as the original drawing. The unit cell edges in
the drawing are b = 4.876 cm and asinfl = 4.207 cm. The height of ¢ out of the page is
2.679 cm. B atoms (in the original unit cell) have elevations -0.013, -0.010, 1.341 and
-1.363 cm. These correspond closely to elevations of z = 0 and +1/2 (£1.34 cm), and they
are shown as open and filled circles in the drawing on the right side of the figure.

The B arrangement is a 4-connected net that we discuss in Chapter 7 (see § 7.3.3). In its
most symmetrical form the net is tetragonal; it is named for CrBy which is reported to be
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orthorhombic, and it does seem likely that MnBy is really orthorl_lombic also,!

4,7 Notes

' 4.7.1 Orientation of direct and reciprocal lattices

For crystals with orthogonal axes (cubic, tetragonal and orthorhombic) the reciprocal
lattice vectors a¥*, b¥ and ¢* are parallel to the direct lattice vectors a, b and ¢. For
hexagonal crystals ¢* is paralle! to ¢ and now a* and b* are not parallel to a and 2
(although these fast four vectors are in the same plane) as shown in Fig. 4.14. N(?te that a
is perpendicular to b and that b* is perpendicular to 4. In monoclinic crystals b¥ is parallel
to b and normal to a and c.

b (a,)
¥E a%
b*

a(ap)

Fig. 4.14. The relative orientations of direct and reciprocal lattice vectors for a hexagonal lattice. ¥* =
60°.

4.7.2 Bragg and Miller indices

Many text books do not distinguish between Miller indices of a plane and Bragg in.dices
of a family of planes. In the Bragg condition for diffraction, which we write (A is the
wavelength and 2@ is the diffraction angle):

(28inBYA = ldpy

dpit is the spacing between a family of paratlel planes, It is the perpendicular distance from
the origin to a plane that intercepts the axes at 1/h, 1/k, 1/1, where now h, k and ! may have
a commeon divisor and are written without parentheses as in 222. 1/dyy is better thought of
as the distance from the origin in reciprocal space to a reciprocal lattice point ha*-i-kb*-f—[c*
(i.e. the length of a reciprocal tattice vector). Thus diiq = 2d277. On the other hand Miller
indices only give the orientation of a plane, and (222) = (111).

Ut appears that many more structures than might be expected are re?orte,d with the wrong symmetry.
For some typical corrections and a discussion of the importance of knowing correct space groups sce R.E.
Marsh & 1. Bernal, Acta Crystallogr. B51, 300 (1995). This paper should be required reading for non-
crystallographers who wish to interpret the details (bond lengths, angles, ete.) of crystal structures.
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4.7.3 More equations for triangles and tetrahedra

Some occasionally useful results for triangles and tetrahedra include:

The medians of a triangle join the vertices to the midpoints of the opposite edges. They
all intersect at a point, the centroid, which divides them in the ratio 2:1.

For a triangle with edges g, & and ¢, and opposite angles A, B and C, and with
s = {(a+b+c)/2:

The diameter of the circernscribed circle is:

alsind = bisinB = c/sinC
The perpendicular .frorn CtoABis:
h = cl(cotA + cotB) = 2¥[s(s ~ a)(s - b)(s - )Vc
The area is. given by:
area = hef2 = Vis(s - a)s — b)(s ~ )]

The medians of a tetrahedron join the vertices and the centroids of opposite faces. They
all intersect at a point, also called the centroid, which divides them in the ratio 3:1, The
bimedians join the midpoints of opposite edges. They also pass through the centroid
which bisects them.

For a tetrahedron of sides a, b, ¢, d, ¢ and f with @, b, and ¢ meeting at a common
vertex P the length ! of the median from P is given by:

2 = (a24b2+¢2)/3 + (d24e2+f2)/9 S

A circumscriptible tetrahedron is one defined by the centers of four spheres, each in
contact with the other three. If the radii of the spheres are 1/p, /g, 1/r and 1/s, the volume
is:

V= [(p+q+r+5)2-2(p2+q2+r2+52)]YV213pgrs

Consider a tetrahedral unit AX;X5X3Xs (i.e. {A}X,), There are six angles 8 between
the vectors AX; and AXj (i#j=1234). These are related by:

1 cosfl, cosB, cosf,
cost,, 1 cosl, cosf,

cost, cosfl, t cosf,,
cosf, cosf, cosd,, 1

Special cases that often arise (with symmetry) are:
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(@) 42m (D24) B12= 834= B 013 = O14= 033 = Oy = . cosfi = ~(1 + 2cosq)
(b)3m (Cy) 612=613= O1y= ;3= 6= O34= B sina = (2W3)sin(§/2)

For a square-pyramidal group AX 1X2X3X,3Xs with X; at the apex and with 4-fold
symmetry 4mm (Cay) so that 812 = 13 = 84 = ;s = ¢ and O3 =bhy=0O4s =005 = 5
sino = Y2sin{ i/2).

4.7.4. Some matrix expressions written out explicitly

Our experience is that many people (such as ourselves) like to have matrix expressions
written out explicitly in a handy place. Here are some involving the 3 x 3 matrices used in
this chapter. i

1. Ax gives another vector [here x is the column (xp I xo / x30]:

ST P T E Gt T+ 8%t a5y
D Gyp Ay || ¥y [=| By ¥ F AypXy + @pax
By B33 933\ F3) \ G %+ ag,%,+ dx

2. det A (the determinant of A which is scalar):

LIRPILT

a,.a,.l Hi%afast G0, + a4y,
) Fp 4y
iy Bap O3] 7 O3y T Gy Gy T G480

3. A-! (the inverse of.A, another 3 x 3 matrix):

: ) Gy2%3 7 3ty Gyg8yy T G50 A0, — @44y,
A = T Al f23%1 T Gty OBy T A8y gy - a8y,
G219 7 a0 B85, Gy, @@y, — ayyd,

4. At (the transpose of A): interchange rows and columns. In particular the column x =
(x1 / x2 / x3) becomes the row xt = (x| x5 x3).

5. xtGy (a scalar; here G is a symmetric matrix with &ij = gji):

X'Gy =g, xy + 8nXa¥y + 833X 0
+8a(ny, + 1)+ B (X3 + X9 )+ 86y + X39,)

6. AB = C (multiplication of two matrices gives a third). The elements ey of Carer -
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cip=aby + Gibaj + ajzhy;.
7. (AB)Y = BIAL,

To derive Eq. 4.16 relating the G' matrix for a new cell to the G matrix for an old cell,
we start with Eq. 4.8a for a distance between two points: '

42 = §GE (4.8a)

Now to express old coordinates in terms of new we use St so that § = St8' and, using
7 above, §* = §'tS. Substituting in Eq. 4.8a we get: :

d? = §'tSGSH - {4.8b)

but as the distance between two points is independent of the coordinate $ystem, we must
have:

d? = "G’y (4.8¢c)

Comparing Eqs. 4.8b and 4.8c, we see that G' = SGSt which is Eq. 4.16. The
elements of G' were given in Eq. 4.16a (p. 112).

4.7.5 Unit cell transformations in International Tables Vol. A

For good reasons that we won’t go into, in the International Tables volume A, the
triplet of lattice vectors is written as a 1 x 3 row matrix (a b c} and the transformation to a
new cell expressed as (a' b’ ¢") = (a b ¢}P. This means explicitly (with pjnthe elements
of P) that a' = pyja+py b+psic, b’ = prza+pnb+piae, ¢ = pyaipasbepsse In Eq.
4.4 we write (a'/b' /'y =8(a/b/¢) so that a' = sp1a+812b+s13e, b' =
S a+sbtse, ¢ = s33a+539b+s33¢, It should be clear that the matrix P is the transpose
of §. With this convention G' = PAGP. The inverse transformation is written as (a b ¢)
=(a'b' ¢")Q and likewise Q is the transpose of our matrix T.

As there are two systems current, it is advisable, when specifying transformation
matrices, always to specify also whether the transformation is effected by multiplying the
column of lattice vectors by the matrix (i.e. using S), or whether it is effected by
multiplying the matrix by a row of lattice vectors (i.e. using P). In this book, as in virtually
all the literature up to the present time, we use the first system.

4.8 Exercises

1. A good way to check computer programs for crystallographic calculations is to take a
simple cubic structure and transform to a triclinic cell.
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The transformation $=(210/13 1/1 1 1) applied to a cubic cell with g = a. will
produce a ten-times larger unit cell with @ = ¥3a., b= Vilae, ¢ = Via,, a =
cos 1 [-Y(3/113}, B=cos!(-1A15) and ¥=cos~l(-1/55), Interatomic distances, angles etc.
in the new cell can be caleulated and compared with the known values in the cubic cell.

[The inverse matrix is T = (0.4 0.1 -0.1/-0.20.2-0.2 /0.2 0.3 0.7).]

Show that the coordinates of original lattice points 0,0,0; 0,0,1 : etc. (referred to the old
cell) are in the new cell (there must be ten such points):

0,005 04,0.1,09 ;0.2,03,07 ;: 0,0.5,0.5 ; 0.8,0.2,0.8
0.6,0.4,0.6 ; 0.4,0.6,0.4 ; 0.2,0.8,02 ; 0.8,0.7.0.3 ; 0.6,0.9,0.1

Show that the old [111] and (111) become [232] and (15 i) respectively in the new cell.

2. The general and special positions of space group Crmc2 are

8b - C+{ayz: @y TF, V24 17,102+
4a C+ (0,2, 07,112+

As the z coordinate appears only as +z or as 1/2+7 in each case the position of the origin
on the z axis is arbitrary.
SipNz0 has this space group:
SiaN20 Cric2y, a=8.872, b =5.491, ¢ = 4,350 A.
Si8in b, x =0.1767, y = 0.1511, z = 0.2815 ]
N8inbx=02191,y=0,1228 z=06267: O4in a,y= 0.2127, z = 0.230

Plot the structure as a projection on (001). It is made up of vertex-sharing {Si}N30O

tetrahedra which should be sketched in (cf. Fi g.4.11).

Caleulate the Si-O and Si-N bond lengths. What are the coordinations of N and O by S5i?
The high-pressure phase of B203 was reported to have space group Cem2i:

B20s (HP) Cem2y,a=4.613,b=7803 and ¢ = 4.129 A.
Bin8 b, x=0.161,y =0.165, z = 0.436
O(1)in 4 4,0 =0.248,2=0.5. O(2) in 8 b, x = 0.370, y = 0.291, 7 = 0.580

By appropriate transformation of axes (and coordinates) and shift of the origin show that
these two strictures are essentially the same. [Transform from Cem2; first.}

3. The structure of AgO is given in' § 3.4 (p. 77). Show that if the cell is transformed
according to S = (1/20-1/2/1/2-1 112/ ~1/2 =1 —1/2) the new cell is “almost™ metrically
cubic with a =4.58 A, b=c=484 A, o= 37.9°, B=926 and y= §7.4°. The Ag
atoms are arranged in a face-centered array if no distinction is made between the two kinds
of Ag atom, but the new cell is not a true unit cell as it doss not contain the same kind of Ag
atom at every corner of the unit cell.

For comparison note that in AgyO {which has the CuyO structure Exercise 3.6) Ag is
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exactly on the points of a face-centered cubic lattice with @ = 4.74 A. The change in volume
in adding two O atoms to the unit cell in going from Ag20 — AgQ s only 0.6 A3,

Show that in AgO, Ag(1) is bonded to two O atoms in a linear arrangement and that
Ag(2) is bonded to four O atoms in an approximately square planar arrangement. (Calculate
Ag-0 bond'lengths and O-Ag-O angles), [t is helpful to recognize that the Ag atoms are on
inversion centers].

4. The zircon (ZrSiOy) structure was given in Chapter 3, Exercise &, and that of rutile
(TiO2) was given in § 3.4. ‘

Zr i3 8-coordinated in zircon. Draw the coordination polybedron in clinographic
projection.

Bragg, Claringbull & Taylor (Book List) state: “The structure of zircon...was first
-wrongly interpreted...as being similar to [that of] rutile” and “there is no relation between
the two structures.” Plot the cation positions in rutile in a projection on (110) and compare

with a projection on (100) {on the same scale) of the cation positions in zircon. Be sure to

draw several unit cells.
When you have finished read Hyde & Andersson {(Book List) p. 285-288.

5. Data for MgCl, are:

MgCl, Rim,a,=6252 A, a=33.81"
Mgin 1 a: 0,0,0; Clin 2 ¢: £ (x.x.x), x = 0.2578

Show that Mg has six Cl neighbors at the vertices of an octahedron. Calculate ail the
edge lengths of the octahedron.

Transform to a hexagonal cell and plot the structure projected on (1120). The MgClg
octahedra share edges to form layers normal to ¢. Qutline these layers (cf. NaCl, p. 119).

6. Here are two monoclinic structures to draw in projection down b.

B-Gay03 Cm,a=12.23, =304, c = 580 A, B = 103.7°
All atoms are in 4 & C £ (x,0,2) with;

Gaf 1) Gaf2) o (2 o
x= 0.0904 0.3414 0.1674 0.4957 0.8279
z= 0.7943 0.6857 0.1011 0.2553 0.4365

NaCuQ5 CUm,a=6351,b=2747, ¢ = 6.103 A, B=12077
Nain24: C+ (01/2,1/2) ; Cuin 2 a: € + (0,000 ; Qind i : 0.333,0,0.777

Determine the coordination of a/f the atoms and illustrate as cation-centered polyhedra.
[Hints: See § 4.6.5 for a discussion of how to draw monoclinic structures. In GapQs3 one
Ga is in octahedral coordination and the other is in tetrahedral coordination by oxygen (i.e.
{Ga}Og and {Ga}Qy). In NaCuQy, Cu is in square planar {Cu)Oy groups and Na is in
{Na}Og¢ octahedra.] i
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These structures are examples of an interesting phenomenon: surprisingly many
moenoclinic crystals can be described by an almost (metrically) orthorhombic cell.
Transform the B-gallia cell byS=@Z01/010/00 1) and find the new unit cell
parameters [you should find o' = ¢ = 90° and B = 89.98" (= 90° within the precision of
the unit cell parameters given)]. Your drawing should also convince you, however, that the
structure is not orthorhombic. If it were orthorhombic there would be mirror/glide planes
and/or 2-fold axes parallel to a and «. (Contrast the situation in MnB4, § 4.6.5)

Repeat with the appropriate § for NaCuO;. Compare your structure drawing with that
for MgCly (Exercise 5). You should have similar layers of {Mg}Clg and {Na}Og octahedra
sharing edges. '

7. Another monoclinic structure that is nice to plot in projection down b is that of
LisAly. All atoms lieaty=0and y = 1/2. A good way to illustrate the structure is to use
large and small circles for Li and Al and to use open and filled circles for y = 0 and y = 172,

LigAlg C2/m, a = 19.155, b = 4499, c = 5.429 A, § = 107.67"
Li{l)in2a C + (0,00)
Li(2) tn 4 i: C £ (x,0,2), x = 0.0863, z = 0.531 :
Li3)in 4 £ x=02326,2 = 0.622 ; Li(4) in 4 f, x = 0.3080, = 0,144
Li(5) in 4 i, x = 0.4564, z = 0.239 :
Al(1}in4 i, x = 0.1505, 2 = 0.087 ; AlZ) in & i, x = 0.3853, z = 0.706

The B-brass structure of alloys AB has symmetry Pm3m with A at 0,0,0 and B at
1/2,1/2,1/2. Transform this stracture byS=(441/110/-05-05 3/2) using a = 3.25
A for the cubic celi and plot down the new b axis using a similar convention to illustrate
atoms. You should discover that the LigAlg structure is closely related to that of Pbrass.

8. A triclinic structure to test computer programs for transformations is that of kyanite,
AlSiOs, which has symmetry P1 with @ = 7.126, b = 7.852, ¢ = 5.572 A, o = 89.99°,
B=101.11°, y= 106.03". The unit cell volume is 293.56 A3,

It is claimed that the structure is based on a cubic packing of O atoms.

Show that the transformation 8 = (0401 -04/0050/040.1 0.6) indeed gives a
subcell (not a unit cell!) of 1/5 the volume with o' = 3.8627, ' =3.9260, ¢' = 3.8744 A,
o =50.02°, f'=92.14°, ¥ = 90.03° that is “nearly cubic.”

The inverse matrix 81 is T =(1.5-051/020/1 0 1.

9. Cartesian coordinates for a regular tetrahedron are 1,1,1 (~1.~1 Dk Calculate;
{(a) the edge length
(b) the volume
(c) the dihedral angle
{d) the solid angle at a vertex
(e) the distance from a vertex to the centroid {at 0,0,0)
(£ the angle subtended at the centroid by an edge.
Repeat for an octahedron. Cartesian coordinates for the vertices are: {£1,0,00x.




CHAPTER 5
POLYHEDRA AND TILINGS

Chapters 5-7 are devoted to a description of simple geometrical structures that are
frequently important components of crystal structures. They often arise in a purely
mathematical context and we generally consider them from this point of view, deferring
most of the crystallographic aspects until later. We believe that “knowing” these basic
structures is essential to understanding crystal structures and structural relationships.

We start with a description of some simple polyhedra, most of which are encountered in
* crystal chemistry. Finite polyhedra are closed figures with polygonal faces. The polygons
are in general not regular and in fact only a very small subset of all polyhedra can be made
with regular polygonal faces. In crystal chemistry the interest in polyhedra arises mainly
(but not entirely) because their vertices represent the positions of atoms in the coordination
sphere of a central atom. For this reason we generally place small spheres (which appear as
circles in the drawings) at the vertices for emphasis. We use the terms “large” and “small”
polyhedra in a relative sense to mean those having many or few vertices respectively.

There is a sense in which a tiling of the plane by polygons is a special case (with an
infinite number of vertices) of a polyhedron so we consider such patterns in this chapter
also. The vertices of such tilings often correspond to the positions of atoms in a plane of a
crystal structure,

5.1 Polyhedra

A number of polyhedra have been met already in Chapter 2. A more syst\c‘am\a_ti_q_listing of
common convex polyhedra is now given. Convex polyhedra are those for which all
dihedral angles (angles between faces) are less than 180° when viewed from inside. The
discussion is by no means complete; other (coordination) polyhedra will be met
subsequently. Some large polyhedra have attracted interest as molecular forms of carbon
(“fullerenes™} and as the shapes of viruses; these polyhedra are discussed in Appendix 4.

5.1.1 Regular polyhedra

Most important and well known are the regular polyhedra, These are polyhedra with all
vertices related by symmetry and with all faces congruent regular polygons.! It s trivial to
show that there are at most five of these and that all possibilities can be realized. The faces
st have fewer than six edges, as three regular hexagons meeting at a point must ali lie in
the same plane. In fact if # regular N-gons meet at a point the angles of the polygens must
be less than 360°/n. The possibilities are given in Table 5.1. In the table the symbol N7 is

1We restrict the discussion to convex polyhedra and thus exclude the four beautiful Kepler-Poinsot
polyhedra which are constructed with intersecting faces.
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the Schldifti symbol for the polyhedron. The regular polyhedra are also known as the
Platonic solids.

Table 5.1 The regular convex polyhedra
# is the number of faces meeting at a vertex and V, E and F are the numbers of vertices, edges and faces.

faces n name symbol V. E F | symmetry
triangles | 3 tetrahedron 33 4 6 4 43m
triangles | 4 octahedron 3 P 6 12 8 m3m
triangles | 5 icosahedron 33 12 30 20| m33
squares | 3 cube 43 8 12 6 m3m
pentagons | 3 | dodecahedron 53 20 30 12 m33

We have already met the tetrahedron, cube and octahedron but they are illustrated again
in Fig. 5.1. In the figure a cube is shown on the left. Next an octahedron is shown
inscribed in a cube; the vertices of the octahedron center the faces of the cube. A second
polyhedron obtained by centering the faces of a polyhedron is said to be the dual of the first
so the octahedron is the dual of the cube. It should be apparent that the polyhedron with
vertices centering the faces of the octahedron is a cube (now smaller) so the cube (43) and
octahedron (34) are the duals of each other. In general p9 is the dual of ¢#. The right half of
Fig. 5.1 shows a tetrahedron inscribed in a cube in two different ways, It should be
apparent that the dual of the tetrabedron on the left is a (smatler) tetrahedron with the same
orientation as the one on the right so that the tetrahedron (33) is self dual.

Fig. 5.1. From left to right: a cube, an octahedron and tefrahiedra in two different orientations. Broken
lines are edges obscured by the front faces, and dotted lines outline a cube.

The relationship to a cube allows an easy determination of some useful metrical
properties of the octahedron and tetrahedron. Recall first that for a cube of unit edge, the
length of a face diagonal is Y2 and the length of a body diagonal is V3. The reader should
verify that for a tetrahedron of unit edge, the distance from the center to a vertex is V(3/8).
The distance from a vertex to the center is 3/4 of the distance from a vertex to the center of
the opposite face, so the perpendicular distance from a vertex to its opposite face (the
“height” of the tetrahedron) is \’(2/3) =0.81635. This last result is sufficiently useful that it
(including the numerical value) is worth committing to memory. The volume of a
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tetrahedron of unit edge is 1/(62).

For an octahedron of unit edge, the distance from the center to a vertex is 1A2, and the
distance between opposite vertices is twice that, i.e. V2. Less obvious is that the
perpendicular distance between opposite faces is the same as the height of a tetrabhedron
with unit edge which, we repeat, is ¥(2/3) = 0.8165. The octahedron volume is ¥2/3, four
times that of a tetrahedron with the same (unit) edge length. :

The angle between the faces of a tetrahedron (the dihedral angle) is cos-1(1/3) = 70.53°
and that between adjacent faces of an octahedron is the supplementary angle cos"l(-1/3) =
169.47°. Opposite faces of an octahedron are parallel.

An icosahedron and a dodecahedron are illustrated in Fig. 5.2. Both have the same
symmetry: m35 = I, We already remarked that m3 is a cubic subgroup of m335 and
illustrated that point using the icosahedron in Fig. 2.25. In the illustration of the
dodecahedron, - eight of the twenty vertices are shown as filled circles—these lie on the
vertices of a cube. Of course all the vertices are equivalent, and four other sets of eight
vertices forming a cube could have been picked out. Note an important distinction. The
operations of m3 relate all the vertices of an icosahedron to each other, but only sets of
eight of the twenty vertices of the dodecahedron are so related. This is is because the
vertices of the icosahedron arc on 5-fold axes, but in the dodecahedron the 5-fold axes run
through the centers of pairs of opposite faces and vertices on a given face are related by a 5-
fold axis which does not exist in m3. In the dodecahedron the vertices are on 3 axes.

33

Fig. 5.2. An icosahedron, 37 (left}, and a dodecahedron, 53 (right}. Broken lines are edges obscured by the
front faces.

Figure 5.2 should also make it apparent that the icosahedron (33) is the dual of the
dodecahedron (53). Likewise the dual of the icosahedron is a (smaller) dodecahedron. For
an icosahedron of unit edge, the distance from the center to a vertex is SVA[(L + V58] =
0.9511; i.e. slightly less than the edge length. '

A note on terminology: The term “tetrahedron” refers to any polyhedron with four faces
(which are triangles but not necessarily equilateral ones). Sometimes the term is used to
refer specifically to a regular tetrahedron; this is particularly the case in such usage as
“tetrahedral symmetry” which usually refers to the point group 43m (T4) which is the
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symmetry of a reguiar tetrahedron, but strictly refers also to 23 (7) and #3 (Tp)!

Similarly, the term “octahedron™ strictly refers to any solid with eight faces, of which
there are 257 (1) distinct examples, but it is often used only for the polyhedron with all
triangular faces.? “Qctahedral symmetry” likewise usuatly refers to m3m ( Op) which is the
symmetry of a regular octahedron, but strictly should refer also to 432 (0). We will
sometimes use terms such as “distorted octahedron” when we wish to emphasize the
departure from regularity of the polyhedron with al triangular faces (3%).

For many chemists the term dodecahedron refers, not to the regular dodecahedron, but
to a polyhedron with twelve triangular faces (for which we prefer the term
“bisdisphenoid™).? The dodecahedron with twelve rhombic faces appears conspicuously
later (we call it the rhombic dodecahedron). A regular dodecahedron is often called the
pentagonal dodecahedron to distinguish it from the millions of other dodecahedra,

512 Combinations of octahedra and tetrahedra

Capping two opposite faces of a regular octahedron with two tetrahedra with equal edge
lengths will produce a thembohedron as shown in Fig. 5.3. The angles of the faces are 60°
and 120° and three angles of 60° meet at two of the vertices, We note that a thombohedron
has symmetry 3m and that the two opposile vertices where three equal angles o meet are on
the 3 axis. i o < 90° the thombohedron is called acute {or prolate), and if ¢t > 90° the
rhombohedron is termed obtuse {or oblate). If & = 90° the rhombohedron is a cube of
course. The rthombohedron with & = 60° will be met many times; it is the primitive cell of
the face-centered cubic lattice.

Fig. 5.3. Left: a 60° rhombohedron produced by capping two opposite faces of an octahedron with
tetrahedra (compare with Fig, 5.1). Middle: a stella octangula produced by capping all the faces of an
octahedron with tetrahedra—fitled circles are the actahedron vertices. Right; a stella quadrangula obtained by
capping all the faces of a tetrahedron—filled circles are the vertices of the central tetrahedron.

IPlease note that T4 refers to a symmetry group and is not shorthand for the word “tetrahedral”. Thus an
atom at a site with Tz symmetry may, or may not, be four-coordinated; and conversely an atom with four
neighbors at the vertices of a tetrahedron may, or may not, be at a site of Ty symmetry,

2Some readers will be Familiar with “Dijrer’s octahedron” which is a conspicuous feature of the
celebrated engraving Melencolia I {1514), This polyhedron is an acute rthombohedron with the two acute
vertices truncated and has two triangular faces and six pentagonal ones. Truncated tetrahedra and hexagonal
prisms, discussed below, are other familiar examples of octahedra in this general sense.

3 Another polyhedron with twelve triangular faces is the hexagonal bipyramid (sce § 5.1.5).
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Similarly capping all the faces of an octahedron with tetrahedra will produce the
polyhedron known as a stella octangula shown in the middie of Fig. 5.3.1 As the shading
in the figure suggests, the steila octangula can also be considered as two interpenetrating
larger tetrabedra. _

Also shown in Fig. 5.3 is the polyhedron obtained by capping the four faces of a
tetrahedron with tetrahedra. By analogy it is called a stella quadranguia; it is of some
interest in crystal chemistry.? See § 5.2.4 and § 5.6.8 for some examples of its occurrence.

Other combinations of tetrahedra and/or octahedra will be met subsequently (§ 5.2). Of
great importance in crystal chemistry is the fact that regular octahedra and tetrahedra with
equal edges and in the number ratio of 1:2 can be packed together to fill space; this is a
topic covered in Chapter 6.

5.1.3 Archimedean polyhedra
Table 5.2. The Archimedean polyhedra other than prisms and antiprisms.

V. E and F are the numbess of vertices, faces and edges. The numbers ¥ in the Schlifli symhol represent in
cyclic order the polygons (N-gons) meeting at a vertex.

Schléfli symbol name V E F | symmetry

3.62 truncated tetrahedron 12 18 8§ 43m
3434 cuboctahedron 12 24 14 m3m
4.62 truncated octzhedron 24 36 14 m3m
3,82 truncated cube 24 36 14 m3m
3.43 rhombicuboctahedron 24 48 26 m3m
344 snub cube 24 60 38 | 432
3335 icosidodecahedron 30 60 32 !\ m33
4.6.8 trancated cuboctahedron 48 72 26 \mi‘h?_!
3.102 truncated dodecahedron 60 90 32 m35
5.62 truncated icosahedron 60 90 32 m35
3454 rhombicosidodecahedron - 60 120 62 m33
345 snub dodecahedron 60 150 92 235
4.6.10 truncated icosidodecahedron 120 180 62 m3s

Polyhedra with equivalent (i.e. symmetry-reiated) vertices but with more than one kind
of regular polygonal face are referred to as semi-regular or Archimedean. These consist of
the infinite families of regular prisms and antiprisms together with thirteen others. Prisms
and antiprisms are discussed in the next section; the remaining polyhedra, all of which have
either cubic or icosahedral symmetry, are listed in Table 5.2, together with the number of
vertices (V), edges () and faces (F). These quantities are related by the Euler condition for

180 christened by the great geometer, astrenomer and mystic, Johannes Kepler {1571-1630).
23ee Hyde & Andersson (Book List) p. 342,
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finite polyhedra V— £+ F =2, Of the polyhedra in the table, the cubic ones are the most
fmportant in crystal chemistry, but some of the others are also met. Some are conveniently
derived by cutting off (truncating) vertices of simpler polyhedra in a symmetrical way and
hence their names. _

The rhombicuboctahedron (3.43) is sometimes called the small rhombicuboctahedron
and the truncated cuboctahedron {4.6.8) is sometimes called the great
rhombicuboctabedron. We find it easier to remember, and to recail mentaily, these
polyhedra from their Schlifli symbols rather than from their often cumbersome names,

The cuboctahedron (3.4.3.4) was introduced in Fig. 2.25 (p. 54) where we saw that it
was simply related to the regular icosabedron. It is illustrated again in Fig. 5.4 together
with its dual, the thombic dedecahedron, which we will describe in § 5.1.5 below. The
cuboctahedron and its relative the “twinned cuboctahedron” are discussed further when we
consider sphere packings in Chapler 6. An important property of the cuboctahedron is that
distance from the center to a vertex is equal to the edge length. It is also an example of a
gquasiregular polyhedron, which is one in which all edges and vertices (but not faces) are
equivalent. (3.5.3.3 is the other quasiregular polyhedron.) As the edges are ail equivalent,
there is only one dihedral angle which is cos-1(-1/3) = 126.26°.

Fig. 54. Right; a cuboctahedron (3.4.3.4). Left: a rhombic dodecahedron, the dual of the cuboctahedron.
Broken lines are edges obscured by the front faces,

The remaining cubic Archimedean pelyhedra are illustrated in Fig. 5.5. They are
sufficiently important that it is worth learning their names and shapes.

The truncated tetrahedron (3.62) is an important }2-coordination polyhedron. It oceurs
particularly in structures of intermetallic compounds (see § 5.2.5). The reader with
polyhedra at hand may like to verify that four regular octahedra and seven regular tetrahedra
(all with equal edge length) can be combined to make a truncated tetrahedron.

The snub cube (34.4) occurs in left and right-handed forms; Fig. 2.26 (p. 54) illustrates
both and their relationship to the thombicuboctahedron (3.43).

Truncated octahedra (4.62) have the interesting property that they can be packed together

LA reminder that the numbers & in the Schlifli symbol represent in cyclic order the polygons (N-gons)
meeting at a vertex. Schlifli symbols are most useful for polyhedra with just one kind of vertex and we do
not use them for polyhedra such as the rhombic dodecahedron (Fig. 5.4) with two different kinds of vertex
(43 and 4%, .
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to fill space as discussed in Chapter 7. In such an array the centers of the polyhedra fall on
a body-centered cubic lattice and the surface of a polyhedron encloses all points in space
closer to the lattice point at its center than to any other lattice point, so it is the Vorone#
polyhedron assaciated with the lattice point, In 2 terminology used by physicists, it is the
Wigner-Seitz cell of the body-~centered cubic lattice. The dihedral angles are cos1{-1/3) =
109.47° between square and hexagonal faces and cos 1(~1/43) = 125.26° between
hexagonal faces. ‘ .

We meet the truncated cuboctahedron (4.6.8) later also in connection with polyhedron
packings and in zeolite structures. It is the largest polyhedron with equivalent vertices and
cubic symmetry (the number of vertices is 48—equal to the order of group m3m).

Fig. 5.5. Six of the cubic Archimedean polyhedra. Top left: rhombicuboctahedron (3.43). Top middle;
snub cube (34.4). Top right: truncated octahedron (4.62). Bottom lefi: truncated tetrahedron (3.62). Bottom
middle: truncated cube (3.82). Bottom right: truncated cuboctahedron (4.6.8). In each polyhedron faces
related by symmetry have the same depth of shading. For 3.62 {only) edges obscured by the front faces are
shown as broken lines.

The six beautiful icosahedral Archimedean polyhedra are Hllustrated in Fig. 5.6, It will be
found that models of them are useful aids to appreciating icosahedral symmetry. Most
familiar will be the truncated icosahedron (5.62) which represents the structure of Cgpst it
may also be familiar as the structure of a soccer ball (balls based on 3.5.3.5 are also
sometimes seen). It should be apparent that 34.5 is related to 3.4.5.4 in the same way as
3*4 is related to 3.4%. Note that 3.5 with symmetry 235 (= I} is enantiomorphic.

INote that there two distinet edges in the truncated icosahedron; one (66) that is common to hexagons
and a second (65) common to a hexagon and 2 pentagon. In Cgo the 66 bond is significantly shorter than
the 65 bond. The symmetry remains icosahedral of course.
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Fig. 5.6. The icosahedral Archimedean poiyhedra. Top left: truncated dodecahedron (3.102%). Top middle:
thombicosidodecahedron (3.4.5.4) Top right: snub dodecahedron (3%.5). Bottom left: icosidodecahedron
(3.5.3.5). Boitom middle: truncated icosahedron (5.62). Bottom right: truncated icosidodecahedron (4.5,10).
In each potyhedron, faces related by symmetry have the same depth of shading.

5.1.4 Prisms, antiprisms and capped prisms

The remaining semiregular solids are prisms and antiprisms. The serniregular prisms are
right prisms with two faces that are N-gons and N square faces (symbol 42.X). The
triangular (or trigonal) prism should be familiar. It has Schlafli symbol 3.42. Note that the
trianguiar prisras encountered as coordination figures in solids usually have rectangular
faces that are not square (see the Note § 5.6.2 at the end of this chapter). A cube is a square
prism. The term “prism” is almost invariably used by crystal chemists to mean “right
prism” (ie. that all the quadrangular faces are rectangles).

Fig. 5.7. From left to right: a square antiprism (33.4), a pentagonal antiprism (32.5) and a hexagonal
antiprism (33.6). Edges obscured by the front faces are shown as broken lines,

Antiprisms conclude the enumeration of the semiregular solids. They have two N-gon
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faces and 2N triangular ones (symbol 33.N). The regular octahedron is a triangular
antiprism. The sguare antiprism (33.4), pentagonal antiprism (33.5) and hcxagonfﬂ
antiprism (33.6) are illustrated in Fig. 5.7. Note that they have non-crystallographic
symmetries (see § 2.5.6, p. 52). The symmetry of a square antiprism is 8m2 = Dyg, tlha!‘. of
& pentagonal antiprism is $2/m (short syrmbol 5m) = Ds4 and that of a hexagonal antiprism
is IZm2 = Dgg. :

Sometimes coordination figures (particularly for 6- or 8-coordination) are encountered
that are intermediate between prisms and antiprisms. We refer to such solids as
metaprisms. Fig. 5.8 illustrates the case of 6-coordination. Square metaprisms are also
cormon coordination figures. The symmetry of metaprisms with 2N vertices is N2 for ¥
odd and 22 for N even.

Fig. 5.8. Left: a trigonal antiprism (symmetry 3m) with the bottom face the same as the top one but
rotated by 60°. Middle: a trigonal metaprism {symmetry 32} with bottom face the same as the top one but
rotated by 30°. Right a trigonal prism (symmetry 6m2).

The process of adding an extra vertex outside a polyhedron is usually kn9wn as
capping. Examples of particular interest in chemistry are coordination figures obtained by
capping the rectangular faces of trigonal prisms. According to whether there are one, two
or three such extra vertices, the polyhedra are referred to as monocapped, bicapped or
tricapped trigonal prisins respectively. A tricapped trigonal prism is iHlustrated il".l Fig. 5.9in
two ways; first as the full polyhedron and secondly with the “capping” vertiees treated
separately, as is often done for clarity in.crystal structure drawings. As alyeady remarkeq,‘
the rectangular faces are generally not square, but elongated along the direction of the 6
axis. The symmetry is 6m2.

Fig. 5.9. Two illustrations of & (ricapped trigonal prism with all distances from the vertices to the center
equal and with all edges not parallel to the 6 axis equal.

Capping the two pentagonal faces of a pentagonal antiprism results in an icosahedron.
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5.1.5 Catalan polyhedra: the rhombic dodecahedron, bipyramids and pyramids

The Caralan solids (named after the Belgian mathematician) are the duals of the
Archimedean polyhedra. The Archimedean polyhedra have all verfices equivalent, so the
Catalan polyhedra have all faces equivalent. The Archimedean polyhedra are generally of
interest as symmetrical coordination polyhedra, whereas the Catalan polyhedra are more
relevant to the externai shapes of symmetrical crystals. As our interest is mainly in the
internal structure of crystals we only mention here some Catalan polyhedra of special
interest.}

The most interesting to us is the dual of the cuboctahedron. This is the rhombic
dodecahedron (Fig. 5.4, p. 137) which has twelve faces that are rhombuses with
alternating angles of cos~1(~1/3) = 109.47" and cos-1(1/3) = 70.53°, The cuboctahedron has
14 faces and 12 vertices whereas the thombic dodecahedron has 12 faces and 14 vertices.
Both polyhedra have 24 edges that are all equivalent in each case. The dihedral angles of
the thombic dodecahedron are thus all the same (and equal to 120%), and it is another a
space-filling polyhedron. When packed together to fill space, the polyhedron ceaters fall on
the points of a face-centered cubic lattice. It is the Voronoi polyhedron (Wigner-Seitz cell)
of the face-centered cubic lattice.

The duals of the right prisms are the bipyramids. A cube is a special case of a square
prisim and an octahedron is a square bipyramid. A pyramid is of course half of 4 bipyramid.
Pyramnids are self dual (a tetrahedron is a triangular pyramid). The two distinct polyhedra
with five vertices are the trigonal bipyramid and the square pyramid; Fig. 5.10.

Fig. 5.10. The two polyhedra with five vertices. Left: a square pyramid, Right: a triangular bipyramid.
3.1.6 Deltahedra and the bisdisphenoid

Another class of polyhedra that we consider in this chapter is that of deltahedra. These

" ‘are convex polyhedra in which all faces are equilateral triangles. Some have been met

before. The maximum number of triangles meeting at a vertex is five and the minimum is
three. The minimum number of vertices is four {in the regular tetrahedron) and the
maximum number is twelve (in the icosahedron). Tn Table 5.3, V3, V4 and Vs are the
numbers of vertices at which 3, 4 or 5 triangles meet.

IThe Catalan polyhedra are described ia detail by Cundy & Rollett (Book List), A good account in the
context of crystat shapes is given by I. V. Smith (Book List).
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Table 5.3. The eight convex deltahedra

vertices | V3 V4 Vs faces edges name
4 4 0 0 4 6 tetrahedron
5 2 3 0 6 9 trigonal bipyramid
6 0 6 0 g 12 octahedron
7 0 5 2 10 15 pentagonal bipyramid
8 0 4 4 12 18 bisdisphenoid
9 0 3 6 14 21 tricapped trigonal prism
10 0 2 8 16 24 bicapped square antiprism
[11? o 1? 10? 18? 277 impossible!]
12 0 0 12 20 30 icosahedron

The reader should observe the regularity of the numbers of vertices, edges and fa}ces,
and is invited to prove the impossibility of the deltahedron with eleven faces {not an entirely
trivial task). The polyhedron with ten vertices is obtained by capping each of the two
square faces of a square antiprism with a square pyramid. )

The boron atom skeletons of the elose borane anions B,,H,2- are close to ideal deltahed.ra
for 6 = r 2 12, except for » = 11; however By H1y2" does exist, as a pf)l){hedron with
irregular triangular faces in which V4 =2, V5 =8, and Vg = 1. The iscelectronic carboranes
By—2C>H,, are isostrctural, . _ _ o ]

The bisdisphenoid is an interesting polyhedron with symmetry ijZm tlz;at is illustrated in
Fig. 5.11. We will use this term for dodecahedra (= 12 faces!) with thxs' syr'nmetry even
when the faces are not equilateral triangles. It is a rather common 8-coordination figure.

Fig 5.11. Left: A bisdisphenoid. The 4 axis is vertical and the faces are equilateral u'ia.ng!les. In the center
and on the right the two sets of four vertices on “elongated” and “squashed” tetrahedra are indicated.

The term sphenoid {(which comes from the Greek word for a wedge) rf:fers toa ﬁgure
with inclined planes meeting at an edge. A tetrahedron can bc? decomposgd‘mto two pairs of
such sphenoids and is sometimes called a disphenoid. The origin of tbe term
bisdisphenoid come from the fact that a bisdisphenoid can be decomposed into two
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tetrahedra, one “clongated” and one “squashed” as indicated in Fig. 5.11. It should be
apparent that the distance from the vertices of the squashed tetrahedron to the center is less
than the distance from the vertices of the elongated tetrahedron to the center. In the
bisdisphenoids occurring in crystal struchires, the distances from the vertices to the center
are often (approximately) equal; the faces can no longer be equitateral triangles in this case,

If we remove the restriction to convex polyhedra, there are many other possibilities for
deltahedra; one of them is the polyhedron constructed from two inter-penetrating icosahedra
(shown in Fig. 5.12) which has six triangles meeting at some of the vertices.

Fig. 5.12. Frank-Kasper and related polyhedra. On the left is shown on the top a truncated tetrahedron and
on the bottom the Friauf polyhedron (Vg = 4) obtained by capping the hexagonal faces of the truncated
tetrahedron. In the middle on top is shown the 13 vertex polyhedron (Vg = 3) and underneath it is the 14
vertex polyhedron (Vi = 2) obtained by capping the hexagonal faces of a hexagonal antiprism, In these four
drawings, 6-coordinated vertices are shown as filled circles and equilateral iriangles are darker shaded. On the

right are shown top: intergrown icosahedra (capped pentagonal antiprisms) and bottom: intergrown capped
hexagonal antiprisms.

5.1.7 Frank-Kasper polyhedra and intergrown polyhedra

If the restriction to equilateral triangles is lifted, there is an infinite number of polyhedra
with triangular faces. These are often referred to as simplicial polyhedra. Of special
interest are those in which either five or six triangles meet at a vertex. Let the number of
such vertices be Vs and V. It is easy to show that Vs = 12 in every case. “Geodesic”
domes are parts of such polyhedra. Their duals have faces that are either hexagons or
pentagons, and three meet at every vertex; for these latter polyhedra there must be exactly
twelve pentagonal faces—see Exercise 6 and Appendix 4.

The Frank-Kasper polyhedra (Fig. 5.12) are the four simplest simplicial polyhedra with
Vs = 12; they are found as coordination fisures in dense intermetallic structures. Vg =0
corresponds to the icosahedron (12 vertices). As a periodic structure cannot have 5-fold _
symmetry axes, icosahedra in crystal structures will not be strictly regular, but they often
come surprisingly close. The next case, Vg = 1 cannot be realized. The next three
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possibilities, Vg = 2, 3, and 4, can be realized and have 14, 15, and 16 vertices
respectively. They are the only possibilities not having contiguous 6-coordinated vertices.
The edges meeting at a 6-coordinated vertex must be longer than the other edges if the
polyhedron is to be convex.

The polyhedron with 14 vertices is made from a hexagonal antiprism by capping the
hexagonal faces. The polyhedron with 16 vertices is similarly derived from a truncated
tetrahedron (3.6%) and is often called a Friauf polyhedron (it is a conspicuous feature of the
structures of the intermetallic phases known as Friauf-Laves phases—see § 6.6.3). The
polyhedron with 15 vertices (see Fig. 5.12) has 6m2 symmetry {the same as that of a
trigonal prism) and is sometimes called the pt-phase polyhedron (after the structure in
which it was first identified). The 16-, 15-, and 14-coordinated polyhedra are sometimes
symbolized P, @, and R respectively.

“lonic” crystal structures are typified by the fact that generally the coordination of cations
is entirely by anions and vice versa. These structures can be described in terms of
catenated (vertex-, edge-, or face-sharing) coordination polyhedra. It may be recalled, for
example, that we described the quartz structure in terms of corner-sharing {Si}Qs
polyhedra in § 3.6. These stiuctures are characterized by generally low coordination
nurnbers (average for all atoms < 8),

On the other hand, in intermetallic structures, coordination numbers are generally higher
(2 12) and usually include codrdination of like atoms by like. If they are to be described in
terms of coordination polyhedra such as the polyhedra of this section, it will be found that
the polyhedra must interpenetrate cach other. Fig. 5.12 illustrates intergrowths of two

icosahedra and also of two bicapped hexagonal antiprisms. The vertices in the interiorof- _

the intergrowths are (approximately) at the centers of icosahedra and bicapped hexagonal
antiprisms respectively, and thus serve as both the center of one polyhedron and as the
vertex of another. In intermetallic crystal structures there is a continuous intergrowth
{rather than just the pairs discussed here} which makes such structures particularly difficult
to illustrate satisfactorily. In MgCuj, for example (§ 6.6.3), there are intergrown
{Mg} Cuy2Mgq Friauf polyhedra which produce, mirabile dictu, for the Cu coordina-
tion { Cu}MggCug icosahedra.

Simplicial polyhedra can be considered as made up of (irregular) tetrahedra with one

vertex at the center and the other three on a face of the polyhedron. In this way, the
icosahedron can be decomposed into 20 tetrahedra and the Friauf pelyhedron similarly
decomposed into 28 tetrahedra. Structures which can be described as a packing of irregular
tetrahedra are often described as “topologically close-packed.”

5.1.8 Relationships between polyhedra with eight vertices
We mentioned earlier the fact that there are 257 topologically distinct octahedra. Their
duals will be the 257 distinct polyhedra with eight vertices.! Some other symunetrical

arrangements that we have met and that often occur in crystal (and moleculdr) structures are

Ta complete catalog of polyhedra with § 8 vertices is given by D. Britton & J. D. Dunitz, Acta
Crystallogr. A29, 362 (1973).
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the cube, square antiprism, bicapped trigonal prism and hexagonal bipyramid. Often in
polyhedra representing coordination of a central atom, the distances from the vertex atoms

- to the central atom are approximately equal, so the vertices are approximately on the surface

of a sphere. As the number of vertices increases, conversion from one polyhedron to
another will generally involve smaller displacements of vertices. Because 8-coordination is
rather common, and the possibilities large, the relationships between the possible
coordination polyhedra have been the subject of some discussion.! We describe some
important cases briefly here.

The relationship between a cube (square prism) and square antiprism should be obvious.
The intermediate case, a square metaprism, with point symmetry 422, is commonly
encountered in crystals.

The relationship between a cube and hexagonal bipyramid is also very simple. Fig.
5.13 shows a cube viewed down a body diagonal. The six vertices not on the diagonal
project as a hexagon; they are in fact on a skew hexagon with 90° angles. Converting these
angles to 120° will produce a planar hexagon and the vertices will correspond to a
hexagonal bipyramid. The “waist” edges of the hexagonal bipyramids must be shorter than
the other edges; if the edges were all equal, the polyhedron would collapse to a two-
dimensional figure. The {Y}Og coordination in the structure of Y Tiz07 is an example of
coordination intermediate between a hexagonal bipyramid and a cube.

Fig. 5.13. The relationship between a cube and a hexagonal bipyramid.

Less obvious are the relationships between a square antiprism, a bisdisphenoid and a

. bicapped trigonal prism, but in fact these three polyhedra are very closely related as shown

in Fig. 3.14. Converting the two square faces of the antiprism to pairs of triangles
produces the topology of the bisdisphenoid and only small displacements of the vertices are
necessary to produce 42m symmetry. Note that the 4 axis of the bisdisphenoid is paraliel to
one of the 2-fold axes of the antiprism. Sinlilarly, converting just one of the faces of the
square antiprism to a pair of triangles converts it into a bicapped trigonal prism.

The conversion directly froma cube to a bisdisphenoid is alse important and should be
obvious when it is recalled that the vertices of 4 cube are the same as the convex vertices of

a stefla quadrangula (Fig. 5.3) which can be considered as two interpenetrating regular

tetrahedra. Converting one of these tetrahedra into a squashed tetrahedron and the other into

1See especially D. L. Kepert, fnorganic Stereochemistry [Springer-Verlag, Berlin (1982)).
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an elongated one will produce a bisdisphenoid {compare with Fig. 5.11).

4

Fig. 5.14, Top: the relationship between a s ipri isdi id {ri
5 quare antiprism (left) and a bisdisphenoid {right). Note that
the 4 axis of the bisdisphenoid is horizontal Boitom: the relationshi ism (loft) an
: . : onship betwe ipri
s bicopped Kipent Py i en 2 square antiprism (left) and

It should be emphasized that, in the context of crystal or molecular structures, the use of
polyhedra to describe the positions of atoms is purely for convenience. In cryst;l there are
only atoms and (Yess surely) bonds. On the other hand, the salient features of a polyhedron
to the eye are its faces (hence the term polyhedron) which are really of little importance in
the crystal structure. '

In particular, to illustrate structural relationships, it is often fruitful to chose one or
anoﬂlt'ar pglyhedron to describe a particular structure element, and even to describe the same
CDOrdl{laIIOI:l in more than one way. In the garnet structure, Ca is eight coordinated by O
and has a site symmetry 222. This symmetry is a subgroup of that of a cube (m3m), a
square mfat_apnsm (422), a bisdisphenoid (42m) and a bicapped trigonal prism (rmm?2). It, is
not surprising therefore, that different authors describe the coordination figure differently

fas eg a ‘.‘twisted cube,” “distorted square antiprism,” or “distorted dodecahedron”
{meaning bisdisphenoid)].

3.1.9 Tammes’ problem and coordination polyhedra

In his study of pollen grains (which are approximately spherical), the biologist P. M., L.

S

Polyhedra and Tilings 147

Tammes concluded that the orifices on their surfaces are arranged so that there is a
maximum munber, subject to the constraint that the distance between them is not less than
some minimum amount. It might be supposed that similar considerations also apply to
packing coerdinating atoms around a central atom. The mathematical expression of

‘Tammes’ problem is to find the arrangement of points on the surface of a sphere so that the

shortest distance between pairs of points is as large as possible. Solutions of Tammes’
problem, particularly its generalization to arrangements of points in space, are here referred
to as eutactic arrangements. !

The general problem is difficult and most results have been obtained numerically.2 For
four points the solution is provided by the vertices of a regular tetrahedron, and for six
points by the vertices of a regular octahedron.

The solution for {ive points is provided both by the vertices of a trigonal bipyramid and
by the vertices of a square pyramid with all edges equal (i.e. half a regular octahedron).
Note that in this case the shoriest distance is ¥2r, where 7 is the radius of the sphere; the
same result is obtained for an octahedron, so there might as well be six points on the
surface of the sphere rather than five.? It is noteworthy that 4- and 6-coordination are mnch
more commonly found than 5-coordination of cations in crystals. When 5-coordination is
found, the sguare pyramid and trigonal bipyramid occur with comparable frequencies

For eight points the solution to Tammes’ problem is provided by the vertices of an
Archimedean square antiprism (sto!, as is occasionally claimed, a cube). For nine points
the figure obtained is that of a tricapped trigonal prism. We may note also that for twelve
points the solution to Tammes’ problem is provided by the vertices of a regular icosahedron
and for 24 poiats by the vertices of a snub cube (34.4). See also the Notes (§ 5.6.2) for a
discussion of related problems.

5.1.10 Polyhedra with divalent vertices

In the polyhedra considered so far at least three edges meet at a vertex and each pair of
contiguous edges (an angle) is part of only one face. However for some purposes it is
convenient to generalize the coneept of polyhedra to include those in which only two edges

IFrom the Greek for “well-arranged”. We thought that we had invented the word, or rather that it was
cotned for us by Marie Hyde who knows about such things, but subsequently we found that it had been used
earlier by Schléfli in a mathematical context [see H. S. M. Coxeter Regular Polytopes, 3rd Edition, Dover,
New York (1973) p. 251] and it is in the Oxford Englisk Dictionary. As the term has now gained some
currency in the sense we use it, it is retained. . :

ZRecen: papers with extensive results zre B, W, Clare & D. L. Kepert, Pragc. Roy. Soc. (London)
AdQ5, 320 (1986); D. A. Kontwitz, Acta Crystallogr. A47, 158 (1991).

IThe distances between vertices expressed as multipie of r are: for the trigonal bipyramid, ¥2 (6x) ¥3
{3x) and 2; for the square pyramid, V2 (8x) and 2 {2>¢) and for the octahedron ¥2 (12x) and 2 (3x).

“Molecular chemists are used to considering non-bonding valence electrons as well as ligands when
discussing coordination figures. Compare PFs (trigonal bipyramid, no non-bonding valence electrons) with
ClIFs (square pyramid with Lhe non-bonding electron pair completing an octahedron around CI). In
crystalline PhQ Pb has 4 O atoms in a square on one side of Pb with a lone pair completing a square
pyramid,
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meet at some vertices and the angles containing such vertices are part of two faces. We note
two points about such polyhedra: (a) some of the faces are of necessity non-planar if angles
of 180° are excluded, and (b) the number of vertices, edges and faces are still related by
V-E+F=2. We just give some simple examples here.

Polyhedra with divalent vertices can be derived in a formal way by inserting vertices in
edges of conventional polyhedra. In Fig. 5.15 we show how polyhedra with six and eight
vertices are derived in this way from a tetrahedron. The new pelyhedra are facially-regular
and, as there are four faces, they are also tetrahedra, The first (on the left in Fig. 5.15) is
encountered as a building unit in the fibrous zeolites (§ 7.8.7); as it has four 4-cornered
faces we call it a tetragonal tetrahedron. The second polyhedron (on the right in Fig. 5.15)
has four 5-cornered faces so we call it a pentagonal tetrahedron. It oceurs in the molecule
As484 (realgar) with 3-coordinated As ({As}AsS2) and 2-coordinated 8 {{S}Asy).

Fig. 5.15. On the left are two drawings of a tetragenal tetrahedron and on the right two drawings of a
pentagonal tetrahedron. In each case the righ-hand member of the pair shows oniy the polyhedron edges.
Vertices shown as open circles are divalent,

The next polyhedron in the series is a hexagonal tetrahedron with ten vertices shown in
Fig. 5.16. This is an important geometry in structural chemistry. I CHy units are at the six
Z-coordinated vertices, and CH units at the four 3-coordinated vertices, the hydrocarbon
adamantane, CjgH g results. If the CH groups are replaced by the isoelectronic N,
hexamethylenetetramine, Ng(CHa)s is produced. P4Og has the same structure.

Fig. 5.16. From the left are: two drawings of a hexagonat tetranedron, two such polyhedra sharing a face,
a cluster of five hexagonal tetrahedra. Compare Fig. 5.13.

If & wire model of the hexagonal tetrahedron framework is dipped in a soap solution and
withdrawn, the soap film will form a curved surface on the faces of the polyhedron.
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Remarkably, such a polyhedron with curved faces is a space-filling solid.! Tn Fig. 5.16
two such tetrahedra are shown sharing a face and also a cluster of five tetrahedra sharing
faces.? In fact the structure of vertices and edges obtained by filling space with hexagonal
tetrahedra is just that of the atoms and bonds in the diamond form of carbon, and Fig. 5.16
should be compared with Fig, 7.10 illustrating the diamond structure. Much of the interest
in polyhedra with divalent vertices is as building units of three-dimensional nets.

Another example of a tetragonal tetrahedron is shown in Fig. 5.17. Four 2-connected
vertices are on a square of edge d, and the 4-connected vertices are a distance d apart so that
the edge lengths are V24/2. If all vertices were 4-connected the polyhedron would be a
squashed octahedron. The fipure shows curved surfaces such as might be made by a soap
film on the framework. Such a polyhedron is also space-filling (the packing requires three
different orientations of the tetrahedra}. The vertices are on the points of a body-centered
cubic lattice and, as discussed in § 6.2, the centers of the polyhedra are at the “octahedral”
sites of a body-centered cubic sphere packing.

Fig. 5.17. A space-filling tetragonal tetrahedron with curved faces.

5.2 Polyhedral clusters

We are interested in polyhedra because their vertices often represent the positions of
atoms coordinating a central one. In this way we can reduce a group, such as {M}Xg to a
single entity such as an actahedron or a trigonal prism. In many structures it is convenient

1Such polyhedra appear to have been First described by P. Pearce in Chapter 8 of Symmetry in Nature is
a Strategy for Design [MIT Press (1978)]. A beautifully {llustrated systematic account of them and their
packings is given by 8. T. Hyde & S. Andersson, Zeits. Kristailogr. 168, 221 (1984).

2This topic provides an excuse for some free-association historical notes: Hexamethylenetetramine was
the first vrganic compound to have its stiucture determined by X-ray diffraction {R. G. Dickenson & A. L.
Raymond, J. Amer. Chem, Soc. 45, 22 (1923)]. Dickenson was the first person to get a Ph.D. degree from
the California Institute of Technology (in 1920); in 1922 he took on a graduate student named Linus
Pauling who was to be a major force in structural chemiswy for more than the next half century (Nobel
prize in Chemistry, 1954). The hydrocarbon corresponding to the two face-sharing polybedra {C4Hpq) is
known as congressane as its structure served as the emblem of the XIX congress of the International Union
of Pure and Applied Chemistry (1963). Its structure was selved “by inspection” from X-ray data by the
famous team of I. L. Karle and J. Karle in 1963, J, Karle went on to share the Nobel prize in chemistey
with H. Hauptman in 1985 (for the development of “direct methods™ of X-ray diffraction analysis).
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to continue the process and consider the structural units to be groups (clusters) of
polyhedra (which may or may not be centered). This approach allows us to describe the
structures of complex crystals in a hierarchical way: we first describe how atoms form
coordination polyhedra, then we describe how the pelyhedra are assembled into clusters,
and finally we describe how the clusters are linked in the crystal. A sirmilar procedure is
familiar to molecular chemists who are long used to replacing functional groups {clusters!)
such as, for example, -CgHs by -Ph and CsHs by Cp.

In this section we describe some simple examples of clusters, that are often found in
crystal structures and give some examples of their occurrence.

5.2.1 Clusters of tetrahedra

In § 5.1.2 (Fig. 5.3) we introduced the stella quadrangula which may be derived by
fusing tetrahedra to the faces of a central tetrahedron, and the stella octangula which is
similarly derived by capping the faces of a central octahedron with tetrahedra,

The composition of the stella octangula can be written AgBg with the six vertices A
forming an octahedron and the eight capping vertices B at the corners of 2 cube. This is a
configuration frequently found in crystal structures, A notable example is as the MogSg
ciuster in PbMogSg (one of the so-called Chevrel phases). The same cluster is often found
in Nb and Mo halides; in NbgI11, Nbelg clusters are linked by Nb-I-Nb bonds to produce
overall stoichiometry Nbglzlsn = N beli].

If just four (non-adjacent) faces of an octahedron are capped with tetrahedra a
“supertetrahedron” as shown in Fig. 5.18 is produced. If the smali tetrahedra are centered
by T and the octahedron vertices are X and the capping vertices ¥, the stoichiometry is
T4Xg¥4. A molecular example is provided by the molecule (Ge486Bry. These units are also
familiar as P401¢ and P4S1¢ molecules, and as the complex anions [P4N10]10- in LisP;N;
and [SigS{p}*- in Na;8iz§5.1

Fig. 5.18. A “supertetrahedron” cluster of four tetrahedra.

Joining supertetrahedra (with ¥ = X) into a three-dimensional network by sharing the
four outer vertices results in stoichiometry T4XeXas = TX;. This is the situation in

INote that P40;g and [P4N;0]'?" are isoelectronic as are P48 10 and {SigS1ol%. Tn every case there are
80 valence electrons.
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compounds such as Znly and Be(NHo),. . ‘ .
Clusters of condensed {T}X4 tetrahedra sharing vertices are very common in crystal
structures. A pair of such tetrahedra with one common vertex hz}s stmch}ometry _TgX-,r, and
is found in oxide chemisiry (especially, but by no means exclusively) with T=51, Pand S
(the compounds are often called pyrosilicates, pyrophosphates and .pyrosul.fates
tespectively). It is rare for the T-X-T link to be linear, but an example occurs in the mlperal
thortveitite, Sc28i07. SiPy07 is an elegant example of a structure made of linked {Si} Qg
octahedra and P207 double tetrabedra. CloO7 provides an cxa:r'apie of a neutral cluster. .
Larger clusters of tetrahedra are also common and we give some exar.nples of their
occwrrence in silicate minerals. Rings of n tetrahedra sharing \{ertlceg (Fig. 5.19) have
stoichiometry TXay, ; for silicates the cluster has forml charge_ [§1n03,1] -, . o
Common stoichiometries are » = 3 {as in benitoite, BaTiSi3Og), .4 (as in kainosite,
CapY2{S8i¢012}{CO3)-H20) and 6 {(as in dioptase, Cl:lSin;-HgO = Cu5816013-§H20). oy
Rings of corner-connected tetrahedra are “flexibie” and the cc_)n_formatlon fogn is
determined in part by the T-X-T angle which usually has a characfenstlc value for given T
and X (about 145" for §i-0-5i and 128" for Ge-O-Ge). _F1g. 5.19 }llustratcs some extreme
configurations of three-membered and four-membered rings :and gives the T-X-T angles ﬁor
regular tetrahedra. Not surprisingly, three-membf:red rings are more common or
germanates than for silicates. A special case is the linear chain {n = «) which occurs in
many important minerals (such as enstatite, MgSiOa).

151.8°

Fig. 5.19.. Symmetrical configurations of rings of regular (T} X4 tetrahedra. Numbers are T-X-T angles.

Double rings of tetrahedra are also common in silicates. These are madg by fu.rthz?r
corner sharing to produce stoichiometry T9,Xs,. The n = 4 member of this ffmulyz:)s
obtained by fusing tetrahedra to the eight triangular faces of a cuboctahedron (Fig. 5.20,
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middle) so that the Ty array is a cube. For regular tetrahedra the maximum 7-X-T angle is
148.4°, A nice example of the occurrence of this cluster is as [SigO90]8- units in steacyite,
KNaCaThSigOzq.

Fig. 5.20. Left: a T4T"4X17 cluster. Middle: a TgX3q cluster obtained by capping the triangular faces of
a cuboctahedron with tetrahedra, Right: a similar cluster with alternating tetrahedra of two different sizes,

Many compounds with vertex-sharing tetrahedra have two (or more) kinds of tetrahedra
of different sizes. For example, there known many analogs of silicates with a framework
such as AIPQ4 with alternating {A1}0, and {P}O4 tetrahedra. It is interesting that if the
centers alternate in a T4T"4X5q cluster as shown on the right in Fig. 5.20, the maximum
T-X-T’ angle is still 148.4° for regular tetrahedra. '

A second kind of cluster (T4T'4X17) of eight vertex-sharing tetrahedra occurs in
Naj0BesSis017. This is shown on the left in Fig. 5.20; the {Be} Oy tetrahedra are the inner
ones (darker shaded). With regular tetrahedra (which must be congruent) the 7-X-T angles
are all 109.5°.

With two six-membered rings of tetrahedra, the tetrahedron centers are on the vertices of
a hexagonal prism, the corresponding silicate anion is {Si17030112- which also is found in
complex minerals.

Clusters of tetrahedra commonly occur in condensed structures such as zZeolite
frameworks with overall stoichiometry TX7. When describing the topology of such
structures, it is commen to omit the arions and to represent clusters such as TpXag and
T12X30 as cubes and hexagonal prisms respectively, and to describe the structure as a
linkage of such units. Examples will be found in Chapter 7.

5.2.2 Clusters of octahedra

Discrete and linked clusters of octahedra are found in great variety in the chemistry of the
oxides of the early transition elements (particularly Nb, Mo and W) and we give only a few
simple examples of them here. The discrete clusters are usually anionic and referred to as
Isopolyanions if they contain just one kind of metal atom (i.e. one metallic element) and
heteropolyanions otherwise. | :

IFor a review of such species see D. L. Kepert, Chapter 51 in Comprehensive Inorganic Chemistry,
Vol. 4. [Pergamon Press, Oxford (1973)].

%» 3
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Face-sharing in extended clusters of centered polyhedr_a is rather rare, b:;l[ p_airs of
octahedra sharing a common face are rather COMMON as anions (e.g. [W2Clo}?- w1Fh tWo
{W}Clg octahedra sharing a face) and such pairs linked by corners are a c‘?nspncuouss’
feature of many structures, Usually in such a group M;Xy, the M atcm}s move (?ff center
to increase their mutual separation. Such displacements are only possible for pairs, so thfjtt
longer chains of centered octahedra sharing faces are less common uriless thci clulstcr is
stabilized by metal-metal bonding through the shared face. T1.1c anti-structure (w1Fh the
roles of metal and nonmetal reversed) is found in RboOg in which there are pairs of
{O}Rbg octahedra with metal-metal bonding between the clusters. ] .

The dihedral angle of a regular octahedron is cos~1(—1/3} = 109.47° so that if three meet
at a common edge, there will be a small gap between some of the faces'. However three can
meet at a commeon edge with three pairs of adjacent faces shared if the (‘)ctafhedra are
distorted to make the angle between shared faces 120° (Fig. .5.21?. Th('% stoichiometry is
now M3X11. Such clusters (linked by sharing edges) may be identified in the structure of
Nb3Tey. The anti-structure cluster occurs in oxides SUCl’.l as Cs1103 and Rb7Cs1103.

Edge-sharing pairs of {M}Xg octabedra have stoichiometry M2X g and are rather
conmon as discrete units (e.g. NbCls = NbaClyp). . ] )

With more than two octahedra joined by edges, the number Of. d.istmct topologies rapidly
becomes rather large, but generally it is the most condensed (minimum value of X/M) and
symmetrical that are of greatest interest.! o o

With three octahedra joined by edges there are three p0551b111t:es. as sl:!own m.Flg. 5.21.
The first two have stoichiometry M3X 4 and the third (on the right in the figure) has
stoichiometry M3X13. This last occurs as, for example, {TesCly3]- and (condensed b

- further edge sharing) in NbaClg.

Fig. 5.21. Left: three distorted actahedra sharing faces and a common edge. Right: the three distinct ways
of linking three octahedra by sharing edges only.

For four octahedra joined by edges, there are eight possibilities with stoichiometn.es
ranging from M4X:g (five cases), through MaX 7 (one case), to M4X 14 (two cases). Fig.
5.22 illustrates the two M4X6 isomers. In the first the centers are coplanar, and. fall on the
vertices of a 60° rhombus, so we call it the rhombic isomer. In the second isomer the
centers form a tetrzhedron so we call it the tetrahedral isomer. The second cluster can also

YFor a discussion see P, B, Maore, Amer. Mineral. 55, 135 {1970).
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be described as consisting of four octahedra sharing faces with a central tetrahedron. It is
interesting that Te4Cly5 has the tetrahedral structure but Te4I1g has the structure of the
thombic isomer [in these clusters Te is “off center” i
coordination often found for Te
the anion [W4Qy4]8-.

Fig. 5.22. The two T4X| g clusters of four edge-sharing octahedra. Left the rhombic isomer, Center and
right: two views of the tetrahedral isomer.

The M4X;6 unit may be linked by tetrahedra in three mutually perpendicular directions to
give a cubic MyT3X 6 framework as shown in Fig. 5.23. Examples of compounds with
structures based on this framework are Cs3MoyP3012 (M = Mo, T = P) and minerals of
the pharmacosiderite family such as BaM4A53O[2(OH)4--5H20 (M = Al or Fe, T =As),
and K3Ge70;5(0OH)-4H,0 (with M = ViGe and T = vGe),

Fig. 5.23. A part of the M7X6 ffeimework of pharmacosiderite.

In Fig. 5.24 we illustrate the most symmetrical and condensed cluster of six edge-
sharing octahedra with stoichiometry MgX 19 which we call, for reasons that should be
obvious, a “superoctahedron.” This is found as the anion [MogO1512-. Also shown in the
figure is a five octahedron cluster M5X 13 which is also a common anion configuration.
Two of the five-octahedron clusters can condense by sharing four vertices to produce the -
configuration found in the [W10032]% ion. Clearly the possibilities are endless.
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Fig. 5.24. Left: A “superoctahedron” MgX1g. Center: a cluster MsX13. Right: a cluster M1gX2s.

The structure of NbzFs is a nice example of a th:clc—dimensic_mfﬂ structure built up fr9m
superoctahedra (for crystallographic data see Appcndlx 5). In this instance the cet:‘nt.rai amo:;
is missing so there are {Nb]Fs square pyramlfis ar}d we really .have a clus:tt_ar o sg squz;r
pyramids (Fig. 5.25). The cluster composition is NbgF 12_F 6 where F' is on the 0;11 er
vertices of the superoctahedron. Sharing these outer \{ernces proql}ces an open 't ref
dimensional network of corner-connected clusters with composition NbgF;gll’ G,Qh—
NbgF15. The formula is usually given as NbgF1s (rather than NbyFs) to emphasize the

oups in the structure
pre;‘zﬂ;i;i}iﬁg %irescpription of this beantiful structure we note that the topolqu of the
corner-connected network of (super) octahedra is that of ReQs3 (see p, 170) and in NbyFs,
two such networks interpenetrate. Fig. 5.25 shows a f-ragment of one network.

Three points concerning this structure might be might be notejd: (a) thcl Nb atomslfom:
an empty Nbg octahedron, a very common feature of the chemistry of niobinm in owed
oxidation states, (b) we describe the NbgFyg part of t}ne cluster as an edge-cappe
octahedron cluster in § 5.2.4, and (c) the F atoms and the sites (empty) at the center of th
Nbg octahedra combine to form cep {§ 6.1.3).

Fig. 5.25. Four of the corner-connected clusters of square pyramids in the NbgF) 5 structure.

Frameworks of vertex-sharing octahedra with stoichiometry MXg/2 = MX3 are rat!'xcr
important, and some will be discussed in § 5.3.4 and in Chapter 6. Here we call attention
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to a finite group, which may be considered as composed of four octahedra sharing non-
contiguous faces of a central octahedron. In Chapter 6 we call this a “pyrochlore” unit; it is
illustrated in Fig. 5.26. (Compare the supertetrahedron, Fig. 5.18.) As the dihedral angie
of an octahedron is 109.48°, the angle between the unshared faces of the outer octahedra
and the adjacent face of the empty octahedron is 360° — 2 x 109.48° = 141.04°; which is
close to the dihedral angle of a regular icosahedron (138.18°). This means that if the
remaining four faces of the central octahedron of the pyrochlore unit are capped with
Icosahedra, the assembly will fit together rather stugly. Such units are an important feature

of some intermetatlic structure types (with the icosahedra and octahedra very slightly
disterted so that they have common vertices).

Fig. 5.26. The “pyrochlore unit” of four vertex-sharing octahedra.

Finally, if three regular octahedra share a common vertex, but without edge sharing, the
shortest inter-octahedron distance between vertices is, of necessity, less than the
octahedron edge length. Such configurations occur in the structure of compounds such as
pyrite, FeSy, In this structure {FelSg octahedra have all their vertices shared in this way
{so the stoichiometry is FeSg3) and the short distances correspond to S-S bonds. The
octahedron edge lengths are 5...8 = 3.07 and 3.32 A and the S-S bond length is 2,18 A.
Fig. 5.27 illustrates a fragment of the structure (for crystallographic data see Appendix 5).

Fig. 5.27, Left: fragment of the pyrite, FeSy, structure showing three {Fe}Sg octahedra with a common

vertex. Heavy lines represent S-S boads. Right: the anion in Maus’s salt shown as {Fe}Og octahedra and
(8}0y4 tetrahedra.

Another example of three octahedra sharing a common vertex is provided by the
complex anion Fe30(S04)6(H20)35 (also shown in Fig. 5.27) which occurs in the mineral
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metavoltine and in the compounds known as Maus’s salts.! The {Fe}Og octahedra are
fairly regular with edge lengths of 2.73-2.90 A, The edge lengths in the {5)O4 tetrahedron
range from 2.31-2.37 A.

5.2.3 Octahedra plus tetrahedra: Keggin and spinel units

There are very many niobates, molybdates and tungstates {and some other related
oxides) of various dimensionalities that can be desc_:nbed as assemblies of {M]O4
tetrahedra and {M}Qg octahedra. An adequate description of. all knc?wn structur_es wo1:1id
require a rather large book, Here we describe two particularly interesting clusters involving

- four groups each of three edge-sharing octahedra about a central tetrahedron.

First we examine the M3X 3 cluster of Fig. 5.21 a little more closely_. The cluster has
symmetry 3m which means that the two faces normal ¢o the 3 axis are different, and have
3-fold symmetry as illustrated in Fig. 5.28.

Fig. 5.28. Two views of the M1X;1 cluster in projection down the 3 axis.

Examination of the figure will show (on the right) that one face of the cluster F:onsmts of
a centered hexagon of vertices, so that the cluster can cap he)_(agonal faces of a polyhedron,
but as the symumetry is only 3-fold this can be done in two different ways. The clusters we
now consider invelve capping of the hexagonat faces of a truncated tf:trahedron.

In the first case, the clusters of three octahedra share vertices with each other, to form
stoichiometry M12Xa0. In this structure, shown in Fig. 5.22, four central X atoms form a
tetrahedron which can be centered by a T atom to give stoichiometry M 127X 40.

This unit is vsually named after J. F. Keggin who first determined the .structure of
phosphotungstic acid which contains a [W12PQ4p]3- group.? The same grouping has been

1These have the general formula MsFe30(S04)6-rH20 with M = .Ll’ Na, K,‘ Rb, Cs, NH4:11<1]‘T1.
Those who object to trivial names might note thas Structure Reports lists the anjon under the heading
“iri -0%0- -U-sulphato-riferrate(TID) dihydrate.™ ' .
mgﬂrl;?spi;xgot?z;l X—riy diffraction in 1934yand was a remarkabie four de force f_or the tlgle; lqcatln.g:
light atoms () in the presence of heavy atoms (W) is diff?lcult even with the greatly improve hec;m%minr
available today. The formula for phosphatungstic acid is H3W121?04g-6H20 but it 1sfper aps 1eic:l
written (H5072)3W 2PQ4g as it contains HsO2% groups. These Provlde & rare exar{lplé oMa ;yt:;l;e;t @
(linear) hydrogen bond O-H-O, linking two water Iqolecules, with d(O-I—D =121 A .b . Bry mm-kablé
Acta Crystallogr. B33, 1038 (1977)]. The record in 1995 for cluster. size appears to be a;eM"n .
toroidal exoanion with approximale 7-fold rotation symmetry and contatning 154 Mo atoms [A. Miiller
al., Angew. Chem. Int. Ed. Engl. 34, 2122 (1995},
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identified in numerous anions, particularly with M = Mo or W and with 7' = P, As or Si.
The M atoms are at the vertices of a cuboctahedron. The complex ruineral Zunyite contains

condensed Aly30y4y units with the same struciure, and the Ogq arrangement also serves as
structural units in some complex intermetallic structures,

Fig. 5.29. The Keggin cluster, M

12TX40. On the left only six of the twelve octahedra are shown,
Compare Fig. 5.30.

If the three-octahedron units of the Keggin structare are rotated by 60°, they are then
joined by edge sharing in the more compact cluster shown in Fig. 5.30. The M atoms are
now at the vertices of a truncated tetrahedron. We call this structure, which has the same
stoichiometry as the Keggin structure, 2 “spinel unit” because the important spinel
{MgAl;04) structure can be considered as made up of a condensation of such units. Partly
hydrolyzed Al salts have been found to contain [Al1304(OH)4(H203; 217 units with this
structure. It is of interest that dehydration of hydrous atumina at low temperatures produces
so-called “yalumina” (used as a polishing powder) which has a spinel-related structure.

Fig. 5.30. The “spine] cluster.” On the left only six of twelve octahedra are shown. Compare Fig. 5.29.

5.2.4 Edge-capped clusters
Capping the edges of polyhedra with additional vertices produces what can be

considered as clusters made of polyhedra and triangles. We can generate many useful
groupings in this way. Recall that in § 5.1.10 we derived polyhedra with divalent vertices
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by edge-capping polyhedra (tetrahedra). - o

yCagpingplghe six edges of an Ay tetrahedron with B produces a cluster A4Bg. This is
shown in two ways in Fig. 5.31, first as an edge-capped tetrahedron, 'fmd sccond_ as a Bg
octahedron with A centering four of the faces. The latter emphasizes 'thc'tnangular
coordination of A by B. An example of its occurrence is as the CusSg grouping in complex
anions such as [Cug(SPh)s]2-.

Fig. 5.31. Two views of an edge-capped tetrahedron.

Our second example is obtained by capping the edges of an Mg octahedron wﬂ;h X att?ms
to produce stoichiometry MsX |2 as shown in Fig, 5.32.. In. the figure, tllle capping vertices
have been placed so that M is in square planar coordination by X. This grouping is \1&:1’{
common in the halides of early transition metals, both as neutral mpl(?cules (as mthC ztg
PtsCly2) and as complex cations (as in [NbﬁCllg']’H', n=234) A sm}ﬂa‘_r clu?te}:, I\L;(t ws1i
more nearly equilateral triangles, forms the basis of an elegant description of the }115 (31
structure in which Mg octahedra share opposite faces to form columns and the non-share
edges (six per octahedron) are capped by further Mn.,

Fig. 5.32. An edge-capped octahedron.

As a final example of edge-capping we describe the l?uild-up of the structuraii unit .(:f
¥brass (CusZng). In Fig. 5.33 where we start (top left) w:t,h a Zng tetrabedron an catp llls
faces with Cu (at the vertices of an “outer tetrahedron”™) to produce a C}14Zn4 S eha
quadrangula. Next (top right) we cap the six edges of the Z:.14 tetrahedron with Cu (at the
vertices of an octahedron) to preduce the cluster CujgZng. Finally (bottom left) we cap the
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12 outer edges of the stella quadrangula with Zn arriving at a cluster CujgZnyg. The crystal
structure is made up of a body-centered cubic array of such discrete clusters. It might be
noted that the 12 outer Zn atoms are at the vertices of a distorted cuboctahedron (bottom
right in the figure) with four small and four large equilateral triangle faces; the remaining
faces are rectangular instead of square. Such a distorted cuboctahedron (with tetrahedral =
43m symimetry) is met in other intermetallic structures (see e.g. Fig, 6.77, § 6.8.6).

Fig. 5.33. Build-up of the gamma brass structure (see text).
5.2.5 Clusters of truncated tetrahedra and icosahedra

Some complex crystal structures (with over a thousand atoms per unit cell in some
instances) can be decomposed into clusters of truncated tetrahedra andfor icosahedra,! We
describe one relatively simple structure to illustrate the kind of groupings found.

The dihedral angle between the hexagonal faces of a truncated tetrahedron is the same as
that of a regular tetrahedron [cos-1(1/3) = 70.53°] so with just a minor distortion a group of
five can share faces around a common edge (Fig. 5.34). We mentioned above that an
icosahedron can be considered as made up of twenty tetrahedra with a common vertex (the
center of the icosahedron). The tetrahedra have three edges of d {the edges of the

IFor beautifully iliustrated descriptions of these structures in terms of clusters of truncated tetraheda and
icosahedra, see S, Samson in (a) Developments in the Structural Chemistry of Alloy Phases, B, C.
Giessen, ed. Plenumn Press, New York (1969); (b) Structural Chemistry and Molecular Biology, W. H.
Freeman, San Francisco {1968). For alternative descriptions see also S. Andersson in Structure and
Bonding in Crystals, M. O’Keeffe & A. Navrotsky, eds. Vol 2. Academic Press, New York (1981) and B.
Chabat, K. Cenzual & E. Parthé, Acta Crystallogr. A37, 6 {1981).
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icosahedron) and three of 0.95d (the distance from the center of the icosahedron to one of
its vertices). Perhaps less obvious is the fact that twenty truncated tetrahedra will fit around
a central icosahedron of edge d if nine of its eighteen edges are J and nine are 0.954. Fig.
5.35 shows an icosahedron sharing a triangular face with a truncated tetrahedron. The
longer edges of the truncated tetrahedron are those of the shared face and the opposite
hexagon,

Fig, 5.35. Left: a truncated tetrahedron and an icoéahedron sharing a face. Right: twenty truncated
tetrahedra around a central icosahedron.

Figure 5.35 also shows the complete assembly of twenty truncated tetrahedra sharing
faces with a central icosahedron. The twenty hexagonal faces form a regular truncated
icosahedron. The pentagonal faces of the truncated icosahedron are capped on the inside
producing depressions that are pentagonal pyramids. The cluster so far described contains
84 vertices (12 for the central icosahedron, 60 vertices of the truncated icosahedron and the

" 12 apices of the pentagonal pyramids.

This unit occurs in a number of intermetallic compounds {some approximate
compositions are LizAlsCu, NazAu3Sn and LizZn3Ga) with the icosahedron and the 20
truncated tetrahedra centered, so the cluster now contains 105 atoms. To build up the
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crystal structure, the truncated icosahedron unit is put inside a truncated octahedron so that
eight of the hexagonal faces of the truncated icosahedron are coplanar with the (larger)
hexagonal faces of the truncated octahedron as shown on the left in Fig. 5.36. The
resulting unit (shown on the right in the figure) can now be packed to fill space with their
centers on a body-centered cubic lattice (see § 7.3.10 for a discussion of space filling by
truncated octahedra). To count atoms in the unit cell, note that there two units per unit ceil
and that 48 atoms (those in the hexagonal faces of the truncated octahedron) of each 105

atom cluster are common to two units. Accordingly the number of atoms in the unit cell is
2% (105 - 48/2) = 162,

Fig, 5.36. lustrating how a truncated icosahedron fits into a truncated octahedron with 48 of its vertices
in the hexagonal faces of the truncated octahedron.

Note that in increasing distance from the atom at the center of the cluster; this central
atom has 12 neighbors at the vertices of the central icosahedron, 20 at the vertices of a
pentagonal dodecahedron (these correspond to the centers of the truncated tetrahedra), 12
more at the vertices of a larger icosahedron (the apices of the pentagonal pyramids), and 60
at the vertices of the tmincated icosakedron: all fitted into a trancated octahedreon which is a
space filling solid. : '

Of course in analyzing this fascinating structure more completely we would have to
inguire into the coordinations of all the atoms. It transpires that the near neighbors of each
atom fail at the vertices of one of the Frank-Kasper polyhedra.

The icosahedron is also a conspicuous feature of the structures of elemental boron and
boron-rich compounds. The most stable form of the element is the so called
“f-rhombohedral boron” which contains 105 atoms in the primitive cell. The truncated
icosdhedron appears in this structure also. Fig 5.37 shows a central B}y icosahedral unit
Joined to twelve Bg pentagonal pyramids to give a Bgq unit,

How Kepler would have loved this structure! His concept of nested polyhedra, which so deluded him
aboud the sizes of planetary orbits, perhaps comes inte its own here. We can’t resist quoting [A. Koestler's
translation in The Sleep Walkers, MacMillan, New York (1959)] from Kepler's Mysterium
Cosmographicum: “1 saw one symmetrical solid after another fit in so precisely between the appropriate
orbits, that if a peasant were to ask you on what kind of hook the heavens are fastened so that they don't
fall down, it will be easy for you to answer him.” Substitute “atoms” for “heavens.”

‘
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If an icosahedron is cut in half through & plane normal to a five-fold axis, the six vertices
of each half will form a pentagonal pyramid. In this sense a pentagonal pyramid if‘ ha?f of
ar icosahedron. In B-rhombehedral boron each Bya cluster (one per primitive cell) is joined
to six others by making additional icosahedra from a juxtaposition of pent.agonai prisms of
the neighboring Bg4 units. The other six pentagonal prisms (around a waist of the cluster)
are united with By units (alse one per primitive cell) constructed from two sets of three
face-sharing pentagonal pyramids (B groups—see Fig. 3.37) and one additional atom.
The central icosahedren is therefore surrounded by an icosahedron of icosahedra.

Fig. 5.37. Left: the Bgy cluster in f-thombohedral boron. Top right: a B o group made from three f:?ce-
sharing peniagonal pyramids. The B group in 8 rhombohedral boron is made from .two.Bm groups united
By an atom at a center of symmetry. Bottom right: a Byg cluster of three face—'sharmg icosahedra formed
when the B1p group is capped by pentagonal pyramids (one from each of three different Bgy clusters),

Note that although the structure of S-rhombohedral boron is usually described in terms
of linked and face-sharing icosahedra, the Bgq cluster also contains 20 truncated tetrahedra
as shown in Fig. 5.35.

It is remarkable that so stable an element (its heat of atomization is second ounly to that of
carbon among non-metallic elements) should have so COﬂllplex a structure—there are 15
crystallographically-distinct B atoms. Boron also has a simpler structure (known as o-
rhombohedral boron) in which all the atoms are at vertices of icosahedra.

5.3 Circle packings and tilings of the plane
An extremum problem of inferest in crystal chemistry is related to the problem of “points

on a sphere” mentioned above (§ 5.1.9). Tt can be stated in the following way: What is.the
arrangement of non-overlapping equal circles on a plane such that the greatest possible
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fraction of the area of the plane is covered; i.c. what is the closest circle packing?

The answer s familiar to anyone who has played with arranging coins on a table top.
Each circle is in contact with six others and their centers are at the poinis of a hexagonal
lattice. Equivalently we may say that the centers lie on a 36 net. If the circles have radius r,
then their area is mr2 per circle; the edge of the hexagonal cell is 2r and its area is
{(¥3/2)(2)2. Thus the fraction of the plane covered is (area of circle/area of unit cell} =
w12 = 0.907.

In anticipation of similar questions in three dimensions we may also ask about circle
packings in general, We define a stable circle packing to be one in which each circle has at
least three neighbors, with the points of contact not all on the same semicircle, We direct
attention {irst to arrangements of equivalent circles (i.e. related by a symmetry operation).

By a tiling of the plane we mean a covering of the plane, by (not necessarily convex)
pieces or tiles, Qur interest is mainly in periodic tilings by convex polygons (i.c. polygons
with all interior angles < 180°). In the context of crystal structures, the vertices of a tiling
correspond to ators and the edges (sometimes) correspond to bonds between atoms. The

. Pattern of vertices and edges of a tiling is often called a net, especially when the emphasis
is on the topology of the structure. We tend to use the term “net” and “tiling” (or
“tessellation”) interchangeably in referring to two-dimensional structures. We have earlier!
given a comprehensive account of two-dimensional nets; in this chapter (only) we refer in
several places to that work as OKH for brevity.

3.3.1 Regular dilings

The sequence 33, 34, 35 of regular polyhedra with equilateral triangles as faces leads to a
consideration of the pattern 39. Six such triangles meeting at a vertex will lie in a plane (the
sumn of the vertex angles is 360°) and in fact we arrive at the tiling of the plane with
equilateral triangles discussed above. Thus a tiling of a plane can be considered a special
case of a polyhedron in which the sum of the angles at each vertex is 360°.

Fig. 5.38. The regular tilings 36, 4% and 63. Broken Iines outline 2 unit cell of 63,

It should be apparent from a consideration of the possibilities that the only regular tilings
are 36, 44 and 62, These are illustrated in Fig. 5.38. Note that 38 corresponds to a

IM. O’Keeffe & B. G. Hyde, Phil. Trans. Roy. Soc. (London) A293, 553 (1980).
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hexagonal lattice, and that 4% corresponds to 2 square lattice. The vertices of 63, vxfhich_ we
have called the honeycomb pattern, do not form a lattice as then? are two points in a
primitive cell (Fig. 5.38). The dual of 36 is 63 and vice versa and 4% is self dual.

5.3.2 Archimedean tilings .

Tilings with one kind of vertex, but more than one kind of regular polygpn as tile, are
called Archimedean, or semi-regular, by analogy with the names }Jsed for finite polyhedra.
The eight possibilities are listed in Table 5.4 and illust.rated in f’lg. 5.39. In thfa table v, ¢,
and f are the number of vertices, edges and faces per unit cell (it is a good exercise to verify
these numbers from the drawings). These quantities are related by v-et f =0, A‘dso
listed in the table is the density (fraction of the plane covered) of the c1rc!e packing obtained
by placing equal circles in contact and with their centers at the vertices (another good
exercise is to verify these also).

Table 5.4. The Archimedean tilings. v, e and fare the numbers of vertices, edges and faces {polygons)
per unit cell.

symbol symmetry v € f density
34.6 . pb 6 15 9 0.7773
33.42 c2mm 4 10 6 0.8418
32434 pdgm 4 10 6 0.8418
3.46.4 pbmm 6 12 6 0.7290
3.6.3.6 pomm 3 6 3 0.6802
4.82 phm 4 6 2 0.5390
3.122 pomm 6 9 3 0.3907
4.6.12 pomm 12 | 18 6 0.4860

Some properties of these patterns that are of interest are mcntioned here. 34.6 exlsGts31161
enantiomorphic forms {recall the polyhedra 3.4 and 345 w1'th the same property}. 3.6. .d
has all edges equivalent so it is quasiregular (recall the quasnregula_r polyhedra 3.4.3.4 an
3.5.3.5). The honeycomb, 63, can be derived from ?{6 by removing 1/3 of the vert‘nce;
{centering the hexagons in 63 recovers 36). In a similar manner 3.6.3.2 can be. c?er:ve
from 36 by removing 1/4 of the vertices, and 34,6 can be derived from 3% by omitting 1/7

ces. .
4 til‘-l}?evgat;ls of the Archimedean tilings are tilings of the plane with one kind of (irregular)
tile and more than one kind of vertex. .

Tilings with one kind of vertex and composed o'f polygons with equa} edges co_rrespo_ng
to packings of equivalent {i.e. symmetry-related) circles. As the ?bove list (ccimblpe .w1tt]
the regular tilings) is complete, we can immediately answer questions such as Wh]ch}s the
least dense such circle packing?” Answer: 3.122. Unfortunately Nature is not so kind in
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simply providing the answers to similar questions (now concerning sphere packings) in
three dimensions. -

We will find 324.3.4, 3.6.3.6, 3.4.6.4, and 4.82 particularly useful in describing the
patterns of layers of atoms in erystal structures and 4.82 and 4.6.12 figure prominently in
Fhe derivation of three-dimensional nets in Chapter 7. We met 3.6.3.6 in Chapter 1, where
1t was called the kagome pattern. 3.4.6.4 is often called HTB as explained in § 5.3.4.

3.122

Tig. 5.39. The Archimedean tilings. Top row: 34.6, 33.42 and 32.4.3.4. Middle row: 3.4.6.4, 3.6.3.6
and 4.82. Bottom row: 3,122 and 4.6.12. Unit cells are outlined with broken lines.
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5.3.3 Relationships between tilings

-'!.A,g
YA
Sl /N )

,_ \h_g.‘ _
' EO“é

Fig. 5.40. Illustrating how 3.6.3.6 (filled circles) can be transformed into 3% (open circles) and vice
versa. Note how 39 is obtained by rotation {by 30°) and dilation (by £3%) of the sides of the triangles of
3.6.3.6 {shown as lightly shaded in 35). The numbers of open and filled circles in the diagram are the same.

Fig. 5.41. lilustrating how 32434 {fitled circles) can be transformed into 4_4 (open circles) and vice
versa. 4% is obtained by rotating (by 15%) the squares of 32.4.3.4, or alternatively by converting pairs of
triangles (rhombuses) lo squares. The numbers of open and filled circles in the diagram are the same.

it is of interest that the arrangement 33.42 (to take an example) can be continuously
deformed to an arrangement with density arbitrarily close to that of 36 (which has the
highest possible density) while keeping five neighbors.! For this reason the interesting
question is usually that of finding the leass density for a given number of néighbors
{coordination number). It is a common mistake when considering the analogous problem of

IWe will see other examples of these kinds of transformation later (Chapter 6). The present one is
accomplished by shearing every second layer of 33.42 so that the squares are transformed into rhombuses.
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packing spheres in three dimensions to ask for the maximum density for a given number of
neighbors, whereas, for similar reasons, it is the least-dense arrangement that is of interest.

Fig 5.40 shows, for example, how 3.6.3.6 (the least dense packing of equivalent circles
with four neighbors, see Table 5.4, p. 165) which we met in Chapter 1, transforms to 36
(the densest packing of eguivalent circles). This transformation, which can be effected by
rotating triangular groups of vertices, will be found to occur in sequences of related crystal
structures.

Another transformation of importance relates 44 and 32.4.3.4. Now square groups of
vertices are rotated as shown in Fig. 5.41. _ .

We have seen (§ 2.5.7, p. 53) that converting a square to a pair of triangles transforms
the polyhedron 3.4.4.4 (i.e. 3.43) to 34 4. and transforms the polyhedron 3.4.5.4. to 34.5.
The same operation converts the plane tiling 3.4.6.4 to 34.6. (see Fig. 5.72, p. 201).
These three transformations can equally be described by rotations of a polygen (square,
pentagon and hexagon respectively). We return to this topic in the Notes (§ 5.6.12).

5.3.4 Tilings including pentagons, and “bronges”

The plane cannot be tiled with regular pentagons or with combinations of regular
pentagons and other regular polygons. Flowever it can alimost be covered with regular
pentagons, squares and triangles and this is good enough for nature, if not for
mathematicians. Fig. 5.42 shows, at the top, two such packings that almost cover the plane
{in the pattern on the left 96% of the plane is covered). At the bottom are tilings with
irregular polygons derived in an obvious way from these arrangements. There are two
kinds of vertex in each pattern. At the first, a 3-gon, a 4-gon and two 5-gons meet; if these
were regular polygons the sum of the angles would be 366°, larger than 360° by six
degrees. At the second kind of vertex, two 3-gons and two 5-gons meet and now the sum
of angles for regular polygons is 336°, smaller than 360° by 24°. As the two kinds of
vertex occur in the ratio 4:1, the sum of the excesses for the first vertices equals the sum of
the deficits for the second vertices. This is a useful general rule that allows us to see what
combination of vertices, and in what proportion, might oceur in a tiling.

The tilings shown in Fig. 5.42 occur in a variety of contexts. The one on the left, which
has symmetry c2mm, we call the $-U30g net because of its occurrence as an O net in that
compourd (it also occurs as atom layers in intermetallic compounds). This net can serve as
the “parent™ of a large number of derived triangle-quadrangle-pentagon nets (see OKH,
§ 10). The tiling on the right, which has symmetry pdgm, we call the MnzHgs net as the
Hg atoms in that compound fail on such a net.

These tilings have four edges meeting at each vertex; when we refer to them as nets we
say that they are 4-connected. In a 4-connected net with, per unit cell, na triangles, ng
quadrangles and n5 peniagons, it is easy to show (see Notes, § 5.6.11) that n4 can have
any value and n3 = nis. In the two nets above ny =ns =4 and ng = 2. .

We digress for 2 moment on the structure of MnyHgs {for crystallographic data see
Appendix 5) which serves to illustrate some instructive points, Adding translations in the
third direction and mirror planes {normal to this direction) to the two-dimensional space
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group p4gm generates the three-dimensional group P4/mbm. In MngHgs, whi{_:h.has this
symmetry, the Hg atoms lie on the mirror plane at z = 0 on the MnpHgs net; this is caile'd
the primary net of the structure. The Mn atoms are on the mirror plane at z = 1/2 and lie
over the centers of the Hg pentagons. The net of the M atoms, is called the secondary net,
and in this instance is 3%.4.3.4 (which also has symmetry p4gm). Thus the MI‘.legs
structure, and indeed many others, are succinctly described in terms of a.stackmg of
alternating primary and secondary nets. In many instances, the secondary net is one of tt_:e
regular or simpier semiregular ones. Care should be taken to distinguish a d.ual net (in
which the centers of all the polygons of the original net correspond to vertices of the
derived net) from a secondary net (in which the centers of only the larger polygons of the
original net correspond to vertices of the derived net).

Fig. 5.42. Top: “almost” covering the plane with regular triangles, squares and pentagons of squal edge.
Bottom: the derived tilings {nets). On the left is the f-U30g net and on the right the MnaHgs net. The
secondary net of the MnaHgs net is indicated with fifled circles.

A new 4-connected net can be derived from a given 4-connected net by placing veriices
in the middle of each edge of the old net, and joining them by cdgcs. to make a quad.rang.}e
surrounding the old vertices, which are then deleted. The reader is invited to do this with
the MnzHgs net illustrated in Fig. 5.42. The new net we call the TTB net for a reason

given below.
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"To most people, the term “bronze” refers to the beautiful copper-tin alloy, but solid state
chemists also use the term to refer to compounds of variable composition involving
{usually} alkali metal atoms combined with an early transition metal oxide. The tungsten
bronzes, My WOj3 (here M is an alkali metal} have been known for nearly 200 vears, and
are so named for their striking colors and metallic luster. Their stroctures also illustrate a
use of plane nets in crystal chemistry, so we digress a little on this topic.

Fig. 5.43. Top left: a clinographic projection of a fragment of a cubic array of corer-connected octahedra,
On the right of that the same structure (but with more octahedra) is shown in projection. Top right: the
hexagonal tungsten bronze structure sesn in projection. Bottom left: a similar view of the tetragonal
tungsten bronze structure. Bottom right: The BagMgTa;gOsq structure (large circles Ba, Mg not shown).

The structure of W03 is based on a simple corner-conpected array of {W}Qg octahedra
as shown schematically in Fig. 5.43 [this structure in its most symmetrical (cubic) form is
usually called ReO3]. When Na metal is added to W03, the metal atoms enter the cavities
{actually cuboctahedra) in the structure, in the position shown as a large filled circle in the
figure. The structure, seen in projection down a cube axis, is illustrated in Fig. 5.43; the
shaded squares are octahedra seen in projection. Open circles are O atoms around the
octahedron “waist”; let’s imagine them to be in the plane of the paper. Smnall filled circles
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then represent O atoms above and below the plane completing the octahedron about W (not
shown). The Na atom positions, also above and below the plane, are shown by larger filled
circles. The net of the O atoms in the plane is clearly 44. If every Na site were occupied, the
composition would be NaWOs3 and the structure is called perovskite.!

If, instead of Na, Cs is used to form a tungsten bronze, a different structure is obtained

(top right of Fig. 5.43). It is still based on an array of cormer-connected {W}Og octahedra, -

but now the pattern of O atoms in the plane is 3.4.6.4. The large cavities in the structure.are
over the hexagons of this net and if they are all filled, the composition is CsW30g. The
structure is the hexagonal tuagsten bronze (HTB) structure, and for this reason 3.4.6.4 is
often called the HTB net. Note that the W atoms fall on a 3.6.3.6 net.

With K atoms another structure with compesition K3W5015 is obtained.2 Now the main
oxygen atom net is made up of triangles, quadrangles and pentagons, and is in fact the net
we derived from the MnyHgsg net earlier. The structure is that of tetragonal tungsten
bronze (TTB), so we call the net the TTB net (see bottom left of Fig. 5.43). Recalling how
we derived this net it should be clear that the W atoms (in the octahedra, hence centering the
squares of the projection) are on the MnzHgs net. Note that the tungsten compound with
mixed valence [W(V) and W(VI)] is a metallic conductor, but many insulating {and
colorless) compounds have been made with the same structure and they are often also

. referred to as “bronzes.”

Another 4-connected net may be derived from the f-UaOg net in the same way as the
TTB net was derived from the MnzHgs net (i.e. by putting new vertices in the middle of
edges and removing the old vertices). This new net (Fig. 5.43, bottom right) is found as
oxygen layers in, for example, the structure of BagMgTa | gO3p which is based on corner-
sharing {Ta}Qg octahedra. The Ta atoms are on the original 5-U30g net, the Ba atoms are
in the space over the pentagons and Mg atoms fill one-half of the space over the
quadrilateral tunnels.

The structure of K3Vs504 is based on corner sharing {V]Og octahedra and {V]O5
trigonal bipyramids; it is iilustrated in the same way as the tungsten bronzes in Fig. 5.44.
As before, octahedra project as centered squares, and now trigonal bipyramids project as
centered triangles. Again we have a 4-connected triangle-square-pentagon net, and K atoms
lic over the pentagon centers above the plane of the paper. The overall stoichiometry of a
corner-sharing trigonal bipyramid is VOss2 and that of a corner-sharing octahedron is
Vg2 As there are two trigonal bipyramids and three octahedra in the unit cell (together
with three K atoms), the cell content is 3K + 2 x VOs;3 + 3 x VOgpp = K3V5094.

The net of the V atoms in K5V3014 is also shown in the figure (note that not all vertices
are 4-connected in this instance). This is also the Pd net in the structure of Th3Pds (for
crystallographic data see Appendix 5). The Th atoms of Th3Pds are on the secondary net of
this structure (over the centers of the pentagons) which may be seen to be (slightly
distorted) 36, Thus the K1V part of K3V5014 has the same structure as Th3Pds; indeed it
is commenly found that the cation array in oxides and related materials is that of an

1The mineral perovskite is CaTiQ3 and its actual structure is a small distortion of the ideal cubic one.
2We have oversimphified the chemistry somewhat. Several structutes occur for several different alkali
atomns, and the observed structure depends on the stoichiometey as welt as the size of the inserted atom.
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intermetallic compound. The net of the V atoms in KaV5044 and of the Pd atoms in Th3Pds
also occurs as the net of the O atoms i 0-U30g so we call it the a-U30g net. Although it
may not be obvious from a comparison of Figs 5.42 and 5.44, the @-U30g net is closely

related to the B-U3Og net (see § 5.6.12).

Fig. 5.44. Left: the structure of K3Vs0y4 as corer-sharing octahedra and trigonal bipyramids. Larger
cireles are K atoms, and smalier circles are O atoms. V atoms {not shown) center the shaded octahedra and
trigonal bipyramids. Right: the @-U30g net of the V atoms {open circles) in K3Vs50)4, with the X atoms
(filled circles) on the secondary net.

Many other triangle-quadrangle-pentagon nets occur in crystal chemistry; for a review of
some of them, and their interrelationships, see OKH. '

3.3.5 Some 3-connected boron nets: AlBg, YCiBy, ThMoBg4 and YoReBg

Examples of 3-connected nets already met are 63, 3.122, 4.82 and 4.6.12. A unit cell of
4.82 contains one square and one octagon, so on average the polygons have six sides. The
unit cell of 3.122 contains two triangles and one dodecagon, so again, the average number
of sides per polygon is six. It is easy to show (see Notes § 5.6.11) that this must be the
case in general for 3-connected nets. As each edge belongs to two polygons, the number of
edges is e = 3f where fis the number of polygons. In a 3-connected net ¢ = 3v/2, where v
is the number of vertices per ceil, so f'= w/2.

In many borides, the B atoms form 3-connected plane nets with metal atoms (M) in
interleaved layers centering the polygons. It follows that the stoichiometry is MB; and the
average polygon size in the B layer is 6. The simplest case is in the structure of AlB; in
which the B atoms lie on 63 nets (as in the graphite form of carbon) with Al atoms over the
centers of the hexagons forming larger-spacing 36 nets (see Fig. 5.46 on p. 174).

In some ternary borides the B atom layer contains pentagons and heptagons (which must
oceur in equal numbers) as well as hexagons. Three common structure types containing
such layers are those of YCrBg, ThMoBy and YyReBg (for crystallographic data see
Appendix 5). The B nets in these compounds are illustrated in Fig. 5.45. Those on the left
and the right of the figure provide nice examples of patterns with symmetry p2gg. Adding
translations and mirrors perpendicular to the translations of p2gg produces the three-
dimensional group Pbam which is the symmetry of the corresponding compounds. The
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patternt in the center has symmetry cmm and the symmetry of the crystal structure is
Cmmm,

Fig. 5.45. The B nets in YCrBq (left), ThMoB4 (left) and YoReBg (right).

In each crystal structure the larger metal atoms lie over the heptagons (and the hexagons
in Y;ReBg). The smaller metal atoms (Cr, Mo and Re respectively) lie over the pentagon
centers and thus have pentagonal prismatic coordination by B. In YCrB4 and ThMoB4, the
occurrence of adjacent pairs of pentagons in the net results in a very short metal-metal
distances. Thus there is a Cr-Cr distance of 2.38 A (compare the shortest distance of 2.50
Ain the metal) in YCrBy; likewise there is an Mo-Mo distance of 2.56 A (compare the
shortest distance of 2.73 A in the metal) in ThMoB.,

5.3.6 Some bémn-carbon nets

In the previous section we described some boren layers in borides; related nets are also
to be found as boron-carbon layers. In these, it is often found that the C atoms are of lower
connectivity than the B atoms. These nets again provide some nice exercises in recognizing
symmetry.

Our first example, which occurs in the structure of LaB3Cy (for data see Appendix 5}, is
just a simple decoration of the 4.82 net as shown in Fig. 5.46. In the crystal structure,
alternate layers of the net are rotated by 90° and La atoms center the octagonal prisms, so
that the coordination of La is {La}BgCg. The La array is close to primitive cubic. Note that

" although the symmetry of one plane is rectangular (2-dimensional group c2mm}, the three-

dimensional symmetry has 4 axes and the crystal is tetragonal (space group Pa2c).

In the TbB3C structure (for crystallographic data see Appendix 5) layers of BoC alternate
with Th layers. The BaC layer is shown in Fig. 5.47. It may be considered a 3-connected
net of heptagons and quadrilaterals; but, as indicated in the figure, the quadrilaterals are
better considered as two triangles, and some of the B atoms are then 4-connected. The
secondary net of Tb (centering the heptagons) is 32.4.3.4. In the crystal structure aiternate
B2C layers are rotated by 90°; thus although again the symmetry of one plane is rectangular
(p2gg}, the symmetry of the crystal is tetragonal (P4o/mbc). '
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Fig. 5.46. Left: the AlB3 structure. 63 layers of B {small open cuircles) alternate with 36 layers of Al
(large shaded circles). Right: the The LaB2Cj structure. A 4.82 net of B and C (filled circles) alternates with
4% nets of La (larger shaded circles). : .

Fig. 5.47, Left the boron-carbon net in TbB3C. Filled circles are C atoms. Right: the B net in ThBa
(open circles). Now filled circles are By groups above and below the plane of the net.

The crystal structure of ThB4 (for data see Appendix 5) contains similar [ayers {Fig.
5.47) but now the quadrangles are squares; additional B atoms above and below the plane
cap the squares to form octahedra, and strings of octahedra joined by additional edges run
normal to the plane of the net, (Fig. 5.48). Thos the structure should really be considered a
three-dimensional B net. We meet other example of B nets in Chapter 7.1

In the structure of ThBC (also known as the UB2C structure), there are B2C layers
with 3-coordinated B and 2-coordinated C as shown in Fig. 5.49, Crystallographic data are
given in Appendix 5. Those who like to count electrons might care to speculate on why the

INote the influence of stoichiometry on coordination number. In campounds MuB (n = 2} there are
usually B atoms that are not bonded to other B atoms. In compounds MB (such as CrB and FeB, § 6.4.2) B
is 2-connected to other B atoms, in compounds MB1 {(discussed in the previcus section) B is 3-connected,
in ThB4, B is 3- and 3-connected (but 4-connected in CrBy, § 7.3.3), in CaBg and UB3 (§ 7.9) B is
3-connected, and in elemental B (§ 5.2.5) B is 6- and 7-connected.
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TbB,C structure is formed by Sc, Y and lanthanides {trivalent elements) but a different
struciure is formed by ThB2C and UB,C.

Fig. 5.48. The ThBy structure in clinographic projection. Small open circles are B atoms connected to
five other B, small filled circles are B connected to three other B: larger circles are Th.

Fig. 5.49. The boron-carbon net in ThB3C. Filed circles are carbon atoms.
5.3.7 Polyatomic tilings: self-dual nets

The tilings we have considered so far generaily correspond to layers of one kind of atom
(or two related atoms such as B and C) in crystal structures; in this section we describe
some (chemically) ternary structures in which all three kinds of atom are in the same layer.
As the different atoms may be of different “sizes,” in general the tilings derived from these
structures will be made up of polygons with unequal edges.

Very often in structures composed of layers, all the atoms lie on mirror planes and then
there are just two layers in the structure (recall that mirror planes repeat with a translation
equal to half the shortest Jattice vecior perpendicular to them). In some instances, the two
mirror planes will be related by symmetry so that there is only one distinct kind of layer.
This will occur when, for exampie, there are axes of the sort 21/m, 42/m, or 63/m normal to
the mirror planes (say along ¢). In each of these cases the symmetry operation has a
translation component of ¢/2 taking an atom on one mirror plane into an equivalent atom on
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the other mirrer plane. For example, in the cemutonly-occurring space group Prna, there
is a 21/m axis along 0,y,0 and the mirror planes are at y = 1/4 and v = 3/4 (see Fig. 3.14,
p- 72). The 2 axis operating on an atom at x,1/4,z will take i into an equivalent atom
located at %,3/4,2. In fact the whole layer at y = 1/4 (or 3/4) is rotated by 180° about the ¥
axis and translated to y = 3/4 (or 1/4). The symmetry of the layer is plgl. To take another
example, it should be clear that in body-centered space groups, mirror planes normal to the
axes of the conventional {centered) cell are related by the centering translation. For more on
the symmetry of structures with a two-layer repeat of one kind of layer see § 5.6.14.

It is quite common for the vertices of one net to center {in projection) the polygons of the
other net and vice versa, so that the net is self dual. For a self-dual net, the number of
polygons with n edges must be equal to the number of vertices that are s-connected. The
average polygon (ring) size must therefore be equal to the average connectivity of the
vertices. It follows at once from Eq. 5.4 (§ 5.6.11, p- 198) that this average is 4. It follows
further that either all the polygons are quadrangles (and all vertices 4-connected), i.e. the
net is 44, or that some of the pelygons are triangles and correspondingly that some have
more than four edges. A simple example of the latter case is provided by the structure of
CrB (Fig. 5.50} in which there are equal numbers of pentagons and triangles. In this
structure Cr atoms in one layer center (in projection) the pentagons of layers above and
below and B atoms similarTy center the triangles.

An atom centering (in projection) the triangles of identical nets above and below it isin
{capped) triangular-prismatic coordination, so it is not surprising that such coordination is a
feature of structures that can be described in terms of a stacking of seff dual nets. In Fig.
5.50 the trigonal prisms (at two elevations) in CrB are shaded for emphasis.

Fig, 5.50. The structure of CtB projected on (100). Larger circles are Cr.

As another example we illustrate (in Fig. 5.51), the structure of SrMgSi (which is one of
the many compounds with the CosSi structure type) in which all atoms lie on the mirror
planes of Pama. In this structure Sr centers pentagons of adjacent nets, and Mg and Si
similarly center quadrangles and triangles respectively. Accordingly the net (which has
symmetry pg) has triangles, quadrangles and pentagons in equal numbers. For
crystallographic data for StMgSi see Appendix 5.

WCoB is isostructural with SrMgSi. but NbCoB and TaCoB have a related structure
(Fig. 5.51) with symmetry Prumn composed of self-dual nets of symmetry pm. Notice that
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in a StMgSi layer all the triangles are SryMg, but that in a NbCoB layer there are triangles
Nbs, NbaCo and Cos. .

Fig. 5.51. Left: the structure of $rMgSi projected on (010), atoms at y = 1/4 and 3/4. Large, medium and
smail circles are Sr, Mg and Si respectively. Right: the structure of NbCoB projected on (100), atoms at x =
0 and 1/2. Large, medium and small circles are Nb, Co and B respectively. Trigonal prisms are shaded.

A second crystallographically ternary compound (the first was StMgSi) with a structure
based on self-dual nets is that ResB (Fig. 5.52). This is better written as Re(1)Re(2);B to
emphasize that there are two kinds of Re atom, and a more typicai compositiop for this
structure type is YAl;Co. The symmetry is Crmem and the symmetry of the layers is pmg. Y
centers pentagons, Al centers quadrangles and Co centers triangles. For crystallographic
data for Re3B see Appendix 3.

Fig. 5.52. Left: the structure of ZrFe4Siy projected on (601), atoms at z = O and 1/2. Large, medium and
small circles are Zr, Fe and Si respectively. Right: the structure of YAlCo (Re3B) prc.uected on (100),
atoms at x = 0 and 1/2. Large, medium and small circles are Y, Al and Co respectively. Trigonal prisms are
shaded.
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Another ternary compound with a structure based on se

(Fig. 5.52). Now there are hexagons i

: : ' » quadangles and triangles {centered by Zr, Fe and Sj
respecfwely) in the ratio 1:4:2. The symmetry of the structure is P42/mnm};nd,that ol}" th;
layers is c2mm (for crystaliographic data see Appendix 5). -

If-dual nets is that of ZrFeySisp

Flg 5.53. IThe structures of W2CoBg (left) projected on (001}, atoms at z =
(righe) _prOJecte_d on (100), atoms at x = 0 and 1/2. Large, medium and small
respectively. Trigonal prisms are shaded.

0 and 172, and W3CoB3
circles are W, Co and B

Fig. 5.54. Left: the structurs of YCo
structure of LaCo3sP3 prajected on (100),
{La), Coand P respectively.

3P3 projected on (010), atorns at ¥ = 1/4 and 3/4. Right: the

atoms at x = Q and 1/2. Large, medium and small circles are Y

There is a series of compounds W,CoB

; . n Whose structures are composed of self-
nets m which W centers pentagons, Co ce : s, Tho

nters quadrangles and B centers triangles. The
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case i = « is WB which has the CrB stiucture (Fig. 5.50). n = 1 is WCoB which has the
StMgSi structure (Fig. 5.51). Fig. 5.53 illustrates the n = 2 and 3 cases. Note that in these
structures there are groups of » trigonal prisms sharing rectangular faces so that there are
B, groups joined by bonds through these faces.

In LaCosP; (Fig. 5.54) with symmetry Cmcm, heptagons, quadrangles and triangles in
the ratio of 1:5:3 form a self-dual net with symmetry p2mg. La centers the heptagons, Co
the gquadrangles and P the triangles. Note that the triangles are all LaCoa, but the
quadrangles are LaCogP and CopP;. This structure type is sometimes named LaNisPs.

In YCosP3 (Fig. 5.54) with symmetry Pama, the Y atoms center hexagons, and P
atoms center triangles so hexagons and triangles occur in the ratio 1:3, As the average ring
size must be four there is also one pentagon per hexagon, and Co centers pentagons as well
as quadrangles. A third structure occurs for this stoichiometry in LaNi;Siz (Fig. 5.53) this
has the same symmetry and the net contains the same number of polygons as in YCosPa.

Fig. 5.55, The structure of LaNisSis projected on (010}, Large, medium and small circles are La, Ni and
Si respectively at y = 1/4 and 3/4,

To illustrate the variety and beauty of the structures that nature has devised we illustrate a
number of other self-dual nets in Fig. 5.56. Properties of these and the other nets of this
section are summarized in Table 5.5 (p. 181) The chemical formula of all the compounds
discussed in this section is A,BpC,; {CrB is considered to have b = 0). When this formula
is written in the preferred way of most ¢lectropositive element first, it is observed that A
centers the large polygons, B centers smaller polygons (usnally quadrangles) and €
invariably centers triangles (i.e. is in irigonal prismatic coordination). The table identifies
the polygons so centered; as A centers the largest polygons and C the smailest, we refer to
A, Band C as “large,” “medium,” and “small” respectively, referring, of course, to relative
size. It may be verified that the average polygon (ring) size is four in every case. The
structures illustrate the delicate balance between “size” and stoichiometry in determining
coordination numbers although we should remark that the number of “caps™ of the
coordination prisms N.42 is not always N. Also to be noted that as C is in trigonal prisms
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of A and B the str‘uctures can always be represented in terms of trigonal prisms with centers
at two heights (either 0 and 1/2 or 1/4 and 3/4). The number of structures that can be so

described is consider: Iy 1 BET I, those based on self dual —=!
= t
(§ 1 d) ab. ar han th b nets—see for example FezP

Fig. 5.56. Some structures based on seif-dual nets. T.up: left NbsCuySig, right EuCogPs. Botiom, from

the left: Hf3Ni;Sis NdRe4Si3, ZryCugSis. In all i
. . 4. In all these structures of A,B,C.. largest circl
smailest are C (the latter invariably centering triangles). oTphe e s are 4 and

In the tetra}gona] structures listed in Table 5.5, atoms are on the mirror planes normal to
the 4-fold axis. In some simple tetragonal structures (with small unit cell parameter ay the

atoms -are all on mirror planes parallel to the 4-fold axis {along ¢) and often the atoms on

such layers form self-dual nets normal to a. There are of course equivalent layers normal to

b and a description of such structures in terms of a stacking of nets is leaves something to
be desired. Notable examples of such structures are ThCrzS8ia (also named BaAlyg) and

BaMgSi_(a.[so named PbFCI), perhaps the two most populous structure types (for more
on these structures see § 6.4.2).

Polyhedra and Tilings 181

Table 5.5. Some structures {with symmetries) based on self-dual nets.
Nuimbers are N-gons per formula unit in the net

structure Fig.

crystal tayer large atom medium atom  small atom

N 7 6 5 4 5 4 3
CrB 5.50 Cmem  plmg 1 1
SrMgSi 5.51 Pnma e 1 1 [
NbCoB 5.51 Pmimn pm 1 i 1
YAlsCo 5.52 Cmem p2mg 1 2 1
ZziFe4Sip 5.52 Pdolmnm  2mm 1 4 2
WqCoB3 5.53 Inumm pZmm 2 1 2
W3CoB3 5.53 Cmem Plnig 3 1 3
LaCosP3 554 Cmicm p2mg 1 3 3
YCosP3 5.54 Prma e 1 1 4 3
L.aNisSi3 5.55 Prma e ' 1 1 4 3
NbsCugSig  5.56 . Aim 4 4 1~ 4 4
EuaCogPs 5.56 Pmmn pm 1 -2 6 5
Hf3NiaSi3 356 Cmem  p2mg 3 2 3
NdRe4Siy 5.56 Pram c2 1 4 2
ZryCugSiy 5.56 I P2mm i 2 4 4

5.4 Layers of teirahedra and/or octahedra: sheet silicates

Many crystal structures are conveniently described as built up of slabs (multiple layers of
atoms) rather than as a stacking of planes and we describe here some important layers of
connected polyhedra. Specifically we describe layers of corner-connected tetrahedra and
edge-connected octahedra.!

5.4.1 Layers of tetrahedra and octahedra

Layers of corner-connected {T}Xs tetrahedra can be constructed with each tetrahedron
sharing three vertices with other tetrahedra so the stoichiometry is TXX32 = T2X5. The
simplest, and most important way, of doing this is with the T atoms on the vertices of a 63
net as shown in Fig. 5.57. :

As the figure illustrates, the layer of tetrahedra is flexible. In “expanded” form, the
T-X-T angle is 141.1° and the base vertices are on a 3.6.3.6 net. In “contracted” form (with
the distance between vertices of neighboring tetrahedra equal to the tetrahedron edge) the
T-X-T angle is 109.5° and the base vertices are on a 36 net (the two configurations are
related exactly as shown in Fig. 540, p.167). In cach case the T atoms and the vertices
above them remain on a 67 net.

We note in passing that two such layers (one pointing “up,” and one pointing “down’™)
can be joined using the fourth vertex to produce stoichiometry TX9. Such layers are found
in one polymorph of BaAl;Siz0g in “expanded” form, and in one polymorph of
CaAlSin0g in “contracted” form (with the top layer “anti” to the bottom layer).

I81abs of edge-connected tetrahedra are discussed especially in § 6.4.2 (see Fig. 6.43, p. 249).
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169.5°

Fig. 5.57. Layers of corner-connected tetrahedra

I pointing “up.” Left: in expanded . Righ
contracted” (o lower density. Numbers are the T-X- . e, B

Tangles (in degrees) for regular tetrakedra.

The T-X-T angle can be considerabt
“up” and “down” as shown for two ¢
are comrmon in silicates {in which the

y larger (indeed up to 180’j if the tetrahedra alternate
or}ﬁgur.atlons in Fig. 5.58 and such alternating layers
3i-0-8i angle is usually about 145°, or greater),

129.5°

Fig. 5.58. Layers of comer-connected tetrahedra alternatin

E L g up and down. Left: in expanded form. Right:
collapsed” 1o lower density. Numbers are the T-X-T angles WS

(in degrees) for regutar tetrahedra,

Layers of [Si205]2- alternate with cations in com
BaSip0s. Because the apical O atoms are bo
considerably distorted from the hi
5.58. Fig. 5.59 illustrates the layers
alternate up and down; in the latter

pounds such as Na;Si»Os and
nded also to cations, the layers can be
gh-symmetry configurations shown in Figs. 5.57 and
in NagSizOs and BaSiOs. In the former the tefrahedra
Ppairs of tetrahedra alternate up and down.

Polyhedra and Tilings 183

Fig. 5.59. The 5ip0s5 layers in NazSip0s (left) and BaSizOs (right). Filled circles are vertices pointing
“down.”

Layers of edge-sharing octahedra are also common in crystal structures. pn the left in
Fig 5.60 we show a layer of {M} ¥ octahedra sharing six edges with stoichxomlf:gry MYs.
Such layers occur notably in CdCly and CdlI; (whick differ only in the. stacking of the
layers—see § 6.1.5). The MgOz part of Mg(OH); (brucite) consists of similar fayers. Fora
reason to become apparent below, mineralogists often refer to the MYy layer as a
“trioctahedral layer.”

Fig. 5.60. Layers of edge-sharing octahedra. Left: an MY2 layer. Center: an M Y3 layer of regular
octahedra. Right: an M¥3 layer of metaprisms with shared edges shorter than unshared edges (see text). The
filled circles are vertices that can be shared with a tetrahedral layer (see Fig. 5.57).

A second layer of edge-sharing octahedra, now with each octabedron sharing only three
edges, is obtained from the first by removing one third of the M atoms to produce
stoichiometry MY3. In this layer the M atoms are at the vertices of a 63. net. A notable
example of its occurrence is AI(OH)3. Such a layer is often referred 1o as “d:octaheflral.”

It is important to recognize that in real materials (such as oxides) the octahedra in layers
are not regular. Because of metal-metal repulsions, the shared edges of octahedra are
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sho.rtened and the unshared edges are lengthened. This does ot show up in a drawing of a
projection of the MY, layer, but in the MY layer it does; the octahedra become
metaprisms, and the structure expands as illustrated on the right in'Fig. 3.60. In Mg(OH)»,
the lengths of the shared and unshared edges are 2.78 and 3.15 A respectively, and in
Al{OH)3 they are about 2.5 and 2.8 A& (the octahedra are rather irregular in this case).

542 Sheet silicates {phyllosilicates)

Many important minerals, known as “sheet” or “layer” silicates, are based on a
combination of the above tetrahedral and octahedral layers. They have interesting and
useful physical properties that are intimately connected to their structures. Here we outline
some of the possibilities; in what follows it should be remembered that minerals typically
have rather complicated compositions, and chemical formulas are often idealized.!

Fig. 5.61 shows how two layers can be combined. Note that if the tetrahedral layer is
contracted (or partly so) two distinct configurations (known as © and H) are possible.

Fig. 5.61. llustrating the positions of a teteahedral layer {dark shading) with respect to an octahedral
layer. Left: a contracted tetrahedral layer in the O orientatiot. Center: the same in H orientation. Right: an
expanded tetrahedral layer. : '

Let’s calculate the stoichiometry of a double layer formed from MY> and T2X5 layers. It
should be clear from Fig. 5.61 that, per unit area, there are three M atoms for every two T
atoms 50 we must combine 3 MY5 (hence the term “trioctahedral”) with 1 T5X5. The apices
of the tetrahedra replace 2/3 of the ¥ atoms on one side of the MY; layer, i.e. 1/3 of the
total ¥ atoms, so the double-layer stoichiometry is M3Y4T2Xs. In layer silicates, Y is
us:.}allly OH and X is O, so a typical composition for a neutral fayer is Mg3(OH)4Siz05.
This is approximately the composition of antigorite and chrysotile asbestos. We return
below to a further discussion of the structire of these materials.

In a double layer formed from M ¥3 and ThX;s layers we must combine 2 M ¥3 (hence the

%Wc can onfy hint at the richness of this subject. A good account, with some of the history of the
sul?ject, is in Chapter 13 of Bragg & Claringbull (book list). Good recent references are: Micas (5. W,
ll3a11ey, ed.}, Reviews in Mineraiogy 13 (1984) and Hydrous Phyllosilicates (8, W. Bailey, ed.), Reviews
in Mineralogy 19 (1988). The term phyllosilicare is generally considered to include all al

] . uminosilicates
with (8i,Al}xOs layers of comer-connected (51}04 and {AI}0y tetrahedra,

Polyhedra and Tilings 185

term “dioctahedral”) with I T5Xs and the stoichiometry is M2¥4T2X5; a typical

.composition for a neutral layer is Aly(OH)4SiyOs. This is approximately the cormposition of

kaolinite (“china clay™).! Minerals with related structures are referred to as “clay minerals™;
they are important components of soils,

In silicates, the Si-O-5i angles are about 145° so the tetrahedral layer is expanded (or
very nearly s0). The edge of a {Si}Oy tetrahedron is about 2.62 A, so for such a layer to be
commensurate with an octahedral layer an octahedron edge (in the layer of the plane) of
about (2/3) x2.62 = 3.03 A is needed. It transpires that the {Al}Og layers can adapt to
this length, but the larger [Mg}Og cannot.

Accordingly in kaolinite there are gets flat sheets, but in chrysotile the sheets curve and
form small cylinders of about = 100 A radius, with the octahedral layer on the outside and
the tetrahedral layer inside. The separation between the octahedral and tetrahedral layers.is
about 6r = 2.7 A so the spacing in the octahedral layer is increased by r/r = 2.7%
compared to that in the tetrahedral layer. Thus the material really has translational symmetry
in only one dimension {the cylinder axis).2

But nature shows great ingenuity in solving the mismatch problem in a number of
different ways. In antigorite the tetrahedra in alterpate laths of the tetrahedral layer are “up”
and “down,” and the double layer is corrugated with a period of about 45 A as shown
schematically in Fig. 5.62; the radius of curvature of the sections is about 75 A—
approximately the same as in chrysotile. Still more complicated patterns are found in (for
example) carlosturanite and manganpyrosmalite.?

Fig. 5.62. A schematic illustration of the layers (seen end-on) in antigorite. Octahedral layers are lightly

shaded.

Triple layers consisting of an octahedral layer joined on both sides to tetrahedral layers

Kaolinite was mined continuously from one locasion in Hangxi province, China for about one
thousand years and became known in England as “China clay™; ceramnics made by firing it became known as
chinaware o5 just china, Kaolin comes from the Chifiese word gaofing (“high hill”) describing the
location. Curreatly mining of kaolinite is a § billion industry; a major use is as a fitter for paper.

2Actually, as well as cylinders one often finds a few turns of a cylindrical spiral (like a rolied-up carpet).
The idea of cylindrical “crystals” seems to have originated with L. Pauling in 1930; subsequently electron
microscopy provided dramatic direct evidence for such structures. See especially the now ¢lassic work of K.
Yada, Acta Crystallogr. 23, 704 (1967} and A27, 659 (1971).

3For a good review see S. Guggenheim & R. A. Eggleton in Hydrous Phyllosilicates (5. W. Bailey,
ed.) Reviews in Mineralogy 19 (1988), p. 675-725.
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cab also be formed.! Combining an M ¥7 (trioctahedral) layer with two tetrahedral layers
produces composition M3¥274X 0. A neutral composition is talc (also known as
soapstone), Mga(OH)2814010. Note that layers that include two tetrahedral layers cannot
bend (in contrast to chrysotile) and tale normally occurs as poorly-ordered microcrystals
{talcum powder).

Minerals of the vermiculite group have alternating triple layers of the talc type and M¥>
layers. As, per unit area, 3 MX are combined with 1 MaVyTuX 10 the ideal composition is
now Me¥3T4X 0.

Combining an MY; (dioctahedral) layer with two tetrahedral layers produces a triple
layer with composition M,¥;T4X t0- A neutral composition is that of pyrophillite,
Al(OH)38140)p. _

In the micas, part of the $i in the tetrahedral layer is replaced by Al and compensating
cations are intercalated between the layers. Typical ideal compositions (with tetrahedral
atoms in brackets) are:

{a) using trioctahedral (M¥y) layers: muscovite, KAL[AISi3]010(0H),
(b) using dioctahedral (3¥3) layers: phlogopite, KMga3]AlSi3]01g{OH)2

In constructing a three-dimensional crystal from the layers described here, attention must
be paid to the way the layers stack.?

Clays? also can have some cations between the layers. Montmorillonite is made up of
triple layers consisting of two tetrahedral layers and a dioctahedral layer in which some of
the Al is replaced with Mg. Typical compositions are NaMg,Aly_,Si4019(0H); (bentonite)
angd CayaMg Aly ;8140 15(OH)y (Fuller’s earth). The intercalated cations are readily
exchanged for other cations at low temperatures in aquecus suspension (ion exchange). An
interesting recent development has been the intercalation of large isopolycations such as
[Al1304(0H)24(H70) 1217+ (the “spinel cluster,” see § 5.2.3, p- 157) which results in
greatly increased interlayer spacing. Subsequent heat treatment removes much of the
hydrogen (as water) leaving a “pillared” clay of high microporosity that has great potential
for application as a catalyst. ]

Slurries of bentonite are thixotropic* and find many applications (such as use as a
drilling mud) exploiting this property.

LNote tat as the vertices on cach side of an octahedral layer are not one above the other, there is an

olfset between the two tetrahedral layers, and the symmetry of the slab is at most rectangular.
A good review and bibliography on this topic is given by J. B. Thompson in Structure and Bonding in

Crystals Vol TF [M. O’Keeffe & A. Navrotsky, eds., Academic Press, New York (1981)1.

3The term clay is generally used loosely to mean any layer silicate that is (a) generally composed of
very small crystallites and (b) can absorb water. '

4A thixotropic material is a gel which becomes fluid when agitated. Platy microcrystals of bentonite
have positive charges on their thin edges and negative charges on their faces and at rest orient themselves
edge to face in the water producing a stiff gel. Agitation destroys this order resulting in a fluid of greatly
reduced viscosity. “Non-drip” paints are thixotropic and usually contain bentonite,
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5.5 Aperiodic tilings and quasicrystals

In recent years there has been considerable interest on the part of mathematicians and
crystallographers in aperiodic tilings. These are tilings by basic tiles that cover the plane but
in which there is no translational symmetry. The literature on this topic is now enormous

"and we can only attempt to provide some of the flavor of the subject.!

The interest is in those sets of tiles for which every possible tiling is apelfiodic. Many
have been discovered in recent years. One of the simplest and most studied is the pair of
Penrose tiles shown in Fig. 5.63. These have edge lengths of 7= (1. +5)2 = 1.618...
and 1 and the angle at the top is 2a/5 = 72 If that were all, these tiles could cover tpe
plane periodically as the two can fit together to form a rhorbus. Hc.Jwever the aperiodic
property is forced by coloring the vertices of the tiles black and white as §h0wn, and by
requiring that only vertices of one color meet at a point.2 A fragment of a tiling made from
such tiles is also shown in the figure.

O
VAN

Fig. 5.63. On the left are shown the two Penrose tiles known as the kite (top) and dart {bottom) and on
the right a fragment of an aperiodic tiling.

A closed fragment of a tiling (such as that shown in the figure) is known as a patch. A
remarkable feature of a Penrose tiling is that it contains infinitely many ‘patchcs congrue.nf o
any given patch. Even more remarkably, a local area with diamete{"fi in any Pfem'ose_tllmg
has an identical area not more that (1/2 + 7)d away. In every such tiling the ratio of kites to
darts (see figure legend) is 7. _ . .

Instead of darts and kites wo different rhombuses (with acute angles.of 36 fmd 72
respectively) can be used with aperiodicity forced by constraints on matching vertices and
edges. A pair of such tiles and a tiling by them are shown in Fig, 5.64. Note that equivalent
unmarked tiles with curved edges have the same property. The two rhombuses are often
referred to as skinny and fat respectively. ) '

In three dimensions there is an analogous pair of rhombohedrat tiles which can be forced

1a good introductior with references is in the bock by Griinbaum & Shephard {(Book List). A popular
account is in M. Gardner Penrose Tiles to Trapdoor Cyphers [Freeman, New York (1?89)].
2 Aperiodicity can also be forced on monochrome tiles by curving the edges of the tiles shown.
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to produce aperiodic tilin

72° and 108°). One rhombohedron is acute (three angles of 72° meet at a point) and the

. other is. obtuse (tilu'ee angles of 108" meet at a point). The faces have to be marked and
appropriate matching rules applied to force aperiodicity.

ilg. 5.65. Thfe black cfircles are the black circles in Fig. 5.64, and open circles represent a continuation of
e patiern using the tiles shown on the right and maintainnig 5-coordination for each point.

- The arrangement of black dots in Fig. 5.64 is suggestive. Fig. 5.65 shows that they
form triangles, quadrangles and pentagons arranged to produce a five-connected net. The
eslge leng:ths of the polygons are 1 and 2sin{w/10)'= 1.176. A canspicuous feature <;f the
d!agrarfl is the groups of five triangles condensed to form regular pentagons. In three
dimensions 20 tetrahedra {with edges in the ratio 1:1.05—see Exercise 3) can condense to
form a regular icosahedron, and it is possible that (at least some) quasicrystal structures
contain regular icosahedra and other polyhedra packed to fill space. Constraints analogous

Sometimes called golden rhombohedra or Ammann

rhomb
described by Ao e ohedra, They appear to have been first

gs. These polyhedral have faces that are fat rhombuses {angles of
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to those on matching edges and vertices of tiles in two dimensions may well arise in
crystals. Such a constraint occurs for chemical compounds (black and white circles being
different kinds of atom); another constraint is coordination number (cf. Fig. 5.63).

The Fourier transform of a periedic function is discrete; by this is meant that the Fourier
integral is reduced to & sum. Tn particular the Fourier transform of a lattice is the reciprocal
lattice. There are certain aperiodic functions (known as quasiperiodic) that also have
discrete Fourier transforms.! Penrose tilings and the three-dimensional analogs
(quasicrystals in the real world) are quasiperiodic and have discrete Fourier transforms and
hence sharp diffraction patterns. One of the reasons for the excitement among
crystallographers is that these diffraction patterns display symmetries not allowed for
strictly periodic real-space patterns, The diffraction pattern of a two-dimensional crystal
based on Penrose tiling has 5-fold symmetry-~note that local regions of 5-fold symmetry
are apparent in Figs. 5.63-63. Much larger patches with 5-fold symmetry can and do
appear also. Quasicrystals have been found with diffraction patterns that have m335,
12/mmm and 10/mmm point symmetries (and also other non-crystallographic symmetries
—see § 3.7.8).2

Readers who experiment with these tilings (as they are urged to) will find that as a tiling
is being construéted, situations frequently arise where there is more than one way to
proceed and that not all of these ways lead to acceptable tilings, One has therefore either to
pack-track frequently to eliminate “defects” in the tiling or to think ahead many moves (like
a chess player). For this reason it has been argued that real quasicrystals cannot grow from
such tiles, as atoms c¢an neither think ahead nor readily undo their mistakes, although the
difficulty can largely be avoided by recognizing additional rules for acceptable placing of
tiles.? The challenges to crystallographers and crystal chemists are to (a) identify the (three-
dimensional) tiles that make up quasicrystals, (b} identify the rules for their assembly and
(¢) determine how atoms are situated on (or decorate) the tiles.*

A final note is in order. Mathematicians are mainly interested in tilings which are forced
0 be aperiodic, Solids often form aperiodic structures (such as glasses) not because they
have to, but for kinetic reasons—silica is a notable example. The tiles it Fig. 5.65 do not
force aperiodicity, but they can be put together in an aperiodic way that has a high
concentration of patches with 5-fold symmetry.

1Readers unfamiliar with Fourier transforms will have 1o skip this part. A simple example of a one-
dimensional quasi-periedic function is fix) = cosx + cosvYZx ]

ZFor a good introduction to quasicrystals see W. Steurer, Zeits. Kristallogr. 190, 179 (1990) or
Lectures on Quasicrystals (F. Hippert & D. Gratias, eds.) Les Edition de Physique (1994), Typical
compositions are Aly3Mna)Sig, Alyg.aPda) 4aMng 3 and LizgAlggCuig—notice that Al is the main
component. Many materiais studied to date are rapidly cooled from the melt, but there is now some evidence
that the quasicrystal state is the most stable for compositions such as AlgzFes 5Cuz3 5.

3These rules place additional constraints on the veriex figures that are allowed, and are thus “local” see
G, Y. Onoda er al., Phys. Rev. Letts. 62, 12310 (1990).

4MnAlz has a crystal structure believed to be closely related to that of a decagonal quasicrystat and
relevant tiles for the quasicrystal have been described by K. Hiraga er al., Phil. Mag. B67, 193 (1993). The
structure of MaAly is also believed to be relevant to quasicrystal sirectures; it is rather complex (574 atoms
in the unit cell-—C. B. Shoemaker ef af., Acta Crystallogr. B45, 13 (1989),
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5.6 Notes
5.6.1 Relationships between polyhedra, and “pseudorotations”

The transformation from a trigonal bipyramid fo a square pyramid involves just smail
displacements of the vertices. Figure 5.66 shows how a trigonal bipyramid can be
transformed to a square pyramid, and thence to a trigonat bipyramid in a different
orientation and with interchange of apical and equatorial atoms. Such a transformation path
is known as a Berry pseudoretation. A bipyramidal molecule such as PFs appears to have
five equivalent F atoms in 19F NMR due to rapid changes of this sort. _

Another example of a pseudorotation was given in § 5.1.8 where we showed how a
square antiprism could be related to a bisdisphenoid. The different ways of converting the
squares of the square antiprism into pairs of triangles will result in different orientations of
the 4 axes of the bisdisphenoid which likewise can be converted back into antiprisms with
different orientations. Analogously, small displacements can result in psendorotations of
extended structures such as layers (§ 5.6.13) or sphere packings (see e.g. § 6.3.1).

Fig 5.66, Transformation of a i gonal bipyramid into a sqlia:e pyramid and then back to a bipyramid with
the thres-fold axis rotated by 90°.

3.6.2 Polyhedra, points on a sphere, and related topics

The solution to Tammes’ problem is appropriate-for atoms in a coordination figure when
there is a short range repulsion between neighboring atoms (fairly “hard™ spheres), At the
other extreme is the case of the long-range repulsion (Coulomb interaction) when the
enetgy of interaction of the atoms is proportional to 1/distance. It is convenient in this case
to measure the repulsion energy, E, in units of q4meyr where r is the bond distance and ¢
the charge.! '

For 5-coordination the repulsive energy is (note that the second value is for the most
favorable type of square pyramid which has equal edges):

! This problem has been called the electron problem as it was the basis for early {ca 00 years ago)
models of electronic configurations in atoms. It was first treated by L. Foppl. For recent results see J, R.

Edmundson, Acta Crystallogr. A48, 60 (1992). If ¢ = ze, where e is the electronic charge, and r is in A,
gAaneyr = 14.42%r oV,
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bipyramid: E=6.475
pyramid: E = 6.657

Turning to 6-coordination we might compare the octahedron with the trigonal pfism. On
a sphere of unit radius the shortest distance between points arranged as the vertices of a
regular octahedron is V2 = 1.414; for a regular trigonal prism it is V(12/7) = 1.309. In the
case of the trigonal prism, in calculating the electrostatic repulsion, we now allow a degree
of freedom which is the ratio of the height (A) to the length (b} of the triangular face; the
minimum energy is for /b = 0.917. In the same units as before:

octahedron E = 9985
prism /b =1 E=10.114
prism Afb = 0917  E = 10.096

In the case of the tricapped trigonal prism (9-coordination), the solution to Tammes’
problem has the distances from the “capping” atoms to their four nearest neighbors equal to
the length of the base. The ratio of the height to base is now h/b = *4'(5/3_) = 1'.291.
Alternatively if we again minimize the electrostatic energy, /b = 1.143 for the mininumn
electrostatic energy, but the energy is only 1.5% lower in this second configuration. In
either case we have A/b > 1. In general when capped trigonal prismatic coordination oceurs
in erystals it is observed {see Hyde & Andersson, p. 213) that as the number of capping
atoms increases, the prism becomes more elongated (h/b increases) as the above
considerations suggest it should. : - _

Many fascinating results, conjectures, and unsolved problems relating to polyhedra are
to be found in Unsolved Problems in Geometry by H. T, Croft, K. 1. Falconer and R. K.
Guy [Springer-Verlag, Berlin (1991)].

35.6.3 Constructing polyhedra

The easiest, and possibly the best, way of constructing polyhedra is to assemble t_k}em
from individual polygons cut aceurately from stiff cardboard. They can be assembled 1nF0
polyhedra using masking tape, and the joints filled with white glue (such as Elmer’s glue' in
the U.S.). Convex polyhedra are always rigid, so that when the glue has set, the masking

- tape.can be removed and a very sturdy model will be obtained. Pictures of many

remarkable models made in a similar way are to be found in A, Holden, Spacte, Shapes and
Symmetry [Columbia University Press, New York (1971) also Dover reprint). Many of
the models depicted in that book are pertinent to crystal chemistry.

5.6.4 Schlegel diagrams and adjacency matrices
The topology of a polyhedron (the connection of vertices by edges) is convenieatly

expressed in a Schlegel diagram which is a planar graph in which there is a one to one
'correspondence between edges and vertices of the polyhedron and of the graph. The graph
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is planar because it can be realized on a plane without any crossing of edges. A way to
imagine such a graph is that it represents the view of the inside of the polyhedron one
. would have if one of its faces were transparent and the polyhedron were viewed from a
point just outside that face, The Schlegel diagram of a cuboctahedron is shown in Fig. 5.67
in what appears to be two quite different graphs. (The first is a view through a square face,
and the second is a view through a triangular face). They can be shown to be topologically
identical by writing out the adjacency matrix which contains 1 as element ij if vertex i is
connected to f and 0 otherwise. The matrik below uses the vertex numberings of the figure.

Y 1 2 3 4 5 6 -7 8 % 10 11 12
1 o 1 0 1 1 ¢ o 0 © i 0 0
2 1 ¢ 1 ¢ 0o 1t ¢ 0 0 1 0 0
3 0 1 ¢ t 0o 1 0 0 1 o 0 0
4 1 0 1 0 i o 0 0 -1 0 0 0
5 r o 6 1 o ¢ 0 O O 0 1 1
6 0 1 1 0o o 0 1 1 ¢ c 0 0
7 o ¢ 0 o 0 1 0 1 0 1 0o 1
8 o 0 0 o0 0 1 1 0 1 o 1 0
9 o o 1 1 0 0o o 1 © 6 1 O
10 1 1 o 0 0o o 1 0o O o 0 1
11 o 0 0 0 1 0 o©o 1 1 o 0 1
12 ¢ 0 0 0 1 0 1. 0 0 1 1 0

Fig. 5.67. Two representations of a cuboctahedron 3.4.3.4 by Schlegel diagrams. The numbering is the
same as used for the adjacency matrix above.

A warning on terminology: Mathematicians refer to the graph of a polyhedron as
3-connected becanse at least three edges have to be cut to separate the graph into disjoint
pieces. However, it is common usage in chemistry to call a net in which n edges meet at
every vertex as n-conmected. Mathematicians refer to such vertices as n-valent. Schlegel
diagrams are sometimes used to describe the topology of ceordination figures in solids.
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The problem of enumerating polyhedra with a given number of vertices is the same as
that of enumerating distinct 3-connected (in the mathematical sense) planar graphs.

Adjacency matrices are utilized extensively in molecular chemistry. Thus one way to
recognize molecules with identical topologies in a computer is to compare their adjacency
matrices. It might be mentioned that for large molecules, this is a far from trivial task as to
get identical adjacency matrices the vertices must be numbered the same in each molecule.

5.6.5 Coordinates for drawing polyh_edra and nets

Some important polyhedra are conveniently drawn on the framework of a cube. Let the
origin be at 0,0,0 and the cube vertices 41,+1 %1, The vertices of some other polyhedra are
given below [remember x stands for cyclic permutation and 7= (I + 5)2]. To get
coordinates for a clinographic projection, use the method outlined in § 4.6.1.

tetrahedron o 1,1,1 ; (-1,-1,Dk or -1,-1,-1 ; (1,1,-1)x
octahedron {£1,0,03k
guboctzhedron (01,11
truncated og¢tahedron (0,£1/2,41 ; 2172021k
rhombic dodecahedron x1,x1,41; (22,000
icosahedron 0,7+ 1)x

For other cubic polyhedra the matrices for the symmetry operations of the appropriate
symmetry group (see Exercises 7,9 & 10 of Chapter 2) can be used to generate coordinates
of the N vertices from those of the one given below (appropriate for unit edge). To generate
coordinates for polyhedra with jcosahedral symmetry, it is best to first generate the matrices
for the symmetry operations of [ and I as described in Exercises 7 and 16 of Chapter 2.
These can be then applied to the coordinates of a typical vertex {given below). In the table,

_Nis the rumber of vertices and the coordinates are appropriate for cartesian axes oriented

as described in Exercise 16 of Chapter 2 and for unit edge length.

polvhedroa N symmetry coordinates

3.62 12 m 148, 178, 348

1.4.3.4 12 m3m 0, 12, 12

4.62 24 ni3m 0, 142,42

3.82 24 ni3m 12, y, vy = {1+32¥2
344 24 432 0.3378, 0.6212, 1.1426
343 24 m3m 172, 12, (1+42)12

4.6.8 48 mim 142, 172+1M42, 1242
35 12 I 0, 142, 72
53 20 I w2, 2, w2

3.53.5 30 I 0,0, 7

3.102 60 In 0, 3r+1)2, 172

5.62 60 I 0, 112, 3112

3.4.54 60 I 0, 142, (1+5)2
35 60 i 0.3309, 0.3748, 2.0970

4.6.10 120 Iy 142, 112, 274142
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Coordinates of the vertices in Archimedean tilings with unit edge are also given below.
For some other two-dimensional patterns see OKH. Recourse to the International Tables
will be niecessary to generate equivalent positions from the ones given. ‘

tiling Symimnetry cell Xy
346 6 a=v7 377, 107 {or W7, 3T}
33.42 c2mm a=1,b=24V3 0, (1+¥3)0(4+V12}
32434 plam a=v(2+43) £ V2x; x = 1NE164V192)
3.6.3.6 pbmm a=2 0, 172 .
3.4.6.4 pmm a=1+3 x, ¥Fix=133)
4.2 phmm a= 142 % 125 6= I(24V8)
3.122 pbimm a=24V3 %% ix=1-1M3
46.12 pbmm a=3+3 %,y 1x= HG3IT, » = 13+

5.6.6 Names of polygons and polyhedra

The names of polygons specify the number of angles they have, -gon comes from the
Greek word for angle (a goniometer is an angle-measuring device). The names of
polyhedra often specify the number of faces they have; -hedron likewise coming from the
Greek for face. The prefixes come from Greek words for numbers. Some of the more
commonly used are given below.

1 mono- 8 ocias 16 hexakaideca-
2 di- 9 ennea- 20 icosa-

3 tri- 10 deca- 30 triaconta-

4 tetra- 11 hendeca- - 32 icosidodeca-
5 penta- 12 dodeca- 60 hexaconta-
6 hexa- i3 triskaideca- many  poly-

7 hepta- 14 tetrakaideca-

A polygon is called skew if all the vertices are not all in one plane.

The words “tetrahedra,” “octahedra,” ete. are plural. The singulars are “tetrahedron,”
“oetahedron,” etc. The usage “tetrahedrons,” “octahedrons,” etc. for the plural is also
considered acceptable. The term “polyhedron” applies only to three-dimenstonal figures.
For higher dimensional analogs use “polytope” (as in Appendix 2).

5.6.7 The shap-es of crystals

Tt is worth recalling that the sciences of ¢crystallography and solid state chemistry have
their roots in mineralogy. Some symmetrical minerals crystallize in beautiful polyhedra. If a
cubic crystal has a {100} habit then with planes equally spaced from a center the crystal
will be a cube {look at table salt under a magnifying glass). Similarly {111} results in an
octahedron in a centrosymmetric crystal and {110} results in a rhombic dodecahedron.
‘Cuprite (Cuz0) occurs with all these habits and garnets sometimes form spectacular
dodecabedra. Other common shapes include cuboctahedra and truncated octahedra in which
the faces are {100} (squares) and {111] {triangles). Hexagonal crystals such as beryl often
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occur as hexagonal prisms; the {1120] faces ate termed the prism faces and the top and
bottom (0001) planes are referred to as pinacoid. '

In class m3 a form { k() consists of the 12 cyclic permutations of {th & 0). (hk0) and
(kh?), for example, are related by 2 4-fold rotation (about the z axis) which is not an
operation in m3 {so (hk0) and (kh0) are not part of the same form]. Pyrites (FeSy), which
has symmetry Pa3, commonly crystallizes with a [210} habit producing beautiful
dodecahedra with pentagonal faces known as pyritohedra. Fig. 5.68 illustrates such a
polyhedron which appears to be a regular pentagonal dodecahedron, but the eye is being
deceived. There are two kinds of vertex: eight (X} at +x2x+x (at the corners of a cube)
shown as filled circles in the figure and twelve (¥) at (£3x/4,23x/2,0)x shown as open
circles. The edge lengths are Y-¥ = 3x/2 and X-Y ="y21x/4 and the face angles are XYY =
102.6°. X¥X = 106.6° and YXY = 121.6" (contrast all are 108" for a regular pentagon).

Fig. 5.68. The pyritohedron described in the text.

Some terms commonly used by mineralogists to describe the external form of crystals
are: '

euhedral refers to crystal completely bounded by well-formed faces
arnhedral is the opposite of euhedral
acicular needle shaped (long thin crystals}

" tabular having two prominent parallel faces (like a tablet)

micaceous  an exireme case of tabular {occurring as thin sheets as in mica)
hemimorphic refers to crystals with different forms at each end
lamellar occurring as a sheaf of thin sheets like pages in a book

5.6.8 NasPtalieq: a structure with stellae quadrangulae

Stellae quadrangulae (§ 5.1.2, p. 135) are important in intermetailic structures. A nice
example of their occurrence is in the structure of NasPi4Gey (EuzNigGas is isostructural).
In this structure, a Pty tetrahedron has each face capped to make a PiyGeq stella
quadrangula. Each Ge atom {s then linked to a fourth Pt on a neighboring stella
quadrangula to make an open body-centered cubic array (Fig. 5.69). The open space in the
structure is filled by a 4-connected net of Na atoms (in § 7.3.11 we refer to this as the
NbO net). We note in passing that Na3ShS, has a closely-related structure (sometimes
called TI3VS4) with {Sb)S4 tetrahedra replacing the stellae quadrangulae (see Fig. 5.69).
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Nais also in a distorted {Na}Sg4 tetrabedron. Crystallographic data are in Appendix 5.

Fig. 5.§9. Left: the structure of NazPtyGes. Small open circles are Pt, small filled circles are Ge, and
larger citcles are Na, Right: the structure of Nas8b8, showing {5b)S, tetrahedra. Large circles are Na,

Fig. 5.70. The structure of Cog8g shown as a packing of stellae octangulae and octahedra. Co atoms (not
shown) are in {Co}S4 tetrahedra and {Co}S¢ octahedra.

5.6.9 CogSg: a structure with stellae octangulae

The structure of CogSg [the mineral pentlandite = (Fe,Ni)oSg is isostructural] is a nice
example of a structure in which stellae octangulae are a conspicuous feature. A stella
octangula (Fig. 5.3, p. 135) has 6 inner vertices and eight outer ones. In thg CogSg
structure (Fig. 5.70) Co centers the tetrahedra of a S¢Sz stella quadrangula to produce a
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CogS6Sg unit. These units are joined together as shown in the figure; each outer vertex is

shared between four units, so the stoichiometry is now CogSgSg/a = CogSg. There are

empty Sg octahedra inside the stella quadrangulae; in the packing, new S¢ octahedra are

generated (one per CogSg unit), and these are also filled with Co to make the overall

stoichiometry CogSg. The S atom arrangement is cubic closest packing (cep, § 6.1.3).
Crystallographic data for CogSg are given in Appendix 5.

5.6.10 Enumeration of Archimedean polyhedra and tilings

We remarked (§ 5.3.1) that the regular tilings were limiting cases of regular polyhedra
(the idea appears to have originated with Kepler) as in the sequence: 33, 34, 35 (polyhedra)
and 36 (plane tiling). In Table 5.6 below, the archimedean polyhedra and tilings are listed
in families according to the number of polygons meeting at a vertex.

Table 5.6. Archimedean polyhedra and tilings

polybedm tilings

3.62 382 1.102 3.122

4.62 ‘ 432

5.6%
N.4Z {prisms)

468 4.6.10 4.6.12
31BN {antiprisms)
3434 3535 1.6.3.6
1.4.54 - 3.4.6.4
343 :
344 345 346
3342 1243.4

How can we be sure that the list is complete? We need first to require the sum of the
angles at the vertices is < 360° (with equality applying for plane tilings). The vertex angle
of a regular plane n-gon is 180°—360"/n so we must have for the sum over the i vertices:

Tl -2n) <2 (5.1)

However this equation admits many more solutions than appear in the table, What about
the polyhedron 3.4.6 which is missing? Let’s calculate the number of vertices, V, such a
polyhedron should have. The number of edges, E, is 3V/2 (as three edges meet at each
vertex and each edge belongs to two vertices). An si-gon at a vertex is shared by n vertices
and contributes 1/n of a face per vertex, so the number of faces is F = V(1/3 + 1/4 + 1/6).
Now solving Euler’s equation F - E + V=2, we find ¥V = 8. Hence F = 6. So far, so
good. But using our argument that there are V/3 triangular faces, V/4 square faces and V/6
hexagonal faces, we find that our polyhedron has to consist of 8/3 triangular faces, 2
square faces and 8/6 = 4/3 hexagonal faces; clearly impossible.
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Actually in this case, simple topological considerations show that 3.4.6 is impossible.
To see this, draw a triangle and the third edge meeting at each of the triangle vertices, The
polygons must alternately be 4- gons and 6-gons on each side of these edges; this is
impossible as the number of such edges is an odd number (3)-

In general, the possible polyhedra or tilings are those that satisfy Eq. 5.1 and are of the
sort;

p.g.r with p,g,r all even

Pg.q with g even

ppp

4% and 3p.qr - when g=3, p andr #3

p.g.r.s.t and 36

It is interesting that all the topological possibilities involving one kind of vertex can be
realized with regular polygons. In general this is not the case when there is more than one
kind of vertex. The general problem of deciding whether a given set of polygons (regular
or net) can be combined into a pelyhedron is of interest in chemistry (see Appendix 4 for
more on this topic), but unfortunately it is also difficult and unsolved.

3.6.11 Euler's equation applied to plane neis

The celebrated Euler equation relating the numbers of faces, F, edges, E and vertices V
for a finite polyhedron is

V+F=E+2 (5.2)

For a plane tiling

V+F=F (5.3)
As V, F and £ are all infinite, Eq. 5.3 is convenienily divided through by V. This
equation also applies to a tiling on the surface of a torus (“doughnur™).!
~ Let ¢, be the fraction of the polygons in 2 tiling (or net) that are #-gons, then <> =
Zng, is the average size of the polygons of the pattern, Likewise et Ji be the fraction of
vertices at which { vertices meet, then <i> = Lif; is the average connectivity of the net.
Using the facts that each edge is common to two polygons and joins two vertices, it may
derived, using arguments similar to those used in the previous section, from Eq. 5.3:

Ven>+ iz = 112 (5.4)

MThere ate certain pathological kinds of tling for which this equation does not hold: “Euler’s Theorem
for Tilings is of fundamental importance, but is a strong contender for one of the most frequently misquoted
results in mathematics!”"—B. Griinbaum & G. C. Shephard, Tilings and Patterns (Book List), The Swiss
mathematician L. Euler (1707-83} was perhaps the most prolific in history—his bibliography requires a
substantial shelf of volumes. He made significant contributions to virtually alt parts of mathematics but
geometry was his favorite.
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An example of the application of this formula is to tilings of the plane by {not necessarily
regular) tiangles (¢3 = 1, <> = 3) to give <i> = 6. This shows that the average number
of triangles meeting at a point must be six. As <n> cannot be less than 3, <i> cannot be
greater than 6, ) '

For a pattern with three polygons meeting at a point (a 3-connejcted net, <i> =3} Eq 54
shows that the average polygon size (ring! size) <n> = 6. This means that there is no
constraint on the number of six-rings. For the pentagon-hexagon-heptagon nets of § 5.3.5,
let there be ¢5 pentagons, ¢7 heptagens and 1-¢s —¢7 hexagons. Equation 5.4 becomes:

Sps+6(1- g5~ @7y +7¢7 =6, ie g5=¢7.

In general for any infinite plane net in which all vertices have the same connectivity i
(the vertices need not otherwise be the same) one has (“rings per vertex” refers to the
average over all the vertices):2

Connectivity, { . rings per vertex average ring size
6 2
5 32 10/3
4 1 4
3 1/2 6

5.6.12 Transformations between patterns: common unit cells

It should be clear that two patterns with the same densities of points can be converted
from one to the other by shuffles of the points that involve just finite disp]acemepts.

A special kind of structural relationship is one in which there is no change in shape o;f
the voit cell. A simple example is the relationship betw-een. the l_cagomc .(3'6'3'6) and 3
patterns (Fig. 5.40, p. 167). The common hexagonat cell is given in Exercise 11.

First a common cell that may be a supercell of one or both structures must be found.
This supercell will, of course contatn the same number of p(?ints. for each of the patterns.
The transformation can then be effected just by moving the points in the cell. -

Consider square (two-dimensional) cells first. A primitive cell for the square lattice has
sides a. A nom-primitive cell can be chosen with translation vectors ua + vb and —va + ub
with area 42 + v2 and containing 42 + 2 lattice points.

The number of atoms in a unit cell can be expressed uniquely as Ap, where p can be
represented as the sum of two squares (22 +v2, including zero as a square) and A is elth.er
1 or a number that cannot be expressed as w2 + v2. Only if patterns have the same A, will ‘
they have a common square supercell. .

Patterns with common A are described as compatible. Sorted by value of A, we have

forAp <21:

Ui discussing chemical compounds it is more usual (o talk about “rings” {as in “benzene ring”) rather
than “polygons.” In the present context the terms are synonymous. ) '

2As the average ring size is 3 for 6-connected nets, it follows that in the absence of 2.rings (loops) ail
the rings in a 6-connected net are 3-rings and 36 is the only &-connected net. .
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A=1 Ap=1,2,4,58,9,10, 13, 16, 17, I8, 20....
A=3 Ap=3,6, 12,15, .

A=7 Ap =7, 14,...

A=11 Ap=11,21,...

A=19 Ap=19,.

The square lattice (the regular tiling 4%) has one point per cell and so belongs in the class
with A = 1. The important tiling 32.4.3.4 (Fig. 5.39) has four vertices per unit cell
(§ 5.6.5) and so is compatible with 44, Fig. 541 (p. 167) illustrated that the
transformation from one structure to the other can be effected by concerted rotations of
squares. This relationship is valuable in: relating layers of crystal structures,

Fig. 5.71, The relationship between TTB (left) and 44 (}ight), Corresponding parts of each diagram are
equally shaded for ease of comparison.

As a second example we itlustrate (Fig. 5.71) the relationship between 44 and the
tetragonal tungsten bronze (TTB) net (Fig. 5.43, p. 170) with 20 points in the unit cell
(ie. A =1 again). Again the transformation between the two structures is effected by
rotations of groups of vertices. For other examples see OKH.

In both these examples the common supercell is the larger of the two. If we wanted to
inter-relate patterns with {say} 4 and 5 points per cell respectively, we would have to use a
supercell with 20 points per cell to describe the transformation.

Similar considerations apply to two-dimensional hexagona] patterns. A non-primitive
hexagonal ceil with translation vectors ua + vh and —va + (u-v)b (derived from a primitive
cell defined by a and b) will have area 12 - uv + v2 containing uZ — uv + 2 lattice points.
Let the number of points in a hexagonal cell be Bq, where g can be expressed as w2 - uy +
vZ and B is either | or cannot be so expressed. Hexagonal patterns with a commeon B will
have a common super-cell and thus will be compatible.

Sorted by value of B we have for Bg <20

B=t Bg=1,3,4,7,9,12, 13,16, 19,...
B=2 Bg=2068 14, 18,...

B=5 Bg =35, 15, 20,...

810 Bg=10,...

B=11 Bq:ll,...
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In Fig. 5.40 we demonstrated that 3% (one vertex per cell, B = 1) and 3.6.3.6 (three
vertices per cell, B = 1) were indeed compatible and illustrated their relationship.

63 (2 vertices per cell) belongs to the B =2 family, so it cannot be transformed to 36 (for
example) without a change of shape of cell. But 63 is compatible with 3%.6 and 3.4.6..4
(both six vertices per cell, B = 2). Fig 5.72 iHustrates that the relationship between them is
very simple and can be effected by rotating the shaded hexagonal groups of vertices,

Fig. 5.72. Relationships between 6° (top left), 3.4.6.4 (top right) and enantiomorphs of 3%.6 (bottom).

A slightly more subtle example involves the relationship between the a~UzQOg and
B-U30g nets (see § 5.3.4). o-U30y3 is hexagonal with five vertices per c'e'il (B =.5
family). B-U30g is centered rectangular with ten vertices per cell, but the primitive cell is
almost metrically hexagonal (there are no 3- or 6-fold symmetry axes of course) and a}so
has five vertices per cell. Fig. 3.73 shows that these two nets are simply related by rotation
of pentagonal groups of vertices (shown shaded in the figure). In this example, becanse
B-U303 is not strictly hexagonal, we do have a small change of unit cell shape.

Fig. 5.73. Relationship between the o-U30g (right} and §-U3Og {left) nets. A primitive celf {with an
unconventional origin) is shown as white lines.




202 Chapter 5

Many of the transformations between two-dimensional patterns that we have described
involve rotations of polygons. We will find that in similarly relating three-dimensional
Patterns (such as sphere packings) we will rotate polyhedral groups of atoms.

Most of the plane patterns of interest in crystal chemistry are square with A = 1 or 3, or
hexagonal with B = 1 or 2 (OKH).

Note that transformations between incompatible patterns (e.g. 36 with B = 1 and 63 with

B = 2) require a change of shape of the unit cell (a metrically hexagonal cell of 36

containing two points does not exist).
5.8.13 Pseudorotations and twinning of nets

We remarked that two “infinite” stractures with the same densities of points can be
converted from ornie to the other by shuffles of atoms {points) by an amount less than, or at
Teast comparable to, interatomic distances.! In particular structures related by rotation about
an axis or by reflection can be interconverted without macroscopic displacements.
Intergrowth of {we otherwise identical structures in different orientations is called twinning
and usually different structural elements are generated at the interface.

In Fig. 5.74 below we show how the orientation of a 44 net can be changed merely by
small rotations of individual sets of four points forming a square. The left-hand part of the
figure shows open circles on a 44 net. Rotating the points on the shaded squares to the
positions shown by filled circles results in a fragment of 4% rotated by approximately 51°
{or —39°) from the original orientation, On the right the resulting structure is shown; it may
be seen to be a coherent intergrowth of the two 4% nets with squares replaced by triangles
and pentagons in the line where the two twins meet.2

Fig. 5.74. Twinning of a 4% net by rotation of squares. See the text for details.

Very many crystal structures can be derived from simpler ones by repeated periodic
twinning (mimetic twinning). Numerous examples are adduced by Hyde & Andersson

I'Fransformations between lattices of the same density and the nature of the displacements are discussed
by M. Duneau & C. Oguey, Journal of Physics A 24, 461 (1991).
2In three dimensions twins meet in a piane: the composition plane.
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{Book List, see also B. G. Hyde et al., Progr. Solid State Chem. 12, 273 {1979)] and it is
important to realize that (at least in some cases) only small atomic displacements (as
opposed to macroscopic shear) are needed to interconvert structures. An example of a
three-dimensional pseudo-rotation is to be found in § 6.3.1.

3.6.14 Symmetries of structures derived by stacking equivalent nets

In § 5.3.7 we described some structures consisting of a two-layer stacking of self-dual
nets. In any two-layer structure, the layers are of necessity on mirror planes, say normal to
€. If further the two layers are the same (or mirror related), there must be a symmetry
operation that includes a translation ¢/2 relating the two mirror planes. In the general case

all atoms are in positions x,y,zg with zg = either 0 and 1/2 or 1/4 and 3/4. Possible

symmetry groups for structures with atomns in such positions are listed in Table 5.7 below,
first in a setting with the mirror pianes containing the nets normal to ¢ and second in the
“standard” setting. The symmetry of the layer is also given. Notice that there are often extra
constraints on the lattice parameters of the layers. Thus in space group P4;/m, layers with
symmetry p2 are stacked one above another with alternate layers rotated by 90°; for this to
be possible one must have a = b for the layer,

Table 5.7. Possible symmetries for structures with symmetry-related layers

space group - layer space group layer space group  layer
Bllm Cm rl Phem Pbem plgl Pdyim i
Pli2y/m Plyim pl Pnnm  Pnnm P2 Aim p4
Bl12im  Clm p2 Ptnm Pmmn plml Pdimee p4
Pc2m: Pma2 pl Pbnmt Prma plgl Pdlmnc 4
Pr2ym’ Pmn2;  pl Amam  Cmem pmg Pdslmme  plmm
Bmi2m Crim2 plml Cmem  Cmem plmm Pdsimem ¢2mm
Bb2im  Cme2y plgl Acam  Cmca pleg Piaimbe Pge
Am2m Amm2 plmi Cmmym Cmmm pPlmm Pdafmnm c2Zmm
Ac2m Abm2 plgl Cecem Ceem clml - HAlmmm phmm
Ce2m Amal pl Bmem  Cmma plmm Himem plem
Fm2m Fmm?2 clml Bmam  Cmma plmg Pés/m p3
Im2m Imm?2, plmi Fmimm  Frunin c2mm Pbel p3
Ic2m Ima2 plgl Immm fmvmm plmm P62c p3
Peem Pcem p2 Ibam 1bam Pl Péimece P
Pmem Pmima plml Imem Imma phmg P6afmem p3m
Prcm Pmna pe Imam  Imma plmg P63/mme piml

Notice too that although there are many possibilities for stacking low-symmetry layers,
the number of possibilities becomes limited for more-symmetrical layers and there is oniy
one possible stacking sequence for layers with symmetry p3m1, p3 lm, pdmm, pdgm and
p6. This is becanse alternate layers must be related by a symmetry operation that is not a
part of the symmetry of the layer. Thus in P6a/mcem adjacent layers of symmetry p3 1m are
related to each other by reflection in mirrors normal to a (combined with the translation ¢/2
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this corresponds to the operation of ¢ glide normal to a as indicated in ¢

symbql). ?n Pé3/mmc adjacent layers of symmetry p3m1 are related toh:a?l)]ai;hioﬁi
reflection in mirrors parallel to a (operation of ¢ glide plane containing a as indicated in the
space group symbol). Layers with symmetry p6 can be also be stacked with alternate layers
related by ¢ glide but now one set of glide planes automatically generates a second set and
there is again only one possibility: symmetry P6/mcc.

A square iayer has 4-fold axes at the center of the ceil as well as at the corners (see Fig
1.1.3,-p. 16) so square layers can be stacked with alternate layers displaced by 1/2,1/2 1/2.
This_ is the only possibility for layers with symmetry pdnum and phgm, T

Fullally, note that a two-layer stacking of layers of symmetry p6mm is not possible
Thj_s is because there is no three-dimensional crystallographic operation relating the layers'
tha[: will not leave them unchanged, so the only possible stacking of such layers is that in
which they are directly one above the other and then there is a single layer structure with
symumetry P6/mmm. It follows at once that there cannot be a self-dual net with symmet
p&mm. On a little reflection (1Y this result should become “cbvious.” i

5.6.15 More structures with dugl nets: Fe;P

In § 5.3.7 we gave some examples of structures that were simply described as stackings
of self—d_ual nets, The description is particularly attractive as once the 2-dimensional net and
the spacing between layers are specified, the structure is completely determined; although to
fully appreciate the structure, it should be illustrated in more than way (for exa;nple by also
emphasizing the pattern of trigonal prisms),

Fig. 3.75. The struc.ture of FeP projected on {0001). Larger circles are Fe. Filled (open) circles are at z =
11{2 0. Lf.:f[: showing the nets at z = 1/2 (heavy lines) and atz = 0= 1 (lighter lines). Right: as {P}Feg
trigonal prisms centered at z =0 (lighter shaded) and at z = 1/2. -

A related group of structures can be described in terms of stackings of dual (but not self-
dual) nets. These structures are generally more complicated, in the sense that there are more
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crystaltographic kinds of atom, because atoms on the two layers are not related by
symmetry, The simplest structure of this sort is FeaP = Fe(1)3Fe(2)sP(1)P(2)2 (for
crystallographic data see Appendix 5).

Figure 5.75 shows 2 projection of the hexagonal (P62m) structure on {0001), Tt may be
seeq that the layers at z = 0 and z = 1/2 are different, but the nets are indeed the duals of
gach other.! Such an illustration allows a ready determination of the coordination of all the
atoms, but it is hard to see the larger-scale organization of the structure. On the right in the

- figure {P}Feg trigonal prisms centered at z = 0 and z = 1/2 are emphasized; now the

linkage of these polyhedra is more apparent,

5,7 Exercises

1. The dual of the bisdisphenoid is an octahedron which also has 42m symmetry (of
course!), and has four faces that are pentagons and four that are quadrilaterals, Can this
polyhedron be made with faces that are regular polygons? (No.)

There is an octahedron with three pentagonal and five triangular faces that can be made
with regular polygons. [Hint remeve three vertices from a regular icosahedron.)

2. If polyherdra are to fill space, the solid angles at the vertices that meet at a point must
sum up to 47 (7207) and the dihedral angles at a2 common edge must sum up to 360",
Verify that the solid angle at the vertex of a truncated octahedron is 180° (a usefu! formula
is Eq. 4.15) and that the dihedrat angles are 120°. Truncated octahedra indeed do fill space
with three polyhedra meeting at an edge, and four meeting at a vertex (see § 7.3.10}.

3. Regular tetrahedra alone cannot fill space. The solid angle at the vertex of a regular
tetrahedron is 3cos 1(1/3) — = 31.59" 50 at most 22 regular tetrahedra can have a common
vertex. But at most five regular tetrahedra can have a commeon edge (the dihedral angle of a
regular tetrahedron is cos-1(1/3) = 70.52°) so in fact only 20 regular tetrahedra can have a
common vertex. (Do the experiment with 21 regular tetrahedra!). A regular icosahedron can
be considersd as made up of 20 tetrahedra with three edges equal to unity and three edges
(meeting at the center) equal to 5144[(1 + V5)/8] = 0.9511. [These considerations are
relevant to the shapes of small clusters of metal atoms].

4. A linear rod can be made of regular tetrahedra sharing faces (so that the tetrahedron
centers fall on a straight ling). The vertices fall on an aperiodic helix.2 Are the positions of
the vertices described by a quasiperiodic function? (Yes.)

IThe net at z = 0 (open circles in the figure} should be recognized as the @-U3zO0g net (see Fig. 5.44,
p- 172). .

2A mice, but challenging, preblem. See H. Nyman ef al., Zeits. Kristallogr. 196, 39 (1991) for some
help. Such a rod is known as a “Bernal Spiral”, For more on this beautiful structure see also C. Zheng et
al., J. Amer. Chem. Soc. 112, 3784 (1990).
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5. 1t is simple to demonstrate that the volumes of regular tetrahedra, octahedra and
truncated tetrahedra with the same edge length are in the ratio 1 : 4 : 23, (Hint: combine
each of the larger polyhedra in turn with four tetrabedra to make larger tetrahedra.)

6. The reader might enjoy deriving results similar to Eq. 5.4 from Eq. 5.2 for finite
polyhedra. For example it is not difficult to show that if a closed shell (polyhedron) of
“graphite” (three-connected C atoms) is made, in addition to hexagonal rings (as in
graphite), there must be 12 pentagonal rings. Cgp and Cyg are well known examples,

Fig 5.76. The polyhedron shown on the left is the truncated icosahedron (5.62). On the right is a
topological isorer.

Hint: if three polygons meet at each vertex, E = 3172 [incidentally showing that the
number of vertices must be even] and Eq. 5.2 becomes 2F = V + 4. Let there be F 5
pentagonal faces and Fg hexagonal faces so that F = F 5+ Fg. As each vertex belongs to
three polygons there are 6/3 vertices per hexagon and 5/3 vertices per pentagon

Figure 5.76 shows, on the left, the truncated icosahedron (5.62) which has 60 vertices,
20 hexagonal faces and 12 pentagonal faces. On the right of the figure is shown a
topological isomer with the same number of faces but some vertices are 52,6 and 63; it is
derived from 5.62 by rotating the two vertices shown as filled circles, ! '

7. The combination of two regular pentagons and a regular decagon meeting at a point
have the sum of their angles equal to 360° but there is no tiling 52.10.2 Show that
nevertheless the combination of two pentagons and a decagon per vertex satisfies Eg.5.3.

8. Verify for the Archimedean tilings (Table 5.4, § 5.3.2) that the average ring sizes and
numbers of rings per vertex have the values given in § 5.6.11,

1See A. 1. Stone & D. ). Wales, Chem. Phys. Leus. 128, 501 (1986).
2This problem fascinated Kepler, who produce some beautiful lilings consisting largely {but of course
not entirely) of regular pentagons and decagons Isee Griinbaum & Shephard (Book List)].
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9. There is a simpile tiling of the plane by congruent pentagons.! The symmetry is pdgm
with g = V(4 + V7). There are two kinds of vertex: one at 2 a: 0,0 ; 1/2,1/2 and the second
at4 c: i(i,l/2+x ; 1/2-x,x) with x = 0.363. Four pentagons meet at one v,ertex ;md three at
the other (Fig. 5.77). The pattern is known as Cairo tiling or MacMahon's net.

Fig. 5.77. MacMahon's net (Cairo tiling).

10. Show that the transformation 3.6.3.6 — 36 illustrated in Fig.l 5..40 can be described
analytically as follows: We take a cell containing three points at positions 3 ¢ of p31m: {x,0;
0.x; %,%) with x = (3 ~ 2sing)/6 and unit cell edge a = dV(3x2 - 3x + 1) wherle d is the
shortest distance between points (the edges of the net). ¢ is the anglf: of rotation of th6e
triangles of 3.6.3.6 so that ¢ = 0° corresponds to 3.6.3.6 and q}:: 30 corresponde% to 30,
The endpoints have symmetry p6m and the true unit cell for 38 is 1/3 the area of this cell.
What happens when ¢ > 30°?

11. Describe the transformation 32.4.3.4 — 44 in a similar way to that in Exercise 10.
(See Fig. 5.41; the symmetry in the general case in pdgm)

i ihi in Fi : tex is
12. Consider tilings by the polygons shown in Fig. 5.65 such that every ver
5-connected. Show that Eq. 5.4 requires that 2/3 < ¢3<5/6,0< q_b4 <i3and0 s g5 =<
1/6. Can you make a tiling with a 5-fold rotation point with these tiles? Can you make a
periodic tiling using all three tiles and with all vertices 5-connected?

IEnumerating the tilings of the plane with congruent pentagons is a fan'?o'us problem and attemgts at‘ its
solution have resulted in amaleurs handily beating professional mathematictans. See M. Gardaer in Time
Travel ard Other Mathematical Bewilderments {Freeman, New York (19.88)]' . ‘

2n Caire (Egypt) the tiling is common for paved sidewaiks, The net is featured in P, A, MacMahon's
New Mathematical Pastimes [Cambridge, (1921)],




CHAPTER 6
SPHERE AND CYLINDER PACKINGS

In this chapter and the next we discuss periodic three-dimensional structures. This
extends the discussion from finite polyhedra, circle packings, and two-dimensional nets, to
infinite polyhedra, sphere and cylinder packings, and three-dimensional nets. Now we are
approaching the real world of crystal structures and examples of them will be met more
frequently.

In many crystal siructures one or several kinds of atom are int positions corresponding to
the centers of spheres in a sphere packing, and other atoms are in positions corresponding
to interstices of that packing. It is common (espectially for mathematicians) to refer to such
interstices as “holes,” but that word has been appropriated to have a special meaning
(referring to an electronic defect) in solid state science, so we avoid it. We generally just
refer to “sites.” In the same vein, the word “vacancy™ has the meaning of a site that showld
be oceupied but at some particular point in a real crystal is not (i.e. a special kind of atomic
defect). We recommend using “vacancy” only in the context of defect thermodynarnics and
kinetics (and then with great care), and at other times using a term such as “unoccupied
site” instead. .

- It is essential at the outset o reécognize that we are here only concerned with the
geometry of certain patterns of points which are of common occurrence in crystai
structures. It is convenient to consider such patterns as arising from packings of spheres,
but as they can also arise in several other contexts, it is important not to get a mental image
of crystals as assembled from a packing of hard sphere “atoms™ as is sometimes seen
illustrated (we do this ourselves in § 6.1 and 6.2, but nowhere else). We shall see, for
example, that in several simple and familiar crystal structures of binary compounds AR the
arrays of both the A and the B atoms are the same as the centers of spheres in closest
packing. Unless the spheres representing A and those representing B interpenetrate
substantially there cannot be simultaneous A-A and B-B contacts.

One reason for discussing sphere packings is that it is hard to read the literature of
crystal chemistry without some knowledge of the subject and its associated terminology.
The most compelling reason is, however, that the topic introduces patterns that are
ubiquitous in crystal structures; indeed it is hard to invent a simple symmetrical sphere
packing that does not occur in nature. Our drganization is by coordination number, starting
with the densest packing of spheres; however, this is for convenience only; we could
equally have chosen one of a number of other schemes.

6.1 The densest packing of spheres

We consider first the classical problem of packing equal-sized spheres in space as
densely as possibie (closest packing). It should be apparent that this is the same problem as
that of arranging points of an infinite array with given density {number per unit volure) so
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that the shortest distance between them is a maximum,; stated this way, the problem is an
extension of Tammes’ problem (§ 5.1.9) which referred to arranging points (with fixed
number per unit area) on the surface of a sphere such that the minimum distance between
them was a maximum, Another problem with the same solution is to ask for ways of
arranging points in space so that every point has twelve equidistant nearest neighbor_s. Yf:t
another problem, again with the same solution, is to ask for the arrangement of vertices in
space-filling packings of regular octahedra and tetrahedra with equal edges.

Thus the same geometrical arrangement arises in very different contexts, only one of
which involves spheres in contact. When we want to emphasize such considerations we
use the term eufaxy to mean “an arrangement corresponding to the centers of spheres in
closest packing” and describe such arrays as eutactic. Generally though, we foliow

" established usage indicated by bold face abbreviations in the next paragraph.

1f we restrict ourselves to arrangements in which the points (or the centers of the
spheres) fall on a lattice, there is just one solution to the above problem. The arrangement .is
commonly referred to as cubic closest packing (cep), but we also use the term cubic
eutaxy.! I the restriction to points on a lattice is lifted, we find a second at_‘rangement of
equivalent (symmetry-related) points known as “hexagonal closest packing” (}!cp} or
hexagonal eutaxy. There is an infinity of other arrangements with the same density, but
with more than one kind (in the crystallographic sense) of point as we will see. We refer to
these generically as cp or as eutactic. We consider only periodic patterns and state resuits
mostly without proof.2 The construction of models with & dozen or so polystyrene balls
and toothpicks to hold them together will be found invaluable.

6.1.1 Stacking of close-packed layers

Fig. 6.1. Part of a layer of close-packed spheres. A marks the corners of a unit celi. -

1The term is used [as is “cubic closest packing” (ccp)] also for a.rrangéments that only approximate the

icdeal amangement, ) . .
2Some “obvious” results are remarkably difficult to prove in a way acceptable to mathematicians. For
comnents on the proof (by W. Hsiang) that “closest packing” is just that see N. Max, Nature 355, 115

(1992,
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Conceptually the simplest way to generate these patterns is to start with a layer of
spheres lying on a flat surface in a closest-packed way.! Their centers will be on the
vertices of a 3% net (a cp layer), Just as in the densest circle packing. Fig. 6.1 shows four
such spheres with centers at the corers of a hexagonal unit cell of 36. In the figure the
letters “A™ are at these corners,

Now we add a second close-packed layer on top of the first. To have maximum density
we want the spheres of the second layer to nestle in the depressions of the first, i.e. over
the points marked “B” or “C.” (It should be clear that B and C are too close for spheres of
the second layer to be simultaneously over both of these positions), Accordingly there are
two possibilities for the two-layer structure: AB or AC. These are of course identicai
arrangements (remember the layers are infinite in the plane). For the sake of subsequent
discussion let the arrangerent chosen be AB for the moment. '

Fig. 6.2, Part of two layers of close-packed spheres. The letters are in the same place as in Fig. 6.1.

A small fragment of the two-layer packing is shown in Fig. 6.2. It should be clear from
that figure that if we now add a third layer in a similar way, the centers of the spheres in the
third layer must tie over either A or C so we have two distinct three-layer sequences: ABA
and ABC. These differ in that in the first case the layers below and above the middle one
are in same (A) positions, and in the second case the layers below and above the middie
one are in different positions (4 and C).

For unit diameter spheres in contact, the perpendicular distance between layers will be
V(2/3) = 0.8165 (this is the height of a regular tetrahedron of unit edge, cf. p. 133).

IThis is why we pack spheres rather than, for example, polyhedra.
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Fig. 6.3 shows parts of the two different three-layer sequences. At the top the spheres
are packed ABC and at the bottorn the sequence is ABA. The two simplest infinite packings
would be obtained by repeating these sequences indefinitely: ABCABC... and ABAB. ...

Fig. 6.3. Spheres packed in the sequence ABC (top hakf) and ABA (bottom half).

The centers of the spheres in a slab of two layers divide the slab into regolar tetrahedra
and octahedra. Fig. 6.4 shows how a tetrahedron and an octahedron are so defined b}" four
and six sphere centers respectively. The eutactic arrangements of points thus also arise as
the positions of the vertices when segular tetrahedra and octahedra are packed to fill space,
and this is possibly the real reason for the common occurrence of entaxy as the arrangement
of cations and/or anions in 50 many compounds in which there is 4- andfor 6-fold
coordination {see Notes § 6.8.3). _

Figure 6.5 illustrates the arrangement of octahedra and tetrahedra in a two-layer s_lab.
Each octahedron shares edges with six other octahedra. The tetrahedra can be divided into
two groups {see Fig. 6.5): those “pointing down” and those “pointing up.” Tetrahedra of
each type share only vertices with each other, but each “up” tetrahedron shares three edges
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with “down” tetrahedra in the same layer and vice versa. Altogether space is divided into
equal numbers of octahedra, “up” tetrahedra and “down™ tetrahedra.

Fig. 6.4. A tetrahedron and an octahedron formed by spheres in contact,

Fig. 6.5. Middle: the centers of 24 spheres {represented by circles) in a double layer of close packing

showing {he. octahedr‘al interstices, Top: the same points, but now showing the “down” tetrahedra, Bottom:
the same points showing the “up” tetrahedra. ' l .

Fig. 6.6. A rhombohedr.on composed of an octahedron and two tetrahedra (compare Fig. 6.5).
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The reader is urged to assemble such a layer with polyhedra. When that is done it will
surcky be noticed that two tetrahedra may be combined with an octahedron to form a 60°
rhombohedron as shown in Fig. 6.6. Clearly this polyhedron fills space and contains one
each of an “up” tetrahedron, a “down” tetrahedron and an octahedron. We will see that it is
a unit cell of ecp. It should be clear that each two-layer slab can be divided into such
rhombohedra, so all ep arrays are made up of octahedra, “up” tetrahedra, and “down™
tetrahedra in equal amounts (one ¢ach per cp sphere).

6.1.2 Hexagonal eutaxy (hep)

We discuss the case AB... first. We couid equally label the sequence AC..., BC..., etc.
which would describe exactly the same packing but with a different choice of origin. In fact
if A is at the origin of a hexagonal cell, it is useful now to describe the two-layer repeat as
BC.... We can then get a convenient description in erystallographic terms of a hexagonal
unit cell with sphere centers at 1/3,2/3,1/4 and 2/3,1/3,3/4. If the sphetes are unit diameter,
a will be 1.0 (see Fig. 6.1) and ¢ will be 1(2/3) = V(8/3) = 1.6330. The z coordinates are
chosen as 1/4 and 3/4 (rather than e.g. O and 1/2) because we then have the origin of
coordinates at a center of symmetry. The space group is P63/mmec. The arrangement of
sphere center points is not a lattice, as a vector from the center of a sphere to the center of a
contiguous sphere in an adjacent layer is not a lattice vector. The spheres are related by
symmetry though; their centers are in the special positions 2 ¢ of P6a/mmec.

In hep, the planes normal to ¢ and containing the centers of the spheres are mirror
planes. Tt follows therefore, that the octahedra in successive layers share common faces and
form face-sharing columns {parallel to ). The centers of the octahedra are at 0,0,0 and
0,0,1/2 in the unit cell (2 a of P63/mmc). On the other hand the tetrahedra will form pairs
(one “up” and one “down”) with a common face. Recall that the “up” set of tetrahedra have
only common vertices (are corner-sharing) as do the “down” set. The centers of the
tetratiedra are in 4 £ £(1/3,2/3.2 ; 2/3,1/3,1/2+2) with z = ~1/8.

6.1.3 Cubic eutaxy {ccp)

The rhombohedron of Fig. 6.6 with points at the vertices can be considered as the unit
cell of a structure with the points coinciding with a lattice. The 60° rhombehedron is, in
fact, a primitive cell of the face-centered cubic lattice (see § 4.4). Fig. 6.7 shows 14
spheres with their centers at the lattice points of a face-centeréd cubic cell. As can be seen
from the figure the centers of the spheres lie in close-packed {111} planes.

The structure we are describing is cubic eutaxy or “cubic close packing” (cep).
Discussed in terms of a stacking of close-packed layers the sequence is ABC... The
simplest way to see this is to use the description of a rhombohedral lattice in terms of a
centered hexagonal ceil. Thus if the rhombohedral ceil (Fig 6.7) has a = 1, cr=6€" then the
hexagonalcellhasa=1,c= 3\1'(2/3) =6 = 2.449... and the lattice points are at 0,0,0 (A);
2/3,1/3,1/3 (B); and 1/3,2/3,2/3 ().

The face-centered cubic cell contains four lattice points (at 0,00 ; 1/2,1/2,0; 1/2,0,1/2
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and 0,1/2,1/2) and must therefore contain four octahedra. The octahedron centers are at
U2,12,142 5 1/2,0,0 ; 0,1/2,0 and 0,0,1/2 (i.c. at the body center and in the middie of each
edge). These octahedral sites also fall on the points of a face-centered cubic Iattice
(displaced from the first by 1/2,1/2,1/2).

Fig. 6.7. Left: a face-centered unit cell with spheres centered at [attice points arranged in cep. Center: the
arrangement of the centers on (111} planes. Right: the primitive cell is heavily outlined.

The cubic unit cell also contains eighi tetrahedral sites with centers ai t1/4.+1/4,+£1/4.1
Their centers are on a primitive cubic lattice with one-half the cell edge (see Fig. 6.11
below). The symmetry of cep is Fm3m and the sphere centers are in 4 a. The octahedral
sites are in 4 b and the tetrahedral sites are § c.

The centers of the spheres in the {100} planes (i.e. parallel to the faces of the cubic unit
cell) are on 44 nets so it can be seen that an alternative description of cep is'in terms of a
stacking of such nets (see § 6.4.2). In close packing there is only one position for a second
4% layer on top of 2 first one, so cep is the only close packing that admits this description.

In contrast to hep, the octahedra in ¢cp share only edges (i.e. not faces), and-as we
have seer, their centers are also in cep. The tetrahedra likewise share only edges. Viewed
along one of the <111> directions the tetrahedra can be considered to fall into “up” and

“down™ sets in each of which, as for hcep, they share only vertices. We shall see that the
centers of each of these sets are also cep.

6.1.4 Other eutactic (ep) arrangements

The hexagonal and cubic arrangements AB. .. and ABC, .. are obviously just the simplest
of an infinite number of possibilities of stacking close-packed layers. The next possibility is
ABAC...

In all ep arrays each sphere is coordinated by 12 nearest neighbors and there are just two
possibilities for the coordination figare. The first is the cuboctahedron, illustrated on the
left in Fig. 6.8: The central sphere is in one of the positions A, B or C and the spheres in
the layer above in one of the ather two remaining positions and the spheres below in the
third. To avoid the redundancy arising from the arbitrariness in the labels A, BorCitis
often more coavenient simply to label such a central layer ¢.

!Recall that —1/4 is the same as 3/4 in this context
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in hep have neighboring spheres at the vertices of a “tmfinn'ed
cubTo}::etalSlIe)g:;:’s’ (:1150 sc?metimes callged an anticuboctahedron), shown on the ng[;lt in Fig.
6.8. The spheres in the layers above and below the c':c.ntral sphere.are now in t ; same
positions. If the central sphere is in, for example, pos%non A, those in the layers above or
below are either both B or both €. Such a central layer is labeled A.

Fig. 6.8. The coordination of an atom (filled circle) by its neighbors in cep {left) and hep (right).

Any eutactic array can be described by a sequence of ¢’s and h’s' ;s \};e n;x
demonstrate, First write out the sequence in terms (?f A, B and C and then i entlhy ttih
layer as k or ¢. The layer will be & if the letters on §1ther side are the same as each of ier;
and will be ¢ if the fetters on the left and right are different fror’n eac1:h other. ’C%nvc{scu‘jil
sequence of ¢’s and &'s can be converted to a sequence of A’s, B’s énd C sh y s ?; thi
arbitrarily with (e.g.) AB. A number of examples is given below {with on the rig
conventional label).

hhhhn AhB
ABABAR
ABCABC aBC
abacanac aac
ABACBCABACECA ABACBC
ABABCHCACABABCDCA  ABBCRCAC

The symbolism in terms of / and ¢ is more concise, bu.t c]oe§ not mu;;edfteiiurtez;ai
how many layers are in the repeat unit. Thus the repeat unit is sm.laycr;;1 or c;ut * nine
layers for khc. Many of the metallic elements crystallize as either dc;;? < put more:
complicated sequences are found. Sm for exax_nple occurs as both ke and hic .
wili meet ¢p arrays many times and in several different contexts later.
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Another way .of specifying stacking sequences is preferred by some authors, In this
method_, due originally to Zhdanov, a chaﬁge fromA—>BorB— Cor C'—a Alis
symboh;ed “+" and the reverse, ie. B—AorC = BorA — Cis symbolized “~.” Thus
cep .(C) Is+++... (or ~——=_.) and hep (h) is +—+-... (or —+—+...). The pac-kin is
spef::ﬁed }Jy a sequence of numbers, each of which represents the number of re etiti0n§ of
a given sign. We have then that cep is o and hep is 11. he is ABAC... ic -E+-—
22. The reader should verify that kce is 33 and that khc is 21. Thf; s;.ec.!uencc h‘.;z.hc
corre_spm'lds to ++—+--+— Le. 211211. A commonly encountered modification of this
notation is to omit the second half of the symbol when it is a repetition of the first and to
enclose the symbol in angle brackets. Thus 22 becomes <2> and 211211 becomes <21 1>
(but_21 1 <21>). The mule is that if the symbol in brackets contains an odd number of
entries, the Zhdanov symbol is the bracketed symbol repeated twice.!

ey

A B CA

Fig. 6.9. (1 1'20) siices of he (left) and hhe {right). ¢ is vertical and a unit cell is shown with dashed lines.
In the top left is shown a (0001} projection with the trace of a (11Z0) plane as a heavy line.

A sqnple geometrical interpretation of the Zhdanov notation can be obtained from Fig
6.9 which shows slices (not 2 projection) of two cp arrays. The slice is a (1120) plane of a;
hexagonal cell (outlined) and heavy lines connect nearest neighbors in this plane, In Ac =
22 (left) the fine, as it ascends up in the ¢ direction, goes two places right then tw‘o places
left alternatety. In khc = 21, the line goes two places right then one left aliernately. Notice

L
It should be clear that a Zhdanov symbol (other than that for cep) always has an even number of terms.
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that k layers are at positions of change of direction. !

Fig. 6.9 also shows that a cp array can be described as a two-layer stacking of 44 nets
made up of two kinds of files—rectangles and twinned rectangles ("kites") with edges in
the ratio of 1:¥2. Tn ccp the tiles are all rectangles and in hep they are all kites.

Sometimes a symbol #X is used to specify a packing. n is the number of layers in the
repeat unit of the packing and X is H if the structure is hexagonal {sensu stricto), R if the
structure is thombohedral, and T if the structure is trigonal (but not thombohedral). Thus 2
is 2H, and hc is 4H and hhc is 9R. Other examples are given in Exercise 2. Unfortunately
as n gets large there is generally more than one packing with the same such symbot. For the
pse of Zhdanov symbols to determine the space group of the packing see the Notes
(§ 6.8.1).

6.1.53 Patterns of filling interstitial sites in cp arrays

Reference to Fig. 6.4 (p. 212) shows that the center of an octahedron between two
close-packed layers A and B is in the C position, and midway between the layers. It is a
comman practice to specify the positions of these interstitial sites by Greek letters: &, Band
wvinstead of A, B and C, so such an octahedral site position between A and B layers is
labeled y (Fig. 6.10). Fig. 6.4 also shows that the center of an “up” tetrahedron is
underneath the top sphere, so the center of an “up” tetrahedron formed by layers AB with B
on top is in a B position (Fig. 6.10); it is located 1/4 of the way up between the two layers.
Similarly the center of a “down” tetrahedron between the same layers A8 is in the o
position 3/4 of the way up.

Fig. 6.10. Location of octahedral and tetrahedral sites in a cp layer AB. In the middle is an “up”
tetrahedron; right is a “down” tetrahedron.

Suppose we fill only the “up” tetrahedral sites in hep. The arrangement can be
symbolized Af--Bex-Af-Be..2 The pattern of tetrahedral sites is BovfBa..., Le also
hep. Filling only the “down” tetrahedral sites will praduce A-oB--fA--aB--f... The
pattern of these tetrahedral sites is ct-+:f--c¢-B..., Le. again hep. The structure obtained by
filling either the “up™ set or the “down” set of tetrahedral sites of hep is that of the
wurltzite form of ZnS which may be described either as an hep array of Zn with S in

INote also that the unit cell is chosen at an unconventional origin for clarity. Normally the origia
would be taken on a ¢ atom which is at a center of symmetry (see Exercises 1 and 2).

e use dots “.” as space markers for clarity, but they are not absolutely necessary and they are
sometimes omitted later. Distinguish such dots from the ellipsis “...” at the end of a sequence indicating
that the sequence continues indefinitely,
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one-half of the tetrahedral sites (all “up” or afl “down”) or as an hep array of S with Zn in
one-half of the tetrahedral sites.

We repeat the exercise for cep. Fillin g the “up” tetrahedral sites produces the sequence:
AB-By-Ca--AB--By-Ca... and filling the “down” sites only produces the sequence
A--0B--BC-1A--aB--BC--y... The sequence of tetrahedral sites s Bopeafpea... and
O fe e By, respectively: in both cases cep. The structure obtained by filling
either the “up™ set or the “down™ set of tetrahedral sites of ccp is that of the sphalerite
form of Zn8 which may be described either as a ccp array of Zn with S in one-half of the
tetrahedral sites (either all “up” or all “down™) or as a ecp array of S with Zn in one-half of
the tetrahedral sites (again either all “up” or all “down”). (For the siructures of ZnS see
§ 4.6.4, especially Fig. 4.11, for data for wurtzite ZnO see Appendix 5.}

Notice that both Zn and § are in 4-coordination in these structures, and we could
consider the structure as a network of 4-connected atoms (a “4-connected net”). Such
structures are one of the topics of the next chapter where we see (§ 7.3.1) that if all the
atoms were the same (say C) then we would have the structures of the hexagonal
lonsdaleite and cubic diamond forms of carbon.

Filling all the tetrahedral sites of cep produces the fluorite structure of CaF (with ccp
Ca) which we can code as AB-oByBCo-yAB aBy-BC... Note that the sequence of
tetrahedral sites is f-o-y S pfoey... as in cep; but because the spacing between layers
is only one-half the distance between close-packed layers, the pattern is no longer ccp but
is in fact primitive cubic—see Fig. 6.11. Accordingly care must be taken to ensure that the
spacing between layers is appropriate before describing structures as ep, The Spacing
between each symbol (letter or *-™) is (at least approximately) 1/4 of the distance between
the cp layers, i.e. 1/¥24 of the distance between atoms in the close-packed layers.

Fig. 6.11. Left: a unit cell of cep (filled tircles) with tetrahedral sites shown as open circles. If the open
and filled circles are Ca and F réspectively, we have a representation of the structure of CaFa. Center: the

same structure shown as {F}Cay tetrahedra (shaded). Right: the same structure but now some {CalFg cubes
arg outlined.

Notice that because the F atoms are in 4-coordination, the Ca atoms must be in
8-coordination (there is only one Ca for two F atoms), and in light of the above discussion,
it is not surprising to find that the coordination is {Ca}Fg cubes.
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If the roles of “cation’™ and “anion™ are reversed in fluorite .(as in,' for example, LiyO
with cep O) we get the antistructure, called in this instance antifluorite. '

In the (idealized) structure of NiAs, Ni atoms occupy the octahedral.sﬂe:% of an hep
array of As. The sequence is A-yB-¥A-7-B... The pattcrft of i)ctahedralv sites is }ﬂ;;,'r--'y...
corresponding to -peints of a primitive hexagonal lattICf?. {1deall§( with c/a = ~(2/3)].
Interchanging Ni and As will produce the antistructure (as in PtB \.mth hep Pt). .

In the NaCl structure, the octahedral sites of ecp are filled. The structure is
A pB-aC-fA-pB-o-C...The octahedral sites alone are y--o-fp-o0-f... ie. again
cep (as observed in § 6.1.2). Interchanging Na and CI produces the same structure (50 it
is its own antistructure). ‘ . . '

One often sees structures such as NaCl and NiAs projected do_wn an axis contained in
the cp layers (normal to [111] for NaCl and n.ormal to ¢ for .NlAs)~—scc for exarfr‘:pée
Fig. 4.9, parts of which are repeated for convenience he.re as Fig. 6.12. The nature of the
packing can be recognized quickly if it is realized that in ccp all the octahedral. sntes-arc?
related by primiiive lattice translation vectors so all the octahedra ha\f'e the same orientation;
but in hep, octahedra in alternate layers are related by reflection and two different

orientations occur.

Fig. 6.12. From left to right NaCl, NiAs and TiP as cation-centered octahedra. Light and darker shaded
polyhedra have elevations that differ by half the repeat distance in the direction out of the page.

i i i i hedra again occur in two
In TiP there is hc packing of P and the {Ti}Pg octa !
orientations. As now only every second layer is A, double layers of octahedra in one

arientation alternate with double layers in the other orientation (see Fig. 6.12 again).

NaCl is the only ore of these octahedral structures that is its own anFistructure. As
noted above, in NiAs the Ni are at the points of a primitive hex:.agonal lattice and the A.s
are in {As}Nig trigonal prisms. In TiP the P are half iln {P)Tig octahedra aqd hla.lf;]n
{P)Tig trigonal prisms as illustrated in Fig. 6.13. Nouc; that crystallographical yht 2
structare is ternary, TizP{1)P(2), and that there are antlstructurc.compognds such as
RbScO4 with {Rb}Og trigonal prisms and {Sc)Og octahedra. The anion packing (now not
¢p) in such structures is discussed in § 6.4,1. o _

There are many patterns of partly filling octahedral sites in ¢p structures and we mention
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here just one or two of the simpler.

Fig. 6.13. Clinographic projections of TP with ¢ (normal to the cp layers of P) vertical. Left: as
{Ti}Pg octahedra, Right: as {P}Tig octahedra and trigonal prisms.

Filling only alternate layers of octahedral sites in hep gives the sequence A-3B--A...
The structure is generally known as Cdl. There is a repeat every two cp layers and the
symmetry is trigonal, P3ml, with c/a ideally = \"(8/3) =1.633. Cdisin 1 a: (0,0,0) and |
isin 2 &8 +(1/3,2/3,2) with z ideally = 1/4.

Filling only alternate layers of octahedral sites in ccp produces the sequence

AypBeC-B-A-B- g C-A.... The structure is known as CdClz and it can be seen that now
the repeat is every sixth ¢p layer. The symmetry is rhombohedral, B3m, with ¢/a ideally =
3(8/3) = V24 = 4.90. Cd is in 3 a: R + (0,0,0) and Clis in 6 ¢: R 4 (0,0,2) with z ideally
= 1/4. A related structure type is that usually called a-NaFeQy in which O is ¢cp and
alternate layers of octahedra sites are filled with Na and Fe. The crystallographic
description is the same as for CdClz except there is also a cation in 3 ¢: R + (0,0,1/2).

There is a number of different structures known in which one half of the octahedral sites
are filled in every cp layer. An example with (approximately) hep anions is provided by
CaCl; and the closely-related rutile (TiO7) structure (see Exercise .

In considering possible patterns of filling interstitial sites in ¢p arrays, perhaps the most
important consideration is that in “jonic” crystals short distances between cations {or
anions) are generally unfavorable, This means that face sharing between coordination
polyhedra (especially tetrahedra) is avoided if possible. A good example of this principle at
work is provided by structures in which there are stabs in which all octahedral sites are

filled and slabs in which all tetrahedral sites are filled. To avoid face sharing between
polyhedra the cp layers between like slabs must be ¢, and between unlike slabs they must
be k.1 Thus in CaF; (all tetrahedral slabs) and NaCl (all octahedral slabs) every layer is c.
In Lax03 with ep La, slabs (La03) with O in all the tetrahedral sites alternate with slabs
(LaO} with O in all the octahedral sites and the La layers are all 4. In Th3Nyg with ep Th
(see Exercise 6) double siabs (2ThN) with N in ail octahedral sites have Th in a ¢ layer at
the center and these double slabs are separated by k layers of Th from slabs with N in

IThe reader witl find that such statements are very readily verified if 2 few polyhedra are at hand.
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tetrahedral sites (Tth). There are exceptions to these rules of course; in NiAs there %s
face sharing between octahedral slabs, and it is argued that, in some instances at least, this
is due to metal-metal bonding (between Ni atoms across the shared face).

6.1.6 Stacking incomplete cp layers (honeycomb and kagome)

The notation of 6.1.4 for stacking complete 36 layers of atoms is in wide-‘spread useégt
is useful to extend it to more complicated packings of hexagonal layers denved'frf()mt .
There is no generally accepted notation—we use one that seems to us useful and is kept as
. o 1
Smg)clvi;figf ?lirl: ihe honeycomb pattern 63, The unit.c'ell for thisis V3 x V3 =3 tune:i3 a;s
large as that for 36, as illustrated in Fig. 6.14. The position of a honeycombhlayer (sy{mt ;])e
G for graphite) is conveniently specified by the position of the center of a hexagon in

- pattern. In stacking honeycomb layets, we recognize three relative positions (1, 2 and 3)

indicated by small filled circles in the figure (upper Ieft). at O,Q,z 3 173,213,z and 2‘/3,1'/3’:, in
the 3x cell. This is particularly useful for describing partial ﬁllmg of octahedral sites in hep
structures as illustrated next (note that it is less readily adaptible to cep).

Fig. 6.14. Left: top a Y3 % 43 cell of 38 with below a 3¢ ne%t subdivided intg aG (:;') .lgyg,r. (tsh:;:e;
les) an . i ight: f 3© with below a 3° net subdivided into

i d a g layer (open circles}. Right: topa2x2cell o i ¢

((:;rgl;st)i}allzxyer fsha);ied circles) and an # kayer (open circles). The small filled circles mark the three choices of

origin (1, 2 and 3).

In the (idealized) corundum structure of A1203,.AI atoms are located in 2/3 c;)f tthh;;
octabedral sites of an hep array of O, each Al layer being a hongycomb. We <1:an coH ck i
structure as follows: A-Gq-B-Go-4-G4-B-G-A-Gy-B-Gs... By using dots as place mar et
we have antomatically imparted the information that the Al atoms on the G layers are in

1For another notation see particularly W, B. Pearson (Book List). Pearson describes over 100 structure
types using a related system.
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octahedral coordination. Note that the sequence requires six O layers to repeat. For ideal
hep of O atoms a distance & apart, the g axis would be V3d (see Fig. 6.14) and the ¢ axis
would be 6V(2/3)d 50 that c/a = V8 = 2.83 ; in the real structure o/ = 2.73.

Figure 6.15 shows the structure as {Al)Qg octahedra, Notice that pairs of octahedra
share faces; as also shown in the figure the Al atoms move away from the centers of the
octahedra to avoid short Al...Al distances. Alz03 with this structure is also known as
2-Al03. For crystallographic data see Appendix 5,

Fig. 6.15. The structure of &-Al703 as articulated {Al}Qg octahedra. ¢ runs up the page. On the right the
ALO bonds are shown {on a larger scale) in a pair of face-sharing octahedra.

The centers of the hexagons of 63 fall on a 36 net with V3 times the spacing of a ¢p layer
(see Fig. 6.14 again) and we label such nets £ (note that combining g and G in one layer
returns a ¢p layer). In the structure of PdFs3, the Pd atoms fill one-third of the octahedrai
sites of an hep F array. The structure is Aogl-B-gg-A-g;.;-B-gl-A-gz-B-g}.. {(see Fig. 6.28,
P- 236). Note that the hexagonal cell is the same as for corundum; for PdF, cfa = 2.82.

Often layers in structures are kagome (3.6.3.6) nets which are symbolized IV (for net).
The unit cell is now 2 x2 = 4 times as large as that for 36, as illustrated in Fig. 6.14, and
again three refative positions (!, 2 and 3) of the net specified by the centers of the hexagons
are recognized. These are now particularly useful for describing partial filling of octahedral
sites in eep structures. The centers of the hexagons fall on a 36 net of twice the spacing of
a cp layer and we label such 36 nets » (combining n with ¥ produces a cp layer).

The three positions of the & and n nets are shown in Fig. 6.16. Some intermetallic
compounds are variants of cp ordered in this way. In CuzAu the Cu atoms are on the
kagome nets (V) and Au centers the hexagons of each layer (n). If atoms on the same layer
are enclosed in parentheses, the code becomes: (N1~ {naNg) - (n3N3)... or {omitting
place markers) (n1N;) {(n2iV2) (n3N3), i.e. a superstructure of ABC. We meet the related
structure N1 NoNs below as an 8-coordinated sphere packing (fattice complex J, § 6.3.5).
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PTY P /e 787

@
Ni+n=A Ny+n,=B Ny+ny=C

Fig. 6.16. The three positions of kagome (¥) nets with respect to a 2 x 2 cell of 36, We have {arbitrarily)
labeled them so that N combined with #; produce a ep layer with symbol A etc.

In the spinel structare typified by MgAlnOg, O is on a cep array with Mg in 1/8 of the

. tetrabedral sites and Al on 1/2 of the octahedral sites. The structure is cubtc but for some

purposes (such as describing related structures) is conveniently considered a; stackitntgi (;)rfl'
layers normal to {1113: N, -BnlngngA-Ng-annlngB-NyA:unng... Anot erft:g al "
which has been used refers to the N layers as O (“octahedrall } layers, and layers of the typ
ninang (which contain one octahedral and two tetrahedral sites) as T5 layers.

Fig. 6.17. MgAlyOy as {Mg}Oy tetrahedra and {Al}Og octahedra. Filled Sircles are Mg :l}t(;:::a:, ;:s
COEI’lE:l"S o.f a cubic unit cefl. For clarity some of the octahedra at the “back™ of the unit ce \%

omitted.

We cannot begin to do justice to spinel here.! Fig. 6.16 illustraies just one aspect of

. . : -
111 Volume II of this series we devote more than a dozen pages to describing spinel and its clos
relatives. We find a notation based on that given here to be invaluable.
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the structure—as cation centered polyhedra. As an aid to deciphering the code, it is
expanded below. The first row of numbers is the height along the ¢ axis of the hexagonal
cell in multiples of ¢/24. Recall that Al atoms are in octahedral sites and that Mg atoms are
in tetrahedral sites. As we describe the packing in terms of a2 x 2 supercell of a cp layer

there are 4 O atoms per layer A, B or € and 3 Al atoms corresponding to the N layers. In

the table we show these numbers as subscripts.

0 I 2 3 4 5 6 7 8 9 10 11 12

Ny - B nm na m A - Ny - C n m
A - Oy Mg Al Mg O4 - Al - Q4 Mg Al
1213 14 15 16 17 18 19 20 21 27 23 24
n n3 B - N3 M A Ry ny m C . N]
Al Mg ©1 - A - 04 Mg Al Mg O4 - Al

The Al array Ni-nzNyen--Ny--ngp... also will be met again as a 6-coordinated
sphere packing (lattice complex 7, § 6.3.9).

Very many other compounds can be described in terms of partial filling of octahedral
and/or tetrahedral sites of ep (Exercises 6 and 13 give examples) and it is virtually

in?po.ssible to master systernatic crystal chemistry without some appreciation of the
principles involved.

6.1.7 The “size” of interstitial sites.

For a regular tetrahedron of unit edge tength the height (distance from a vertex to the
center of an oppesite face) is ¥(2/3). The distance from a vertex to the center of the
tetrahedron is 3/4 of the height (see Fig. 6.10) = ¥(3/8) = 0.612. Conversely, the edge
length of an {A}B4 coordination tetrahedron with unit length A-B bonds is V{8/3) = 1.633.
The radius of a sphere that exactly fits inside a tetrahedron of touching spheres of radius
1/2 (unit diameter) is ¥(3/8) — 1/2 = 0.1124. The ratio of the radius of the inner sphere to
the radius of the outer spheres is [V(3/8) - 1/2]/(1/2) = V(3/2) - 1 = 0.2247.

It should be obvious that the perpendicular distance between opposite faces of an
octahedron is the same as the height of a tetrahedron {see Fig. 6.10). For an octahedron of
unit edge (formed by the centers of six spheres of unit diameter in contact) the distance to
the center is 1/42. The ratio of the radius of the largest sphere that will fit inside an
octahedral site to the radius of the close-packed spheres is V2 — 1 = 0.4142.

1t is sometimes stated that these “radius ratios” determine the coordination numbers of
atoms in ionic crystals, The idea is that an atom (ion) that is too small for, say, an
octahedral site (cation radius / anion radius less than 0.414) will instead £0 into a smaller
(e.g. tetrahedral) site. Unfortunately to apply such considerations, radii must first be
assigned to ions. Even when this is done, it will be found that the facts are not generally in
accord with predictions even for the alkali halides (presumably the thost “ionic” of
crystals). Stated more bluntly the “rules” are generally not obeyed! The reader interested in
this topic is referred also to § 6.8.3.
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6.2 Body-centered cubic (bee)

There are two interesting problems whose solutions are the same, and which lead to the
body-centered cubic (bec) array. The first problem is that of covering space completely
with (partly overlapping) spheres of a given size such that their density is a minimum. The
second concerns the filling of space with congruent tetrahedra. We have seen (Exercise 3,
Chapter 5) that regular tetrahedra alone will not fill space, but a number of structures of
metallic compounds are found in which space is divided into irregular tetrahedra.! The
body-centered cubic array is the simplest such structure, and the only one in which all the
tetrahedra have congruent faces and equivalent vertices. We refer to these tetrahedra as
Sommerville tetrahedra.2

The Sommerville tetrahedron has faces that are isosceles triangles with one edge of
length a and two edges of V3a/2, where a is the cubic unit cell edge for bec. The angles of
the triangles are cos~1(1/3) = 70.53° and cos-l(IN3) = 54.74" (2x). The dihedral angles are
45° {4x) and 90" (2x). Fig. 6.18 shows how these tetrahedra are related to a body-centered
cubic lattice. The figure also shows that four tetrahedra combine o form a space-tilling
octahedron with equivalent vertices and congruent faces so that the body-centered cubic
array can be considered as arising from a packing of these (irregular) octahedra also. It is
sometimes found stated (erroneously) that the body-centered cubic array divides space into
tetrahedra and octahedra, but the octahedra are in fact clusters of four tetrahedra and the
centers of the octahedra are the midpoints of the long edges of the tetrahedra so the term
“octahedral site” is something of a misnomer (see below).3 Contrast eutactic (cp} arrays in
which space is divided into separate regions which are regular tetrahedra and regular
octahedra.

The figure also shows that six octahedra (= 24 tetrahedra) of the bec packing combine to
form a rhombic dodecahedron with lattice points at the vertices and at the center.

Some facts (that will be useful later) about the body-centered array are included here.
The symmetry is Im3m and the lattice points are in 2 a: I + (0,0,0). The centers of the
tetrahedra are in the faces of the cube at 12 d: I + (£1/4,0,1/2)x. The site symmetry at these
points is 42m (tetragonal). Note that there are six tetrahedra for every lattice point. The
tetrahedral sites in one unit cell are at the vertices of a truncated octahedron. We meet the
pattern of tetrahedral sites as the “sodalite net” in the next chapter (§ 7.3.10). The
tetrahedron around a tetrahedral site encloses all the space that is nearer to that tetrahedral
site than to any other (it is the Voronoi polyhedron of the pattern of tetrahedral sites).

IThese are sometimes referred to as “topologically close packed.” The W (A15) structure (§ 6.6.4) is a
well-known example.

2after D. M. Y. Sommerville who discussed this problem at length [Proc. Edin. Matk. Soc. 41, 49
{1923)]. Sommervilie also discusses three other space-filling tetrahedra derived by dissecting the basic
tetrahedron, but these are of little interest in the present connection.

3To a mathematician a kole in a lattice is a site where the distance to the nearest lattice point is a loca!
maximum. Points where the distance to the nearest lattice point is a globat maximum are known as deep
holes, other holes are shallow holes. In ccp the octahedral sites are deep holes and the tetrahedral sites are
shallow holes. In bee there is only one kind of hole {the tetrahedral sites). The positions of the “octahedral”
sites correspond, not to local maxima in distance from the nearest lattice point, but to saddle points.
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Flg 6.18. Various aspects of the body-centered cubic lattice. At the left a cubic (centered) cell outlined
with broken lines and a primitive rhombohedral cell (@ = 109.47%) in full lines. Second from Ieft: a
Sommerville tetrahedron defined by four lattice points. Second from right: an octahedron composed of fc;ur
Sommerville tetrahedra. Right: a rhombic dodecahedron composed of six cctahedra = 24 tetrahedra.

The centers of the “octahedral sites™ (better the midpoints of the long edges of the
tetrahedra) are at 6 &: [ + (0,1/2,1/2)x. These correspond to the centers of the faces and
edges of the unit cell. The site symmetry at 6 » is again tetragonal: 4/mmim. We meet the
pattern of the octahedral sites as the NbO net in the next chapter.

There is an apparent paradox that has lead to confusion. There are six tetrahedral sites
per bee atom and three octahedral sites per bee atom yet the octahedron is comprised of
four tetrahedra. The resolution is to be found in the observation that the centers of long
edges of a given octahedron are also octahedra] sites. Thus if we placed (correctly oriented)
octahedra with centers at every octahedral site we would cover space wice, In § 5.1.10
we called attention to & tetragonal tetrahedron with curved faces that filled space (Fig.'
3.17). The six vertices of that polyhedron are arranged in space as the six vertices of the
bec octahedron, but because the surfaces are curved inward the volume of the tetragonal
tetrahedron is only half as great as that of the bee octahedron. In the space filling by these
letragonal tetrahedra, their centers are at the hec octahedral sites,

The Voronoi pelyhedron around an octahedral site is actually a polyhedron with 12 faces
f)btained by truncating four edges of the bee octahedron. Three such polyhedra are shown
in Fig. 6.19 in different orientations to suggest how they pack to fill space. The
arrangement of the acute vertices in the packing is bee. ‘

Fig. 6.19. The Voronoi polyhedron around “octahedral” sites in bee show in three different orientations
to suggest how it fills space.
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A nice example of filling all the tetrahedral sites in bee is to be found in the structure of
MsCep (M is an alkali atom such as K); in these compounds the centers of the
approximately-spherical Cgg molecules are bee.

Structures based on bee and on ¢p occur with comparable frequency in intermetallic
compounds, On the other hand, although “ionic” crystal structures can be described in
terms of ep arrays with partial or complete filling of interstitial sites, tonic structures
similarly based on bec arrays are rather rare.! In the cp case the coordination polyhedra
around the interstitial sites are regular whereas in the bee case they are not.?

Note that we use bec to refer to a geometrical arrangement, not to a symmetry (which
would be written bee). In CupO (Exercise 8, Chapter 3) the Cu atoms are ¢ep and the O
atoms are bee but the structure is primitive cubic (space group Prdm).

6.3 Sphere packings and relationships between them

Crystallographers have iong been interested in the general problem of packings of
spheres. Stable sphere packings are those in which each sphere is in contact with at least
four others not all on the same hemisphere. Equivalent spheres are those related by
Symmetry operations (rotations, translations, etc.). We discuss here some interesting stable
packings of equivalent spheres, referred to in this section just as “sphere packings” for
brevity. Many packings with a given number of neighbors can be distorted smoothly to a
higher density approaching arbitrarily close to that of closest packing so the interest is in
finding low-density (rare) sphere packings which often correspond to a high-symmetry
structures.> Although the problem is interesting, it is one of mathematics rather than
chemistry. Our real interest is in describing structures (and their inter-relationships) that are
of importance in crystal chemistry.

The two arrangements (cep and hep) we have identified of densest packing of
equivalent spheres are the only such arrangements in which each sphere has twelve
neighbors and, as they both have the same density, they are both the densest and the rarest
packings of spheres with twelve neighbors.

Sphere packings are often characterized by the fraction of space occupied by the spheres
{or density p). This is determined as the ratio of the volume of spheres in a unit cell to the
volume of the unit cell. To illustrate: the ecp arrangement of spheres of unit diameter has a
unit cell containing four spheres and cell edge a = ¥2. The volume of the spheres is
4 5 4727343 = 23 and the cell volume is a3 = 232, The ratio is p = 718 = 0.740.... We
generally give coordinates for packings of unit diameter spheres, the density is then given

If one considers ordered bee arrays such as CuZa (§ 6.6.2) then one finds that perovskite ABX3
and many derived structures are based on a CuZn array of cations AB with anions approximately in the
center of some of the octahedra sites. What is rare is the case of ionic crystals in which just one kind of
atom is bee.

20ne can extend this remark by observing that less dense arrays, such as primitive cubic and primitive
hexagonal, that do provide regular coordination sites are indeed more common than beg (see § 6.4).

3As we remarked in Chapter 3, the problem is often stated (incorrectly) as that of finding the densest
sphere packing with a given number of neighbors, i.e. the opposite of what we have stated.
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by p=zm(6V), where z is the number of spheres per cell and V is the cell volume.

A topic of interest in connection with the description of structural relatidnships and
possible transformation mechanisms is the description of paths between packings. We will
focus on paths that preserve as much symmetry as possible (the space group of the
intermediate structure will either be the same as, or a subgroup of, those of the two end
structures) and which are completely specified by one free parameter. Often this parameter
will correspond to the angle of rotation of a group of points. We have met such
transformations already for finite objects such as that of a cuboctahedron to an icosahedron
{§ 2.5.7) and a trigonal bipyramid to a square prism (§ 5.6.1). For plane patterns,
important transformations are from 3.6.3.6 to 3% and from 32.4.3.4 to 44 (§ 5.3.3).

6.3.1 11- coordination

11-coordinated sphere packings are rather rare. Here we describe a simple and well
known 11-coordinated structure that is important in crystal chemistry. A formal description
for spheres of unit diameter is:

Plyimam, a=1+1N2=1707, c =1, p = 0.7187
Centers in 4 £ Hxx,0; 1/24x,12-x,1/2), x = 1/(2 + V2)=0.292

The arrangement can be seen from Fig. 6.20 in which sphere centers are taken as
defining the vertices of régular octahedra, and which also illustrates the relationship of the
structure to hep. In fact the structure is a special (minimum density) arrangement of an
orthorhombic structure with space group Pram and centers of spheres in 4 g: +(x,y,0;
124x,1/2-y,1/2) with:

a=13 cosd, b= \’(8!3)(:05(@ + V(I!B)sinqb, e=1, p=2n3ak)
x={(¥2 ~ @18, y = (1 + V2andy(4 + V2tang)

Eleven spheres are in contact for 0 < ¢ < sin"1{1/3): the minimum density occurs at ¢ =
{1/2)sin"1(1/3) = 9.74° at which point the structure is the tetragonal one given above. When
¢ =0° or sin-i(1/3) = 19.47° the structure is that of hexagonal eutaxy (hep) with symmetry
P6afmmce (and 12-coordination). The tetragonal structure is close to the anion arrangement
in the ratile form of TiOz (see Exercise 7) so we call it the rutile packing. The density is
47(9 + ¥72) = 0.7187; no rarer 11-coordinated sphere packing seems to be known (for a
second 11-coordinated sphere packing of the same density see § 6.4.1),

The trapsformation from hep to the rutile packing and vice versa is accomplished by
concerted rotations (by ¢) of columns of octahedra of atoms as suggested by Fig. 6.20 in
which the rotation axis is normal to the plane of the figure. It is interesting that rotation of
the columns of octahedra by 19.47° has the same effect as rotatior of the whole pattern by
90°. (i.e. is a pseudorotation). It may be seen that in projection the transformation
corresponds (approximately—not all edges are equal) to a transformation between 36 and
32.4.3.4.

We will encounter other such transformations involving concerted rotations of
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polyhedral groups subsequently (in particular the rutile packing can be transformed to a
low-density 6-coordirated sphere packing by rotation of tetrahedral groups).

Fig. 6.20. Top: The transformation from hep (left) to the minimum dens%ty Fetra_gonal 11-coordinated
sphere packing (center) and then to hep rotated by 90° (right). The projection is along {0017 of the
orthorhombic cell. Bottomn: A clinographic projection of the tetragonal structure.

6.3.2 10-coordination (bet) and a relationship between cep and bee

A well-known 10-coordinated sphere packing is a lattice packing:

bhet . 4/mmm, a = 4(31‘2) =1.225, ¢ =1, p = 2m9 = 0.698, Centers in 2 a: [ + {0,0.0)

We refer to this structure as bet (short for body-centered tetragonal). Fig. 6.‘21
illustrates the 10-fold coordination. The primitive cell has a'=b'=¢'=1, ==
cos }-1/4) = 104.48°, ¥ = cos }-1/2) = 120", ]

The reader may wish to verify that the points on (110) planes form regular 3° nets as
illustrated on the right in Fig. 6.21. A description of this structure as a non-close-packed
stacking of 36 nets'is given in § 6.4.1 below. ' _ "

Other special cases of the body-centered tetragonal lattice are of interest. If & =c= 2
= 1.155, the structure is the body-centered cubic (bee) arrangement of umt-sphcres
(symmetry Im3im); and if a = Le= A2 = 1.414, it is the face-centered cubic (cep)
arrangement {with symmetry Fm3m) described in terms of a body-centered cell. It may be
seen then that bee and eep are simply related to each other by a tetragonal compression o
extension {Fig. 6.22). This relationship is known to ml?tallurgmts as the B:am rcl-atlonslup
{or correspondepce) and is of interest in connection with t['.lf.', transformation of iron f}'om
the v form (cep) to the o form (bee) on cooling. The high-temperature form of iron
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containing carbon is called austenite, on cooling it transforms rapidly with change of shape
to a body-centered tetragonal (nearly cubic) form called martensite. Transformations of this
type, which do not require diffusion of atoms, are called martensitic and have been
extensively studied by metallurgists. [A. Martens (1850-1914) was a German metallurgist.}

Fig. 6.21. Left: a fragment of the bet lattice showing 10-fold coordination of a central atom. Right:
atoms on 2 3% neton 3 {120y pane shown shaded and connected by full lines.

Fig. 6.22. (a) Face-centered cubic with the cubic cell outlined with broken lines and a body-centered
tefragonal cell outlined with fult lines. () a projected down the vertical axis. (¢} a projected with the long
axis of the tetragonal cell vertical on the paper. A cuboctahedron of atoms seent along a two-fold axis s
depicted. (d) A body-centered cubic cell. Nearest neighbors are the same distance apart as they are in a. (e) d
in projection. {#} The 10-coordinated tetragonal packing with its ¢ axis horizontal on the paper. Its
relationship to body-centered cubic can be seen by comparison with e and to face-centered cubic by
comparison with c.

It should be obvious that the bee structure can he tetragonally deformed until it is
arbitrarily close to ccp, all the time keeping each sphere in contact with eight neighbors.
The bee structure is thus one at a local minimum (in coordinate space) of density.! It is less
obvicus that the 10-coordinate structure {(bcet) can be deformed to the ccp structure keeping

Iwe don't preclude the possibility of some of these structures being at global density minima for a
given coordination number. The question has not been much discussed except for the case of four
coordination which gives the rarest (7) stable sphere packing (§ 7.3.2).
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each sphere in contact with ten neighbors and that it is at a local density minimum.
However, this is simply demonstrated analytically and is similar to the 11- to
12-coordination transformation discussed earlier (§ 6.3.1, p. 228) in that again we need a
lower symmetry cell for the general case. The symmetry is orthorhombie:

Immnt, a? + b2 = 3,1<ab <v¥2, ¢ = 1. Centers at 2a: | + (0,0,00

The specialcasea =1, b= VZ{ora=v2,b= 1) corresponds to eep. The case a= b =
¥(3/2) corresponds to the tetragonal minimum density (bet).

The body-centered tetragonal arrangement is not common in elemental stmctures-?—
examples are S-Hg (c/a =0.707)! and Pa (c/ar = 0.825)—but it is very often encountered in
the structures of intermetallic compounds [e.g. CuAu and MoSiz (§ 6.6.2)).

6.3.3 Another 10-coordination: C-centered orthorhombic (cco) and further
relationships between bee, cep and hep

Another 10-coordinated sphere packing with the same density as bet is derived by
periodic twinning of bet on (101} planes. Fig. 6.23 shows, on the left, one SI.lCh twin
plane in bet. On the right in the figure is the new structure with the positions of twin planes
indicated by arrows.

Fig. 6.23. Twinning of body-centered 1etragonai {(see text), on the right the broken lines indicate a unit
cell (b vertical and c horizontal).

The crystallographic description of the new structure, which we call ceo (for C-centered
orthorhombic) is:

cco Crmem, g = W32} = 1225, b = V{5/2) = 1581, ¢ = Y(12/5) = 1.549, p=0.698
Centers in 4 ¢: C £(0,y,1/4), » =3/10

The structure is a maximum volume form of a 10-coordinated sphere packing with the
same symmetry and atoms in the same positions and with parameters given by:

IFor mercury ofa is sufficiently small that Hg atoms have only two nearest neighbors so that strings of
Hg atoms run parallel to ¢ (compare Fig. 6.16 f).
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a=VIE3 - 8y¥(1 - 291, b = VEIHI - 2900, ¢ = ¥(By), 1/ < y< 13

When y = 1/4, the structure is cep, witha=b =c = 2; when ¥y = 1/3, the structure is
hep, witha=1,0=+3, ¢ = V(8/3). For intermediate values of y each sphere has 10
neighbors at a unit distance away. The position of maximum volume is for y = 3/10, when
the uait cell volume is 3 (compare V& = 2.828 for cp}. This is the same volume per sphere
as in the 10-coordinated body-centered tetragonal lattice packing (bet) deseribed in § 6.3.2.

Fig. 6.24 shows the structure again projected on (100), but now with b horizontal and ¢
vertical. In going from cep (on the left) to hep (on the right), a is decreased by V2, b is
increased by \1'(312) and ¢ is increased by \{(4/3).
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Fig. 6.24. Illustrating the relationship between ecp (left), y = 1/4; 10-coordinated packing {ceater) with y
=3/10; and hep (right), y = 1/3.

If a/b = a/c for cep were reduced from 1 to 142 = 0.707 the structzre would be bee
(the Bain relationship again), so the figure would also represent the transformation from
bee to hep. (So be careful in “reading” projections—check axial ratios.)

In general, periodic reflection twinning of body-centered vrthorhombic cells (with

parameters a,, b; and ¢,) on (011) in the manner indicated will produce the Cmcm structure
with:

a=ag, b= V(bo2 +¢,2), ¢ = 2bocolb, y = 1/2 - c 22

For bet, a, = b, = V(3/2), o = 1. Twinning this cell produces cco sphere packing.

For cep, the “orthorhombic” (now actually tetragonal) cell with two lattice points has
as=co=1,b, =V2. Twinning this cell produces hep (the {101} planes of the tetragonal
cell are {11!} planes of the conventional cubic cell),

For bee, a, = b, = ¢, = ¥(4/3). Twinning this cell produces bee 2gain which is not
surprising as {101) planes of bec are already mirror planes.

To summarize, here are the parameters for important sphere packings in terms of Cmem
with points in 4 ¢: C & (0,y,1/4): ’

stracture a b c ¥
ccp V2=1414 ¥2=1414 V2 =1.414 144
cco ¥3/2) = 1.225 N(3/2) = 1,581 V(12/5) = 1549 3/10
hep 1 V3 =132 VB3 =1633 13
bce 23 = 1.155 V(83 = 1.633 V@) =1633  1/4
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6.3.4 8-coordination: packing of trigonal prisms

By now the bee arrangement should be familiar as an example of an 8-coordinated
sphere packing. :

Anoiher simple arrangement is provided by the points of a primitive hexagonal lattice
with @ = 1, ¢ = 1. This arrangement occurs as one of the high-pressure polymorphs of
elemental 8i{@=2.53,¢c=237 Aat 20 GPa). It also occurs in several compound structure
types in which there is trigonal prismatic coordination of atoms. The vertices are those of a
space filling by trigonal prisms of which there are two per lattice point, (Two prisms
sharing a square face form a unit cell.) The density is p = 727 = 0.604.

The relationship between these two packings (cf and AP) is very simple, and interesting
in several contexts, although the general intermediate structare contains two kinds of sphere

" so it is not a packing of equivalent spheres. Fig, 6.25 compares a primitive hexagonal

lattice, described using a super-cell with three points per cell, with bee described using a
similar cell.

Fig. 6.25. The relationship between primitive hexagona! (= AP, left) and bee {described using a
hexagonal cell, right). The distance between neighboring lattice points is the same in each case. The
conventional cubic cell for bee is lightly shaded.

The intermediate structure is trigonal:

P3ml, a =731 -, c=1
One sphere at | a: 0,0,0; two spheres at 2 d: £(1/3,2/3,2)

When z = ( we have the primitive hexagonal structure (symmetry P6/mmm) and when z
= 1/3 we have the bee structure described with the hexagonal cell. Note that c/a changes by
only about 6% in the transformation. It should be noted also that in bee we have 36 layers
in A, B and C positions separated by ¢/3. The primitive hexagonal structure has these three
layers collapsed to one layer of three times the density.

Note that combining any two of A, B or C will give a honeycomb (63) layer. This
occurs if z = 1/2; at which point the structure is formally that of AlB; (§ 5.3.5) with
symmetry again P6/mmm (the honeycomb layers are B). The symmetry-breaking transition
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from z = 1/3 (bee) towards z = 1/2 is important in metallurgy and is known as the bec = @
transition.

There is a second way of filling space with trigonal prisms such that all vertices are
equivalent (Fig. 6.26). Make a slab of face-sharing prisms with prism 3-fold axes all
collinear. Now put such slabs together with the prism axes alternating. The prism vertices
correspond to the centers of an 8-coordinated sphere packing;

lpiamd, a = 1, ¢ = V12, p = 0.6046. Centers in 4 a: / £ (0,3/4,1/8)

This is the Th arrangement of ThSis (Si centers the trigonal prisms). It is also the
structure of a high-pressure polymorph of Cs.

Fig. 6.26. Space fillings by trigonal prisms that correspond to 8-coordinated sphere packings. Left:
primitive hexagonal. Right a tetragonal sphere packing.

6.3.5 Another 8-coordination: the J lattice complex

Another 8-coordinated sphere packing is of very frequent occurrence in crystal
structures, The arrangement is an example of an invariant lattice complex—an array of
symmetry-related points on fixed positions. The more-common of these are sometimes
described by symbols (see § 6.8.7) and the symbol for this one is J .1

J Pri3m, a =2, p= w32 = 0.5554. Centers in 3 ¢: {0,1/2,1/23k

It can be seen that this structure may be considered as derived from cubic eutaxy (cep)

IThe reason for this particular symbol is apparently ar association with the “jack” of the common game
of that name [W. Fischer et al., Space Groups and Lattice Complexes, National Bureau of Standards
Monograph 134 (1973)]. However the jacks familiar to us have six points and m3m symmetry whereas the
points in the J complex have 4/msun symmetry and eight neighbors. Nevertheless we like the name because
of the association with K. H. Jack who appears to have been the first to peint out the important
relationship of this array to hep [K. H. Jack & V. Guttmann, Acta Crystallogr. 4, 246 (1951}].
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by removal of 1/4 of the spheres (those at 0,0,0) and thus it has 3/4 of the density of
eutactic arrangements.

The J complex occurs notably as the anion array in the cubic perovsklte (ABX3)
structure (met earlier in § 5.3.4) which can be thought of as a three-dimensional array of
commer-connected octahedra of aniens X centered by cations B. The BX3 arrangement alone
is known as ReO3. The faces of the octahedra divide space into an equal number of regular
octahedra and cuboctahedra (centered by A in perovskite). The packing could therefore
also be considered as arising from a space-filling packing of regular octahedra and
cuboctahedra (Fig. 6.27). The A atoms center the cuboctahedra, and we note, in passing,
that the combination of A and X (AX3) is ccp (see § 6.6.1).

Fig. 6.27. Left: The J lattice complex shown as an array of corner-connected regular octahedra. Right:
The cuboctahedron “hole™ in the packing,

In the cubic structure, the bond angle 8 = £B-X-B = 180°. If the octahedra are
maintained rigid but tilted (Lhus “crumpling” the array and reducing the bond angle &) so
that cos1(-2/3) = 131.81..." < @< 180° each vertex will still have eight nearess neighbors.!

If all the octahedra (wh1ch remain undistorted) are rotaied by an angle +¢ about a set
parallel <111 axes the arrangement can be converted from the cubic J strueture (6= 0) to
hexagonal entaxy (hcp) (¢ = £30°, symmetry P6s/mmc). If the octahedra are filled the
final BX3 arrangement is PdF3 (§ 6.1.5). The intermediate and final structures have
symmetry R3c. Referred to a centered hexagonal cell and unit-diameter spheres:

a = V8cosg, ¢ = V48, Centers in 18 & R + (x,0,1/4; 0,x,1/4; T.5, /4, x = (V3 — tan ¢)A12

It is interesting that the J structure can be considered to be composed of intersecting
kagome layers parallel to all {111}, The points at any one elevation in the hexagonal
structure such as z = 14 (with x,y = x,0 ; 0,x and X,%) correspond to the points in a
hexagonat cell relating the kagome -+ 36 illustrated in Fig. 5.40 (see also Exercise 10 in
Chapter 5). Hexagonal eutaxy corresponds to a stacking of the 36 layers. In Fig. 6.28 try
to see how collapsing the kagome nets to 35 corresponds to rotations of the octahedra
alternately clockwise and anti-clockwise about [111].

For 0 < cos!(~2/3) inter-octahedrai X...X distances will be less than the intra“octahedral distances.
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Using the symbols of § 6.1.6, the stacking of kagome layers along [111] is N;NoNs.

Fig. 6.28. Left: the octzhedra of the J arangement shown with [111) vertical on the page. Part of a
kagome (3.6.3.6) net in a {111 plane is heavily outlined at the top, Right: the same set of octahedra after
rotation as described in the text so that the vertices are hep. The figure illustrates the transformation ReO3
— PdFj.

6.3.6 Another 8-coordination: the pyrochlore packing

Another interesting 8-coordinated arrangement can also be considered as arising from a
different array of corner-connected octahedra. We call it the pyrochlore packing as it is an
idealization of the octahedral framework in compounds with the pyrochlore structure!:

pyrochlors Fd3m, a = 16W18, p= 27V20/256 = D.468
centers in 48 f£ F (6, 1/8,1/8 5 1/4—x,1/8,1/8 ; T,3/8,3/8 ; 3/4+x,3/8,3/8)«, x = 7/16

- Fig 6.29a. A “pyrochlore unit” of four octahedra sharing vertices. The space at the center is an “empty”
octzhedron, . '

lerochlore is a mineral of variable composition: (Ca,Nay(Nh, Ta)20g(0,0H,F).
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The structure may be thought of as composed of “pyrochlore units” of corner-sharing
octahedra such as illustrated in Fig. 6.29a. Further corner sharing between units produces
the structure shown in Fig. 6.295.

Fig. 6.29b. The pyrochlore packing as corner-connected octahedra. The drawing consists of a face-centered
cubic array of the “pyrochlore units” of Fig. 6.2%a.

The same arrangement occurs in intermetallic compounds: for example as the W
arrangement in Fe3W3C (with C in the octahedra).

6.3.7 Another 8-coordination: the S lattice complex

The final 8-coordinated sphere packing that we mention is another invariant cubic lattice
complex (symbol §). A formal description for unit diameter spheres is:

s A3d, a =814 = 2138, p = 27/a’ = 0.643
Sphere centers in 12 a: f + (3/8,0,1/4 ; 1/8,0,3/d)x

The points of this arrangement divide space up into irregular octahedra (actually
metaprisms) and irregular tetrahedra. The metaprisms form non-intersecting rods along
<111> by sharing triangular faces. In Fig. 6.30 these rods are shown in a projection down
[111]. The packing of rods in four different directions is the same as in the garnet cylinder
packing to be described in § 6.7.3. Each metaprism also shares a face with a metaprism in
each of three rods not parallel to it, so each metaprism shares a face with five adjacent
metaprisms. A high-pressure form of elemental Ga has this structure. It also corresponds
to the Th positions in the important ThaP4 structure type.
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Fig 6.30. Left: The $ structure projected dowa [111]. Dark shading indicates [111] rods of face-sharing
metaprisms. Right: parts of three rods parallel to the other three <1 | 1> directions are emphasized. i

There are four-thirds of an octahedron (metaprism) and one tetrahedron for each sphere
in the § packing. In ThyPy, P atoms center the metaprisms. The centroids (equidistant
from all six vertices) of the metaprisms are in 16 ¢: [ + (vox.x 3 1/44x, 1/d+x, 1/44x ©
V2-2.%,1/24x 5 1/4-x,3/4-x 3/44x)K, x = I/12. The real structure of ThsPy4 (for data see
Appendix 5) has x close to this “ideal” value. The centroids of the tetrahedra are in 12'b: [
+ (7/8,0,1/4 ; 5/8,0,3/4)x. Note that the tetrahedral sites (12 &) also form an § lattice
complex displaced from the 12 & positions by 1/2,0,0. Filling 12abyAand 12 b by B
would give a (hypothetical) 4-coordinated structure AR that is its own antistructure. The
tetrahedral sites are far from regular; in the AB structure just described the ABA angles are
99.6° (4x) and 131.8 * (2x). Taken together the A and B positions form a 4-connected net
known as §* which is described in § 7.3.12.

There is a sense in which the § structure is intermediate between the primtitive hexagonal
and ¢p arrays. Thus consider the division of space into tetrahedra and/or 6-coordinated
figures (prisms, metaprisms or antiprisms): (Here Ng and Ny are the numbers of six- and
4-coordinated sites per packing atom.)

structure Ng Ny
primitive hexagonal 2 0
S (Th3Py) 4/3 1
eutactic {ep) 1 2
bee 6

6.3.8 7-coordination and a relation between FeSi and NaCl

7-coordinated sphere packings can be obtained in a rather obvious way by prismatic
stacking of 5-coordinated layers. We describe such a stacking of 33.42 nets in § 6.4.2 and
a stacking of 32.4.3.4 nets in § 6.4.3.

Another, less obvious, 7-coordinated packing, again for spheres of unit diameter is:
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Pa3, a = 4(¥15 - 3} = 1.868, p = 0.6802
Sphere centers in § ¢t Hxxx ; (17240, 1/2-%,5)%), x = (V5 ~ 18 = 0,155

Note that for x = 1/4 we have a primitive cubic structure with a doubled cell edge (8
Tattice points). The transformation from the primitive cubic structure to the Pa3 structure
(and vice versa) involves displacements along all four <111> directions and is rather
difficult to illustrate; the neighbors of the points in one unit cell are shown in the top part of
Fig. 6.31.

Fig. 6.31. Top: the Pa3 7-coordinated structure (right) compared with the primitive cuI-Jic 'structure (left).
Bottom: alternately coloring the points in these structures produces NaCl (left) and FeSi (right).

We have seen that the anions in fluerite (CaFz) are in a primitive cubic array. In PdF;
recovered from high pressure (under which conditions it probably is fluorite) the F array
is the Pa3 structure. For crystallographic data for PdF; see Appendix ?.‘ _

If the eight points in § ¢ of Pa3 are altemately colored black' and white in such away that
{e.g.) those at x,p,z are black and those at 1-x,1-y,1-z are white, the symetw is lowered
to P213 and the two sets of points are at 4 a: x,x.x ; {1/2+x,1/2-x3)K. this corresp!onds to
the situation in idealized FeSi with xpe = 1-xg;. (In the real structure of: F.c_S1, Xpe =
0.136, xg; = 0.844-—seec Appendix 5). Similarly colering the po.ints o_f the primitive cubic
array produces NaCl. We have therefore derived a simple relationship between these last
two structures as also shown in Fig. 6.31.

i i lose to
IThe reported symmetry of this form of PdFj is actally P23, but the parameter(% are very ¢
what they would be for Pa3 symmetry (A, Tressaud & G. Demazeau, High Temp. High Press. 16, 303
{1984)] and these are given in-Appendix 5.
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6.3.9 6-coordination: the T lattice complex and cristobalite

.Structures with lower coordination numbers are better described as nets [systems of
points (_atoms) connected by edges (bonds)]. However we will consider here a few
-cpordmated sphere packings. The first is with spheres at the points of a stmple cubic
lattice. Note that a cube is a special case of a rhombohedron {(with a = 90"). It should be
cl@arlt!lat a cube of unit edge can be smoothly distorted to a thombohedron with g = 60" (a
primitive cell of fec) so we have a simple way of transforming from simple cubic to face-
centered cubic. The intermediate symmetry is R3m and as long as & > 60° there are only
SiX nearest neighbors. Therefore, this 6-coordinated sphere packing can approach
arbitrarily close in density to that of closest packing (12-coordinated).

Fig. 6.32. The T structure shown as comner-connected tetrahedra.

A sec_ond Ei-coordinated packing we discuss here has centers of spheres at the points of
another invariant cubic lattice complex (symbeol 7). .

T Fdm, a =3, p = 0.370. Sphere centers in 16 c: F + (0,0,0; (0,1/4,1/4))

Tms is another pattern that occurs in a wide variety of crystal structures. It is the oxygen
positions of an idealized high-cristobalite {B-cristobalite) form of Si0s, so it is sometimes
(2 little misleadingly) called the cristobalite arrangement. Other notable occurrences are as
the sites of the octahedrally-coordinated atoms in the spinel structure and the pyrochlore
struc_ture, and the Cu atoms in the MgCuy structure (§ 6.6.3). The structure can be
considered as made up of corner-connected tetrahedra as shown in Fig. 6.32. Examination
of the figure will show that the points fall on kagome (3.6.3.6) nets parallel to [111} as
they do in the J structure. However now the kagome nets normal to any one <111>
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direction alternate with 3% nets with twice the spacing between points. The empty space
{(not in the tetrahedra) in the structure is made up of a packing of truncated tetrahedra,
accordingly the structure can be considered as arising from a packing of regular tetrahedra
and truncated tetrabedra.! _

Using the symbols of § 6.1.6, the stacking of atom layers normal to [111] in the T
structure is NynaNam Nyng...—the same as that of the Al atoms in the spinel structure.

The T structure can be collapsed by concerted rotations of the tetrahedra about 4 axes to
produce denser arrangements (in much the same way as the J structure is converted to hep
by rotations of octahedra) as illustrated in Fig. 6.33. Let B represent the centers of the
tetrahedra and X the vertices. Analytical descriptions of these transformations are, in terms
of u = ¢os¢, s = sing and ¢ = tand (¢ is a rotation angle discussed below):

(i) T — cubic eutaxy: .

fA2d,a=2u, c =8 .
Xin 8d: T+ (x,1/4,1/8 ; X,3/8,1/8 ; 3/4.x, 8 ; 1/4.%,718), x =114
Binda: I+ ©00,0; 1/2,0,3/4)

When ¢ = 0° the structure is the cubic T pattern described with a body-centered
tetragonal cell. When ¢ = 45° it is cep described with a doubled cell {¢ = 2a). Note that the
density increases by a factor of two in going from T to cep.

I atoms A are in positions 4 b: [ + (0,0,1/2 ; 1/2,0,1/4) we have stoichiometry ABX,. If
¢ =45, both A and B are tetrahedrally coordinated by X and we bave a superstructure of
sphalerite (ZnS); an example is chalcopyrite, CuFeS;. If A is larger than B, then ¢
{= tan-1(4x)] is smaller, allowing the {A}X4 tetrahedron to expand, thus for CdSiPz, x =
0.21 (¢ = 40°).

(il T — 11-coordinated.

P22, a=1+uc=V8u

Xin8b:(xyz:y.xd 57 V2+z,; 75,127 1/2-x12+y, 14—z ;
12— 1240, Lid—z ; 124, 12—y, 3047 ;. 12+y,1/2-x,3/4-7),

=2+ 20,y =52 +2u),z = (1 + 8)/8

Binda (xx0; x 3,102 Udex, 112+, 104 ; 12+x,1/2-x,3/4),

x= (1 +u+ 004+ du)

This P41212 structure is actually an idealization (regular tetrahedra) of the anion
positions in the low-cristobalite form of 85103, ¢ = (" corresponds to T and ¢ = 45°
corresponds to the li-coordinated packing described in § 6.3.1. Just as there are
compounds ABX; with /424 symmetry, there are also ternary compounds with 4122
symmetry. Examples include LiAlO7 and NaAlQ» with different vaiues of ¢. If A = B we
have the structure of f-BeQ, which we meet again in § 7.3.3. Cristobalite is intermediate,

IThis structure is just one of an infinite number of ways of packing these polyhedra (see the discussion
of the MgCuy and the MgZns structures in § 6.6.3).
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with ¢ = 20° at room temperature.! Note that, like the quartz form of SiOy, cristobalite
exists in enantiomorphic forms with symumetry either P432;2 or P432/2.

Fig. 6.33. Partial “collapse” of the ideal cristobalite (top left) to the /324 structure {top middle) and to the
P41212 structure (top right). The structures are projected down ¢ and the centers of the tetrahedra are at
heights differing by ¢/4. ¢ = 22.5° in the two derived structures. The lower part of the figure shows how a
tetrahedron appears in projection after rotation about a 4 axis.

Thete is a third way (with symmetry Pra2y) to collapse the T structure by concerted
rotations of tetrahedra, this time to give hep, but in the intermediate arrangement the
structure has two crystallographically-distinct spheres.2

6.3.10 Another 6-coordination: the Y lattice complex

Our fast sphere packing with 6-coordination is also cubic:

P23, a=V[1A8x2 - 2x+ YD, 0 < x < 1/4
Sphere centers in 4 a: (rxx ; (124x,1/2-6,5K)

Hx=0(or 14 or 112 or 3/4) the arrangement is face-centered cubic (cubic eutaxy) with
12-coordination. If x is changed from 0 then there are six nearest and six next-nearest
neighbors. Increasing Ll from 0 corresponds to displacing the centers of spheres afong all
four <111> directions (cf. the Pa3 7-coordinated packing described in § 6.3.8 above). The
density is a minimum for [x! = 1/8 at which point the unit cell parameter (for equal spheres)

INote that if we consider the [8i}04 tetrahedra in cristobalite to be rigid, compression along ¢ will
require ¢ to increase (to decrease ¢}, and hence a will decrease also. Materials that behave in this way
(contracting in a direction normal to an applied compressive stress) are rather rare, but cristobalite is one. In
terms of elasticity theory, it is said that it has a negative Poisson’s ratio.

2For a detailed account of these transformations, and their relevance to crystal chemistry, see
M. O'Keeffe & B. G. Hyde, Acta Crystallogr. B32, 29723 (1976). ’
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18 11(8/3) and the density is \f(3/2)7d8 = 0.48]. The symmetry is now P4332 and the sphere

centers are on the invariant cubic lattice complex +¥ with coordinates (1/8,1/8,1/8 ;
5/8,3/8,7/8)x. Fig. 6.34 (which might be compared with Fig. 6.31) shows unit cells of
ccp (using x = 1/4) and *Y for comparison. The six neighbors of *¥ are at the vertices of a
trigonal metaprism (synmumnetry 32) as indicated in the figure. .

The Fe {or Si) atoms in FeSi are close to the ¥ packing. As we saw in § 6.3.8
converting the Fe and Si arrays to two inter-penetrating eep arrays produced NaCl. But
two inter-penetrating ccp arrays aiso describes sphalerite (ZnS$, see § 6.1.2), the
difference is that in NaCl the two arrays are displaced by 1/2,1/2,1/2; in sphalerite they
are displaced by 1/4,1/4,1/4 (or 3/4,3/4,3/4}. Thus the transformation *Y - cep can also
be used to describe FeSi — sphalerite. A description of the three structures in terms of
a P23 cellis:

‘NaCl xNa= 025 xc1 =075
FeSi xpe = 015 xgi= 0.84
ZnS Xzn= 0.0 x5 =073

Fig. 6.34. Left: a unit cell of cep. Center: a unit cell (filled circles) of *Y; the neighbors of one p(?int are
shown as open circles and the two equilateral faces of the trigonal metaprism formed by those points are
lightly shaded. Right: the same coordination metaprism viewed down a 3-fold axis.

6.4 Sphere packings with cube and trigonal prism sites as stackings of two-
dimensional nets

Many of the sphere packings in crystal structures are simply described as a stacking of
planar nets; particularly 36 and 44. Tf we remove the restriction to closest packings of such
layers, structures can be generated with sites that are trigonal prisms or cubes, Here we
extend our notation for describing structures based on closest packing to include these other
packings also. We give many examples of real structures baseq on the id_ealized sphere
packings; crystaliographic data for these compounds are collected in Appendix 5.

6.4.1 Non-close-packed stackings of 3% nets

We have aiready discussed closest packings as a stacking of 3¢ nets in positions labeled
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A, B or C. We did not allow sequences involving two layers in the same position. In &
sequence AB the spacing between layers of unit-diameter spheres is assumed to be (at. least
close; t0) ¥(2/3) = 0.816. A sequenice AA requires layers to be (close to) unit distance apart
and indeed the symbol A (= AAA...} could be taken to stand for a primitive hexagonal

igttice sphere packing (c/a = 1). Allowing iike letters to repeat generates trigonal prismatic
sites between the layers. For AA these sites are at positions 3 and yat the same level and
together they form a 63 net within the layer as shown in Fig. 6.35. For AlB; (Greek letters
now for B, and parentheses cnclose sites at the same level) the sequence is
A(BPA(BYA... showing that B atoms fill all the trigonal prism sites of a primitive
hexagonal Al structure and form a 62 (honeycomb) net, as described in § 3.3.5.

Fig. 6.35, Left: The positior A of a ep layer and two trigonal prism sites o and B between two 4 layers.

Center; illustrating that the § and y sites together for a 67 net. Right; i i
C . Right; the patte
Just the § sites are occupied, ’ pestern of trigonal prisms when

) Fig. 6.35 also shows the pattern of trigonal prisms when one half of the trigonal prism
-Sites are occupted. A simple structure of this type is WC which may be written (with Greek
letters for C) ABABA.... As shown in Fig. 6.36, the {C} Wy trigonal prisms forn infinite
col}lnms by sharing their triangular faces.q It might be noted that the structure is its own
antistructure so there are also { W}Cg trigonal prisms.

Fig. 6.36. Left: WC as {C} Wy trigonal prisms. Right: NiAs as |

As)Nig trigonal prisms.

1 . -
Note that B and € are notations for layer positions, but B and C are symbols for chemical elements!
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NiAs was described earlier (§ 6.1.5) in terms of hcp As and can be coded (with Greek
letters for Ni) as BaCoB; the structure with symbols for cations and anions reversed is
APAvA.... The layers of trigonal prisms are the same as in WC, but now adjacent layers
are staggered so that trigonal prisms share only edges between the layers as illustrated in
Fig. 6.36.

We next consider some patterns in which stackings of the AA type containing trigonal
prism sites are mixed with those of the AB type that contain tetrahedral and octahedral
holes. Special interest attaches to slabs AA with half the trigonal prism holes filled, and to
slabs AB with either all the octahedral holes or all the tetrahedra holes filled. Fig. 6.37
shows these three kinds of slab. Notice that the faces of the polyhedra occupy one half of
the triangles in a ep layer (cf. Fig. 6.35, right); a consequence is that slabs of these sorts
can be joined without polyhedra sharing faces, as in the structures to be described next.
Notice that an isolated octahedral or trigonal prism slab of X between two cp ¥ layers has
stoichiometry X¥;; when the Y are shared between two slabs the contribution to the overall
stoichiometry is X¥2/2 = XY. An isolated tetrahedral layer has stoichiometry X2¥7 and a
slab sharing ¥ with adjacent slabs contributes Xy Y2/ = XY to the overall stoichiometry.
‘We have already discussed (§ 6.1.5) LaQ3 with hep La and alternating octahedral slabs
(OLa) and tetrahedral slabs (Q2La).

Fig. 6.37. From left to right: parts of layers of trigonal prisms, octahedra and ietrahedra.

Two 10-coordinated packings with the same density are: AABB... and AABBCC...

AABS PGaimme, a=1,c=2+(8/3) = 3.63, p = 218 + ¥27) = 0.6657
' Centers in 4 f2 #{1/3,2/3,2;, 1/3,213.1/2-2), z=1/{4 + 424) =0.112

We have in fact met this structure as the Ti packing in TiP (see § 6.1.5, especially Fig.
6.13, p. 220). With Greek letters for P the packing is AyBaByABA.... P(1) is in
octahedral holes () between A and B layers. P(2) is in trigonai prismatic holes: f between
A#A layers and -y between BB layers. The combined P packing yoyB... corresponds to he
close packing (but note that the packings cannot correspond simultaneously to ideal AABB
cation packing and ideal hc anion packing as the two packings have incompatible spacing
requirements). :

The same cation packing is found in Sc3028 which may be coded with Greek letters for
0,8 as ABaByBafAy.. This shows that the tetrahedral sites between AB layers are filled
(these are O atoms) and one-half the trigonal-prismatic sites between AA and BB layers are
filled (these are S atoms).!

1f one wants o be completely explicit, the elemental symbols could be used as subscripts.
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In the TiP and Scy028 structures the tilling of sites in the trigonal prism layers is
dictated by the requirement that the trigonal prisms do not share triangular faces with
occupied octahedra (in TiP) or oceupied tetrahedra (in Scy098) in adjacent layers. In the
hexagonal structures of MoSy and NbSs the anion packing is AABB but the interstices in
the AB slab are empty so there are isolated tri gonal prism layers and it does not matter very
ruich therefore which set of sites is {illed in these layers. In the 2H, structure of NbSes the
sequence is AYABYB... and in the 2H} structure of MoS; the sequence is ABABaB... .

in the structure of BaCu, Ba has the same (AABB) packing, with Cu in all the trigonal
prism sites: with Greek letters for Cu, the stacking sequence is A(BPAB(apB. Notice
that the Cu atoms are on 63 nets and the structure could be described as an intergrowth of
AlB2 slabs BaCuy with ep slabs Ba.

The second 10-coordinated sphere packing (AABBCC) is rhombohedral:

AABBCC R3m,a=1,¢=3 + 6. Centers in 6 ¢: R + (0,0.2), 2 = 146 +v24) = 0.092

The $ atoms in 3R MoS; have this arrangement; with Greek letters for Mo the sequence
is ABABYBCaC. The pattern of {illing of trigonal prisms destroys the center of symmetry
and there are two kinds of S atom in the structure (for data see Appendix 5).

There are other ways of stacking parallel 35 nets,1 Adjacent layers can be stacked so
there are only two contacts for each sphere with neighbors in an adjacent layer. Fig. 6.38
indicates the appropriate positions, labeled D, E and F. Notice that positions I, E and F
are only relevant for stacking over an A layer. For unit spheres in contact the spacing
between layers such as AD is ¥3/2 = (.866.

Fig. 6.39. het projected on {110) showing the AD stacking of 35 nets (filled and open circles
respectively). The cell outlined by dotted lines is a face centered tetragonat celi ¥2a x ¥2a x ¢ (a is the edge
of the body-centered tetragonal celf). ¢ is horizontal on the page.

ISee also A. F. Wells Structural Inorganic Chemistry [5th Bd. Oxford (1984}, Chapter 4].
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A sequence such as ADAD.., , illustrated in Fig. 6.39, cortesponds to‘a 1_0—coord':nated
sphere packing (6 neighbors in each layer and 2 above and 2 below) and is, in fact, our qld
friend bet (§ 6.3.2). The nets are (110) layers of the body-c.entelred cell (shown in Fig.
6.21, p. 230) or (100} layers of a face-centered cell (indicated in Flg.. 6.3.9).

The 10-coordinated sequence ADEF is closely related to bet (which is AD) and has the
same density. The structure is orthorhombic:

ADEF Fddd, e =1, b =3, c =V12_ Sphere centers in 8 a: F % (1/8,1/8,1/8)

7Pu has this structure (see Exercise 9). Fig 6.40 (which should be compared with
6.39) illustrates the strrcture projected on (001).

5/8

Fig. 6.40. The 4-layer sequence ADEF of stacked 3% layers with Fddd symmetry projected down c. (b is
horizontal on the page). Numbers are elevations in units of ¢.

b -@-0-0-0-9
i 08080

¢ —e-Of-e0Ole

x —O—@-O—8-O

» -eO-e-0-@
» -O—e-0—8-0 __i

C '—.—O—.—O.

Fig 6.41, Ap 11-coordinated sphere packing obtained by stacking 38 nets as describ'ed in .the text..Left:
projected on (001) (b vertical on the page). Depth of shading indicates increasing elevation. Right: px.'ajecte.d
on (100). Open and filled circles represent sphere centers with x =0 and 1/2. The orthorhembic unit cell is
cutlined {e vertical on the page).

There are many other possibilities, but they are not very common in crystal chemistry.
One of the simpler is the sequence of two close-packed layers, say BA follo_wed b)_i D
which, in turn, is followed by another close-packed layer. This fourth la).IEI-‘ is net in a
position to which we have yet applied a label; it is shown in Fig. 6.41 where it is labeled X,
This is an 11-coordinated sphere packing; for example, a sphere in an A layer has 6




243 Chapter 6

neighbors in the fayer, 3 in the B layer and 2 in the D layer. The crystallographic
description of this packing is:

Crea, a=1,b =3, c =(8/3) + V3, p = 4m/(9 + ¥72) = 0,719
Sphere centers in 8 £ C £ (0,2 ; 0y, 1/2-2), vy=1/6,z =32 -2

The density is the same as that of the tetragonal I1-coordinated sphere packing of
§ 6.3.1; it would be nice to know if a less dense 1 1-coordinated packing exists.

6.4.2 Non-close-packed stackings of 4% nets
Recall that cop can also be described as a stacking of 44 nets. A number of other sphere

packings (not closest sphere packings) can also be so described. Tt is convenient now to
recognize four positions for the layers: A, B, C and D as shown in Fig. 6.42.1 ‘

A . B c D

Fig. 6.42. The four relative positions for stacked 4 nets. The full lines outline a square cell.

A pair of layers packed AB (or, equivalently, CD) corresponds to a (100} slice of cep
and for unit spheres, the spacing between layers is (ideally) 1/4/2.2 Such a slab contains
tetrahedral sites, The octahedral sites of cep lie in the A and B layers, so the slab also
containg half octahedra (square pyramids). Thus to have octahedral sites a three-layer
sequence such as ABA is necessary, The tetrahedral sites Lie in the plane half way between
A and B in both the € and D positions (see Fig. 6.43). The slab with filled sites could
therefore be coded (using Greek letters for the tetrahedral sites) as A(y0)B with
parentheses again being used to enclose atoms at the same level, This unit is a very
common element of crystal structures and we refer to it as a tetragonal tetrahedral layer
(to distinguish it from the hexagonal slab of tetrahedral sites between two 35 layers). Itis a
{100} layer of fluorite. Notice that the tetrahedral sites are on a 44 net of twice the density
(dotted lines on the left in Fig. 6.43).

Such layers occur in the litharge form of PhO with O in the tetrahedral sites and the
mackinawite form of Fe$ (indeed they are sometimes catled mackinawite layers) with Fe in

There should be no tisk of confusion with the symbols for stacking 44 nets with those for stacking 38
nets as long as it is made clear to which one refers, Paralfel 3% and 4% nets of equal-sized spheres are
incommensurate so mixed stackings do not normally occur.

2Beware! If the spacing between the layers is 1/2 one has an element of bec.
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tetrahedral sites. The overall cation packing in PbO is approximately ccp as the sequence is
A(Y8)BA(Y®B... but in the real material the inter-layer spacings are not exactly the ideal

values.

Oe e O

Qe (Oe

Fig 6.43. Left: plan view of two 4% layers of spheres {open and filled large circles)' stacked AB; the
smaller circles indicate the location of tetrahedral sites between the layers. Center: some of the tetrahedra are
shown, Right: the same in elevation.

PbFCI (matlockite) is an important example of a structure type with tetragonal
tetrahedral layers, and as it is one of the most commonly-occurring of all temary structures
we digress a little to describe it here. The structure goes under several names and we 2.1150
use BaMgSi for anti-structure compounds in whlc_h Ba + Mg repl.acc Cl+F;in
Pearson’s Handbook {Book List) it is catled CuzSh. It is related to PbO in the sense that
there are (PbF) tetragonal tetrahedral layers with stoichiometry PhaF2 but they are now
interwoven with two layers of Cl on 44 nets. Now the tetrahedral layers are further apart,
and in isostructural compounds like LaOX (X = Cl, Br, I) with layers olf {O}Lag t_etrahedra
of almost constant size, the interlayer spacing is determined by the size of the interlayer

atoms X.

Fig. 6.44. The structure of PbFC. Left: showing the layers of edge-sharing {F.} Pby tetrahedra with Cl1
aloms in intervening layers. Right: showing the {Cl1}Pbs and {Pb}Cl5F4 coordination polyhe.c.lra around the
two atorns identified with labels on the left. F atoms (not shown on the left) are smait filled circles.
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Figure 6.44 illustrates the structure of PbFCL F is in a {F}Pby tetrahedron and Cl is in a
{C1}Pbs square pyramid. The Pb coordination is an irregular square antiprism with a small
F4 square face and a larger Cly square face; this larger face is capped by a fifth Cl to give
Pb a 9-coordination, [Pb}ClsFy.

We return now to a discussion of further packings of 44 layers. A sequence such as AC
with spacing V3/2 will generate an element of primitive hexagonal packing, in fact a4 (1010)
layer, and a continuing sequence AC... (or AD... or BC... or BD...} is primitive hexagonal

with the 6 axes of the tri gonal prisms perpendicular to the stacking direction as can be seen _

from Fig. 6,45,

Fig. 6.45. Illustrating that non-close-packed stacking of 44 layers can generate a primitive hexagonal
array, Left: a sequence of 4% layers. Right: the trigonal prismatic sites are shaded.

A sequence such as A4, with unit spacing between the layers, corresponds to a slice of
primitive cubic in what should be an obvious way.

We now describe some other stackings of 4% layers which correspond to packings of
equivalént spheres and which are encountered in crystal chemistry. As discussed above
they can contain trigonal prism and cube sites as well as tetrahedral sites between two
fayers that are in closest packing. We assnme the interlayer spacings to be those for spheres
in contact,

ACBD: This corresponds to a packing of trigonal prisms with their axes pointing in two
orthogonal directions (and normal to the stacking directions). The symmetry is 14 /amd
(with the 4-fold axis parallel to the stacking direction) so the prisms do not have 6-fold axes
in the structure, We have described this 8-coordinated packing in § 6.3.3 (see Fig. 6.26).

ABCD. This is a 10-coordinated sphere packing (it has the same density as the 10-
coordinated stackings of 36 nets described above) and might be considered an intergrowth
of ccp (the AB and CD parts) with primitive hexagonal (the BC and DA parts). The
symumnetry is now orthorhombic:

ABCD Cmem,a=c=1,b =2 + V3, Centers in ¢ c: € 4 {0y, 1/4), y = (3 — V6)d

This packing is found as the structure of one of the high-pressure polymorphs of Ga. If
the trigonal prism sites (between the BC and DA layers) are filled, the important CrB
structure type (B in the trigonal prisms) is obtained. In UBC, in addition to B in the
hexagonal prisms (of U), there are C atoms in the square pyramids. '

The structure is shown in three ways in Fig. 6.46, first as a stacking of 44 nets,
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secondly with the trigonal prisms shaded in, and finally as a proje?tion down a. In the last
case the trigonal prism centers are indicated; notice that they form zig-zag rods parallel to e,

Fig. 6.46. Tllustrating an ABCI) stacking of 4% layers (CrB packing). In tl%e middle the Lrig(.malv prism
layers are shaded. On the right the structure is shown in projection on (100) ('hght and dack shading 1s.used
to differentiate prisms with centers at x = 0 and x = 1/2), The trigonal prism sites are shown as larger circles
connected by lines to their nearest neighbors.

We digress to describe a related 10-coordinated sphere pack.il_lg of the same densllry that
is not however usefully described as a stacking of layers. In this structure we again ha\ée
trigonal prisms, but now in columns (rather than slabs) ?md the sPhere pacl'ong correspor ;
to the Fe atom positions in (idealized) FeB (B 'is in the' trigonal prlsms)._ Fig. 6.?1
compares the two packings. In both structures the trigonal prism centers form zig-zag rods
which are normal to the plane of projection in Fig. 6.47.

FeB packing Pnma,a=19062, b=1,c=1.6506
sr ® Sphere enters in 4 c: +(x, /4,2 ; 1/24x,1/4,1/2-z), x = 01811, z = (.1583

Fig. 6.47. Left: the CrB sphere packing (of Cr) projected on {001) gcompare fig. .6.46). Open and filled
circ'!es are at z = 1/4 and 3/4 respectively. Right: the FeB sphere packing (of Fejprojected on (010). .Open
and filled circles are at y = 1/4 and 3/4 respectively. In both cases shaded rectangles are colurans of trigonal

prisms sharing square faces.

ACDABDCB: This is another 10-coordinated sphere packing of the same dens-ity.a:nd
can similarly be considered as an inter-growth of alternate layers of cep and primitive
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hexagonal. It is tetragonal:

ACDABDCE Hyamd,a=1,¢=v8 + V12 = 6,203
Sphere centers in 8 e: 1% (0,1/4,2 ; 0,3/4,1/442), z = V3/[B(¥2 + ¥3)] = 0.0688

This occurs as the Mo packing in a-MoB (with again B in the trigonal prismatic sites,
now between AC, DA, BD and CB). In contrast to the previous case (ABCD, CrB), the
-trigonal prisms “point” in two different directions as shown in Fig, 6.48 (which should be
compared with the middle of Fig. 6.46). S-MoB is CrB.

Fig. 6.48, Mustrating an ACDABDCE stacking of 44 layers (¢ is horizontal).

AABB: This is a 9-coordinated sphere packing and mighi be considered an intergrowth

of cep (the AB and BA parts) with primitive cubic (the A4 and BB parts). The symmetry
is tetragonal:

AARBE fmmm,a=1, c =2+ 2, p=2m(6 + V18) = 0.6134
Sphere centers in 4 e: { £ (0,0,2), z = 18 = 0.3536

Fig. 6.49. A projection of the AABR stacking of 44 layers of Te atoms in Th;TeN3 showing the layers
of tetrahedra (centered by N) and cube sites (centered by Te). The projection is down a with ¢ running across
the page. The cube centers are at x = 0 and x = {/2 (differentiated by light and darker shading).

In ThaTeNy N atoms are between the AB and BA slabs of Th, forming tetragonal
tetrahedral layers (cf. Fig, 6.43) with stoichiometry NaThy. The Te atoms are between the
AA and BB layers of Th. Using Greek letters for Te and N, the structure is
APA(Y®)BaB(¥8). An idealized version {with regular tetrahedra and cubes) is shown in
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Fig.-6.49. ThyTeNsg is a member of the largest of all groups of t'ernary structure types. It is
usually named for the antistructure compound ThCr;Siz (in wh1lch Th_ and Cr play the role
of Te and N in ThyTeNs) but in Pearson's Handbook (Book List) it is called Ba'Al4. The
structure type is similar to PBFCI in having tetragonal tetr.abedr?l laye:).,‘s .and a wide range
of ¢/a according to the size of the atom between the layers (in the “cube snes): N '

ACCA: This is a 7-coordinated sphere packing and is an intergrowth of primitive cubic
and primitive hexagonal. The symmetry is orthorhombic:

ACCA Cmmm,a=c=1,b=2+43=27321 :
Sphere centers in 4 j: C+ (0, 1/2), y = 1/{4 + Y12) = 0.134

ing i i be sites (between
The ACCA packing is that of Fe in the FeqAlBg structure. Al fills the cu
AA and CC Efayf:rs %)f Fe) and B fills the trigonal prism sites {between AC and CA lgyer§).
The structure may be also considered s a prismatic siacking of 3342 nets as shown in Fig.
6.50.

A

Fig. 6.50. ACCA stacking of 4% nets of Fe in FegAlB. Left: viewed rormal to the stacking direction
(vertical on the page). Right: as a clinographic projection. The trigonal prism sites (filled by B) are shaded,
-and the cubes (occupied by Al, not shown) are outlined.

6.4.3 Stacked 32.4.3.4 nets

Stacking of 32.4.3.4 layers produces 7-coordinated sphere. packings with a \_'ariety of
interstitial sites—cubes, square antiprisms (betier metaprisms), trigonal prisms .a?d
tetrabhedra—and many crystal structures are based on ﬁl[in_g some or all of th.e interstitial
sites in these packings. In this section we l;i'ieﬂy‘deAscnbe disogl)e of the simpler such

tallographic data for real materials are in Appendix 3).
sm‘;‘(;t?l:;gsrrfaﬁc s%aciing {i.e. one directly above the other) of 32.4.3.4 layers the formal
description for spheres of unit diameter is:
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Pdimbm, o = V(2 +V3) = 1.932, ¢ =1, p = 0.5612
Sphere centers in 4g: T, 1/242,0; 1/2-x.%,0), x = !N(IG + ‘\4’!92) ={.1830

- The interstices in the sphere packing are cubes and trigonal prisms. In LiY-8iy, Li is in
all the cube sites and Si in all the trigonal prism sites of the Y packing as shown in Fig,

6.51. Notice that the atoms in the trigonal prism sites come together in pairs (Si; in
LiY4Siz). The structure is usually called UsSis.

Fig. 6.51. Prismatic stacking of 32.4.3.4 nets projected on (001) showing the cube sites (darker shaded)
and trigonal prismatic sites that occar in pairs (joined by heavy lines).

Another stacking of 32.4.3.4 nets is of rather common occurrence im crystal structures.
Now the nets in each layer are displaced by 1/2,1/2,1/2 to make a two-tayer stacking as

shown in Fig. 6.52. The structure is tetragonal (a and x are the same as for the previous
structure):

Iimem, a = 1.932, ¢ = Y(243) = 1.861
Sphere centers in § k: 7+ (x,1/2+x,0 [/2—xx,0), x = 0.1830

F:g 6.52. A sphere packing generated by stacking alternating layers of 32,4.3.4. Left: showing the nets,
Right: emphasizing the square metaprisms and some of the tetrahedra (darker shaded). The projectien is on
(001) of the tetragonal cell. Empty and filled circies are at z=0and 1/2 respectively.
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A notable feature of the structure is the columns of face-sharing square metaprisms.
Note also the tetrahedra centered at 1/2,0,1/2 and 0,1/2,1/2. An example of the occurrence
of this packing is the Al arrangement in CuAls in which Cu atoms center the Alg
metaprisms so that linear -Cu-Cu- rods run parallel to ¢. In PtPbg only half the Pl?g
metaprisms are filled by Pt (those in alternate layers perpendic.uiar. to ¢), In contrast, in
TaTey, Ta fills only the Teg metaprisms centered at 0,0,z forming {solate'q rods of face-
sharing {Ta}Teg metaprisms with their axes parallel to ¢. In KInTey, in addm('m t(? {K}Teg
metaprisms, there are {In}Teq tetrahedra (the tetrahedral sites are also show_n in Fig. §.52).

A third stacking of 32.4.3.4 nets is also important in crystal chemistry. Pairs of
prismatically-stacked nets are displaced by 1/2,1/2,1/2 to produce a four-layer sequence,
and the structure tnay be thought of as an intergrowth of the previous two. The symmetry
is the same as in the previous sequence:

f4/mem, a = 19318, ¢ = 3.8612
Centers in 46 I T £{x,124x,2 ; 1/2-x.x,2 ; x,1/2-x,1/2-z2 ; 1124x,x,1/2-2), x = 0.1830, z = 0.1295

Layers of square metaprism and tetrahedral sites alternate with layers containing tn'.gonal
prism and cube sites. In CrsBs, Cr{2) atoms are in this sphere packing with Cr(1) in the
cubes, and B atoms fill the square metaprisms and the trigonal prisms. In PdGas Fhe same
packing of Ga(2) atoms occurs, now Ga(l) are in the cube sites, Pd in the metaprisms and
the trigonal pasms are emipty.

6.5 A summary of sphere packings

P42,2
mtle (D) " (T 6 Y (6) (FeSi_@
P4, /mnm - \Id3m P4,32 Pa3
Prnm 1; Pra2i " 1 4o z /(})213 Pa3

.

hep (12 Cmcm cep (12) R3m cP (6}
Pﬁg/:gzm)c ' T Emdm | (T \Pum

TEY)  Cmem bec (3] (et (10)
Pm3m 3m | papmnm  \Jmmm

i
I3 t PIml |
Waly; (9) kP (3)
_Im3 P6/mmm

Fig. 6.53. Some of the structural relationships discussed in this chapter (arrows). Numbers in parentheses
are coordination numbers. Notice the central positicns of cp and bee,
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The diagram (Fig. 6.53) indicates some of the sphere packings and transformation
between them that we have discussed. In the diagram the lines indicate a transformati X
path of the symmetry indicated; a broken line indicates that in the intermediate structi](;g
there is more than one kind of sphere (i.e. they are not all equivalent to each other)
Attention is drawn to the central position occupied by ccp. Note that cco (s tr '
Crmem, see § 6.3.3) is not shown but is intermediate between hep and cep ey

6.6 Some packings of two kinds of spheres

Here we describe some structures of simple binary intermetallic compournds. They are of

Interest both as the structures of large groups of compounds and as components of more

cotnplex structures. As an example we cite the fact that MgCu; (§ 6.6.3) is the structure of

many intermetallic com : > .
MgALOy. pounds and also of the cation array (MgAls) in spinel,

6.6.1 CuiAu and NizSn

CuzAuis a simpie ordered derivative of ce igi .

Cug . af P. The original fec structure is replaced b
primutive cubic one (sy_metw Pm3m) with Au at 0,0,0 and Cu at (0,172 11]/2)& T}{]:
struc':tL_lre should be familiar: the Cua arrangement is the J structure described in §6.3.5and
Au{ is1 in the cuboctahedrat holes of this structure, (see Fig, 6.27) o

1) planes of Cu are kagome (3.6.3 6) nets and A centers
: 0.3, u centers the hexagons of the net
50 that t'he combined {111) nets are 36. Fig 6.54 shows how the nets are stagckcd' usin Htf;]:
symbolism of § 6.1.6, the stacking of kagome nets is N N2N5... A ¢

Fig. 6.54. Left: the cubic stacking of Cu3Au nets
shade_d and filled circles are at different levels:
stacking of nets at z = /4 and 3/4 (open and fil

projected down [111]. Larger circles are Au. Open,
0, I/} and 2_!3 respectively in units of la + b + ¢l. Right: the
led circles) in NizSn. Larger circles are Sn.

Ni3Sn is the analogous structure derived b i
: ! y ordering of hep. Ni atoms form kazome
§3.23.6) layers with Sn cente}'mg the hexagons. The layers are therefore like (111) iiyers
in CuzAu but now the stacking of kagome nets is hexagonal: N\¥5... as also shown in
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Fig. 6.54. For the ideal structure with atoms 4 apart:

‘NizSn Pls/mimc, a =2d, ¢ = \’(8/3):1‘, ela =(2/3) = 0316
Niin 6 i 2{(x,2x,1/4 ; x X, 1/4 ; 2X.%,1/4), x = -1/6
Snin 2 ¢: £(1/3,2/3,1/4)

Note that empty Nig octahedra (with centers at 0,0,0 and 0,0,1/2) share faces and form
isolated rods parallel to ¢. Contrast CuzAu in which the empty Cug octahedra share
vertices only (Fig. 6.27 again).

In the cubic high-temperature form of BaTiO3 the BaO3 arrangement is AuCus (Ti in
the Og octahedra). In BaNiO3 the BaOs arrangement is SnNi3z (Ni in the Og octahedra).
These oxide structures are often referred to as cubic and hexagonal perovskite respective-
ly. For crystallographic data see Appendix 5; cubic perovskite was described in § 5.3.4.

6.6.2 CuZn (B-brass), CuAu and MoSi

The simplest ordering of bee is CuZn in which Cu is at the origin (0,0,0) and Zn at

" the body center (1/2,1/2,1/2) of a cubic cell. Notice that the structure is primitive cubic

(symmetry Pm3m). The structure is also that of CsCl which is often used as the
eponymous compound, but as it is mach more cormmon for intermetallic compounds we
prefer the name CuZn or f-brass (CuZn is fS-brass). Notice that the structure is its own
antistructure and each atom is coordinated by eight of the other kind at the comers of a cube
(Fig. 6.55).

Fig. 6.55. Left a unit cell of CuZn (smaller, darker-shaded circles are Cu). Middle: a CugZng
octahedron. Right a CugZny4 cctahedron.

Tt may be recalled that in bec the octahedra around octahedral sites fill space twice over
(see § 6.2)—in CuZn there are two sets of octahedra: CuyZny [at (0,1/2,1/2)x] and
CuzZng [at (0,0,1/2)x] as shown in Fig. 6.55. Each set of octahedra exactly fills space.
In cubic perovskite BaTiOj3 the cation arrangement (BaTi) is CuZn and the anions are in
{O)BayTiy octahedra.

Alternate {100} layers of CuZn are 44 nets of Cu and Zn which are stacked AB (cf.
§ 6.4.2). For the structure 1o have cubic symmetry the layers must be /2 apart, where 4 is
the unit cell edge of the 44 layers. If the layers are instead V2a/2 (= 0.71a) apart the
structure is an ordering of cep and the structure is referred to as CuAu. The symmetry is
tetragonal {(Pd/mmm) and Cu is at 0,0,0 and Au at 1/2,1/2,1/2 so that CuZin is the special
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case of Cudu with c/a = 1.0; c/a=V2 = 1.414 corresponds to an ideal ordering of cep.
The general case is called CuAu; examples of actual compounds are (with c/g in
parentheses): FeNi (1.41), CuAu {1.31), PtZn (1.22), NiZn (1.08) and MnHg (1.01).

In MoSi; the atoms are again on 44 nets in the sequence MoSiSi along ¢. The stacking
alternates AB so the structure has the six-layer repeat AMoBsidsiBmoAsiBs;.

MoSiy ‘14immm
' Mein2a: !+ (0,00)
Siind el (0,0.2) withz = 1/3

a is the spacing of the 44 nets. If ¢/a = 3¥2 = 4,23 the structure is a superstructure of
cep and if ¢f/a = 3 it is a superstructure of bee. Many compounds have axial ratios between
these two values. A third possibility is a superstructure of bet for which c/a = 3V(2/3) =
V6 = 2.449. For MoSiz c/a = 2.43 so clearly in this case the structure should be considered
as a superstructure of the 10-coordinated bet packing, In Volume 11 of this series we
adduce several examples of ionic compounds with MoSiy cation packing; KoMgF, is a
good example (for data see Appendix 5).

6.6.3 MgCup

MgCug; is often cited as an example of a structure that is based on an efficient packing
of spheres of two sizes. The Cu arrangement is the T sphere packing of § 6.3.9 (see Fig.
6.32) which can be described as an array of vertex sharing Cuy tetrahedra. The space not
occupied by Cuy tetrahedra consists of truncated tetrahedra, and it is useful at the outset to
see how these two polyhedra can combine to fill space. Fig. 6.56 shows how two
truncated tetrahedra and two tetrahedra can be assembled into a large 60° rthombohedron.
This is in fact a primitive cell of the T structure. It is also a primitive cell of MgCus if Cu
is in the T positions and Mg centers the truncated tetrahedra (see also Fig. 6.53 below).
Mg is coordinated by the twelve Cu and also by four Mg capping the hexagonal faces of
the truncated tetrahedron. This 16-vertex coordination figure was identified as the Friauf
polyhedron in § 5.1.7 (see Fig. 5.12}. As shown below, Cu is 12-coordinated in a
[Cu)}CugMgg icosahedron (Fig. 6.37).

Fig, 6.56. Two tetrahedra and two truncated tetrabedra combining to make a 60° rhombohedron {ri ght).
The formal description of the structure is:

MgCuz . Fdim. Mgin8a Ft (1/8,1/8,1,8) (lattice complex D = diamond)
Cuin 16 d: F £ {1/2,1/2,1/2 ; /2,14, /4)k (lattice complex )
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Fig. 6.57 shows the structure prajected on (100). On the leit, just the atom positions are
shown, and most people will find that figure somewhat uninformative. However, in the
center a Cuqy truncated tetrahedron around one Mg is picked out and on the right a
CugMgg icosahedron around one Cu is similarly depicted.
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Fig. 6.57. Left: MgCuz projected on (100). Larger circles are Mg and numbers are elevations in
multiples of a/8. The intensity of shading is proportional to elevation. Center, an (Mg} Cunyy truncated
tetrahedron and right, a {Cu)CugMgg icosahedron picked out. Polyhedron edges obscured by front faces
are shown as broken lines.

Fig. 6.58. Left: a primitive cell of MgCuz (larger circles are Mg). Right: a primitive cell of
MgAkz0y4 shown as {Mg} 04 tetrahedra and Al atoms.

The structure can also be considered as a space-filling by tetrahedra (not all regular),
These are of three sorts: per MgCup unit there are 4 MgCus tetrahedra (these are made up
of an Mg and a triangular Cuz face of the surrounding truncated tetrahedron),. 12
Mg2Cu; tetrahedra and one regular Cuy tetrahedron. Structures which are space fillings
of tetrahedra are sometimes referred to as “topologically close packed.”

We mentioned earlier (§ 6.1.6) that in spinel (MgAl20y) the cation array is MgCujy
and indeed to get spinel from MgCuaj all that has to be done is to fill 21l the MgCuy
tetrahedra with anions so that in MgAlzQy4 there are {O}MgAlj tetrahedra. It is not
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immediately obvious that this results in {Mg} Oy tetrahedra, {Al}Og octahedra and
(approximately} cep O! For this aspect of the structure refer back to § 6.1.6, especially
Fig. 6.17 {p. 223). Fig. 6.58 compares primitive cells of MgzCiz and MgAL Oy,

Close packed structures may he described as built up of rhombohedral units consisting
of an octahedron and two tetrahedra (Fig. 6.4). Similarly, there is a family of structures
built up of different stackings of the rhombohedral unit consisting of two centered truncated
tetrahedra and two tetrahedra (Fig. 6.56). Fig. 6.59 illustrates the simpler possibilities. By
analogy with close packing, the stacking in MgCug can be described as ¢; the stacking in
MgZny is then h and in MgNiz it is Ac (see Fig. 6.59). The structures collectively are
known variously as as “Friauf-Laves phases” or just “Laves phases.”!

Fig, 6.59. The stacking of rhombohedral units in MgCuy, MgZn3 and MgNis.
6.6.4 Cr3Si (A15)

The structure known as A15 2 or Cr3Si has a number of features in common with
MgCus. The atoms are in fixed positions {on the sites of invariant lattice complexes) so
the structure is completely determined by the cubic cell constant. Space is again divided up
into irregular tetrahedra, so it is another example of a topologically close-packed structure.

Cr3Si Pmin. Siin2a: 0,00 ; 1/2,1/2.112 (bec)
Crin 6 ¢: £(1/4,0,1/2)k for 6 d: +(1/4,1/2,0)x] (lattice complex W)

The structure is illustrated in Fig. 6.60. Notice the non-intersecting rods of Cr atoms
along <100>; we describe a related cylinder packing with the same symmetry below
i§ 6.7.3 (a)]. The Cr atoms form icosahedra with symmetry m3 about the Si: this
icosahedron was described in § 2.5.7 (see Fig. 2.25, p. 54). Tt is a good exercise to
identify the icosahedron in projection as shown in Fig. 6.61.

Figure 6.61 also shows the coordination figure about Cr; it should be identified as the
4-vertex polyhedron obtained by capping the hexagonal faces of a hexagonal antiprism.
The coordination of Cr is {Cr}SigCryg; the closest neighbors of Cr are two other Cr at a

1 After the German crystallographer F. Laves, who contributed significantly to the understanding of
intermetaliic structures of this and related types. “Laves” is pronounced with two syllables: “La-ves.”

21n Structurbericht (the predecessor of Structure Reports) simple structures were assigned symbeols, An
represents elemental structures such as A1 = cep, A2 = bee, A3 = hep, ete. A form of W metal (or W30?
= “B-tungsten”) was early reported to be Cr38i and although this is no longer believed to be correct, the
designation A13 is still used for this structure type. The designations B1 = NaCl and B2 = CsCI (CuZn)
are also still used on occasion,
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distance of a/2.

Fig. 6.60. Cr3Si (Cr are open circles, Si are filled circles). Left: emphasizing the Cr rod packing,
Right: showing some of the {8i}Cryz icosahedra (note the two orientations of the icosahedra).

Fig. 6.61. Left: a unit cell of Cr3Si projected on (001), numbers are heights in multiples of ¢/100.
Larger circles represent 5i. The shading scheme now indicates elevations. Center: The icosahedron centered
at 142,142,172 is picked out. Right: The polyhedroa around a Cr at 7 = 1/4.

Supereonducting compounds with this structure are of considerable interest as many
have high critical temperatures. NbaGe (T, = 23.2 K) has the highest superconducting
transition teniperature of any known material other than the copper-oxide superconductors.

The cation array in garnet oxides such as Ca3Al28i3017 is an ordered derivative of
Cr38i with (Cas/28i3/2) in the Cr positions and Al in the Si positions. Indeed the
complicated garnet structure is completely generated by putting O atoms in all the CazAlSi
tetrzhedra of the catien array. In Volume II of this series we will show that many other
complex oxide structures are conveniently described as intermetallic structures “stuffed”
with O atoms. !

For an earlier account of this topic see M. O’Keeffe & B. G. Hyde, Structure and Bonding 61, 77
(1985).
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6.7 Cylinder (rod) packings!

Crystal structures are often conveniently described as sphere packings, with atoms
instead of spheres, but sometimes we want to consider the packing of larger units. Atoms
{or spheres) are point objects in the sense that they have zero-dimensional periodicity and
crystals are three dimensional in the sense that they have three-dimenstonal periodicity. We
have already described three-dimensional structures (sphere packings) as packings of
layers, which are objects with two-dimensional pericdicity, and we do so again in
following chapters. The symmetry of layers is described by the layer groups {Appendix 1).

Sometimes it is convenient to consider structures as a packing of rods, which are objects
with one-dimensional periodicity. These have the symemetries of the rod groups (Appendix
1).2 The highest symmetry rod is the infinite cylinder; here we describe some packings of
equivalent (symmetry-related) cylinders. In application to crystal chemistry, we replace the
cylinders with rods of atoms. Examples of rods are strings of atoms, atoms at the vertices
of rods of pelyhedra (e.g. octahedra sharing opposite faces), atoms forming helices (as
commonly found for rods of § atoms).

In the symmetrical packings we describe, symmetry axes coincide with the cylinder axes
and are therefore non-intersecting. A line (such as a cylinder axis) corresponds to the locus
of all points of a univariant lattice complex. For example 0,0,z or #(0,0,z) corresponds to a
line along ¢ if z is allowed to take all possible values. In the same way #(0,0,z)x
corresponds to lines along a, b and ¢ and intersecting at 0,0,0 (also at 1,0,0 ; etc.); this
cannot correspond to a cylinder packing as the lines intersect. In general the location of
axes is given as the line of intersection of two planes. The intersection of planes x = x; and
¥ = yo s written as xp,y,2 Where z can have any value. Likewise 1/3+u,2/34+u.1 indicates
the line of intersection of the planes x =z + 1/3 and y = 2 + 2/3. Unit cell parameters are
given for cylinders of unit diameter.

In descriptive crystal chemistry the cubic rod packings are of most importance and are
met repeatedly in that connection. i

6.7.1 Cylinders with parailel axes

If cylinders are packed with axes parailel to ¢, 2 cross-section z = constant will justbe a
circle packing. In particular the closest packing of equal cylinders will be a hexagonal
packing (i.e. based on a 36 net);

P6/mmm, a = 1. Cylinder axes along 2 ¢: £(0,0,2). Rod symmetry pb/mmm

The fraction of space occupied by the cylinders (the density) is the same as for closest

For more on this topic see M. (F'Keeffe & 5. Andersson, Acta Crystallogr. A33, 914 (1977) and M.
O Keelfe, Acta Crystallogr. A48, 879 (1992).

2The reader anxious to learn about rod symmetries will find some good examples in this section. The
less ambitious can skip the parts dealing with this topic. After all we got throngh § 6.4 {on the stacking of
fayers) without discussing layer groups (although the temptation to do so was strong}. The reason was in
part due to the fact that most of our “layers” were only one atom thick.
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circle packing p = m/12 = 0.9070. The rod symmetry p6/mmm is that of an infinite
column of hexagonal prisms stacked along the hexagonal axis. (p stands for the one-
dimensional lattice).

An example of this packing is provided by the helical rods of P in NaP {compounds
such as KP, NaAs and RbSb are isostructural) illustrated in Fig. 6.62, The rods have a
4-fold repeat so the axis is approximately a 41 axis and all the helices are of the same hand.
In this structure, the P-P bond length is 2.24 A, and the P-P-P angles are 112° and 115",
LiP, LiAs, NaSb and KSb have a related structure containing helices of P of both hands.

For crystallographic data see Appendix 5. Elemental Se has 31 belices in the same rod
packing,

Fig. 6.62. The helical rods of P in NaP viewed at an angle stightly tilted from a 2 axis,

Further cylinder packings can be derived from other regular and Archimedean tessella-
tions. The least dense packing, based on 3.122, has density p = V3/(7 + 4v3) = 0.3907.

6.7.2 Cylinders with axes in parallel planes

Here we describe packings of layers of cylinders in contact, They will all have the same
density, p = w4 = 0.7854. Cylinder axes lie along non-intersecting 2-fold rotation axes.

(a) Two-layer tetragonal. Here cylinder axes lie in layers perpendicular to ¢; for z = 0 the
axes run in the [100] direction, for z = 1/2; they lie in the [010] direction, Thus the rods
run afong a through 0,0,0 and along b through 0,0,1/2; see Figs. 6.63 and 6.64. Note that
we give unit cell parameters for a packing of cylinders of unit diameter: in a crystal
structure the rod symmetry is prmmm (which is the symmetry of, for example, an infinite
stack of bricks) and the axial ratio ¢/a will not, in general, be equal to 2. -

Padsimme,a =1, c=2
Cylinder axes along 4 & #(3,0,1/2 ; 0,x,0). Rod symmetry pmmm
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Fig. 6.63. Left: a two-layer tetragonal cylinder packing. Center: a four-layer tetragonal cylinder packing.
¢ is up the page in both cases. Right: a three-layer hexagonal cylinder packing viewed down c. (See also
Fig. 6.64 for the first two cases).

0.1 01 0,1 172 0,1
I

Fig. 6.64. Left: axes of a two-layer tetragonal ¢ylinder packing, Right: axes of a four-layer tetragonal
cylinder packing. The view is down ¢ and the numbers are the elevations of the axes in units of .

{b) Four-layer tetragonal. Rods run along a through 0,3/4,1/4 and 0,1/4,3/4 and along b
through 0,0,0 and 1/2,0,1/2 (this description assures that there is a center of symmetry at
0,0.0). The arrangement should be apparent from Figs. 6.63 and 6.64.

Mlamd,a=1,c=4

Axes along 0.x,0 ; x,1/4,3/4 ; 1/2,x,172 ; x,3/4,1/4 derived from

16 £ T+ (Ox,z 5 0,1/2-x,2 5 1Vd4x,1/4,3/4 47, 3d—x, 1/4,3/4+2), 2 =0
Red symmetry pmem

A digression on rod symmetry: The rods in the four-layer structure (b) run along 21 axes
parallel to a and b of I4)/amd. Consider the rod along a: it lies in the mirror plane normal
to b and is normal to the mirror plane normal to a. The rod alse lies in the ¢ glide plane
normal to ¢.! The symbel for the rod symmetry group is accordingly pmma. However in
the rod groups it is conventional to take the translation direction as (with subscript “#” for
the rod) ¢,. Making the substitution-a, = b, b, =¢, ¢, = a, the rod symmetry group with
these new axes becomes pmcm as given above. The full symbol is p 2/m 2/c 21/m. An
infinite crankshaft or zig-zag (see § 7.3.5) has this symmetry. End digression.

A beautiful example of this cylinder packing is found in the structures of Hga_MFg (M
= As,5b,Nb,Ta and x is typically about 0.12) The As compound is known as “alchemist’s
gold.” Iselated {M )Fg octahedra are surrounded by disordered rods of Hg atoms in
positions 16 h of 14/amd with ¢ = 0 as shown schematically in Fig. 6.65. Remarkably,

11t is a good exercise to get a copy of the International Tables and verify these statements.
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the stoichiometric compound HgaNbFg has a simple layer structure with 39 layers of Hg
alternating with layers of isolated {Nb}Fg octahedra.!

Fig. 6.65. The structure of Hgp ggShFg illustrated as [Sb)PFg octahedra and tods of Hg atoms, The Hg
atoms are disordered along the rods shown.

(¢) Three-layer hexagonal, Rods run along a through 0,0,0 along a + b through 0,0,1/3
and along b through 0,0,2/3. The arrangement of cylinders should be apparent from Fig,
6.63.

P6222,a=1,c=3
Axes along 6 g: (£2,0,0; x,x,1/3 ;3% 1/3 ; 0,44,2/3). Rod symmetry p222

6.7.3 Cubic cylinder packings

These are rather important as they sometimes form the basis for a description of cubic
crystal structures that are otherwise difficult to describe. They are named for structures in
which they are conspicuous features, We describe four packings and an intergrowth
structure. The cylinder axes ¢orrespond to non-intersecting symmetry axes in cubic space
groups (see § 3.3.6, p. 74) which are either (i) 2-fold or 4-fold axes parallel to <100> or
(i1} 3-fold axes parallel to <111>. In the second case, the fact that the cylinder axes are
inclined to each other makes structures based on this structural principle difficult to
illustrate satisfactorily in projection. The most important packings are those named g-W
and garnet [{(a) and (b) below]. Cubic space groups with non-intersecting 3-fold axes are
listed on p. 83.

ISee I D.. Brown et al., Inorg. Chem. 23, 405 (1984) and references therein.
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(a) B-W (Figs. 6.66 and 6.67)

Prin, a =2, p=3m16 = 0.5890
Axes along 12 g: £(x,0,1/2 ; 1/2+x,0,1/2)x. Rod symmetry pdo/mmc

In the B-W structure of A3B (also known as A15 or CraSi——see § 6.6.4), strings of A
atoms lie on the cylinder axes along <100> at (4,0,1/2). (The B atoms in A3B are at cell
corners and at the body center and are in icosahedral coordination by A). The cylinder axes
correspond to the 47 axes of Pm3n.

Fig. 6.66. Two cubic cylinder packings, Left: garnet. Right: 8-W. The heavy lines indicate the
locations of the cylinder axes. The open circles serve only to indicate high symmetry points on the rods,

(b) garnet (Fig. 6.66)

1d3d, a =8, p =38 = 0.6802

Axes along 32 e: I & (x.xx0 ; 1o, Vdex, 1d+x | 12-x, 124x,x , 3d—x,1/4+x,3/4+x
% V2-,1/2+4x § 3i44x,3/4~x, 1/d+x 5 E24x,0,1/2-x | Ud4x,3/d4x,3/4—x)

Rod symmetry p3cl

In this cubic cylinder packing, cylinders are parallel to body diagonals of a cubic cell.
Now they lie on non-intersecting 3 axes, i.e. along {1117, {311], [111] and {i11}.

In the garnet structure of Ca3AlSiz017 the cylinders are to be replaced by rods of
alternating { Al}Og octahedra and empty Og trigonal prisms sharmg opposite triangular
faces. It might be noted that the centers of the octahedra are at 3 sites so they are trigonal
antiprisms, but the absence of 6 axes means that the trigonal “prisms™ are not strictly
regular prisms (they are slightly twisted towards being metaprisms in the garnet structure}.
As discussed in Appendix 2, a rod of alternating regular octahedra and trigonal prisms has
symmetcy poafmmc; but the 63 axis is incompatible with cubic symmetry.

(c) B-Mn (Fig. 6.67):
14432, a = 4, p = 332 = 0.2945

Axes: 14,0,u ; 34,1724 ; u,1/4,0 ; 2,3/4,1/2 5 00,1/ 5 1/2,1,3/4.
Rod symmetry pd;22
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A third cylinder packing is derived from f~W by removal of one-half of the cylinders.
We call this the f-Mn cylinder packing as that otherwise enigmatic structure is simply
described in terms of rods of face-sharing Mny tetrahedra with this cylinder packing. Fig,
6.67 shows the B-W and the f§-Mn packmgs the former with a cell with doubled edge.
The symmetry of the f-Mn packing is /4132 and the axis equations are obtained by
substituting 1/4,0,u in the generai positions 48 {. The cylinder axes lie along the 4; axes of
this space group; the substitution 3/4,2,0 puts the cylinder axes on the 43 axes.
Combination of the two enantiomorphs of the §-Mn packing recovers the f-W packing.

\I e
4 A

i

'dbl I '\lb ::,Vﬁ‘
oA T fCToA

i
I

Ik

Fig. 6.67. The B-W (left) and B-Mn (right) cylinder packings. The true cell edge for B-W has half the
edge of that shown.

(d) SrSi; (Fig. 6.68):

432, a = 6V2, p =372 = 0.0756
Axes: Vv, 23+u,0 ;) 16+a,203 w0 5 20340,5/64u,~1t 5 5/6-1u,5/6+u.4.
Rod symmetry p3;2

A fourth cylinder packing is obtained by removing eight-ninths of the cylinders of the
garnet packing. We call it the SrSiz packing because the Si atoms in that structure form
31 (or 32) helices with axes corresponding to those of the cylinder packing (see § 7.2). The
positions of the cylinder axes (31) are obtained by substituting 1/3+4,2/3+w,u in the general
positions 48 { of /4132, The enantiomorphous structure with cylinders on 3; axes is
obtained by the substitution 2/3+u,1/3+u,u, A sketch of the packmg viewed down one of
the 31 axes is shown in Fig. 6.68,

(e} y-Si:

ta3d, a= 632

3y axes V3+u,203+u,u 5 1V6+0,2/3—u,u 3 205340, 5064 u,—1 | 5/6—u,5/6+u,u
32 axes 234+u, 13 +w0 57640, 1/3—w,0 3 134+u, 17/6+u,~1t 3 1/6-u, 1/0+1,1
Rod symmetry p312 and p322

The Sr8iz packing is very open, and the two enantiomorphs can intergrow without
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contact (so the intergrowth structure is not a stable cylinder packing). In the ¥-Si
polymorph of silicon (§ 7.3.12), the Si atoms fall on 3; and 3 helices with axes
corresponding to this intergrowth structure. The eylinder axes are now obtained by the
substitution of 1/3+u,2/3+u.5 in the general positions of fa3d.

Tlig. 6.68. The SrSiz cylinder packing viewed down [111]. Note that for clarity only a few cylinders not
parallel to the projection axis are shown,

6.8 Notes
6.8.1 Symmetries of arrays of closest packed spheres

The space groups for arrays corresponding to closest sphere packings are Fri3m (only
for cep), P6y/mme, Pé3mc, P6m2, R3m, R3m, P3ml and P3m1. A useful discussion
and table has been published [A. L. Patterson & J. 8. Kasper, International Tables, vol.
I1] that allows the symmetry of complex sequences to be determined. In many crystal
siructures one or more sets of atoms are only approximately in closest packing and the
symmetry may be lower.

The ideal symimetry is readily determined from the Zhdanov symbol (§ 6.1.3} of the
packing from the ruies given here, which should be applied in the order given until the
space group is determined. In using the rules be sure to note that a sequence such as 2211
refers to .. 221122112211... and could equaily be written 1221 or 2112.

(a) Determine if there is a center of symmetry: This is revealed by symmetry of certain
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rumbers in the succession of numbers. Thus 2111 can be written:
LADTDI(D2)...

where the numbers in parentheses are located symmetrically. There will always be zero (no
center of symmetry) or two such numbers (centrosymmetrical) in the symbol. Note that if
the symbol contains just two numbers (as in 11 or 41) each number is symmetrically
surroumded, and that in e.g. 2112 no number is symmetrically surrounded,

(b) If the first half of the symbol is the same as the second half the symmetry is either
P§3/rumc (centrosymmetric) of P63me (non-centrosymmetric). Thus 11 (hep) and 121121
have symmetry P63/mmc and 123123 has symmetry P63mc.]

{c} If the symbol can be written so that the second half of the symbol is the reverse of the
first half, but there is no center of symmetry, the symmetry is P6m2. An example is 2112.

(d) The Zhdanov symbol always has an even number of terms: NiNaNiNg... Ny (n
even). If the symmetry has not yet been determined [in (b) or (c)], subtract the sum of the
even terms from the sum of the odd terms i.e.: Ny + N3y +..4+ Npo) — (N + Ny 4.4 Ny,

If the result is either zero or a multiple of 3 the symmetry is trigonal (but not
thombohedral): either P3m1 (centrosymmetric) or P3m1 (non-centrosymmetric). Thus 41
has symmetry P3m1 and 5211 has symmetry P3m1.

If the result is neither zero nor a multiple of three the symmetry is thombohedral: either
R3m (centrosymmetrical) or R3m (non-centrosymmetrical). Thus 21 (bhc) has symmetry
Rim and 3211 has symmetry R3m.

6.8.2 Neighbors, coordination sequences, and identifying packings

1t should be noted that closest sphere packings differ in numbers of nth geometrical
neighbors. For unit diameter spheres the number of neighbors at a given distance are listed
for the first few shells of cep and hep below. Generally such numbers cannot be used to
distinguish packings in crystal structures, as the arrangement often only approximates an
ideal sphere packing, and the numbers of geometrical neighbors rapidly lose any relation to
those in the ideal packing.

distance 1 ¥2ooNEmS 3 oy 2
cep 12 6 0 24 0 12
hep 12 6 2 18 12 6

In Chapter 7 we discuss coordination sequences which represent the numbers of
topological neighbors in shells. In the context of sphere packings, a second topological
neighbor of a sphere is one (other than the reference sphere) in contact with first neighbors;
third neighbors are those (other than first neighbors) that are im contact with second
neighbors; and so on. The number of kth neighbors in this sense is 7. It is interesting that
ny, for k> 1 is greater for hep than for cep. For hep the sequence is 12, 44, 96... for ccp

1 The symbols for these packings could be abbreviated <1>, <121> and <[23> respectively.
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itis 12, 42, 92.... Be sure to distinguish topological neighbors (discussed here) with
geometrical neighbors (discussed in the previous paragraph). .

For lattice sphere packings {cP, cI, cF, tI (bet) and AP (c/a = 1)] with N first
neighbors there is a simple expression for the numbers of topological neighbors:

R =(N~2)k2+2 6.1)

Some other equations are (brackets indicate rounding down to an integer):
hep ng = [21%%2 + 2] (6.2)
eco o= [1TRY2 + 2] (6.3)

Once the nearest neighbors of atoms in a structure have been identified (for example, on
the basis of interatomic distance) the coordination sequence for each atom is uniquely
defined and the packing can often be identified from the coordination sequences even when
the arrangement departs significantly from the ideal geometry. In particular each kind of
atom in a ep structure (%, ¢, ke, etc.) has a unique coordination sequence and this fact may
be exploited to determine the nature of the packing.!

6.8.3 Close packing or polyhedron packing? An unsolved problem

Many “lonic” crystal structures are based on approximately ep arrangements of cations
and/or anions (and just as importantly, many are not). The well known structures of spinel
(MgAl204) and olivine (MgpSiQ4) are examples in which the anion arrangement s
approximately ccp and hep respectively. A popular view (to which we do not subscribe) is
that the reason for such structures occurring is that “large” anions are close packed (why,
for heaven’s sake?} and the “small” cations fit more-or-less snugly in the tetrahedral and/or
actahedral interstices. One objection to this proposal is that many (e.g. oxide) structures are
not based on ¢p arrays, or if they are, they are often ep cation arrays; but nevertheless one
is lead to ask why 5o many structures based on ¢p (or better eutaxy) do occur,

A possible answer is as follows. The most common coordination figures found in
oxides and related materials are [M X4 tetrahedra and {M}X¢ octahedra [even in
compounds which are not based on ¢p such as enstatite (MgSiO3)]. In order to make a
crystal of the appropriate stoichiometry, the individual polyhedra must be condensed
together by sharing corners and/or edges and/or faces. To take a concrete example:
MgAl; 04 is constructed of { Mg} Oy tetrahedra and { A1} Og octahedra combined in the ratio
1:2 and sharing O atoms so that there are four O atorns per MgAly. With regular polyhedra
of equal edges it is conjectured that any periodic way of combining them subject to the
foregoing constraints will result in 4 ep array of O atoms.

The unsolved {we think) problem. which we offer the reader is this: What stoichiometries

"The program EUTAX does this for a number of simple structures, Users of this program might like to
find the ep amay of the [ atoms in Exercise 11, Note that the numbers in the coordination sequence are
largest for hep and smallest for cep (i.e. all other cp structures have intermediate values).
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and combinations of octahedra and tetrahedra will lead inexorably to the polyhedron
vertices being on a ep (i.e. eutactic) array?

In applications to crystal chemistry additional constraints might be added, such as not
allowing tetrahedra to share faces (which would allow their central atoms to come rather
close together), and to eliminate configurations that result in very asymmetric coordinations
around the polyhedron vertices [see E. W, Gorter, J. Solid State Chem. 1, 279 (1970).]

The term “close packing” is sometimes used rather loosely. For example in a discussion
of the stability of the feldspar structure (specifically sanidine = KAlSi30g) in a well known
text it is stated that the oxygen atoms “approximate rather crudely to cubic close
packing...perhaps this relative compactness contributes to the stability.” The feldspar
structure is based on a framework of corner-sharing Oy tetrahedra and it would therefore be
expected (see § 6.8.5) that each O atom will have six near neighbors and indeed this is the
case. The six nearest neighbors of O atoms in sanidine are in the distance range 2.60-2.74
A (corresponding to tetrahedron edges) and the next six neighbors are in a distance range of
3.30-4.48 A,

6.8.4 More on the relationship between bee and hep: AuCd

In § 6.3.3 we described a relationship between bee and hep. Some metallic elements
such as Ti and Zr have both structures (the high temperature or § form is bee) and the
transition occurs very nearly at constant volume. The orthorhombic cells given in § 6.3.3
become in units of V13 for bee: a, b, ¢ = 0.794, 1.122, 1.122 and for hep: a, b, ¢ =
0.707, 1.225, 1.154, so that the transformation from bee on cooling requires about a 10%
decrease in a and a 10% increase in b, In CuZn compounds alternate { 100} layers of bee
are Cu and Zn; some of these transform at low temperatures to a superstructure of hep by
the mechanism described. Fig 6.69 shows the resulting structure which is catled AuCd, as
the martensitic transformation has been well studied in that compound. In the binary
compound the symmetry is Pmma and the unit cell is derived from the one described here
by (001/100/010). Data for two forms of AuCd are given in Appendix 5. The low
temperature form is close to ideal hep; the 12 shortest distances are 2.89-3.16 A,

Fig 6.69. Left: the CuZn structure projected on (001). Right: the AuCd structure plotted on (010) of the
Pmima cell with ¢ horizontal on the paper. Heavy lines mark the position of (110} planes of CuZn that
become ¢p planes in AuCd. If all the atoms were the same this figure would also illusirate the relationship
of bee (Ieft) to hep (right). Compare Fig, 6.24 (p. 232).
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0.8.5 More sphere packings

1 A cokrﬁp!ete enumerat-ion of sphere packings would be a big task and has not been done
;rg?-;”g ;;:s.'h;c;gse. g;bx(cl ;gl;;:re Eackings have been enumerated by W. Fischer [Zeirs
2 , ; 140, 50 (1974)] who found no examples wi :
! 8r- ] 1974)) s with 10-
1; ;:oo_rdmatlon. An art{cle on sphere packings is in the International Tagles C. The stu;;
) amce. sphere packings in N-dimensional space is an active area of research i
mathematics—see Appendix 2. o

Here we describe some additional
structures confined (so far!) to few
types than most of the structures described above. ) e eyl smetiee

Another 10-coordinated sphere packing, and the TisTey structure

Cubes with four faces capped b ids (
s Wi y square pyramids (half octahedra) can be packed
tshgwn H;:[ Fig. 6.70. The cube.s share their uncapped faces to form rods parallellg to : ofaasl
etragonal cell, and the pyramids, which cap the other four faces of the cubes, share edges.

The structure is fess dense th - i i
hopten nse than the other 10-coordinated sphere packings described in this

Laim, a = N[17/(14 - N128)] = 2.5156, ¢ = 1
= 1=2.5156, = 1, p = (56 - IN2)w5 1 = 0.6619
Centers in 8 /: 7 £ (2.0 ;75,0), x = (6 ~ V2)/17 = 0.2697, y = (7 - V32)/17 = 0.0790

_];[‘he Te arrangcmn?nt in TisTeq is quite close to this packing. The Ti atoms center all the
cAl;;. e faces, so the Ti arrangement consists of rods of octahedra sharing opposite vertices.,
out & dozen compounds {e.g. V584, TasSby) have the same strocture. .

Fig. 6.70. A 10-coordinated sphere packi; j i i
S S0 A 1o Dl packing projected down the ¢ axis. Open circles are at z = 0 and filled

If the cubes with capped faces are deformed into cuboctahedra the result is a
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9-coordinated packing corresponding to cep with 1/5 of the atoms removed (compare with
another 9-coordinated packing described below). The parameters would now be a =5, ¢
=2, ale = 1.58 x = 3/10, y = 1/10 and the sites at 441+ (0,1/2,1/4 ; 1/2,0,1/4) are in
regular tetrahedsa. In 3-BaFeaS4, afc = 1.45, S atoms are in8 A withx=030Lvy=
0,120, Ba centers the cuboctahedra of § and Fe is in the S4 tetrahedra (for data see
Appendix 5}, GagTes = Te(1)GayTe(2)4 is iso-structural [with Te(1) playing the role of Ba
and Te(2) playing the role of 3.

Some 9-coordinated sphere packings

One symmetrical arrangement is:

F3m, g =8, Centers in 24 g0 [ + {(xt,2 1 347 25T 1 XLAK, 1=3/8,2 = /8

This arrangement represents a way of removing 1/4 of the spheres of cubic entaxy so
that each sphere has nine neighbors (compare the 8-coordinated J arrangement, which can
also be described as cubic eutaxy with. 1/4 of the spheres removed). The density is
accordingly p= N2 = 0.5554. This packing is a special case of the anion packing in the
mineral sodalite discussed under 6-coordinated sphere packings below (p. 274).

A second 9-coordinated sphere packing that occurs in a variety of contexts (for example
as the Al arrangement in WAL} is also discussed below (p. 278) as an example of a
sphere packing with icosahedral interstices. Fischer’s compilation, referred to above,
includes two other examples of 9-coordination with cubic symmmety. '

Another 8-coordinated sphere packing: the NaZny structure

About 50 compounds, mostly MZn13 and MBe 3 (here M is a “big” atom from the first
three columns of the periodic table) have the NaZn3 structure (for crystallographic data
see Appendix 5). We describe it here, as it is an elegant example of how an apparently
complex structure is built up from very simple principles.

We start by assembling an infinite structure by joining together snub cubes (34.4)
sharing square faces in every possible direction; every polyhedron of one hand (recall the
symmetry of & snub cube is 432) is joined in this way to six polyhedra of the other hand.
Each vertex of this assembly will have eight nearest neighbors, so it may be considered an
8-coordinated sphere packing. A formal description is:

Fm3c, a =4.5704, p = 0.5265

Sphere centers in 96 i F £ (0.%y.2; 12,4296, y = 0.1761, z = 0.1141
Saub cube centers in 8 @ F £ (1/4,1/4,1/4)

Icosahedron centers in 8 &: F + (0,0.0; 1/2,1/2,1/2}

As well as the large holes at the centers of the snub cubes (filled by Na in NaZnj3) with
symmetry 432, there are holes surrounded by 12 eguidistant spheres forming almost
regular icosahedra with symmetry m3. In NaZnj3, Zn atoms center these icosahedra
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forming Zn3 groups. {The unit cell therefore contains 96 + 8 = 104 Zn atoms and 8 Na
atoms, i.e. eight NaZnj3 units.) In the real structure the free parameters for Zn are quite
close to the ideal ones given above.

Figure 6.71 shows a beginning of the packing of snub cubes. The place where an
icosahedron can nestle between the snub cubes should be identified. The figure also shows
a snub cube sharing triangular faces with eight icosahedra (note that the latter occur in two
different orientations). The triangular faces of the snub cube and the darker-shaded faces of
the icosahedra are equilateral triangles. The icosahedron edges parallel to the cubic axes are
about 4% longer than the others.

Fig. 6.71. Left: snub cubes (two of each hand} sharing square faces. Right: a snub cube (darker shaded and
mostly obscured) sharing triangular faces with icosahedra as in the NaZn 3 siructure.

A remarkable example of this structure is in a rare form of opal from Brazil. Two
different-sized spheres of silica pack as Na and Zn. {(Common opals have onc size of
sphere in ¢p). The spheres are now much bigger than atoms: about 0.5 pm {see 1. V.
Sanders & M. I. Murray, Narure 275, 201 (1975) and Phil. Mag. 42, 721 (1980)].

More 6-coordinated sphere packings

Frameworks of corner-connected (regular) tetrahedra such as the T structure are

6-coordinated sphere packings. The O atoms in quartz (§ 3.6) form another such

* framework. The O atoms in the sodalite structure are also an example. For reference we
give coordinates for regular tetrabiedra of unit edge length. The centers of tetrahedra (here
labeled Si for convenience) are on a W* net: '

In3m, a =2 +V¥2 = 34142, p= 03157
Sphere centers () in 24 A [ + {02635, x = 18 = 0.3536
Telrahedron centers (Si) in 12 4: £ (1/4,0,1/2)x

This is a special high-symmetry, low-density case of a more general 6-coordinated
packing with symmetry f43m, in which the tetrahedron centers remain in the same
positions {also labeled 12 ) but the vertices are in positions 24 g: I + (x,4,2 ; %.6,7 ; X,%,2
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x, %, 7). For a 6-coordinated sphere packing (regular tetrahedra sharing vertices), x=
\{(22 + 1/8) with 0 € z < 1/8. When z = 0 we regain the /m3m structure with an Si-Q-Si
angle of 160.57°. In real sodalites (alumino-silicates) the bond angle is typically 140°
corresponding to z = 0.06. When z = 1/8 the structure is the 9-coordinated structure
referred to above, and the Si-0-5i angle would then be 109.4%8°,

Figure 6.72 shows a fragment of the structure in its minimum and maximum density
forms. For unit tetrahedron edge length, the unit cell parameter is a = 3.142 in the
minimum density form and & = 2.818 in the maximum density form and the density has
increased by about 39%.!

Fig. 6.72. Left: a truncated octabedron. Middle: A corner-connected array of tetrahedra (centered at the
vertices of the truncated octahedron) as in the low-density, high-symetry version of the sodalite anion
structure. Right: the collapsed, high-density version of the same structure.

Yet another framework of regular tetrahedra has tetrahedron centers, T, on lattice
complex §* (3/8,0,1/4 ; etc. of Ja3d). The vertices, X {sphere centers) are given by:

Ia3d, a = 2N(23) = 38637, p = 0.4357
Xin 48 g (L/Bx, 1/4—x ; etc), x = 1/2 - VI/8 = (12835 ; T-X-T = 150°

An important elemental structure type is that of 8-Sn (white tin). Here we give
pararneters for a slight idealization with six-equal distances:

HMylamd, a =152, c = 1, p = 0.5585. Sphers centers in 4 a: I £ (0,3/4,1/8)

Except for the unit cell parameters this structure has the same description as the
#-coordinated structure described in § 6.3.4 (p. 234). The two structures are very different
though; in §-Sn c/e = 0.516, in the 8-coordinated structure c¢/a = 3.46. This again
emphasizes the fact that in non-cubic structures axial ratios should be carefully considered
before concluding that two structures are the same (or related). In fact the same positions of
IAy/amd with c/a = 1.414 corresponds to the diamond structure.,

We could have devoted a section of this chapter to space-filling packings of polyhedra.

IThe refevance of this structure and its transformations to crystal chemistry has been the subject of
much discussion. Three papers on the topic appeared in Acta Crystaiiogr. A37, 1-17 (1981).
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We have seen, for example, how space-filling packings of tetrahedra and octahedra give
rise to entactic arrangements; and the 7 structure may be considered a packing of tetrahedra
aqd truncated tetrahedra. In the next chapter we will meet 4- and S-connected structures that
arise from other packings of regular andfor Archimedean polyhedra. Here are two
6-coordinated examples involving rhombicuboctahedra (3.43, Fi g. 5.5) which we call reo’s
for short.

An rco has two kinds of square faces: There are six having edges it common only with
Ot'her squares; these are parallel to the faces of a cube. Joining reo’s through these faces
will result in a structure in which the centers of the reo’s are on a primitive cubic lattice and

the remaining space is a labyrinth of face-sharing cubes and cuboctahedra, Crystallographic
data are:

(a} Cubes, cuboctahedra (3.4.3.4) and rco’s (33.4);

Pr3m, a =1 +v2 =2.4142, p = 0.4465
Sphere centers in 12 i; (0,4x,40)ic, x = /(2 +V2) = 0.2929

W_e illustrate the structure in three ways in Fig. 6,73. Note particularly that if we
consider just the packing of cubes and cuboctahedra (so that the “empty” space consists of
r_co’s) we have a continuous three-dimensional surface tiled with polygons. We will
discuss such infinite polyhedra in the next chapter (see also Appendix 3). In this example
all the vertices are equivalent and are 3.42.3.42,

Fig’. 6.73, Space filling b}f cubes, cuboctahedra and rco’s. Left: the combination of cuboctahedra and
rca’s. Center: the combination of cubes and reo’s. Right: the combination of cubes and cuboctahedra.

{b) Tetrahedra, cubes and reo’s:

Fmlm, a=2+2=34142, p = 0.4210
Sphere centers in 32 £ £+ (x 100K, x = U(4 + V8) = 0.1464

An reo has also twelve square faces with two edges in common with triangles. Joining
them by these faces produces a structure in which the centers of the rco’s are on a face-
centere.d cubic lattice. The remaining space consists of cubes and tetrahedra (1 and 2
respectively per rco) sharing vertices. Fig. 6.74 should provide sufficient information for
model builders to proceed.
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Fig. 6.74. Part of a space filling by cubes, tetrahedra and rco’s.

This is the O arrangement in compounds Ag70gX (X is a monovalent anion such as F~

or NO3~ which is in the center of the rco). Ag atoms are of two kinds: those centering the
cubes (8-coordinated by O) and those centering the square faces (4-coordinated) of the rco
that are not shared with cubes.

Another 6-coordinated structure is obtained by joining together rco’s and octahedra.
Each triangular face of each rco is shared with an octahedron, and each octahedron shares a
pair of opposite faces with rco’s (this makes a rather elegant model). We discuss this
structure as an example of an infinite polyhedron 33.43 in Appendix 3. Data are:

Imm, @ = 3.8857, p = 0.4284
Sphere centers in 48 k: [ + (tx,tx,22)K, x = 0.3713, 2 = 0.1893

Finally, we consider a fascinating 6-coordinated structure with only two parameters:

P4332, a = BIT3(7 —¥33)] = 2.3800, p = 0.4661
Sphere centers in 12 d: {1/8,x,1/4+x 1 etc.), x = (9 —V33)/16 = 0.2035

In this structure three equilateral triangles twisted as in a three-bladed propeller meet at a
point. There are two next-nearest neighbors at a distance 1.23 times the shortest distance. If
all eight neighbors are counted, the structure may be described as a three-dimensional
framework of corner-connected metaprisms. Three fifths of the Mn atoms in -Mn have
this arrangement; the remaining two fifths cap the equilateral triangular faces of the
metaprisms, forming almost regular tetrahedra.

6.8.6 Sphere packings with icosahedra: WAl12 and AuZn;

Strictly regular icosahedra are incompatible with crystallographic symmetry {(which
precludes the presence of 5-fold axes); but nature is very clever at designing pericdic
structures that feature almost regular icosahedra. Here we discuss two structures that may
be considered as derived from the J structure (§ 6.3.6, Fig. 6.27) and which arise in a
variety of contexis.

The J structure, considered as a packing of octahedra (sharing vertices with each other)
and cuboctahedra (sharing faces), contains one of each polyhedron and a total of three
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vertices per unit cell. If the cubic cell edge is donbled there will be 8 (=2x2x2)ofeach
polyhedron in the larger cell. We can take the octahedron centers to be at & (1/4,1/4,1/4 ;

1/4,3/4,3/4) in this cell and the cuboctahedron centers to be at 0,0,0 ; 1/2,1/2,1/2 and

(1/2,0,0 ; 1/2,1/2,00x. The first two cuboctahedra (centered at the cell origin and body

center ¢ach with 12 vertices) are isolated from each other and account for the 8 x3 =24
vertices in the doubled cell of the J structure. Let’s now convert these two cuboctahedra to

icosahedra as indicated in Fig. 2.25 (p. 54), and arrange them so that the shortest distance

between vertices of neighboring icosahedra are the same as their edge lengths. It is

remarkable that the transformation can be much more elegantly, and informatively, describ-

ed in terms of concerted rotations of the corner-connected octahedra of the structure (which

remain regular) as illustrated in Fig. 6.75. The resulting structure has symmetry fm3.

Fig. 6.75. The Al array in WAly2. Left: as vertéx-sharing octabedra. Right: as a body-centered array of
icosahedra. ‘

The octahedra are rotated about axes paralle] to <111>. Let the angle of rotation (the
same for every octahedron) be ¢. The structure is described as follows:!

Im3, a = (8cosd + )18, Vertices in 24 g: 7 Oy £,
¥ = (3cosp - V3sing)/(8cosg + 4), 2 = (3cosg + V3sing)(Beosd + 4)

For regular icosahedra the rotation angle is given by tang = Y3(7~ Di(t+ 1) = 22.2°
and y = 3/[4(1 + 7+ V'2)] = 0.1860, z = 7y = 0.3010. [Here, as usual, 7= (V5 + 142}

Centering the octahedra with atoms B produces stoichiometry BX3. It is interesting that
at ordinary pressure ReO3 has the simple cubic structure with @ =0, but under pressure it
suddenly crumples to produce the body-centered structure with $>02 ‘

Centering the icosahedra of X with atoms A produces stoichiometry AX |3 and we have

IReaders who are anxious to derive this and related resubts for themselves should apply the rotation
matrix of Eq. 2.3 (§ 2.5.1) to a point originatly at 0,1/4,1/4 (¢ = 0).

2As the mechanism of compression changes from bond compression (initially), to buckling (angle
bending), the bulk modulus (inverse of compressibility} of ReO3 decreases with pressure [sec B. Batlogg
et al., Phys. Rev. B 29, 3762 (1984)). For materials with just one mode of compression, the bulk modulus
invariably increases with pressure.
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the structure of WALl 2 which has coordinates very close to the ideal ones given here (see
Appendix 3 for data). . _ ' , ]

What happened to the other six cuboctahedra originally (¢ = 0) in ic unit cc’:ll ? Four 0

their vertices have moved close to the center to produce rectangles with edges in the ratio
1:1.07 (i.e. almost square). A large family of oxides, typified by CaCu3TigOy2, is known
in which Ca centers the icosahedra of the collapsed structure, Cu centers the rectangles and
Ti centers the octahedra. Centering just the icosahedra and octahedra produces
stoichiometry AB4X|2; many compounds of this type are known, examples are LaFe4Pj2
and LaFe4Sbyo. : ) . .

Considered as a sphere packing, the ideal X arrangement, with regulgr 1cosa.hedra, is
9-coordinated, although as mentioned above, each point has a tenth neighbor just ‘l 07
times as far away. Also to be noted is that although regular icos.ahedra are possible,
icosahedral symmetry is not; in fact the symmetry at the center of the icosahedra is m3. )

The structure we have described represents just the most symmetrical way qf collapsing
the J structure by rotations (or tilts) of the octahedra. In Volume I.I of this series we show
how other important structures are derived by different patterns of tilits. . )

If the icosahedron at the body center of the cell in the above structure is rotated 90" about
an axis parallel to a cube edge the symmetry is changed to Pm3n and,' as before, ther.e are
24 vertices in the unit cell A new sphere packing with only seven neighbors results if the
shortest distance between vertices of neighboring icosahiedra is the same as the edge length.
This is iflustrated in Fig. 6.76. Crystallographic data are:

Pm3n, a = 1H2y) = 2.8859, p = 0.5232
vertices in 24 k: £(0,4y,z ; 1/2,1/24z, 1/2+4y)x,
y= 12 -N(2 + 62)/(4 + 47) = 0.1733, z = 7y = 0.2803

Fig. 6.76. The Pm3n arrangement of icosabedra, Left: as an array of corer-connected prisms, Right: the
array of icosahedra. Compare with Fig. 6.75.

The array of cormer-sharing octahedra in the WAl struc.ture has now bECO!.IlC an array
of corner-sharing (somewhat distorted) trigonal prisms. This structure h'fas a nice surpnsej
in store. The unit cell also contains six {again distorted) cuboctah&'adra with centers at 6 ¢:
+(1/4,0,1/2)x. If atoms A (at 0,0,0 and 1/2,1/2,1/2) center the X7 Icosahedra and B center
the cuboctahedra, the stoichiometry is AB3X 7. This is in fact the structure of AuZnj [=
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Au(1)Au(2)3Zn14] in which the Zn parameters are quite close to the “ideal”
above (see Appendix 5 for crystallographic data).

The AB3 arrangement in AB3X12is the very common structure type CraSi or f-W
(§ 6.6._4). One form of UH3, which we write as U(DU(2)3Hy has the AuZng structure.
We might think of this as Cr38i U(DU(2)3 with H in tetrahedral interstices.

There are also some germanides and stannides, ¢.g. PraRh4Sny3, in which there are
Ge13 or Sny3 groups obtained by ceniering the icosahedra. Pr atoms are in the cub-
octahedra of $n, and Rh atoms are in the trigonal prisms of Sn (for data see Appendix 5).

The symmetry of the AuZnjs structure should lead us to expect (see § 6.8.10) to find a
rod packing based on the S-W cubic cylinder packing. Fig. 6.77 illust

! rates the arrangement
of cuboctahedra which consists of rods of face-sharing cuboctahedra packed in this way.

ones given

Fig. 6.77. The packing of rods of face-

sharing cuboctahedra in the AuZn3 structure. The rods run parallel
to the three cube axes,

Fig. 6.78. A low density packing of icosahedra and octahedra; an infinite polyhedron 37. CF. Fig. 6.75.

Finz?lly, we observe that half of the icusahedra of the WAl structure (Fig. 6.75) could
be omitted, leaving each icosahedron with just four neighboring icosahedra and with the
centers of the icosahedra arranged as in the diamond net (§ 7.3.1). The resulting structure
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is iltustrated in Fig. 6.78. Note that (excluding the shared face) seven equilateral triangles
meet at each vertex so we have an infinite polyhedron 37 as discussed in Appendix 3. The
structure is a low-density 7-coordinated sphere packing, indeed the least dense that we
know of. Crystallographic data for unit edge length are:

Fd3, a = 5376, p = 0.3235
Sphere centers in 96 g: (x,y.z, etc.), x = 0.0320, v = 148, 7 = 0.2735

6.8.7 Cubic invariant lattice complexes

The symbols for some of these complexes (as given in the International Tables A) have
been given aiready in this chapter but are summarized here for convenient reference,
together with their highest symmietry occurrences. A prefixed “+” or “-" is used for
enantiomorphous pairs and an affixed “*” indicates that the lattice complex is derived by
combining two lattice complexes {one displaced from the other) with the same symbol but
without the affix. In the table below N is the coordination number. The atoms in bold in
chemical formulas lie on the lattice complex; the symmetry may be lower in the actual
compound (cf. NbO}. ¥* and ¥** (a combination of two ¥*) correspond to two intergrown
(but not inter-connected) nets.

complex space group position N remarks

F Fr3m 4q 12 face-centered cubic

T Im3m 2a 83 body-centered cubic

J Pri3m 3¢ 8 Fig. 6.27

s Aa3d 12aord : Th3P,, Fig. 6.30
P Pri3m la 6 primitive cubic

T Fd3m 16cord 6 Fig. 6.32

+y P4332 da 6 FeSi, Fig. 6.34

¥ P4132 4a 6 enantiomorph of above
D Fd3m 8aorb 4 diamond, Fig. 7.9
s 14932 2¢ 4 Fig. 7.36

v 14132 124 4 enantiomorph of above
5 Infim 64 4 NbO, Fig. 7.31

* hi3m 124 4 sadalite, Fig. 7.30

5. 1234 244 4 Fig. 7.35

v Ia3d 24 ¢ 4 two V nets
+y* 32 8a 3 Sr8iz, Fig. 7.6
r* 432 8b 3 enantiomorph of above
b Ia3d 165 3 two ¥* nets, Fig.7.34
W Pri3n Geord 2 Cr3si, Fig. 6.60
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An invariant lattice complex may occur in more than one space group. Thus J also
occurs as positions ¢ and d of P43m and {with doubled cell) as pousitions ¢ and o of Fri3c.
Other lattice complexes with symbols include *+Q for the Si atom positions in S-quartz

(§ 3.6) with symmetry P6522 and -Q for the enantiomorph (P6422), G for a 63 layer and .

N for a 3.6.3.6 (kagome) layer. We used these last two symbols in § 6.1.6.

6.8.8 Common cubic unit cells for arrays

In § 5.6.12 we discussed common unit cells for plane patterns. There is an analogous
problem in three dimensions involving cubic patterns. The smallest cubic supercell of a
primitive cell has edges 2a, i.e. § times the volume. The next wiil have 27 times the
volume. The number of symmetry-related points in a cubic cell is a divisor of 192 so in
practice, to investigate relationships between cubic structures of symmetry-related points in
which a cubic cell is maintained, it is only necessafy to consider relationships of this kind
between structures with either the same number of points or differing by a factor of eight.
There are then six sets of compatible numbers which are:

@ 1, 8, 64
i 2,16
(iiiy 3,24, 192
vy 4,32

(v} 6, 48

(vi) 12, 96

We now give some examples of the use of these numbers. The fact that the amions in the
spinel structure (§ 3.4) are in 32 ¢ of Fd3m: F + (x0x 5 (x,1/4—x,1/4—x)x) (with x
typically = 0.26) suggests a possible relationship to cep with four points per cubic cell
[case (iv) above]. The reader is invited to confirm that if x = 1/4 the structure is indeed a
face-centered cubic Jattice described with a 2 x 2 x 2 cell.!

Another example is provided by the structure of ThyPy4 which has symmetry [43d with P
atoms in 16 c¢: I + (x,x,x ; Vd+x,1/d+x,1/4+x  (124x,112—x% ; 34x,1/4-2,3/4-x)K)
with x = 0.08. In this case the reader may confirn that for x = 0, the arrangement is body-
centered cubic [2 atoms per cell; case (ii) above] described with a 2 » 2 x 2 cell.

Note also the relationship of the cubic 7-coordinated sphere packing of § 6.3.8 (p. 238)
with symmetry Pa3 and eight points per cell to the primitive cubic structure with one per
cell [case (i)]. ) .

A formal description of the garnet structure of Ca3AlzS8i3012 was given in § 3.4. The
cubic cell contains 96 O atoms. A well known reference worlk states that this structure has
“oxygen ions in cubic close packing.” Reference to case (vi) above shows that this

i is amusing that a rare sphere packing (described in the next chapter) also has the same formal
description (points in 32 ¢ of Fd3m) but with x = 148 + V'96) =0,056... so one must be a little cautlous.
Structures with the same formal description, but differing in the values of one or more parameters, may be
very different.
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arrangement with 96 atoms per cubic cell can only be compatible with other cubic structures
with 12 atoms per unit cell. In particular it is incompatible with cep (four per cell). Actually

- in Ca3Alz8i3017 the first twelve O neighbors of an O atom range in distance from 2.57 -

3.85 A and the thirteenth neighbor is at 3.89 A so we can, in any case, discount the claim
on those grounds. We can also use the coordination sequence {as described in § 6.8.2)
based on the first twelve neighbors to show that the arrangement does not correspond
topologically to any ¢p arrangement. = _

The Al positions in gamet are in 16 a of Ja34 and correspond to bee {2 per cell)
described by a 2 x 2 x 2 cell [case(ii)] and the combination of the Ca and Si positions (24
c and 24 d respectively) corresponds to lattice complex W (6 points per cell) described by a-
2x2x 2 cell [case (v)].

Cubic supercells of cubic cells with axes not parallel to the original one may occur, but

- they are probably not of much interest because of the size- of the new cell. A simple

example is that obtained by the transformation (3 4 0/—4 3 0/ 0 0 5) with edge length of
Sa. A cubic supercell with edge an irrational multiple of « (in the same way as a square cell
has supercells ¥2a x V2a or V5a x ¥5a) cannot occur however.

6.8.9 Packing of two sizes of sphere: “kissing” numbers

In this chapter, the emphasis has been on sphere packings with one kind of sphere,
because these commonly occur in simple crystal structures. However, some structures of
intermetallic compounds can be considered as efficient (dense) packings of two or more
kinds of sphere of different sizes. The structure of MgCuz (§ 6.6.3) is an often cited
example of an efficient packing of two kinds of sphere and that of NaZn;s (§ 6.8.5) is
another. Very little systematic research has been done on the problem of classifying
packings of spheres of two sizes, but it has an obvious relevance to crystal chemistry and
some results would be expected to lead to useful insights into intermetallic structures. For
packings of two sizes of circles see L. Fejes T6th, Regular Figures {Pergamon Press,
Oxford (1964)]. For the packing of two sizes of sphere see M. J. Murray & J. V. Sanders,
Phil, Mag. A42, 721 (1980). These last authors were interested also in the structures of
opals which are packings of (typically micron-sized) silica spheres. In contrast to crystals,
opals reaily are packings of hard spheres.!

The maximum number of equal spheres that can touch & similar central one is known as
the kissing number. It scems astonishing that the answer in three dimensions was once
controversial and involved Newton {(who correctly said twelve) and Gregory (who thought
the answer might be thirteen). However, such questions are difficult to settle to the
satisfaction of mathernaticians, who are uncommonly hard to please in such matters.

In intermetallic structures, higher kissing nombers are commonly found; for example, in

- NaZnj3, Na has 24 equidistant Zn neighbors. In general, in such structures, nature

contrives to desigh an arrangement in which every atom is highly coordinated. At the same
time she is tolerant of small variations in interatomic distance—it is this aspect of the topic

IThe “fite” in opal comes from Bragg diffraction of light from the planes in the periodic packing of
spheres, in a similar way as crystals diffract X-rays.
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which makes it virtually intractable from the point of view of formal geometry.

A related question which is of some importance to crystal chemistry concerns kissing
numbers in binary (ternary ete.) compounds (extended structures) in which spheres (atoms)
of one kind kiss only spheres of another kind. We call these numbers heterosphere kissing
numbers. Typically in “ionic” crystals the “cations” have only “anions™ as nearest
neighbors and vice versa, and the question of heterosphere kissing numbers is particularly
relevant for this class of compounds. :

To take a specific example: in a binary compound A4,,B, {in the strict sense in which all
A are equivalent as are all B) with d{A-B) < d(A-A) and d(B-B), what is the maximum
possible coordination of 4 by B?

We pause first to remark that if the coordination of A by 8is p and the coordination of B
by A is g, ther pm = gn. This almost trivial observation turns out to be of some
consequence in detenmining possible coordination numbers in “jonic” crystals,

Our guess, based on observed crystal structures, for the answer to the above question
for compounds AR, is that the maximum coordination number (heterosphere kissing
number) is 8, and for compounds 4, B, that the average coordination number {i.e.
averaged over all the atoms) can never exceed 8 as long as d{A-B) < d(A-A) and da(B-B).

6.8.10 The occurrence of cubic cylinder packings

s.g2. garnet y-Si B-W (x2)
/TR .%+u,z+u,u O,i,u i,{),u
la3d e, p3ct i 312, p332 [ pac2 h, p4122, pd322
134 ¢, p3cl e, p3, pd2 d, pd e, p222]
Ia3_ c, pi e, p31, p3z d, pec? e, p2221
Pa3 c, p3 d,p3, pin d, plel 4,pli2;
s.g. garnet SrSi; B-W (x2) B-Mn
12 2 1 1 '
[N . T LU 0’3’“ i,o.u %,O,u
14132 e, p3 i, p312 i, p322 fop222 i, p4i22 i, p4322
P4332 ¢, p3 e, p322 e, p3i2 e, pitl e, pdy e, p212;
P4132 ¢, p3 e, p322 e, p312 e, p2l1 e, p222 e, pd3
23 ap3 | ocp3y P32 | Bplld | ¢ p2221 | e p222y
P23 a,p3 | bp3s b, p3| (b, pl) b, pl12 b, pll12;
5.8, B-w (0,%,;; or %,0,:«)
Pmiin g or h, pdaimme
P33 horg, pd2e
Pa232 forj, p4;22
Pm3 for g, pmmm
P23 gorh, p222
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Cubic cylinder packings are of particular interest in the description of complex crystal
structures that otherwise resist description. Here (on the previous page) we list the cubic
space groups with non-intersecting symmetry axes and the axis locations. The entries in the

. table are the WyckofT positions and compatible rod symmelry (Appendix 1). For example

we see that the substitution u,u,u in Ja3d corresponds to positions e and represents the
axes of the garuet packing. Rods along these axes have symmetry p3cl.

Non-intersecting 4-fold or 2-fold axes also occur in the space groups with non-
intersecting 3-fold axes. They fall into two sets, each corresponding to the axes of §-W
described by a doubled cell. We label this §-W (x2). Thus, again for Ja3d, the substitution
0,1/4,u will produce! the set (0,1/4,u 5 0,3/4,u ; 1/2,3/4,u ; 1/2,1/4,u)x corresponding to
positions 48 f and rod symmetries will be pdc2. This set is illustrated as a cylinder packing
in Fig. 6.67 with the unit cell (a down the page, b horizontal and ¢ up out of the page)
origin appropriately located. The other set of non-intersecting 4-fold axes-are 4| and 45
axes along the lines generated by the substitution 1/4,0,u. Please note that the table is
appropriate only for the choices of origin made in the International Tables.

The B-W structure without a doubled cell occurs in a separate set of space groups as
shown. In these space groups the 3-fold axes intersect.

6.9 Exercises

1. Americtum is hexagonal:

Am P6aimme, a =3.474, ¢ = 1125 A
Am(l} in 2a (0,0,0 ; 0,0,1/2) ; Am(2) in 2d: +(1/3,2/3,3/4)

Describe the structure in terms of stacking 36 nets (4, B and ) and in terms of & and ¢.

2. Gther cp arrays with just two kinds of sphere are:

hee (6H) P63imme, cla = 6V(2/3)
hoin2 b 2(0,0,1/4) ; cin4 £ £1/3,2/3,z ; 1/3,2/3,112-7), z = /12

hhc (OR) F3m, cia= 9‘}(2/3)
cin3a: R+ 000 ;kin6e:RE(0,02),z=29

hhee (12R) R3m, cla = 124(2/3)
’ cin6c:RE{00,2),2+524 ;hin6c: R +(0,0,2), 7 =38

3. Mercury has a rhombohedral structure (space group R3m) with one atom in the unit
cell. @ = 2.993 A, @ = 70.74". What are the distances to the 12 nearest neighbors of 2 Hg
atom? Transform to a face-centered rhombohedral cell (four atoms per celi) for a
comparison with face centered cubic. What is & for this cell? [Hint see § 4.4.]

'The reader whe wishes to verify this statement should note, for example, that the line 0,1/4.# is the
same {ine as (,1/4,1/4-u; it is a line parallel to ¢ passing through 0,1/4,0.
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4. What is the arrangement obtained from two interpenetrating fee lattices, one at 0,0,0
and one at 1/2,1/2,/12. (i.e. a combina_x}ion of positions 4 @ and 4 b of Fri3m)? What is the
arrangement of points in 8 ¢ of Fm3m [F (1/4,1/4,1/4)] 7 If we combine all these

positions (4 @, 4 b and 8 ¢) we will have combined four fec fattices (16 points). What is the
arrangement now?

3. Positions 16a of fa3d are [ + (0,00 ; 1/4,1/4,1/4 ; 0,112,172 ; 1/4,1/4,3/4)x. What
simple arrangement is this?

6. Here are two examples of structures based on ¢p- Note that although they are quite
different, they differ only in the numericat values (Le. they have the same space group and
atoms in the same sets of positions—they are isopuntal).

@ ThyNy R3m,a=3875A,¢c=2739 A, cla = 7.07
Th(1)in 3 a: R + (0,0,0) : Th(2) in 6 c: R + (0,0.2), z = 0222
N()in6ec,z=0.132: N@2)ir 6 ¢, z = 0.377

Th is approximately cp: what is the stacking sequence? N atoms fill tetrahedral and/or
octahedral interstices. Answer (with A,B.C for cations and .8,y for anions):

khe Th; sequence = AyBoPA-¥B-a-CPyB-0- C-BAyaC-...

{b)  Fe3S4(smythite) R3m, a = 347 &, ¢ = 345 A, ofa = 9.94
Fe(l)in3 a: R + (0,0,0) ; Fe(2) in 6 ¢z R £ (0,0,2), z = 0.9171
S(1)in6c,z=07898 ;52 in 6 c. 2 = 0.6270

3 is approximately cp; what is the stacking sequence? Fe atoms fill octahedral
interstices. Answer (with 4,8, for anions and o8,y for cations):

hhece S, sequence = ApByA-YB-C-LABCPA-BCaBoC..
7. The structures of the rutile form of TiO7 and of CaCly are closely related:
Ti0 Pdy/mnm, a=4.594 &, ¢ = 2.958 A
Tiin2a: (0.0,0; 172,172, 1/
Oin 4 f £0rx.0 5 1/2+4x,1/2-x,1/2), x = 0.305
CaClp Panm,a=6241 A, b =6432 A, c =4.340 A
' Cain2a (00,0 ; 1/2,1/2,1/2)
Clin 4 g: +(x,y,0 xE12,1/2-,1/2), x = 0.275, y-=0.325

Plot both structures in projection down the short axis and compare with Fig. 6.20 (p.
229). What (approximately) is the anion packing?
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8. The structure of MozBC is:

MozBC Cmem, a=3086, b= 1735, ¢ =3.047 &
Mo(1) in 4 ¢: C £ (0,,1/4), y = 0.3139 ; Mo{2) in 4 ¢, y = 0.0721
Bindc,y=04731:Cind e,y =0.1920

Describe the Mo structure as a stacking of 44 pets along b using the notation A, B, C, D
and describe the type of site {octahedron, trigonal prism etc.) occupied by B and C.
Compare the B-B and C-C distances in the structure.

9. Pa and ¥Pu are both 10-coordinated:
Pa Hiimmm, a=3.932,c=3238 A, Pain 2 a: I + (0,0,0)
¥Pu Fddd, a =3.159, b = 5768, c = 10.162 A. Pu in 8 a: F + (1/8,1/8,1/8)

Plot the Pa structare projected on (110). How do the interatomic distances compare with
those in the 10-coordinated bet? The Pu structure is based on a stacking of 36 nets along
¢ in the sequence ADEF (see Fig. 6.40, p. 247). Calculate the ten shortest interatomic
distances in Pu. What is the next shortest distance?

10. Ta3B4 is orthorhombic:

TazBy4 Immm,a=329,b=140,c=3.13 A
Ta(l) in 2 c: /4 (0,0,1/2); Ta(2) in 4 g: I + (0,y,0), ¥ = 0.180
B(1)ind g,y =0375 B in4 k: 1 = (0, 1/2), y = 0444

Describe the Ta arrangement as a stacking of 44 nets along b (as in Exercise 8). What is
the coordination of the B atoms? Check your answers by drawing the structure in
projection down a. '

V3B4 is isostructural with TazB4 and VB is isostructural with CrB (p. 250). There is
also reported a composition V5Bg (= 2VB + V3B4). Can you guess a possible strcture for
this last composition? [See Hyde & Andersson (Book List) p. 227.]

11. Many halides have structures with ¢p anions. Some are rather simple (e.g. CdCl};,
and Cdly, § 6.1.5), but others have rather complicated low-symmetry structures. Data in
abbreviated form for some iodides are given below.

Znly . HMylacd, a = 12284, ¢ = 23.583 A. Zn 32g, 0.3749,0.3625,0.0627

I(1) 16d, 0,1/4,0.6047 ; K2) 16¢, 0.262.0,1/4 ; I(3) 32g, 0.0113,0.9993,0.1267
Hglo Pdyiume, a =4370, ¢ = 12.443 A, Hg 2a, 1/4,3/4,1/4 ; 1 4d, 1/4,1/4,0.3891
Bily R3, 0 =7498, c = 20.68 A. Bi 6c, 0,0,0.167 ; I 18f, 0.342,0.340,0.0803
Snly Pd3, a=12.273 A. Sa 8¢, 0.125,0.125.0.125

I(1) 8¢, ©.252,0.252,0.252 ; 1(2) 24d, -0.002,-0.002,0.253
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Ul Cle, a = 13967, b = 8472

\ 967, b =8472, ¢ =7.510A, $=90.54". U 4

K1) 8, 0.123,0.118,~0.086 ; 1(2) 8f, —0.134,0.382,0.100 001531
Hfly Cle,a = 11787, b = 11.80
\ 787, 6= 11801, ¢ = 12905 A, B = 116.3°. A

HE 0.4244,0.3610,0.3753 ; (1) 0.3270,0.3830,0.1309 Havoms 8.

K2) 0.4470,0.1351,0.3866 ; 1(3) 0.1898,0.3761,0.3632

14y 0.4369,0,6154,0.3808 o
Prly F43m, a = 12.360 A. All atoms 16 ¢, x.x.x etc.

Pr, x=0.3606 ; I{1), x = 0.1115 ; K{2(, x = (.6257
Identi . . .
dentify the anion packings (ail are cp) and the way the cations occupy the interstices

. 4142.114; te;r;gonal tqtrahedral lay'er (5_5 6.4.2) consists of two 4% nets of ¥ stacked AB, with
L nfe oy ic;f ;w;ceﬁt‘he dEIl:l‘S;ty in between [so there are {¥)X, tetrahedra}' The
7 2¥3. 1t n such layers are joined together the stoichiometry i .

(the case 7 = o corresponds to fluerite structure X2¥). In compounds wittl?(tiiz }1%{:;;

structure there are double tetrahedral 1 = § i
tayors o K i {15 e ayers (n = 2) of {Cu}S4 tetrahedra interwoven with

KCuyS3 Pdimmm, a = 3.899
mmu, a =3.899, ¢ = 9262 &, ¢/a = 2.38. Kin 1 b:
Cuind i 012z 12082201608 oo

S(1)in 1a: 0,005 $(2)in 2 k: £(1/2,1/2,2), 7 = 0.2944

Verify that the S packin i
g consists of 44 nets stacked ABB... and th i
! at Cu ato
i{nC;irSifetitrlagedra . Co.mpare the Cu...Cu distance in the layers with the Cu. Cun:isisi;cl:z
ntal Cu (cep with @ = 3.615 A). Speculate on the oxidation states of tﬁ;a atoms,

carﬁ&?ﬁﬁiiiﬁi ;;e ;é‘a?e sc;l—callled H phases found for aluminum-transition metal
: S, y other isopuntal compounds are k i i
with two nor-metallic components (which are still (?alled H phas&?s(;:wn ineluding examples

Al
CrpC PGafmme, @ = 2.860, ¢ = 12.82 A, cfa = 4.48. Al in 2 & +(1/3,2/3,3/4)

Crindf 2(U/3.2/3,2; 113,213,142z}, 1 = 0.086 5 C in 2 a: (0,0,0 ; 0,0,1/2)
TizSC P63/mmc, a = 3.210, ¢
,a=3210,c=11.20A, cfa =3.49. Sin 2 d: #(1
63/mn \ 49, s (113,243,
Tiin4 £ £(1/3,203,2 5 1/3,2/3,1/2-2), z = 0.099 : C in 2 a:{ (0.0,0 -3(;43 1/2)

Describe the two compounds above in i
: terms of stacking of 36 nets (using AB
ZVha(;‘ (1‘f .any) sets of atoms approximate closest packing in each cafse‘7 Vg\fhatca,ra‘[:?.
oordination polyhedra around § and C? {Compare Ti2SC with TiP (§ 4.6 f;) 1 oo
14. Here is a simple packing of unit diameter spheres:

Fimmm, a=1+42, ¢ =2, Ceaters in 8 & /£ (10,0 ; 00}, £ = EA2 + ¥2)

Identify the net in the layers normal to ¢, and the coordination number of the packjng

CHAPTER 7

NETS AND INFINITE POLYHEDPRA

7.1 Introdueti_on

In this chapter, in contrast to the last, we discuss some arrays of points with low
coordination number, particularly 3- or 4-coordination. These are less usefully considered
as sphere packings, and are more commonly described as nets. In some cases it is useful to
consider the nets as the edges and vertices of packings of polyhedra. As in the previous
chapter, the emphasis is mainly on the simpler high-symmetry paticrns that occur in a
variety of structural contexts, Now a systematic organization is more difficalt as nets may
be derived and described in mote than one way. To improve continuity we have included in
the main body of the text some material that might otherwise have been relegated to the
Notes. In particular section numbers in this chapter that are marked with an asterisk may be
of lesser interest to some readers and may be omitted in a first reading.

The diamond structure is a familiar example of a 4-coordinated (or 4-connected) net and
many other 4-connected nets arise as structures of alumino-siticates (including the two most
commen crystalline materials in the earth’s crust: quartz and feldspar). In the latter case the
Si (or Al) atoms are the nodes (or vertices) of the net and the -0O- bonds are to be
considered the links {or edges). The frameworks of zeolites {mainly alumino-silicates and
alumino-phosphates) are currently of great interest as their catabytic and other properties are
largely determined by their structures. Other important 4-connected nets occur in covalent
solids and as the hydrogen-bonded networks in polymorphs of ice and in hydrates.

Nets can also have mixed coordination; thus the net describing the atoms in SizN4 (=
iv§i4iiN4), in which Si is connected to four N, and N is connected to three Si, is referred
to as (3,4)-connected. An important class of nets with mixed coordination is that corre-
¢ponding to frameworks of corner-connected octahedra and tetrahedra. For example, in
Fe2(S04)3, {Fe]Og octahedra share corners with {$)Os tetrahiedra and vice versa. The Fe
and § atoms are at vertices and the -O- links correspond to edges of a (4,6)-connected net.

We usually describe nets in crystallographic terms. We generally give unit cell
parameters and coordinates of vertices that correspond to an idealized conformation in
which the edges are of equal lengl, and in which the volume, subject to this constraint, is
a maximum. This conformation is also one of maximum symmetry. Some nets occur in a
variety of erystal structures and often then have lower symmetry.

There appears to beé no simple method of giving a purely topological definition of nets,
but a partial topological characterization of 3- and 4-connected nets is nevertheless useful,
so we discuss this topic first. A systematic description of nets is difficult and efforts to
enumerate possibilities have not succeeded in any rigorous manner (many hundreds of 4-
connected nets have been described in the Hterature).

The topology of nets is a source of some fascinating, and mostly unsolved, problems.
For cornments on these aspects see Appendix 3.
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Ul =
4 C2fc,a = 13967, b= 8472, ¢ = 7.510 A, B = 90.54°. U 4f, 0,0.152,1/4

K1) 8f, 0.123,0.118,-0.086 ; 1(2) 8f, ~0.134,0.382,0.100

58 = 3 :
fi4 C2lec,a=11787, b = 11.801, ¢ = 12.905 A, §=116.3". All atoms 8f.

HF 0.4244,0.3610,0.3753 ; K1) 0.3270,0

: 0.3753 ; 3270,0.3830,0.1309
1(2) 0.4470,0.1351,0.3866 ; 1(3) 0.1898,0.3761,0.3632
I(4} 0.4369,0.6154,0,3808 "

Pl Fa3m, a = 12.360 A. All atoms 16 ¢, x.x,x etc.
Pr, x = 03006 : I(1), x = 01515 ; 2, x = 0.6257

Identify the anion packings {all are ep) and the way the cations occupy the interstices

) 414?.;;:\t tg;r;gonal tc‘trahedral layf.-r (§ 6.4.2) consists of two 4% nets of ¥ stacked AB, with
otchiomey i(;f };w;cel;he dertl!s;ty in between {so there are {Y}X4 tetrahedra]‘ The
s 2¥4. If n such layers are joined together the stoichi is X2,

i 1 ome X
(the case n = = corresponds to fluorite structure X7 Y). In compounds wittlll—ytliz KZCHEE;

structure there are double tetrahedral layers (n = 2) of {Cu}S4 tetrahedra interwoven with

Iayers of Kin {K}Sg cubes:

KCuys83 Pdfmmm,a =3.899,c=9
mmm, a = 3.899, ¢ = 262 A, cla=238.Kinléb:
Cuind it 20,12,z ; 11202, z = 0.1603 H0042

S{1yin 1 a: 0,00 ; S(2) in 2 A: #(1/2,1/2,2), z = 0.2944

{c:fglf); tthalt1 tl;e S packing consists of 44 nets stacked ABB... and that Cu atoms are in
{Col n;;e I;et E:’lace ra . Cqmpare the Cu...Cu distance in the layers with the Cu...Cu distance
u {ccp with a = 3.615 A Speculate on the oxidation states of the atoms.

13. i
carbide?lgdg(iigi ;;1: K;athe soh-cal.led H phases found for aluminum-transition metal
! 5. Many other isopuntal compound: k i i
with two non-metallic components (which are still fatled ;I Z;)rk‘leas:s())jwn neluding exanples

AlCrsC gﬁglmmc, a=2.860,c=12.82 A, cla = 4.48. Al in 2 &: £(1/3,2/3,3/4)
rind f (13,2732 1/3,2/3,1/2—2), 1 = 0.086 ; Cin 2 a: (0,0,0 "0 0,1/2)
TipSC P6simme,a =3.210, ¢
6: ,a=3210,c=1120A, ¢/fa =349.Sin2 d: H1/3,2/
Tiin4 £ £(1/3,2/3,2; 1/3,2/3,1/2—2), 2 = 0.099; Cin 2 ;( ) EJ :"3(';43 1/2)

Describe the two compounds above in terms of stacking of 36 nets (Lising ABC,afiy)

What (if any) sets of atoms a 1
(Gf. pproximate closest packing i ?
coerdination polyhedra around S and C? [Compare TPigSC v%itll?"l?ig;’cgiiazeé)?{hm e e

14. Here is a simple packing of unit diameter spheres:

mmm, a=1+42, ¢ =42, Centers in 8 /2 T = (x,0,0 ; 0,0), x = /(2 + ¥2)

Identify the net in the layers normal to ¢, and the coordination number of the paci&i’ng

CHAPTER 7

NETS AND INFINITE POLYHEDRA

7.1 Introducti_nn

In this chapter, in contrast to the last, we discuss some arrays of points with low
coordination number, particutarty 1. or 4-coordination. These are less usefully considered
as sphere packings, and are more commonly described as nets. In some cases it is useful to
consider the nets as the edges and vertices of packings of polyhedra. As in the previous
chapter, the emphasis is mainly on the simpler high-symmetry patterns that occur ina
variety of structural contexts. Now a systematic organization is more difficult as nets may
be derived and described in more than one way. To improve continuity we have included in
the main body of the text some raterial that might otherwise have been relegated to the
Notes. In particular section numbers in this chapter that are marked with an asterisk may be
of lesser interest to some readers and may be omitted in a first reading.

The diamond structure is a familiar example of a A-coordinated (or d-connected) net and
many other 4-connected nets arise as structures of alumino-silicates (including the two most
commton crystalline materials in the earth’s crust: quartz and feldspar). In the latter case the
Si {(or Al) atoms are the nodes (or vertices) of the net and the -O- bonds are to be
considered the links (or edges). The frameworks of zeolites ¢mainty alumino-silicates and
alumino-phosphates) are currently of great interest as their catalytic and other properties are
largely determined by their stractures. Other important 4-connected nets oceur in covalent
solids and as the hydrogen-bonded networks in polymerphs of ice and in hydrates.

Nets can also have mixed coordination; thus the net describing the atoms in SigNg (=
ivgi4iiiNy), in which Si is connected to four N, and N is connected to three Si, is referred
to as (3,4)-connected. An important ¢lass of nets with mixed coordination is that corre-

sponding to frameworks of corner-connected octahedra and tetrahedra. Por example, in
Fex(S04)3, 1Fe}0s actahedra share corners with {810y tetrahedra and vice versa. The Fe
and S atoms are at vertices and the -O- links correspond to edgesof a {4,6)-connected net.

We psually describe nets in crystallographic terms. We generally give unit cell
‘parameters and coordinates of vertices that correspond to an idealized conformation in
which the edges are of equal length, and in which the volume, subject t0 this constraint, is
2 maximum. This conformation is also one of maximum symmetry. Some nets occur ina
variety of crystal structures and often then have lower symmetry.

These appears to be no simple method of giving a purely topological definition of nets,
but a partial topological characterization of 3- and 4-connected nets is nevertheless useful,
0 we discuss this topic first. A systematic description of nets is difficult and efforts to
enumerate possibilities have not succeeded in any rigorous manner (many hundreds of 4-
connected nets have been described in the literature).

The topology of nets is a source of some fascinating, and mostly unsolved, problems.
For comments on these aspects see Appendix 3.
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We caution the reader that it is often very difficult to appreciate the structure of a three-
dimensional net and virtually impossible to do such things as enumerate rings from a
drawing. On the other band models can be made simply and inexpensively (see Notes) and
it will be found that these are invaluable {and sometimes essential} aids to understanding.

7.1.1 Circuits, rings and Schlifli symbols

Three-dimensional nets can be considered as infinite periodic graphs; we then tend io
talk of vertices (atoms) and edges (bonds)}—a common practice in graph theory. A path is
a continuous sequence of edges, and a circuit is a closed path beginning and ending at the
same vertex. The term ring is used in a special sense, described below, that is consonant
with chemical usage. Any two edges with a common vertex define an angle at that vertex.

Recall that in Chapter 5 we often characterized finite polyhedra and two-dimensional nets
by Schlifli symbols; which gave in cyclic order the size of the polygons common to &
}fcnex. For 3- and 4-connected three-dimensional nets it is a common practice to extend the
idea of a Schii#fli symbol to include these cases also. Now, instead of polygons, either
shortest circuits or shortest rings are used and we must first make clear the definition of
these terms and be careful to distingvish between them.

For each angle at a vertex we can find a circuit which is a path that starts out at the vertex
in question (the home vertex), goes out along one edge, and returns home along the second
edge of the angle. The shortest such path (one that traverses the least number of edges) is
the shortest circuit associated with that angle and is signified by the number of edges it
contains, Some authors characterize three-dimensional nets by giving a “Schlifli symbol”
that indicates the size of the shortest circuit at each angle; we give an example of this
procedure below.

Fig. 7.1, Two fragments of nets discussed in the text,

The use of shortest circuits is not always consistent with our earlier treatment of
polyhedra and two-dimensional nets as we now explain. In Fig. 7.1 (left) let the circle
labeled “1” be the home vertex, and let @ and & be two edges defining the angle ab at vertex
“1.” The rest of the numbered vertices represent a fragment of a net, which may be finite
(i.e. the net of a polyhedron) or an infinite two- or three-dimensional net. There is a 6-
cirenit 1,2,3,4,5,6 containing this angle, but there is a “short cut™ back to vertex 1 from
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vertex 4. To be consistent with earlier usage, we should not consider circuits that have such
short cuts and count only those without them. Another circuit containing the angle ab is
1,6,7,8,9,10,2; this circuit does not contain short cuts as the path aleng the circuit between
any two vertices on the circuit is a shortest path between them. Such circuits are variously
called “fundamental circuits,” “primitive rings,” or just “rings;” here we will use the
simplest term “ring” and reject the 6-circuit 1,2,3,4,5,6 as not being a ring but accept the 7-
circuit 1,6,7,8,9,10,2 as a ring.

It is not hard to see that an infinite net will have only a finite number of rings for each
vertex, whereas there is an infinite number of circuits. Interesting unsolved problems are
how the number and sizes of rings affect properties such as density, and what constraints
there are on ring size.

Referring to Fig. 7.1 (right) we can see that the circuit 1,2,3,4,3,6 is not counted as a
ring, but 2,3.4.5,6,7 is. The latter ring is however made up of smaller ones (1,2,3,4 and
1,4,5,6 and 1,2,6,7) in the sense that traversing all the edges of the smaller rings will result
in traversing all the edges of the larger one. Rings that cannot be decomposed in such a
manner have been called “strong rings.”

Tt is useful to recognize that the graphs of finite polyhedra usually contain rings that do
not enter into the Schlifli symbol. Figure 7.2 (left) is a conventional representation of a
cube: on the right is a Schlegel diagram. The circuit 1,4,8,7,6,2 (shown as heavier lines) is
a 6-ring. The presence of 6-rings is not reflected in the Schiafli symbol (43) for the cube.

The reader might like to verify that there are also 6-rings (hexagons) in the
cuboctahedron, 3.4.3.4 (see e.g. Fig. 6.3, p. 21.5).

Fig. 1.2, Left: a conventional representation of a cube. Right: a cortesponding Schiegel diagram. A 6-ring
is shown as heavier lines.

_ Three angles meet at each node of a three-connected net. Tn contrast to plane nets, in
three-dimensional nets more than one ring may be included in an angle (see also the next
section), so we modify the Schlafli symbol to read X YyZ; where X, Y, Z are numbers
that represent the ring size and x,y.z are numbers that indicate the numbers of rings meeting
at that angle; subscript *17 is omitted. Thus 8-8-82 indicates that at two of the angles there
is an 8-ring and at the third angle there are two 8-rings. Note that many authots omit the
subscripts, and the symbol for the vertex in this example is then writien 83.

Just as polyhedra often contain larger rings than those used to specify the Schlifli
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symbol, three-dimensional nets often contain larger rings in an analogous manner.
(Remember that we use only the shortest rings at a vertex to construct the vertex symbol.)

To make clear the distinction between the use of circuits and rings, we give another
example. Fig. 7.3 shows a fragment of a net. The 3-connected vertex shown as a filled
circle has a 4-ring, a 6-ring and a 10-ring at the three angles, so using rings the symbol is
4.6.10 (the fragment shown might represent part of the net of the truncated
icosidodecahedron). The 10-ring is at the angle ab. There is also an 8-circuit
(1,2,3,4,5,6,7,8) at the same angle, but we do not count it as a ring because there is a short
cut between vertices 1 and 4.

Fig. 7.3. Rings surrounding a 4.6.10 vertex (filled circle). The angle ab is contained in the 10-ring
(lightly shaded) and also in the 8-circuit (not a ring) 1,2,3,4,5,6,7,8.

7.1.2 Schlifli symbols for 4-connected nets

Let us arbitrarily label the four edges meeting at a vertex of a 4-connected net a, b, ¢ and
d. A pair of edges, such as ab define an angle at that vertex. There are six angles at each
vertex defined by pairs of edges: (ab, cd), (ac, bd), (ad, bc). Pairs of angles in parentheses
have no common edge and are referred to as opposite angles. Pairs of angles with a
common edges are referred to as adjacent.

. Fig. 7.4. [llustrating two 6-rings containing the sarme angle (heavy lines) at a vertex (filled circle) in the
diamond net. This figure is a fragment of Fig. 7.10 (left).

For a given angle there may well be several distinct shortest rings. For example, in the
diamond structure (§ 7.3.1) two 6-rings are contained in each angle as sketched for one
angle in Fig. 74.

In order to facilitate comparison with the (rather large) literature on 4-connected nets we
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sometimes use two kinds of “Schlifli” symbol. A “short” one that specifies just the shortest
circuit contained in each angle (most commonly found in the literature) and a “long™ one
that recognizes only rings and is described next by example.

In the structure of a feldspar (§ 7.3.9) such as CaAlpSinOg, the net of the Al and Si
atoms has two kinds of vertex.! If we use just the shortest circuits at each angle, the
symbols for both vertices are 42.63.8; however, using rings we can distinguish the two
vertices. The smallest rings and circuits associated with each angle are given below for each
vertex. Also listed are the numbers of such rings and circnits for each angle.

vertex 1 vertex 2
angle  ring nember <circuit number ring number circuit number
ab 4 1 4 1 4 1 4 1
ed 6 1 6 1 [ 6 2
ac 4 1 4 1 4 1 4 1
bd 6 I 6 1 8 1 8 3
ad 8 2 8 6 6 1 6 1
be 10 10 6 1 6 2 6 2

We now write a long Schiifli symbol for each vertex as follows. We write, in order, the
symbols of the rings with a subscript for the number of zings (omitting the subscript “17).
Note that we pair circuits by opposite angles and, subject to that constraint, write the
smallest numbers first. The symbols for the twa vertices are therefore:

vertex 1 4.6-4.6-85:101p
vertex 2 4-67-4-8-6-67

Not all nets have distinctive vertex symbols even using long symbols: the pair diamond
and lonsdaleite (see below) is a conspicuous example; for both nets the vertex symboal is
67-67-67-07:62:62.

Note that in our usage short symbols {using shortest circuits) employ superscripts which
{including the imptied “1”s) add up to three for 3-connected nets and to six (for the six
angles) for 4-connected nets. Long symbols contain three entries for a 3-connected net and
six entries for a 4-connected net and these are separated by a *” and may (often do) employ
subscripts in some of the entries. Although the procedure may appear somewhat
complicated, it is in fact very readily implemented using a computer, and is of considerable
help in identifying nets of a given topology in structures.

7.1.3 Coordination sequences

We briefly mentioned coordination sequences for structures in § 6.8.2. Each different
kind of vertex in a net has associated with it a coordination sequence (CS) which is the

IBut not (as one might first expect} with Si on one kind of vertex and Al on the other. The edges of the
nets correspond 1o the -O- bonds to (5i,Al} atoms. Ca is accommodated in cavities in the net and is ignored
in the present context. :
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SEQUENCE Ay, 2, ... Mk - of numbers of kth topological neighbors. In the language
appropriate for discussion of nets we simply define a &th neighbor of a vertex to be one for
which the shortest path to that vertex consists of k edges.

Figure 7.5 illustrates the concepts of topological neighbors and CS for the two-
dimensional net 44, The reference vertex (filled circle} has four neighbors (dark shading}
connected to it by an edge, so 77 = 4. The second neighbors (light shaded) of the reference
vertex are first neighbors of the first neighbors (other than the reference vertex) and clearly
rtz = 8. Similarly the third neighbors (open circles) of the reference vertex are the first
neighbors of the second neighbors of the reference vertex that are not first neighbors of the

reference vertex {or, more simply, the third neighbors are those for which the shortest path

to the reference vertex consists of three edges). It should be clear that n3 = 12. In fact it
should be clear (drawing a few more shells may help) that ny, = 4k in this instance and that
the CSis 4, 8, 12, 16,....

Fig. 7.5. Iustrating the topological neighbors of a vertex in the two-dimensional net 4% (see text).

Recall that the CS is concerned only with the topology of the net. In Fig. 7.5 the 44 net is
illustrated in its most symmetrical form and it should be obvious that the eight second
topological neighbors are not all the same geometrical distance from the reference vertex.

We give examples of CS's for some nets-in the sections below. One of their main uses is
in computer recognition of nets, but it should be emphasized that occasionally two different
nets have the same CS so that strictly speaking it can only be proved that two structures
have different topologies.! The CS for the twe vertices of the feldspar net are 4, 10, 20, 38,
58,... and 4, 10, 22, 38, 56,... respectively. We know of no example of two different nets
in which the vertices have simultaneously the same CS and Schlitli symbol.

7.1.4 Further definitions

Other terms that have obtained some currency are now defined.

A iminodal net is one in which all vertices are congruent. In its maximum symmetry
form all vertices will be related by symmetry operations (be equivalent).

A uniform net is one in which the shortest rings at each angle are equal in size. A
familiar two-dimensional example is 6.

IThe reader can readily verify that the CS for the two-dimensional net 3.4.6.4 is the same as that for 4%,
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A quasi-regular net is one in which all vertices and all edges are equivalent.!
A regular net has all vertices, all edges and all angles equivalent. A regular net is
necessarily uniform. The net of the diamond structure is the only regular three-dimensional

4-connected net; the corresponding regular 3-connected net is described next.

*7.2. 3-connected nets

We have met some plane 3-connected nets before, notably the honeycomb (63). This is
very frequently found as a layer in a crystal structure (e.g. graphite). A number of three-
dimensional nets which can be realized with equal edges and angles of 120° between the
edges, are known, and some are of sufficient interest to describe here.

The first three-dimensional net is an invariant cubic lattice complex:

r* 14132, 2a=v8
105-105-105 in 8 a: [ + (1/8,1/8,1/8 ; 3/8,7/8,5/8)
or & b: § + (7/8,7/8,7/8 ; 5/8,1/8,3/8)K

These two sets of positions produce structures that are enantiomers of each other and
they are symbolized +Y* and -Y* respectively (for reasons which will be apparent later).

Although there are only four vertices in the repeat unit (the primitive cell), the structare is
difficult to illustrate. Fig 7.6 shows two projections of +¥™. Note (on the left) that there are
four-fold helices along [001] of one hand (anticlockwise along +z, i.e. 41} in the structure,
and that (right) there are likewise three-fold helices along [111] that are all of the same hand
(32). The helices are of opposite hand in -Y*. The Schlifli symbol is 105-105-105 (five 10-
rings meet at each angle). This net occurs as the Si arrangement in SrSiz and isostructural -
compounds. Tt is the only regular three-dimensional 3-connected net. For a stereo picture of
this net see § 7.11.8,

The axes of the 4y helices are arranged as in the S-Mn cylinder packing and the axes of
the 3 helices are arranged as in the SrSi; cylinder packing {hence the name of the latter).

Tt is interesting that the same structure can be derived in several ways, Positions 8 ¢ of
P4132 are (x.%,% ; Ya-x,3/4—x,3d—x ; %,1/2+x,1/2-x ; /4-x,3/4+x,1/4+x)x and 8 ¢ of
the enantiomorphic group P4332 are (x.x.x, 5 Vd—x, Vd—x,1/4—x ; T, 1/2+x,1/2-x 5
3/4—x 1/4+x,3/4+x). We have the special cases:

P4432 Bcx=1/80r5/8 — 8 aof 14132
P4332 8crx=38or T8 -8 bof 4132

In the crystal structure of SrSiy (for data see Appendix 5), the Si atoms are at poéitions 8
¢ of P4332 with x = 0.423 so they constitute a slightly distorted version of -¥* (the Si-Si-Si
angles are 113°). We may write the compound as Sr2+(Si-); and then recognize that Si- is

tOne sometimes sees the term “regular” for what we lerm “quasi-regular® bui this conflicts with
established usage for plane nets and polyhedra. The polyhedra 3.4.3.4 and 3.5.3.5 are quasiregular.
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isoelectronic with P. The formation of three non-coplanar P-P bonds in elemental P is
ascribed to the presence of a non-bonding pair of valence electrons, and it is tempting to
suppose that similar considerations apply to the Si-Si bonding in SrSis.

Fig. 7.6. Left: The lattice éomplex +¥* projected on (001). The unit cell is shown by broken lines and |

numbers are heights in multiples of ¢/8. Right: The same structure projected on {111). Open, shaded and
filled circles are at 0, 1/3 and 2/3 of a primitive translation vector {(a+h+c)/2 along [1113].

The invariant positions of P4332 are 4 a: (1/8,1/8,1/8 ; 3/8,7/8,5/8)x and 4 b:
(5/8,5/8,5/8 ; 1/8,7/8,3/8)x and the invariant positions of P4132 are 4 a: (3/8,3/8,3/8 ;
1/8,5/8,7/8)x and 4 b: (7/8,7/8,7/8 ; 1/8,3/8,5/8)x. The symbols for these lattice
complexes are +¥ and -Y respectively (see § 6.3.10). We can combine these as follows:

P4;32 da+db-—=8bof 432 (Y - -TH
P4332 da+4b—8aof [432 (2*F —» +¥H)

This shows incidentally that 74132 has both 4; and 45 axes. If we had atoms A on
positions 4 a and X on 4 & (of P4132 or P4332) we would get a simple (unknown)
structure with A surrounded by an equilateral triangle of X (and vice versa). Note that it is
its own “antistructure” (interchanging 4 and X produces the same structure),

A second cubic 3-connected net, called 6.82 D, can be constructed with angles of 120%

682D Prdm, a=13
6-8:8 in 24 i H112,x% ; 0,172-x.7 ; O.x, 12+x ; 1/2,1/2-x,1/24x)%, x = 1/3

A fragment of the structure is shown in Fig. 7.7, A notable feature is the groups (joined
by edges) of 12 coplanar vertices paraliel to {111}, The Schifli symbol is 6-8-8. There are
two kinds of edge: those on 6-rings, and those not on six-rings, The 6-rings and 8-rings of
this structure can be considered as covering an infinite surface (named D in Appendix 4)
and hence form an infinite polyhedron as discussed later for some 4-coordinated structures.

A related net, called 6.82 P, with the same Schlafli symbol (6-8-8) is also shown in Fig.
7.7. Parameters for unit edge length and regular hexagons are:
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6.82P Im3m, a = 5.266
688 in 48 & [ + (Fxted2)i, x = 0.3275 and z = 0.0949

The angieé are 120° and 114.1° (2x). For slightly different parameters, the bond angles
can be made all equal to 118.5". Like the previous net this can be considered as an infinite
polyhedron 6-8-8.1

Fig. 7.7. Two cubic 3-connected nets, 6-8-8. Left: 6.82 D. Right: 6.82 P.

Another 3-connected net occurs in silicides such as ThSia (for crystaflographic data for
the compound see Appendix 3). It can also be constructed with 120° bond angles:2

ThSi; net Hlamd, a=3,¢e=6
vertices (107-104-104)} in 8 2 { £ (0,1/4,2 ; 0,3/4,1/4+2), 2 = ~1/24

This net is sketched in Fig. 7.8. The Schlifli symbol is 107-104:104.

Three-connected nets can also occur in framework oxides with -O- links serving as
edges as described for the structure of B2O3 below. In P05 {P}Oy4 tetrahedra share three
corners with neighbors (so the stoichiometry is PO310 = 1/2 P0Os). In one polymorph,

" - isolated P401g molecules are formed in which the P atoms are at the vertices of a

tetrahedron (see Fig. 5.18, p. 150). In a second form the P-O-P links form a honeycomb

IThese 1wo 6.82 nets have been considered as possibie structures for three-coordinated carbor; see M,
O’Keeffe er al., Phys. Rev. Letts. 68, 2325 (1992); this reference explains the origin of the names. The
PrB3m structure is a particularly favarable candidate; it is known 1o organic chemists as the “Riley structure”
as it was apparently first suggested by H. L. Riley [see e.g. J. Gibson, et al.,, J. Chem. Soc. 456 (1946)].
The (hypothetical) carbon is called “polybenzene.”

2This js another net that has been considered as a possibie carbon structure; interestingly carbon with
this structure is predicted to be denser than graphite and metallic. [R. Hoffmann er al., J. Amer. Chem. Soc,
103, 4831 (198331 .
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(63) layer. Tn the third, and apparenﬂy most stable, form the P-O-P links have the topology
of the ThSi; net (see Exercise 11).

Fig. 7.8, Left: the 3-connected net of the Si atoms in ThSiz. Right: the 3-connected net of the B atoms
in ByO3. The ¢ axis is vertical and the shaded vertices fall on a 10-ring in each case.

Another 3-connected net (Fig 7.8) that can be constructed with 120° bond angles again
contains 10-rings. It is the net of the B atoms in By03 (for crystallographic data see
Appendix 5) and is trigonal:

B303 net P3|12,a=V3,c=92
vertices (10:102-102) in 6 ¢: (x,3.2 ; ¥.x-y,1/3+2 VY- X, 2034z L x0T
Yy W3- F 232 ), x= 13, y = 146, 2 = 19

7.3. 4-Connected nets

The number of 4-connected nets found in crystal structures is very large. Well over 100
different topologies are known for framework silicates, particularly natural and synthetic
zeolites. Some of these have a large number of topologically-distinct vertices and resist
simple classification. In this chapter we confine ourselves mainly to relatively simple
examples of nets with particular emphasis on those, such as that of the diamond structure,
which arise in a number of different contexts. Some of the structures we describe do not
appear to have been recognized yet in crystal structures. These have been assigned an
arbitrary number for identification,!

Recall that unless explicitly stated otherwise, crystallographic parameters refer to unit
edge (bond) length. For some nets (e.g. diamond) this is sufficient to completeiy

These index aumbers are known ta the cornpuier program EUTAX. {See also M, O'Keeffe & N. E.
Brese, Acta Crysiallogr. A48, 663 (1992).] With the recent flurry of activity in synthesis of new zeolites
and related materials we find that we are coatinually replacing index numbers with names of known
materials.
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determine the structure; for other structures we give parameters for maximum volume
subject to the constraint of equal edge length. Densities are expressed as r = number of
vertices per unit volume (for nets of unit edge). In the context of framework alumino-
silicates, there is considerable interest in the framework density (FD), usually expressed as
the number of tetrahedral atoms (ALSi) per 1000 A3. As the Si...Si distance is typically
3.06 A in framework silicates, FD = 10007/3.063 = 34.9r A3 '

7.3.1 Diamond, lonsdaleite and their polytypes

The diamond net is of course that of the diamond form of carbon and is also found as the
structure of the stable forms of Si, Ge and (at low temperatures) Sn. As it occurs in many
structure types it will prove profitable to become familiar with it. In the structure every
point is connected to four neighbors at the vertices of a regular tetrahedron as shown in
Fig. 7.9. A formal description is as follows: :

diamond Fd3m, a =43, r = 0.650
vertices in 8 a: F £ (1/8,1/8,1/8)

The positions of the vertices correspond to the lattice complex D.

G T
P30 70
] . 1
31 1
5@ 1® i
1 1
1 - 1
; 760 3@;
1 1
e  s® |
S 5

Fig 7.9. The diamond net. On the left in clinographic projection. The unit cell is outlined with dashed
lines and points within the cell are shaded. On the right is shown a projection down the direction shown as
an arrow (which corresponds to a unit cell edge) of the atoms shaded in the drawing on the left. Numbers are
atorn heights in multiples of 1/8. Small circles are centers of symmetry at the unit cell origin.

The long Schlifli symbol for this structure is 62-62-62:62-62-67. As we will see, some
other nets have the same symbol. .

1t should be obvious from the formal description above, that the diamond array consists
of two eep arrays (origins at 1/8,1/8,1/8 and —1/8,~1/8,-1/8), each array occupying half of
the tetrahedral sites of the other. If the two arrays are occupied by different kinds of atom,
we have the sphalerite structure of Zn$. Recall that in § 6.1.5 we described sphalerite
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as a “close packing” of S with Zn in tetrahedral sites (or vice versa). Now we see that the
structure is equally well (perhaps better) described as a bond network.

A related 4-connected net occurs as the structure of lonsdaleite, a rare allotrope of
carbon.! A formal description is:

lonsdaleite Phalmmce, a = V(8/3), c = 8/3, r = 0.650
vertices in 4 f £(1/3,2/3,7 ; 3,113, 1/2+7), 2 = 1116

The parameters are for the idealized structure with unit edge length and angles equal to
the “tetrahedral” angle cos-1(-1/3) = 109.47°. .

It should be cbvious from the above description [notice that ¢/a = @(8/3)] that, as in
diamond, the vertices fall on two cp arrays (but now hep) separated by /8. The vertices
of one array are in one half the tetrabedral sites of the second one, and vice versa. If the
two arrays consist of different kinds of atom we have the wurtzite form of ZnS. .

Fig. 7.10 shows the diamond and lonsdaleite structures side by side for comparison. In
the figure the direction up the page is {111] for the diamond structure and [001]. for
lonsdaleite. To facilitate the comparison, note that the diamend structure can be described
using a hexagonal cell with vertices in R & (0,0,1/8), a = \)'(8/3), ¢ =4, It should also be
noted that the nets could also be described as a stacking of puckered 63 nets (3-connected)
with additional bonds between the layers. In terms of the symbols introduced in the
previous chapter (§ 6.1.6) the stacking of (puckered) 63 nets (G) in lonsdaleite is Gl(_}l...
and in diamond it is G1G2Gas.... Later we will describe some other 4-connected nets derived
from 63 in related ways.

In the diamond structure all the 6-circuits are skew hexagons in “chair” conformation. In
tonsdaleite the hexagons not normal to [001] are in “boat” conformation (see Fig. 7.10).

Fig 7.1¢. Left: the diamond structure in clinographic projection with [111] vertical on the page. Right:
the lonsdaleite structure with [0013 vertical on the page.

INamed for Kathleen Lonsdale who made many contributions to carbon chemistry, notably the first
demonstration (by X-ray diffraction} of the planarity of the benzene ring. She was the first woman to be
elected to fellowship in the Royal Society of London.
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The Schlifli symbol of the lonsdaleite net is the same as that of diamond, viz.
6262-62-6-62-69. Accordingly to distinguish between these nets topologically we need to
consider numbers of kth neighbors. These are:

k 1 23 4 5 6 7 8 9 10

diamond 4 1224 42 64 92 124 i62 204 252

lonsdaleite 4 1225 4  67. 9% 130 170 214 264
difference 1]

0 1 2 3 4 6 8 12

It may be seen that lonsdaleite has more topological neighbors (i.e. is topologically
denserl} than diamond for third and subsequent neighbors. In these cases simple
expressions, in which brackets indicate rounding down to an integer, obtain for ng, the

~ number of kth neighbors:
diamond: ng = [5k2/2] + 2 (7.1
lonsdaleite: - 2 =[214%/8] + 2 (7.2)

Diamond and lonsdaleite structures may be derived from, respectively, cubic and
hexagonal eutaxy by filling ene-half of the tetrabedea! sites (either all those pointing down,
or all those pointing up). Related polytypes can be obtained in a similar way from more
complicated closest packings. The simplest of these, derived from he (4H) packing (i.e.
two hic cp arrays with points of one array in tetrahedral interstices of the other), is:

carbon 4H P63/mme, a = V(8/3), c =16/3, r = 0.650
¢ vertices in 4 e: £(0,0,z ; 0,0,1/2+2), z = 3/32
h vertices in 4 £ 2(1/3,213 .2 ; 1/3,2/3,1/2~2), 7 = 3132

A commonly encountered projection of these, and related structures, is shown in Fig.
7.11. For diamond, this is a projection on (110) of the cubic cell; for the hexagonal cell of
the other two nets it is on (1120), Single lines represent bonds in the plane of the
projection; double lines represent bonds out of the plane but superimposed in projection.
Readers interested in topics such as stacking faults in Si and similar defects will find it well
worth the effort it takes to learn to interpret such diagrams. In particular notice that the
double lines represent a zig-zag chain of vertices seen in projection; we encounter such a
motif repeatedly in the next few sections, :

“Diamond” (used as an abrasive) made by shock compression of graphite is usually a
rather disordered mixture of polytypes. SiC also occurs as many polytypes; a cubic
sphalerite form (known as B-SiC), a wurtzite form, and other hexagonal and
rhombohedral forms. The term @-SiC is sometimes used for the non-cubic forms. Under
the trade name “carborundum’ it is used on a large scale as an abrasive. The polytypes have
been studied very extensively as SiC is also potentially a valuable material for

1n the topological sense. In geometric terms the two nets in their most regular forms with equal edges
have the same density (vertices per unit volume),
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microelectronic applications. Unfortunately the electronic properties are very sensitive to
structure and it is still far from certain what factors determine which polytype will form,
and most preparations consist of intergrowths of different polytypes. The structure and
isotopic composition of meteoritic SiC (moissanite) is also currently of considerable
interest.

In the Notes (§ 7.11.4) we describe some of these polytypes in more detail and give
coordinates for idealized versions of some of the simpler structures.

Forms of silica (5i02) with vertex-sharing {Si}Oq tetrahedra and with the Si-(O)-Si nets
having the diamond and lensdaleite topology are known as cristobalite and tridymite
respectively,

Fig. 7.11. Left: the diamond structure projected on (110}, Middle: the lonsdaleite steucture projected on
(1120). Right: the Ac diamond polytype similarly projected. Double lines represent bonds up and down oat
of the plane of the paper.

*7.3.2 Two more uniform nets, 65 ‘ |

Fig. 7.12 shows a net that is a first cousin to the diamond-lonsdaleite family (compare
Fig. 7.11). It is also uniform (69) but now the extended symbol is 6-6-6-62-69-65. There
are also ten 10-rings meeting at each vertex in addition to the nine 6-rings. We have not
found a good name for this net so it is arbitrarily named net #9. A crystallographic
description is (mote that it is denser than diamond): :

net #9 Fddd, a =4.644, b =3.061, ¢ = 1.532, r = 0.735
6-6:6-62-62-67 in 16 &: F £ (x,1/8,1/8 ; 1/4—x, 1/8,1/8), x = 0.3057

Another simple uniform net (which we call net #5) is also shown in Fig. 7.12. Like the
previous net (and lonsdaleite) there are only four vertices in the primitive cell. The
extended symbol is 6-6-6-62-63-63. There are also eight 8-rings and ten 10-rings meeting
at each vertex in addition to the nine 6-tings. A crystallographic description is:

net #5 P4122, a = 2.030, ¢ = 1,414, r = 0.686
6-6-62:62:61-63 in 4 & (0,60 ; 05,172 3 x,0.3/4 ; 7.0,1/4), x = 0.3258

Despite their simplicity. model builders will find constructing these last two nets a

T
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challenge, and counting rings by hand quite difficult.

It appears that all uniform 4-connected nets are 6% (some more examples are given
below).! It contrast uniform 3-connected nets ranging from 73 to 123 are known (see
Notes). ‘

Fig 7.12. Left: net #% projected on (001) with a horizontal on the page. Open circles are at z = 1/8,
lightly shaded circles ar z = 3/8, darker shaded at z = 5/8 and filled circles at z = /8. Right: net #5
projected on (001). Open circles are at z = 0, lightly shaded circles at z = /4, darker shaded at z = 1/2 and
filled circles ai z = 3/4. In both figures broken lines represent bonds to atoms with either z < 0 or z> 1

7.3.3 Nets derived Jfrom 63: CrBy

As mentioned above, it is possible to derive 4-connected nets in a formal way by linking
stacked planar 3-connected nets. Lonsdaleite is a simple example of a 4-connected net
derived by linking 63 nets (Fig. 7.13, left). Two more ways of deriving 4-connected nets
from 63 are also shown in Fig. 7.13. In the figure, open and filled circles are to be
interpreted as links up and down from a given layer and in opposite directions in adjacent
layers so that each vertex is 4-connected. This description is sufficient to specify the
topology (connectivity) of the net. Note that edges connecting pairs of open or filled circles
correspond to 4-rings seen in projection. Except for lonsdaleite, all nets derived in this
way contain 4-rings.

Each of the two new nets derived in the figure is uninodal and the long Schlafli symbol
is also the same in both cases: 4-6-6-6-6-6 (short symbol 4.63).

The first new net, in the middle in Fig. 7.13, is the net of the B atoms in CrBy4 (which
has the orthorhombic structure described for MnBy4 in § 4.6.5—see also Appendix 5) so
we call it the CrB4 net. The other net is found s the arrangement of Ga atoms in CaGapQy
{edges correspond to Ga-O-Ga bonds). A formal description of the first net is:

CrBy Mimmm, a =3, c =2, r=0.629
4.62-6-6-6-6 in 8 h: I £ (zx,x,0), x = /6.

lan example of a net with only 7-rings is given below (§ 7.5.1), but one angle contains ne rings.
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Fig. 7.13. Derivation of 4-connected nets from stacked 63 nets (seg text). On the left, lonsdaleite is
derived, in the middle CrBy, and on the right CaGaz0y4. In each case additional bonds go up {down) from
open (filled) circles to identical nets above (below} the ones shown.

The net is illustrated in several ways in Fig. 7.14. On the left it is projected on (001), a
projection that suggests that it could also be derived from the planar 4.82 net in an obvious
way. This projection should also be compared with that of net #109 con the left of Fig,

7.15. The projection in the middle of Fig 7.14 corresponds to that in the middle of Fig.
7.13 (but rotated by 90°). .

[ .

3
i
1
1
]
1
1

Fig. 7.14. The CrBy4 net. Left: 2 projection on (001); filled and open circles are at z = 0 and 1/2
respectively. Middle: the structure projected on (100); filled circles are at x = £1/6 and open citcles at x =
+1/3. Right: as a clinographic projection (¢ vertical). ’

We meet the CrBy net in several disguises. The § & positions of I4/mmm can split into
two groups of 4 corresponding to the positions 4 fand 4 g of Pdy/mam:

4 f e x,0 ; 1242, 1/2~x,1/2) 4 g HxX,0; 1/24x,1/2+x,1/2)

If these positions are separately occupied by Be and O atoms (with x = 1/6) we obtain
the structure of §-BeO (for the real S-BeO structure see Appendix 5),

The same net appears as the Al,Si net in one form of CaAl28i203 (cf. the paracelsian
net in § 7.3.6 which is the net of another form of CaAlySiaOg).

The reader is encouraged to draw the second net (that of CaGayQy). This net also occurs
as the ALP net in the mineral variscite, AlPO4-2H70 (the corresponding net in

metavariscite, which has the same composition, has the CrB4 topology). The
crystallographic description is: :

Three-Dimensional Nets and Infinite Polyhedra 303

CaGaz0y4 Cmca, a=2.823,5=329],c=2.794, r = 0.616
4-62-6-6-6-6 in 16 g: C & (Tx,y.2 5 22, 1/2-9,1/2+7),
x=0,177, y = 0.133, z = 0.087

*7.3.4 Two nets related to CrBy with zig-zag rods

Fig. 7.14 shows (left) how CrBy4 may be derived from the two-dimens'ional net 4.82 by
replacing some of the edges (those not on squares) by zig-zag lines (which are shown as
double lines in the projection) representing edges connecting layers above and belc_;w. A
related net can be derived from 4.82 by an analogous procedure if the squares are stightly
tilted out of the plane as shown in Fig. 7.15 (left). We label this net #109.

Another net that occurs as the (ALP) framework in a form of AIPO4 known as AIPOy-31
is derived similarly from the two-dimensional net 4.6.12 [see Fig. 7.13 (right}].

Fig. 7.15. Left: net #109 projected on (001). Increasing depth of shading irdicates elf:vations of .zj8,
32/8, 52/8 and 7z/8. Right: AIP04-31 projected on (001). Increasing depth of shading indicates elevations
of z/12, 3z/12, 5z/12, 7¢/12, 92/12 and 112/12.

Crystallographic data for these structures are;

net #109 14| famd, a =5.856, c = 1.423, r = 0,656
4-69-6-6-6-6 in 32 & I & {x,y,z ; etc.), x = 0.085, y = 0.080, z = 0.125

"AlP04-31 R3m, a = 6.800, e= 1.578, r=0.570
4.69-6-67-6-63 In 36 iz R = (x,y,z ; ete), x = 0.1992, ¥y = 0.251, z = 0.25

The nets of this and the previous section can be distinguished by numbers of topological
neighbors 7 (the coordination sequence). Values for the first three are rather close to sach
other as might be expected for nets with the same Schlifli symbols,

k 1 2 3 4 3 6 7
CrBy4 4 11 24 41 62 90 122
CaGaz0y 4 11 24 41 63 91 123
net # 109 4 11 24 42 65 95 131
AlPO4-31 4 11 22 37 59 85 114
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' 7.3.5 SrAlz, cancrinite, and related nets with double Zig-zags

Two more ways of connecting 63 nets are shown in Fig. 7.16. These both give rise to
uninodat nets that are of interest in crystal chemistry. The net on the left is found as the Al
arrangerment in SrAly, so we name it after that compound.! The same topology also occurs
(considerably distorted from the geometry given above) as the network of ponds in a-Np.

Fig. 7.16. Derivation of the SrAly (left) and paracelsian (right) nets from 63 {compare Fig. 7.13).

A description of the SrAlg net is:

SrAly Imma, a =3.268, b = 1.681, ¢ = 2.631, r = 0.534
4-6-4-6-6-87 in 8 i: [ (4x,1/4,2), x = 0.153, z = 0.103

The structure is simply illustrated as a projection down the short axis (b); it is shown in
this way as Fig. 7.17 (left). ’ . :

Fig 7.17. Left the SrAlj net projected on {010). a i3 horizontal on the page. Filled and empty circles are
at y = 1/4 and 3/4 respectivety. Right: MAPO-39 projected on (001). Filled and empty circles are at z = 0
and 1/2 respectively. In both cases single lines are edges in the plane of the projection; double lines
represeat edges up and down out of the plane,

IThe “type” compound is often taken as CeCuy, structural data for which are to be found in Exercise
3.11. If you did that exercise, compare your drawing with Fig. 7.17.
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Other occurrences of this net are as the (Al Si) framework in RbA]ISiIOy4 and in the
synthetic zeolite known as Li-A with stoichiometry LiAlSiO4-H,0.

A closely related net occurs in the synthetic zeolite with (Mg,ALP) as framework atoms
known as MAPO-39. The formal description of this net is:

MAPG-3% Aimmm, a = 4,150, ¢ = 1.708, r = 0.544
464-66:8 in 16 & J £ (£x,y,0 ; 2y.2,0), x = 0.121, y = 0201

The relationship of this net to SrAl should be apparent from Fig, 7.17. Both structures
feature double zig-zags of vertices which make up a puckered ladder as shown
schematically on the left in Fig. 7.18. The two nets differ only in the way the double Zig-
zags are interconnected. Note that in Fig. 7.17 the projection is along the axis of the double
zig-zag (which projects as a rectangle).

Sageedn, (Pl

Fig. 7.18. Left: part of a double zig-zag. Right: part of a double crankshaft.

The net on the right in Fig. 7.16 occurs as the (Al,Si) framework in paracelsian and is
discussed in § 7.3.6.

Another simple net containing double zig-zags occurs in the structure of cancrinite,
which has ideal formula CalNagAlgSig0Q24C03-2H20. This net is shown in projection in
Fig. 7.19. Crystallographic data are:

cancrinite  P6almume, a = 4.000, ¢ = 1.633, r = 0.530
4-6:4-6-6:6 in 12 j: £(x, v, 104 ; v,2,3/4 ; ¥ x—y,1/4 L=y, 34
xE 14 Ty—x,34), x = 112, y = 512

Fig. 7.19. The canerinite net projected on {001). Open circles are at z = 1/4 ard filled circles at z = 3/4.
Deouble lines represent “zig-zags™ viewed in projection.

Note that the unit cell consists of hexagons centered at 1/3,2/3,1/4 and 2/3,1/3,3/4 so the
centers of the hexagons are stacked in a sequence AB... as in hexagonal close packing. We
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will meet a number of related nets based on stackings of hexagons in § 7.8.5.

¥7.3.6. Some nets derived from 4.82 with double crankshafts

The derivation in Fig. 7.13 of some 4-connected nets from 63 by addition of a fourth
link (zither “up” to a net above or “down” to a net below), suggests that nets could be
similarly derived from stacked 4,82 nets. Four uninodal examples, one of which we have
already met, are given here. Fig. 7.20, which is to be interpreted in the same way as Figs.
7.13 and 7.16, provides a definition of their topologies. Another way of deriving nets from

4.82 is suggested by Fig. 7.17; we meet yet another way in our discussion of the feldspar -

net,1

A feature of the structures in this and the next section is the occurrence of rods of atorns
arranged in what is known as a “double crankshaft” configuration as shown in the right-
hand part of Fig. 7.18 (above). N

On a double crankshaft rod, all vertices are three-connected and related 4-connected nets
(discussed here) differ in the mode of cross-linking the rods, which all have their axes
parallel. In projection along the axis of the double crankshaft it appears as a rectangle with
two links “up” on one long edge and two links “down” on the opposite edge. (In Fig. 7.20
we have nsed an idealized representation in which the rectangles appear as squares—
contrast Figs. 7.17 and 7.19.)

8 R R

Fig 7.20. An idealized represéntation of 4-connected nets derived from stacked 4.32. From the left: net
#73, the paracelsian net [compare Fig. 7.16 (right)], the merlineite net, and the gismondine net.
Fourth edges go up from open circles and down from filled circles,

The net derived second from the left in Fig. 7.20is in fact the same as that shown on the
right of Fig. 7.16; (see below). It occurs as the (ALSI) framework in paracelsian,
BaAlzS5iy0g.2 Other compounds with the same framework are danburite, CaB3Siy0g and
hurlbutite, CaBeaP20g.

A crystallographic description of the paracelsian net is:

paracelsian  Cmem, a= 3.252,5 =3.118, ¢ = 2.850, r = 0.554
4-6-4-6-6-83 in 16 h: € & (T2 ; +v,3,1/2-2), x = 0,154, y =0.335, z = 0.075

l¥or. a systematic account of the derivation of 4-connected nets from 4.82 see 1. V. Smith, Amer.
Mineral. 63, 960 {1978).

2The celsian modification of BaAlySiz0g has the feldspar structure (§ 7.3.9).
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The net derived on the left in Fig. 7.20 has the same Schlifli symbol as paracelsian, .
We have not identified it in a known material so it is arbitrarily labeled net #75. The
description is:

net #75 Hdimem, a =4.509, ¢ =2.844, r = 0.553 :
4.6:4-6-6-83 in 32 m: I & (xy,%2 s Fux.F2 a3, 124 5y, 11242),
x=0.101,y=0243, ¢ =0.176

As it is very useful to be able to interpret projections of nets, in Fig. 7.21 we repeat the
two projections of paracelsian using the coordinates given above.! In the first (left) the
projection [on (001)] is along the axes of the double crankshafts and the second (second
left) the projection [onr (100)] ts normal to the double crankshafts.

Fig. 7.21. Left: paracelsian projected on (001) with b up the page. Open circlc:;:s are vertices at z = 0.0Z
and (.43; filled circles are vertices a1 z = (.57 and (.93. Double crankshafts prollect as rectangles. Secon .
left: the same net projected on (100) with b up the page. Open circis:s are vertices at x = 0.15 and 0.85;
filled eircles are vertices at z = 0.35 and 0.65. Double crankshafts project as single crank-shafts of all fiFled
or all open circles. Second right: net #78 projected on (100} with ¢ up l.he page. Open c1rc-les are vertlct::s
at x = 0.17 and 0.83; filled circles are vertices at z = 0.33 and 0.67. Right: the same net in clinographic
projection with double crarkshafis shaded,

These two projections suggest the pessibility of a family of nets with dgub!e cranks_hafts
running it two perpendicular directions. The simplest such net (and pos:j,xbly the only one
with one kind of vertex) is shown in the two right-hand drawings of Fig. 7.21, Data for
this net (#78) are: -

net #78 {4)/amd, a =3.020, ¢ = 6210, r = 0.565
4:6.4-85-6-6 in 32 i1 { £ (x,3,z; ete.), x = 0.165, y = 0.085, 7 = 0.069

The other two nets of Fig. 7.20 are found in the structures of merlinoite ?md in
gismondine; they both have Schlifli symbols 4-4-4-87-8-8 (note the short symbol is now
43 62.8 in both cases) and are iliustrated in Fig. 7.57 {(p. 342). These nets are less dense
than the other two, and alumino-silicates based on these frameworks accommo‘datfe a
substantial amount of water (as typical for zeolites). Ideal formulas are merlinoite,
K5CasAlgSizaOg4-24H70, and gismondine, CaalSizOg-4H20.

- « i
1Gnce one learns to “read” such diagrams, it will be found very easy ta construct “spaghetti” models.



310 Chapter7

merlinoite 1lmmm, a = 4482, ¢ = 3.312, r=0.481
4-4.4-87.8-8 in 32 o: T (etyty iyvEeEz), x=0.112, y = 0.269, z = 0.151.

gismondine  fdifamd, o = 10/3, ¢ = V80/3 = 2,981, 7 = 0,423
4448288 in 16 g: T+ (bx, 14, /%), £ = 3/20

Coordination sequences for nets of this and the last section, ng, are:

k& { 2 3 4 5 i} 7
SrAly, MAPO-39 4 o 21 36 54 78 106
paracelsian 4 10 21 37 57 81 109
#75 4 10 21 37 57 81 110
#78 4 10 21 37 58 83 111
cancrinite 4 10 20 34 54 78 104
merlinoite 4 9 18 32 49 69 93
gismondine 4 9 18 32 48 67 92

The nets are generally distinguished by numbers of neighbors, ny, although SrAls and
MAPO-39 have the same sequence (but these nets are distinguished by their Schiifli
symbols). Notice that SrAly, paracelsian, net #75 ang net #78 have very similar

- Eeometrical densities () and also have very similar numbers of topological neighbors (1),
The same is true for merlinoite and gismondine, Generally it is found {(see § 7.5) that
the geometrical density, r, and the topological density as measured by sum of n, (over, say
ten coordination shells), are rather well correlated. :

*7.3.7Anorher net With double crankshafts: gmelinite

Fig. 7.22, The gmelinite net projected on (001), Open circles are vertices at z = 0.09 and 0.41 and filled
circles are vertices at z = 0,59 ang 0.91. Lines joining filled ¢ircies and lines joining open circles represent

edges normal to ¢ {j.e. pazaliel to the plane of the paper}. The other lines represent edges going up and down
so the rectangles represent double crankshafls in projection,

Another simple net with double crankshafts is found as the (ALSi} framework of the
natural zeolite gmelinite, which has approximate formula NazﬂxCaxAIZSMOlz-GHgO. As
shown in Fig. 7.22, the structure is now derived from the two-dimensional net 4.6.12,
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Note that the structure contains hexagonal prisms centered at 1/3,2{3,1/4 and 2{3.,113,1;.’4.
The hexagon stacking could therefore be symbolized AABB... Contrast cancrinite (Fig.
7.19, p. 307) in which hexagons are stacked AB... Crystatlographic data are:

melinite P63/mmic, a = 4418, ¢ = 3.149, r = 0.45]
y 4-4-4.8.6-8 in 24 I 2(x,y,7 ; ete.), x = 1/3, y = 0.440, z = 0.091

7.3.8 Alternating “up-down” nets

There is a large class of nets derived from a stacking of 3-connected two-dimensional
nets with fourth links from each vertex in the layer a]temat_ing uptoa layer ?bovc oF down
to a layer below. For such alternation to be possible, the rings in the tWO—dln’.ler.lSIDIlal net
must alf be even, and for a given two-dimensional net there is on}y one chstmct' three-
dimensional “up-down” net. Accordingly there are only thrge nets: in this class w1th_one
kind of vertex; they are derived from 63, 4.82 and 4.6.12 respecn.vely. The net derived
from 63 is in fact lonsdaleite (§ 7.3.1). The net derived from 4.82 is found as the Zn and
Sb net of T1ZnyShy so we name it after that compound {recall the{t bold fac.e names refffr to
structures—in this case a net). The net derived from 4.6._12 is fom?d in the alumn:no-
phosphate zeolite known as AIPO4-S. Data for the last two (illustrated in Fi g. 7.23) are:

TlZnz8h 14fmem, a = 3.235, ¢ = 2.639, r = 0.580
= 4-62-663-6-63 in 16 [: ] + (x,x+1/2,7 ; etc.), x = 0.147, z = 0.190

AIPO4-5 Pbimce, a = 4.515, ¢ = 2.599, r = 0.523
‘ 4:62:6:63-62-63 in 24 m: 2(x,y.z ; etc.), x = 0.455, y=0122, z = 0.[92

-Fig 7.23. Left: projection of TIZn2Sb3 on {001). Right: projection of f&lP04-5 on (001). Indboth
<ases open circles are vertices at z = 0.39 and 0.61, and filled circles are vertices at £0.19. Edges go down
from filled circles to a layer below, and up from empty circles to one above,

i i ject as a square with

A conspicuous feature of these nets is the rods of atoms that projec .
connectio%s up-down-up-down (UDUD).! This may be contrasted with the double
crankshaft which projects as a rectangle with connections UUDD. A fragment of an UDUD

rod is shown in Fig, 7.24.

1For the ease of of two or more rods fused together {when the “squares” become rectangles) see § 7.11.8




312 Chapter7

F'ig. 7.24.. Left: a fragment of T1Zn2Sby (Fig. 7.23) illustrating an UDUD rod (full lines and filled
circles). Right: the same rod with connecting vertices as in seapolite.

.Several other “up-down™ nets found in zeolites are described in § 7.8.4. A simple net
}mth UDUD rods occurs in minerals of the scapolite family.! We include it here as it
Hlustrates several useful points. Crystallographic data are:

scapolite Immm, a=4338, ¢ = 2.294, r = 0.556
4-32-82-82-82-82 in 8 & J £ (x,0,0 ; 05,00, x = 0.163
4-82-5:5-55 in 16 n: £ £ (O,p. 2z »»:.0.42), y = 0.339, 2 = 0.280

Fig, 7.2.5.:]\_eft: the scapelite net projected on (001). Numbers age elevations in units of ¢, Right: the
4.8< net in its most-symmetrical, minimum-density form (top) and partly collapsed {bottam).

The net consists of UDUD rods linked by single squares of vertices, In Fig 7.24 (right)
one vertex of each such square is shown as an open circle. Fig. 7.25 shows the structure in
projection on (001) and it is worth the effort it takes to read the projection. Note in
particular that squares at z = 0 and z = 1/2 represent planar square groups, but that the other
Squares represent UDUD rods, As usual we show pairs of edges inclined up and down as

IScapolite has approximate formula NagAl3SigOq4Cl. Remember that the net is the structure of enly
the tetrahedraily-coordinated atoms (in this case Al and Siy.
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double lines.

The crystallographic data given above for scapelite are for the highest symmetry form
and the most open structurs. In fact it is common for nets of this sort to “collapse™ to a
denser structure, with the extent of collapse determined by the nature (and size) of the
material in the cavities of the net (in scapolite this is Na and Cl, other members of the
family contain CO3 and SOy groups). Fig. 7.25 also shows schematically a common mode
of collapse of a rod structure (such as scapolite) based on 4.82 nets,

An isolated UDUD rod of {T}0O4 tetrahedra has stoichiometry 770s. In narsarsukite
such rods are joined by columns of vertex-sharing {Ti}Og octahedra to produce a structure
with composition NazTiO(51205);. (For more on narsarsukite, see Exercise 7. 12.14)

7.3.2 Feldspar and coesite

. The feldspars are a large and complex group of minerals with general formula
A(ALSi)a0g. The (ALSi) atoms are on a 4-connected net linked by O atoms. In the
structure of coesite (a high-pressure polymorph of SiQ9) the Si atoms are on a different,
but closely related net. Derivation of the feldspar net from 4.82 is shown in Fig. 7.26. To
interpret this figure, it should be noted that distorted 4.82 nets are packed in a two layer
repeat; the net in-solid lines alternating with that shown by broken lines. Filled and open
circles represent respectively edges going (almost) vertically up and down from the solid-
line net to the broken-line net above or below.

Fig. 7.26. Derivation of the feldspar net from 4.82. See lext.

A crystallographic description of this net (as usual with unit edges and in its highest-
symmetry, maximum-volume form) is:

feldspar C2Um, a = 3,189, b =3.951, ¢ =2.346, B=1154", r = 0.599
vertices in 8t C £ (xFy,2)
4.63.4-8-6-67: x = 0287, y = 0.373, z = 0.376
4-6:4-6-82-101¢: x = 0.000, y = 0.231, z = 0.213

Note that the net of the real mineral is somewhat collapsed from the maximum volume
form. Parameters more representative of real minerals (again for unit edge) are @ = 2.780, b
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=4.202, ¢ = 2314, B = 116.0°, r = 0.659, vertices in 0.213, 0.381, 0,337 and 0.011,
0.176, 0.222. Ordering of silicon and aluminum in real materials also lowers the symmetry
and leads in some instances to larger unit cells; the topology of the net stays the same, of
course.

Why, with simple, symmetrical nets such as those of the previous sections available, did
nature choose this more-complex, lower-symmetry net as the basis of the structute of the
most common of all minerals on the face of the earth?

Fig 7.27. Projection of the feidspar aet on (010). The points.shown are a siab with 1/2 <y < 1. A second
slab lies beneath and related to the first by a mirror plane at y = 1/2. Shaded circles represent one type of
vertex, open and filled circles the other. Vertices cornected by heaviest lines are approximately in a plane
and above the plane of those connected by the lightest lines. Additional edges go vertically up from vertices
shown by open circles and down from vertices shown as filled circles. -

Fig. 7.28. Feldspar projected on {001) showing the twisted double crankshafts (shaded). An ab face of
the unit cell is shown and the arrow marked ¢ is the projection of that axis on the plane. Open, lightly
shaded, darker shaded and filled circles are vertices at elevations approximately 0.45, 0.80, 1.32 and 1.67
above the plane. As ¢ is aot normal to the Page successive layers are displaced up the page by the
projection of ¢. The coordinates used in the drawing are for the denser of the two sets given abave,
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As an aid to constructing a model a projection of the feldspar net is shown in Fig.
7.27. The twisted double crankshafts now run horizontally across the page (parallel to a).
In making a “spaghetti” model the best strategy is to first construct the double crankshafts,
secondly link them to make the layer shown in the figure (the double crankshafts will now
twist) and finafly connect layers to their mirror images using the remaining unused links as
shown in Fig. 7.28 in which the twisted crankshafts are seen in a projection on (001),

A related net, that is also made up of twisted double crankshafts, is that of the $i atoms
in the coesite form of SiOy (a high-pressure polymorph; for data see Appendix 5). The net
is made up of layers similar (topologically identical) to those shown for feldspar in Fig.
7.27. The linkage between layers makes the topology difficult to describe and results in
rings of edges being looped as in a chain. Fig 7,29 (which should be contrasted with Fig.
7.28) shows how the layers of crankshafls are linked. Model builders should first construct
double-crankshaft layers as for feldspar, then link them using Fig. 7.29 as a guide. Note
that the middies of these linking edges are at centers of Symumetry.

Fig. 7.29, The linkage of double-crankshait layers in coesite shown in projection on {001). Only one
double crankshaft of each layer is shown. On the left, the middle double crankshaft is connected to two
higher in elevation, on the right the same (middle} double crankshaft is connected to two others of lower
elevation. Vertices with the same shading have approximately the same elevation.

The coesite net contains odd (9-) rings. This means that if there are two kinds of atoms
(A and B} at the vertices they cannot be arranged so that A has only B neighbors and vice
versq. Data for a form of the coesite net are given below. Note the high density (/. Coesite
is the densest known form of silica with Si in 4-coordination by oxygen.

coesite C2/c,a=2327,5=4152,c=2281, B = 120.8°, r = 0.845
vertices in 8 2 €' £ {x,y.2; x,7,1/2+2)
4-8-4.97-6-8: x = 0.157, y = 0,094, z = 0.088
4-6-4-6-8:92: x = 0.019, y = 0.325, z = 0.041

7.3.10 Sodalite

A simple guasi-regular four-connected net that arises in many contexts is the net we call
the sodalite net. A formal description is, for unit edge length:
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sodalite Im3m, a =8, r=0.530
4-4.66:6-6 in 12 d: I £ (1/4,0,1/2)x

We met this pattern earlier (§ 6.2} as that of the tetrahedral sites of bee packing. Tt may
also be recalled that this arrangement is that of the vertices of a space-filling by truncated

octabedra (illustrated in Fig. 7.30). The centers of the truncated octahedra are on the nodes
of a bee lattice. )

Fig. 7.30. Left: space-filling by truncated octahedra (4.62), Right: the edges and vertices shown as the
four-connected sodalite net. ’

The net corresponds to the arrangement of the (Si,Al) atoms in the mineral sodalite!:
NaySi3Al3012CL, although in the real structure the O arrangement lowers the symmetry to
143m (see Fig. 6.72, p. 275) and 5i,Al ordering further [owers the symmetry to P43n. The
positions of the vertices of the net are also those of the lattice complex W*. The same
pattern is shown as a 4-cornected net in Fig. 7.30. The Schiifli symbol of the vertices is
4-4-6-6-6-6. Note that for a net derived from a packing of polyhedra each angle contains
just one ring (the Schlifli symbol has no subscripts).

The number of topological neighbors is given by the very simple formula;

ne=2%2+2 (7.3)
7.3.11 NbO and quartz

The positions of the Nb and O atoms in the simple cubic structure of NbO (for
crystallographic data see Appendix 5) taken together are at the nodes of another quasi-
regular net (Fig. 7.31). For unit edge length, the crystallographic description is:

Minerais of this group are often called ultramarines, Ordering and the occurrence of incommensurate
phases in sodalites such as CagAlgQha WOy (CAW) and SrgAlgOaMo0y (SAM) dre currently lively
topics of investigation. Yet another sodalite composition is CagAlgO |3 (with one O atom in the cage).
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NBO Im3m,a=2, r=0.75
62:62-62:62-82-8 in 6 b: T + (0,1/2,1/2)x

The vertices of the net correspond fo the invariant lattice complex J*.! They also represent
the distribution of “octahedral sites” in the bee structure and so the vertices are at the centers
of the squares in the sodalite net. The Schlifli symbol of the vertices is
62-62-62-62-82-8;. Note that the edge angles are four of 90° and two of 180" and that the
vertices falf on three mutnally-perpendicular strings that intersect in pairs.

Fig. 7.31. Left: the NbO net. Right: the quartz net (¢ is vertical).

Another quasi-regular net, that we will see is related to the NhO net, is the quartz net. It
describes the positions of the Si atoms in the quartz form of 8104 (the most stable form at
room temperature and pressure), In the maximum volume configuration the structure is:

quartz P6q22, a= V(SB), c=vY3,r=075
6:6-62-62-87-87 in 3 ¢: 172,00 ; 0,1/2,2/3 ; W2,402,103

The net is enantiomorphic; its mirror image has symmetry 6422 with coordinates
12,00 5 0,1/2,1/3 ; 1/2,1/2,2/3. The structure (also illustrated in Fig. 7.31) again
corresponds to an invariant lattice complex; the two enantiomers are labeled *Q and -Q
respectively. The edges are all equivalent, so the net is quasiregular. The angles are two of
90°, two of cos-1{~1/3) = 109.47° and two of cos i(—2/3) = 131.81°..

The NbO and quartz nets have the same short Schlifli symbol: 64.82 and the same
density (r = 0.75). The relationship between them is shown in Fig. 7.32 in which a
projection of the NbO net on (111) is compared with a projection of the quartz net on
(001). It is to be noted that the repeat distance normal to the plane of projection is the same
in the two cases, and that both nets contain the same number of vertices per unit volume
(i.e. they have the same geometrical density). The main difference is that NbO contains
three-fold spirals of two hands whereas quartz contains spirals of only one hand.

INote that in NHO the Nb and O atoms (each 4-coordinated in a square by the other) are each on a J
lattice complex; two such complexes separated by 1/2,1/2, 1/2 combine to give J*;
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A third net is related to these two. It is of some interest bécause, like them, it has only
threej vertices in the primitive cell. The projection in Fig, 7.33 should make the family
!'elationship clear {compare Fig. 7.32). Wells (see the Notes at the end of this chapter) calls
it “net 27 so we label it W2. It is found as the arrangement of Ni atoms in heazlewoodite
Ni3Sz (for erystallographic data see Appendix 5), and is a rare example of a net containiné
only odd rings. A formal deseription is:

w2 R32,a=5N3, ¢ =5, r=0558
3TTTT2T2in 9 R+ (0,0 : 06,0 yX4Lx0), x=1/5

Fig. 7.32, I...cft: the NBO net projected on (111). Right: the quartz net prajected on (001). Open, shaded
and filled circles are at 0, 1/3 and 2/3 of the repeat distance normal to the plane of projection.

Fig. 7.33. The net W2 drawn for comparisen with Fig. 7.32

The nets differ in topological density: The values of ny are given by:

NbO Ag = 3K2 + 2 — (k mod2) (7.4)
quartz ng = 19k%/6 + 2 (k = 6i)

ng = [(19k2 + 10)/6] (2 < k 5 6i) (7.5)
w2 N = 5k2/2 (k = 2i)

mg=SKN2 + 2 (k=2iv1) - (7.6)

Here i is a positive integer, and brackets indicate rounding down to an integer. n1 = 4
for W2 (as, of course, for all 4-connected nets). Topologically, quartz is the densest of
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these nets (has most topological neighbors) and W2 (which contains 3-rings) is
topologically less dense than the other two. (See § 7.5 for a discussion of density.)

*7.3.12 More quasi-regular and/or uniform nets: ¥8i

Three other nets of interest are described briefly here. They are all cubic and alfthough
there is only a small number of vertices in the repeat unit, they provide an interesting
challenge to the model builder, _

The first is found as the structure of a high-pressure polymorph of elemental silicon {for
«ata see Appendix 5), so we call it the 1Si net. Data for the idealized net are:

7-Si 13, a = 206 - N3), r=0.739
: 6-63-6-62-6:67 in 16 ¢ T £ (x50 1 %, 125, 1/2+20K, x = (V2 — 1)/4 = 0.1035

The vertices in 981 have long Schlifli symbol 6-65-6-67-6-67 so that this is another
uniform net. Note that there are two different angles: three of 97.94° and three of 118.13°.

There are several interesting features of the structure. If the value of x is increased to 1/8
={.125 the vertices are on the Jattice complex Y** which is the positions 16 & of Ja3d and
corresponds to an intergrowth of the +¥* and ~¥* lattice complex. We saw (§ 7.2) that these
latter represent the two enantiomers of the Si net in $rSi;. Thus 181 can be considered as
derived from two inter-grown StSi; (3-connected) nets. The %8i and Y™ structures are

compared in Fig. 7.34.

8

{

o [EIELT

Fig. 7.34. Left: the -Si ret projected on {001); vertices in the top layer are at approximately z = 1.1¢
and 0.9¢ and those in the bottom layer at 0.4¢ and (.6¢. Broken bonds go to layers above or below those
shown in the figure, Right: The ¥** lattice complex shown as two intergrown three-connected nets (£¥*)
projected on {001). Open circles at of3, light shaded at 3¢/8, darker shaded at 5¢/8 and filled at 7¢/8.

The positions 16 ¢ of a3 can also be considered to be a combination of two sets of 8 &
of I213: I'+ (x,x,x 5 x,1/2-x,1/2+x)x, with x = uy and x = uy. If sty + uy = 1/2 the
syrmumetry is actually stili Ja3. In 1=8i us = 0.104 and ug = 0.386. If these are changed to
ui = 0.0 and up = 0.25 the structure is transformed to the body-centered cubic array
{described with a cell of twice the edge length). This suggests that the material found after
application of pressure may have transformed from a body-centered cubic lattice at high
pressure as the pressure was released. It has been suggested that the diamond form of
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carbon will transform to 18i at very high pressure (about 800 GPa).!

As ¥8i approximates the ¥** structure (two intergrown ¥* nets) it contains intergrown
31 and 3; helices of 8i atoms each arranged as in Sr8is. For this reason the cylinder
packing consisting of two interlaced SrSiz packings was named the $-Si packing in
§ 6.7.3.

Two other invariant lattice complexes are 4-connected nets. They are of less importance
in crystal chemistry and are frustratingly difficult to llustrate (as our figures below attest),
but we include them here for compieteness. Model makers will find that they are
challenging to construct but very beautiful.

Ed

5 143d, a = N(32/3), r = 0.689

6-6-67-62-62-6 in 24 d: [+ (3/8,0,1/4 ; 1/8,0,3/4)x

This is another uniform net. It is also quasi-regular. A feature of the structure is that
there are large non-intersecting unnels parailel to <111> arranged as in the garnet cylinder
packing (§ 6.7.3). The projection on (111) shown in Fig. 7.35 reveals one such set of
tunnels. :

Fig. 7.35. The lattice complex §* projected on (111). Peints in order of increasing depth of shading are at
heights {in units of la+h+eli2) of 1412, 3/12, 5/12, 7/12, 9412 and 11/12.

The second invariant lattice complex is an enantiomorphous pair:
HLd, 14132, g =N(3213), r = 0344
+y 3-3-102-107-103-103 in 12 1 1 + {1/8,0,1/4 ; 3/8,0,3/d)x
v 3-3.10-102-103-103 in 12 d: T + (5/8,0,1/4 ; 7/8,0,3/4)¢
This is also a quasi-regular net. The net is very open; now two 3-rings meet at each
vertex (Fig. 7.36 emphasizes this aspect of the structire) and the other rings in the structure

IR. Biswas et al., Phys. Rev. B35, 9555 (1983).
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are ten 10-rings meeting at each vertex. The structure is the third of four 4-coordinated rare
sphere packings discussed by Heesch and Laves (see § 7.5.2) so we label it HL4;.

In much the same way as +¥* and -Y* can interpenetrate (Fig. 7.34) so can *V and “V to
produce the lattice complex V* which corresponds to the positions 24 ¢ of Ja34.

Fig. 7.36. A clinographic projection of the lattice complex +V (HL43).

7.3.13 Silica (SiO2) and water nets: keatite and moganite

The plaret we inhabit is made largely of silicates, and its surface consists largely of

water (solid and liquid) and framework silicates. Silica (8iO7) itself is of importance in a
variety of contexts, and at least twelve polymorphs have been described. Low pressure
forms of silica consist of framework structures of {Si}Oy tetrahedra sharing vertices and
the 4-connected nets corresponding to some of these structures have been met already: here
we discuss several others. Silica is also found as a very-high-pressure rutile form (with
six-coordinated Si) known as stishovite. BeF; and GeO; and ternary derivatives such as
AlPQy4 also adopt at least some of the silica structures. Note that most of the silica
polymorphs have lower symmetry than the idealized net on which the structure is based.
Solid water (ice) in its low pressure forms is also based on 4-connected nets of O atoms
joined by -H... bonds and the nets are the same as in some of the silica polymerphs. In
higher pressure forms the structuses are based on two inter-penetrating 4-connected nets.

(1) Quartz, the stable form of silica at ordinary temperature and pressure, was described
in § 3.6 and the 4-connected net discussed in § 7.3.11.

(ir) At high témperature, quartz transforms to cristobalite which is based on the
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diamond net (§ 7.3.1). This is the net of ice I which is stable at very low temperatures.
Ice VII (formed at pressures above about 2 GPa = 20 kbar) consists of two inter-
penetrating cristobalite nets.

(iii} Tridymite is a (possibly metastable} form of silica based on the lonsdaleite net.
This is the net of the familiar ice (I1)) stable at atmospheric pressure below 0 °C.

{iv) Coesite is the first crystalline phase of silica obtained when quartz is subject to
pressure (about 2 GPa). The net of this structure was discussed in §7.3.9.

(v) Melanophlogite is rare naturally-occurring form of silica that is based on the net of
the Type I gas hydrate net (§ 7.6).

(vi) Keatite is another rare metastable form of silica. The net (Fig. 7.37) contains two
kinds of node and occurs also as the structure of 1-Ge (a form recovered from high
pressure) and as the net of ice I1I (which is produced from ico I at a pressure of about 200
MPa). Data for keatite $i0O; and 7Ge are given in Appendix 5. The keatite cell is tetragonal
(P43242, a =746, c=8.6] A); in the maximum volume form of the net, r = 0.668. The
Schifli symbols are Si(1): 5-5-52-7-8;-87 and Si(2): 57:5-7.5-75.

Fig. 7.37. Left: the Si atoms of keatite projected on (001). Increasing depth of shading indicated vertices
at approximately z = 0, 1/4, 1/2, and 3/4. The positions of the 43 axes in the unit cell {broken lines) is
indicated. Right: the moganite net projected on (019). a is horizontal across the page. Progressively. darker
shaded circles represent vertices at y =0, 1/4, 1/2 and 3/4.

(vii) Moganite is another polymorph of $iQ; which is reported! to be monoclinic (/2/a).
Recent results suggest that moganite occurs more commonly than once supposed in fibrous
forms of “guartz” known as chalcedony, agate, chert, flint, etc.2 The idealized 4-connected
net of the Si atoms is illustrated in Fig. 7.37. For unit edge crystallographic data are:

'G. Miehe & H. Graetsch, £ur. J. Mineral 4, 693 {1992), -
Zp. 1, Heaney & J. E. Post, Science 255, 441 (19923,
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moganite Ibam,a =333, 5 = 1.61, ¢ = 2.89, r = 0.731
4:4-62-02-82-89 in 4 a: I £ (0,0,1/4) .
4866666 in 8 ji 1+ (1,0,0 3 V24x,1/2-3,0), x = 0,167, y = 0.250

For more on moganite and its relationship to quartz see § 7.11.7. Crystallographic
data for the real material are given in Appendix 5.

(viii) When molten silica is cooled, it forms a glass (amorphous silica) which is a
random network of vertex-sharing {Si}Oy tetrahedra. This is often referred to as quartz
glass but the term “quartz” should be restricted to the erystailine polymorph, An amorphous
silica is also obtained when quartz is compressed at low temperatures; amorphons ice can
similarly be obtained from crystalline ice.

(ix) The échmre of ice VI (stable between about 0.6 and 2 GPa at room temperature) is
based on two inter-penetrating edingtomite nets (see § 7.8.7)

7.4 Nets and infinite polyhedra

We now expand our consideration of nets constructed from polyhedra sharing faces.
They may be derived as a space filling (tiling} by finite polyhedra or considered as an
infinite surface tiled with polygonal faces (infinite polyhedra). The most important of these
nets are those of zeolites. The simplest such structure, the sodalite net, was described in
§ 7.3.10.

7.4.1 Linde A: an infinite polyhedron 42.62

The first such ﬁew net is that of the zeolite known as Linde A:

Linde A ngm, a=1+8= 3.828, r=0.428
4.6:4:6-4-8 in 24 k: (0,1, 1z ; Oz, 2y)K, y=14d+ \‘2) = 0.1847, z = 2y

In Fig. 7.38 (left) the structure is illustrated as an assembly of cubes and truncated
octahedra (4.62) sharing square faces. Considered as a d-connected ner it has the Schlafli
symbol 4-6-4-6-4-8 given above. However we can also consider this structure as an
infinite polyhedron; at each vertex two squares and two hexagons meet, and the interior of
this polyhedron is the space occupied by the cubes and truncated octahedra. Considered as
a polyhedron the Schlifli symbol is 42.62, Note the distinction between the net description
and the polyhedron description—in the former we count rings at six angles at the vertices,
in the latter we count (in cyclic order) only polygons on the surface of the polyhedron.

The empty space in the above structure consists of truncated cuboctahedra (4.6.8)
sharing octagonal faces as shown in Fig. 7.38 (right). This is likewise an infinite
polyhedron 42.62 and the “interior” of the polyhedron is the space occupied by the
truncated cuboctahedra,
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It may be seen that we have two infinite polyhedra, each of which fills the empty space
of the other. Such pairs of infinite polyhedra are termed complementary. Taken together
they represent an example of space filling (tiling) by regular andfor Archimedean
polyhedra. In each case the same polygons are on the surfaces of both polyhedra.

Fig. 7.38. The Linde 4 structure. Left: as an assembly of cubes and truncated octahedra. Right: as an
assembly of truncated cubociabedra. )

For such an apparently complicated structure the number of topological neighbors is
" given by a very simple formula (brackets indicate rounding down to an integer):

n = [(8k2 + 13)/5] (7.78)
7.4.2 Zeolite rho: infinite polyhedra 43.6 ond 4.8.4.8

The structure of the zeolite known as rho gives tise to another 4-connected net that can
also be described as a space-filling by Archimedean polyhedra as shown in Fig, 7.39. Data
for unit edge are:

rho I, a =2 + VY8 = 4828, r=0.426
4.4:4:6:8.8 in 48 i [+ {1/d,2x,1/24x ; U4,1/245,40K, x = (V2 — 14 = 0.1035

This structure may be considered as constructed of truncated cuboctahedra (4.6.8) and
octagonal prisms (42.8) sharing octagonal faces.! From this point of view it is an infinite
polyhedron 43.6. The empty space is an identical infinite polyhedron, so it is its own
complement. The combination of the infinite polyhedron and its complement corresponds a
space-filling by truncated cuboctahedra and octagonat prisms.

ICompare Fig. 7.38 in which wuncated cuboctahedra share octagonal faces without the intervening
octagenal prisms.
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Fig. 7.39. The structure of zeolite rho. Left: as a packing of truncated cuboctahedra (4.6.8) and octagonal
prisms (42.8) forming the polyhedron 43,6, Right: as the polyhedron 4.8.4.8 formed from fused octagonal
prisms.

Alternatively the same set of vertices may be described as derived from an assembly of
octagonal prisms sharing square faces as also shown in Fig. 7.39. In this description, the
structure is an intinite polyhedron 4.8.4.8. The complement of this infinite polyhedron is
the one (not shown) derived from truncated cuboctabedra sharing their hexagonal faces,

Rho and Linde A have very similar densities, ». Remarkably, equation 7.7a (p. 324)
holds for the coordination sequences of both structures.

74.3 Zeolite ZK-5 and an infinite polyhedron 438

We have already met two structures involving the truncated cuboctahiedron (4.6.8). One
description of the Linde A structure involved linking them by sharing octagonal faces (note
that they also are linked by cubes). Similarly the zeolite rho structure was obtained by
linking truncated cuboctahedra by octagonal prisms attached to the octagonal faces. A third
possibility involves linkage by hexagonal prisms attached to the hexagonal faces. This
produces a structure (Fig. 7.40) that is the framework of the zeolite known as ZK-5 and is
an infinite polyhedron 4.8. Considered as a 4-connected net the Schlifli symbol is
4-4-4-8-6-8. The crystallographic description is:

ZK-5 f3m, o = 2N3 + 48 + 2 = 5983, r = 0.448
4.4.4-8-6:8 in 96 & [ £ {x,%y,+7 ; yte, ),
x=1/2a= 00836, y = 1/4 —x3 = 02018, z = 2y — x = 0.3199

The CS is given by (cf. Eq. 7.7a):
’ ng = [(1262 + 16)/7] (7.7}
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Fig. 7.40. Part of the zeolite ZK-5 structure.

7.4.4 Faujasite: a second infinite polyhedron 43.6

Fig. 7.41. A fragment of the faujasite structure projected on (111). The black hexagons are hexagonal
prisms seen in projection and sharing a hexagonal face with a truncated octakedron underneath. The shaded
regular hexagons are top faces of runcated octahedra connected to hexagonal prisms on the bottom face,

Another net that may be derived from a packing of polyhedra is that of the natural zeolite
faujasite. This is obtained by fusing hexagonal prisms on four non-adjacent faces of a
truncated octahedron (4.62). Adding four more truncated octahedra to the other hexagonal
faces of the prisms results in a tetrahedral arrangement of the four truncated octabedra about
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the first one. Continuing so that a diamend array of truncated octahedra is obtained
produces the faujasite net, which is an infinite polyhedron 43,6, A polytype is obtained if
the truncated cuboctahedra are connected as in lonsdaleite (rather than as in diamond); it
should be clear that an infinite number of other polytypes is possible. Fig. 7.41 shows part
of one layer of the structure. Considered as 4-connected nets all vertices in these structuges
have symbol 4-4.4.6-6-12.

Crystallographic data for the cubic (c-} and hexagonal (h-) faujasite nets are:

c-fanjasite  Fdim, a=20/(V18 - ¥3) = 7.066, r = 0.380
4.4-4-6-6-12 in 192 i: F + (x,y,2; yx.2 ; x, 1/4-y,1/4-2 %, /4, 14-y
v, Ud=z, Az | y, 1/4—x, 14—z ; 2,174—x, /4~y ; 2,1/4—y, 1/4-2)x,
x= (V6 - 1)/40 = 0.0362, y = 1/8, 7 = 3/% - 2x = 0.3025

k-faujasite Poyimmce, a = 5,633, £ =9.199, r = 0.380
all vertices 4-4-4-6:6:12 in 24 I £(x,y,z ; elc.)
vertex 1 x,y.z = 0.371,0.097, 0.018] ; vertex 2: x,5,2 = 0.156, 0.489, 0,0706
vertex 3. x,y,z = 0.430, 0.037, 0.1069 ; veriex 4: x,y,z = 0.489, 0.156, 0.1957

#7.4.5 An open structure, W*8 and a related zeolite

Fig. 7.42. Part of a rare net 4:44-8.4.12 (W*8) shown as an infinite polyhedron 43.8,

If cubes are inserted between the square faces common to the octagonal prisms in Fig.
7.39 (right), a very open 4-connected net 4-4-4-8-4-12 results. (Fig. 7.42). An alternative
description is as an infinite polyhedron 43.8 (cf. the ZK-5 polyhedron, p. 325). For
reasons to become apparent (§ 7.5.2) we label this net W*S8.

Crystallographic data for the W8 structure are (see also p. 373):

w's Im3m, a = 4+V8 = 6.828, r = 0.302
4-4-4-84-12in 96 L T (xykz s yde ko), Zax = 1, 2ay =3 +42, 22z =3 + V8
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The density corresponds to a silicate with framework density FD = 10.5 tetrahedral
atoms per 1000 A3, We do not know of a zeolite based on this framework; the most open
known structures based on 4-connected nets have FD = 12.5. The 12-rings in W8 are not
planar; they have angles of 135" (compare 150" for plane dodecagons). The structure also
contains 24-rings.

A closely related structure occurs in the synthetic zeolite known as CoAPO-50 which has
& framework with composition Co3AlsPgO45. The structure (Fig. 7.43) contains cubes
connected by squares forming hexagonal layers containing 12-rings. The layers are joined
by edges connecting opposite vertices of the cubes. Crystallographic data for the ideal form
of this structure (which has a density close to that of faujasite) are:

CoAPO-50 . P3lm, a=41815, c=27321 r= 0387
4.8-4-8-4-8 in 4 k: H(1/3,2/3,22), z = 0.1830
4448412 in 12 b Hry,2: Fop.2 1 y=07.2 5 7.0, 5 23,702 s Fy-r.2),
x=0.1381,y=2/3, z = 0.3943

Fig. 7.43. The CoAPO-50 net viewed almost down c.
A related net is that of MAPSQ-46 which is left as an exercise-(7.12.12),
*7.5 Rare and dense 4-connected nets

In the Chapter 6 we discussed sphere packings with particular attention to the densest
packings of equivalent spheres. It is natural to ask also what is the rarest (Ieast dense)
packing of equivalent spheres. If we require the sphere packing to be stable, i.e. each
sphere to be in contact with at least four others with points of contact not all on the same
hemisphere, we must consider 4-coordinated sphere packings, or what is equivalent, 4-
connected nets with equal edges.

We remind the reader that the density, expressed as vertices per unit volume, we call the
geomeiric density. In the context of nets, we consider one to be topologically dense if it
has a large number of kth neighbors (obviously, all 4-connected nets have four first
neighbors). As a measure of density in this respect, we arbitrarily use the cumulative sum
of the numbers of topological neighbors, ng, for the first ten coordination shells (ie. k=1
to 10} as a measure of the topological density. Appendix 3 elaborates on this topic.

Es]
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The catalytic activity of zeolites is intimately bound up with the sizes of the rings in the
structure, and considerable discussion has focused on topics such as the connection
between ring size and density (in both senses). The same topic is also of interest in

-connection with glasses; for these a direct measure of ring sizes is generally unavailable,

but can possibly be inferred from the density.
*7.5.1 Two dense nets

We consider here a second net (the first is diamond) with only two vertices in the
repeat unit and a fourth net {the other three were described in § 7.3.11) with only three
vertices in the repeat unit.

To derive the first new net we systematically remove one third of the edges of the
6-connected net of the primitive cubic lattice. The way that it is done is illustrated on the left
in Fig. 7. 44. The arrangement of the vertices is cubic, but if the edges are considered, the
symmetry is tetragonal: Pdy/mme a = 1, ¢ = 2 with vertices in 2 a: 00,0 ; 0,0,1/2. The net
cant be distorted so that each vertex has only four (instead of six) geometrical nearest

‘neighbors as suggested in the center of the figure. The symmetry is now /4 {/acd and

vertices are in 16 e: I % (x,0,1/4 ; x,1/2,3/4 ; 1/4,1/4-x,0 ; 1/4,3/4—x,0). For unit edge
length and the next nearest distance as large as possible (V5/2),a=2,c=V14 and x = 1/8
{r=1.069). Note that distortion slightly increases the geometrical density.

-
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Fig 7.44. Left: the CdSO0y4 net derived from a primitive cubic array. Center: the same net distorted so
that each vertex has oniy four geometric nearest neighbors. Right: a dense net with three vertices in the
repeat unit.

This net is found as that of Cd,S (joined by -O-) in CdS04 (HgS0y4 is isostructural)
hence the name, CdSOy net. The short symbol for the vertices is 65.8. It is interesting that
one of the angles is not contained on any ring, as all circuits containing that angle have
shortcuts (cf. § 7.1.1). We use oo to symbolize such an angle and the long Schiifli symbeol
becomes 6-6:6-6-67-<0. It is very dense in the topological sense; the numbers of neighbors
are:

n=d,np= 12, mp= 4% -6 (k>2) R
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Our second dense net (Fig. 7.44, right) is derived analogously by deleting one-half of
the edges corresponding to nearest neighbor distances in a primitive hexagonal lattice.
Taking into account the edges the symmetry is P6722. Unlike the previous one, this net
does not appear to be realizable with shortest distances corresponding only to equal edges.
It does, however, have some interesting properties that merit mention. Like the previous
net, one angle is not contained in a ring and the long symbol is 77-00-73.73-73-73 (short
symbol 75.9). Tt is the only 4-connected net that has been described that does not have at
least one 6- or smaller ring. It also has the largest number of topological neighbors of any
known 4-connected net, so we call it dense net; the numbers of neighbors are given by:

k 1 2 3 4 5 6 >6
me 4 12 36 72 122 188 6k2-30 (7.9

*7.5.2 Rare sphere packings
This topic was considered many years ago by Heesch and Laves who found what was

long considered to be the rarest (least dense) stable sphere packing. This structure is
derived by replacing the vertices of the diamond net by groups of four spheres in contact

(so that their centers form a regular tetrahedron), The tetrahedral groups are arranged so

that they make contact along the diamond structure edges. We name this structure HL44 or
D4 (because the vertices of the D lattice complex are replaced by groups of four); see
below for a crystallographic description.

A fragment of the structure is shown in Fig. 7.45. In the figure shaded tetrahedra replace
vertices of the diamond net. :

Fig. 7.45. Hlustrating how HL44 is obtained by decorating the vertices of diamond.

We call this process of replacing a vertex of a 4-connected net with a tetrahedral group of
vertices decorating. It turns out that at least four other nets can be decorated in this way to
give new uninodal nets. They are derived from the lattice complexes *@ (quartz), 8%, W*
(sodalite) and *V. We label them +(4, §"4, W*4 and +V4. Here are their crystallographic
data in abbreviated form:

HL44 (D4)  Fd3m, a =8 + 43 = 5.1378, r=0.236 {(p =0.1235)
3:129-3-122-3-122in 32 e: F * (.0 ; X, 1/4x, 1d—x), x = T/(B + Yog) = (.0362

T
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+04 P6222, a = 3.550, ¢ = 3.885, r = 0.283
312-3-122-3-1671n 12 k, x = 0,458, y = 0.115, z = 0.09}

54 Ia3d, a = 7.168, r = 0.261
3.12-3-129-3-127 in 96 A, x = 0.063, y = 0.224, z = 0.424

W*a I3, a =2 4 12 = 6.2426, r= 0,197 (p = 0.1033)
38312312 in 48 j: ] £ Otz ; Oz by,
y=(172+ '\’2)."& =0.3066, z=(1/2 + 3f‘d’2)fa =0.4199

+y4 14132, a = 4 + 48 = 6.8284, r = 0,151 {p = 0.078%}
3.6-3-202-3-203 in 48 i, x = y = V2/8 = 0.1768, z = 0

The last of these is the rarest, but does not correspond to a stable sphere packing as the
four contacts of spheres are all on the same hemisphere. The others, and D4, are stable
sphere packings. W™4 is illustrated in Fig. 7.46 which shows how it is derived by
decorating the sodalite net. It is possibly the rarest stable sphere packing. The density
(fraction of space filled by spheres in contact is 8/(2 + 3¥2)3 = 0.1033 (compare with the
density of /18 = 0.7404 for closest packing).

Fig. 7.46. The rare (low density) sphere-packing net W4 obtained by decorating the sodalite net with
tetrahedral groups (shaded).

It is worth noting the apparently paradoxical fact that the most open nets are
characterized by having a large number of small rings. The rare nets listed above all have -
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three 3-rings or four 4-rings in their symbols (they also have large rings as a consequence).

On the other hand dense nets generally have a small number of 3- or 4-rings, often shortest

rings of & (7 in the case of the dense net). .

It is interesting that density {or rarity) in the gecmetrical sense is correlated with density
in the topological sense. In Table 7.1 we list (for maximum volume form) the number of
vertices per unit volume, #, for some mostly dense or rare nets. Also listed is ¢1p, the
cumulative number of topological neighbors out to tenth neighbors. The net 4-4-4-8-4-12
(W*8) was deseribed in § 7.4.5. It can be derived by replacing the vertices of the sodalite
(W*) net by cubes of vertices (the centers of the cubes are on a sodalite net). It is possibly
the rarest uninodal net that does not contain 3-rings.

Note that if the restriction to uninodal nets is lifted, nets (but not szable sphere packings)
can be constructed of arbitrarily low density by repeating the process of decoration.!

Table 7.1. Some dense and rare aets compared

net Schlifli symbol r cto
 dense 79-00:73-73-72:73 1.155 2078
CdS50,4 6-6-6-8-f3-ca 1.000 1488
coesite 4.6-4-6-8-97 0.845 1324
4-8-4-97-6-8 0.845 1321
quartz 6-6-62-62:87:87 0.750 1230
NLO 62-62-62-67-82-87 0750 1186
diamond 62:62-62-63-62-62 - 0.650 930
sodalite 4-4-6-6-6-6 0.530 790
Wt 4:.4:4.8.4:12 0.302 433
D4 =HL4,4 3-122-3-129-3-129 0.236 496
w4 3-8-312:3.12 0.197 409
+i 3.63:204-3-20, 0.151 350

Fig. 7.47. The two inter-penetrating D4 nets (light and darker shaded} in D4™.

The D4 (HLA44) net (among others) can be intergrown with itself in a way such that the

IM. O'Keeife & S, T. Hyde, Zeits, Kristallogr. (1996).

Three-Dimensional Nets and Infinite Polyhedra 333

shortest distance between vertices of the two nets is greater than the edge length (in much
the same way as *Y* and -Y* intergrow to produce ¥**, see § 7.3.12). The two intergrown
D4 nets are called D4”. The unit cell edge is now only half that the original fce cell and a
lattice vector translates from a vertex on one D4 net to an identical vertex on the other net
(see Fig. 7.47).1 The structure of LiCo(CO)4 is based on this principle with {Li}O4 and
{Co)C4 tetrahedra joined by C-O bonds. Zn{CN); = Zn(1)Zn(2)(CN)4 is isostructural. In
the structure of Znly there are tetrabedral Znly groups joined by common corrners to form a
supertetrahedron (Fig. 5.18, p. 150) and the Zn arrangement is topologically the same. The
Pb arrangement in NaPb is similar. {Data for these compounds are given in Appendix 5.)

p4* Pii3m, a = V2 + 23 = 2.5689
vertice in 8 e K0 5 V242, 1/24,00K, x = 1/4 + Y24y = 0.1124

7.6 Clathrate hydrates; foam, and grains

Imagine a foam of equal-sized bubbles. The surface of the bubbles will form space-
filling polyhedra with edges and faces curved so as to minimize their surface area. Three
faces meet at an edge with dihedral angle 120° and four edges meet at a vertex with angles
of 109.47°, 50 the vertices and edges will form a 4-connected net. The structures can also
be considered as packings of polyhedra with 4-, 5- and 6-gon faces. As discussed by

.Kelvin over a hundred years ago, the simplest such net will be sodalite which, as we have

seen (p. 315), is based on a space-filling by truncated octahedra.

Similar arrangements are found in a number of different contexts such as the crystallites
of a fine-grained metal or ceramic and aggregates of biological cells, The crystal structures
of clathrate hydrates are also based on these principles, for example the hydrogen-bonded
framework of O atoms in HPFg-6H20 is sodalite. Framework silicates with structures
based on these nets are known as clathrasils.

It is common in this context to use symbols for polyhedra that specify the number and
types of faces. Specifically a symbol [M™ N"....] refers to a polyhedron with m faces that
are M-gons, n faces that are N gons, etc. Thus the space-filling truncated octahedron is a
14-hedron with six square faces and eight hexagonal and has symbol [46.63]. For
polyhedra with three edges at every vertex the number of vertices is (mM + nN + ..}/3.

Interesting related space-filling polyhedra were discovered by Willlams.2 Converting
two square faces and two hexagonal faces of [49.6%] into four pentagons will produce a
polyhedron [44.54.66] with symmetry mm2 that has four quadrangular, four pentagonal
and six hexagonal faces as shown in Fig. 7.48. This polyhedron (with slightly curved
edges) will fill space to produce the first Williams structure. Although there is just one kind
of polyhedron, there are now four kinds of vertex.

Crystallographic data for the structure are:

INote that two intesgrown D (diamond) rets are just bee and again the unit cell for the intergrowth
has haif the edge of the original. :
2R, E. Williams, Seience 161, 276 (1968).
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Williams 1 Pdy/nem,a=2302,c= 7.909, r = 0.573
4-4-6:6:6-6 in 4 a: £(3/4,1/4,0 ; 3/4,1/4,1/2)
5.5-5-5-6-6 in 44 £(3/4,1/4,3/4 ; 1/4,3/4,3/4)
vertices in 8 it Hxx,z ; 12-x,x,1/247 ; x,1/2~x, 11247 ; 1/2-x,1/2-x,2)
4-4-6-6-6-6, x = 0.096, z = 0.0618 ; 4-5-5-6-5-6, x = 0.096, z = 0.1882

Fig. 7.48. The mm?2 l4-hedron in a space-filling configuration. The two aspects shown are related by
rotation by 180" about a horizontal axis.

There is 2 second polyhedror with the same symbol [44,54.6%], now with symmetry
222, that also fills space. It is found in the structure of BaCu;Py4 in which the Cu and P
atoms form a 4-connected net (the coordinations are {Cu}Ps and {P]Cu;P3).
Crystallographic data for the net with unit edge are given below.

BaCujPy Fddd, a=2.334, b = 8.207, c = 4.488, r = 0.538
4.4.5.6-6-6-in 16 £ F * (1/8,5,1/8 ; 1/8,1/4—¥,5/8), y = 0.5065
4-5-5:6-6-6 in 32h: Fx {xy.7; 34-x.3/4y.2 ; 34-xy.3/4-2; x,3/4-v,3/4-2),
x=0,195 y=(.1820, z = 0845

Fig. 7.49. The net of Cu (filled circles) and P in BaCup Py projected on (100). On the left as a 4-
connected net and on the right as a packing of polyhedra, In the latter, the numbers ate the x coordinates of
the centroids of the polyhedra (Ba positions) in multiples of 1/8.
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The structure (Fig. 7.49) contains egual numbers of both enantiomorphs of the
polyhedron. Another feature of the structure is that it contains rods of {Cu}Py tetrahedra
sharing opposite edges that run alternately along [101] and [10T] and connected by P-P
bonds. Ba atoms are at the centroids of the polyhedra (for ¢rystaliographic data see
Appendix 5).

Continuing the process of converting squares + hexagons to pentagons will produce the
second Williams space filling polyhedron [42.58.64] with two square, eight pentagonal and
four hexagonal faces. The structure of the polyhedron packing is now rather simple (Fig.
T.50)

Williams 2 Pdy/mnm, a = 2.325, ¢ = 3.880, r = 0.572
5.5-5-5-6-6 in 4 o £(0,1/2,1/4 ; 1/2,0,1/4)
4.5-5-6-5-6 in 8 j: £(xrx, k7 5 U2+x,1/2-x,1/24z), x = 0.152, z = 0.129

Fig 7.50. The Pdyimrm space filling by poiyhedra shown projected on {110). Filled circles are the
5-5-5-5-6-6 vertices (in 4 d).

Finishing the process of eliminating squares produces a polyhedron [512.62] with twelve
pentagonal faces and two hexagonal faces.! This polyhedron does not {ill space but the
structure of the hydrogen-bonded framework of the cubic chlorine hydrate (of approximate
composition 2Clz. 15H70) is made of a packing of pentagonal dodecahedra [512] and these
14-hedra [5!2.67] in the ratio 1:3 (Fig. 7.51). This is sometimes known as the type I
hydrate structure. The same framework occurs in the naturally-occurring (impure) form of
silica known as-melanophlogite. The same structure is also found in alkali silicides and
germanides typified iy NasySiz; in which 51 atoms are at the vertices and Na atoms center
the larger polyhedra. A stereo view of the net is in Fig. 7.89 (§ 7.11.8).

The structure of the hydrates of a number of molecules such as CHCl3 contains
dodecahedra again and also 16-hedra [512.6%] packed in the ratio 2:1. This is known as the
type II hydrate structure. The 16-hedron s shown in Fig. 7.52; it has symmetry 43m.2

Data for the nets with unit edge length (this condition is sufficient to fix all the
coordinates) are:

IThis polyhedron 1s the dual of the bicapped hexagonal antiprism (Fig. 5.12, p. 143).
2This polyhedron is the dual of the Friauf polyhedron (Fig. 5.12, p. 143).
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Type 1 Pni3n, a =4.3021, r = 0.578
5-5-5.5-6:6 in 6 ¢: £(0,1/2,1/4)x
5-5-5.5-5-3 in 16 i £(x,0,%x 5 1/24x,1/24x,1/220)%, x = 0.1829
5-5-5-5-5-6 in 24 kr £(0,y, 2z 5 1/2,1/242,1/24y )x, y = 03099, z = 0.1162

Type II Fd3m, 2 = 6.2054, r = 0.552
5.5-5-3.5-5in 8 & F £(1/8,1/8,1/8)
5.5.-5-5.5-5in 32 e: F £ (x.x.x ; x,1/4—x,1/4-x)K, x = 0.2180
5-5-3-5-53-6 in 96 g: F * (x.x.2 ; x,1/4~x,1/4-7 ; Hd-x,x,1/4—7 ; 1/4—x,1/4—x,2)K,
x=0.1820, z = 0.3709

Fig. 7.51. A fragment of the Type 1 hydrate (clathrasil) structure viewed down [001}. Dodecahedra are
shown with heavily shaded faces. Tetrakaidecahedra share hexagonal faces to form rods along <100>. The

rods are packed (by sharing pentagonal faces) as in the =W cylinder packing. Dodecahedra fill interstices in

this rod packing.

The last structure {Type H) comes close to having all vertices 56. The unit cefl contains
sixteen 12-hedra, eight 16-hedra, 144 5-gons and sixteen 6-gons. It does not appear
possible to make 4-connected nets with afl 5-rings, although model builders (see Notes at
the end of this chapter) will find that remarkably large clusters of packed pentagonal
dodecahedra can be made before strain becomes too severe to continue. To construct a
“spaghetti” model of the type II net it is best to make one 16-hedron and then to construct
dodecahedra on each of its pentagonal faces (there is only one way to do this); it should be
obvious how to proceed thereafter. A stereo view of the net is in Fig. 7.90 (§ 7.11.8).

Fig 7.52. The hexakaidecahedron appearing in the Type U hydrate net.
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The Type I net also occurs as Si or Ge frameworks in compounds M, St or M,Ge
formed by decomposition (loss of M = alkali metal) of MSi or MGe at high temperatures
under vacuum. The synthetic zeolite dodecasil 3C is also based on this net.

The polyhedra in this section have three polygons (not necessarily regular or even
planar) meeting at each vertex. For such a polyhedron (see the exercises in Chapter 5) the
number of faces, F and vertices, V are related by 2F = V + 4, and the number of edges, E
= 3V/2. If there are Fy4 faces with four edges and F's faces with five edges then 2Fq + F5 =
12. There is no constraint on the number of faces with six edges.

We revisit the clathrate hydrate structures in Appendix 4 where two further structures are
mentioned. Attention is also directed to the structures of the zeolite clathrasils (§ 7.8.6).

7.7 A summary of the simpler 4-connected nets

Here {Table 7.2) is a list of the simpler uninodal 4-connected nets either with Iess than 4
vertices in the topological repeat unit or quasi-regular. Z is the number of vertices in the
topological repeat unit (primitive unit cell). “L.c.” refers to the symbol for an invariant lattice
complex. It would be of interest to know if this list is complete. The list for Z =4 would be
quite long.! The dense net is uniform in that it contains only 7-rings.

Table 7.2. Names and properties of some simple 4-connected nets

net Z symbol le. regular | uniform
diamond 2 67+67-02-69:67-62 D yes yes
CdSoOy 2 6-6-6:6-67+00 ne yes
quartz 3 6-6-69-62-87-87 +o quasi no
NbhO 3 62:62-62-63-82-82 I quasi no
w2 3 37777972 no no
dense 3 Tooe-1373-73-73 no yes
sodalite 6 4-4-6-6-6-6 w* quasi no
HL43 6 3-3:109-102-102-102 v Gquasi no
§* = fa3d 24d 12 6-6-69-67-67-67° 5 quasi yes

7.8 Zeolite nets

The current considerable interest in zeolites stems from their value as catalysts and
“molecutar sieves” and each vear sees a number of new structures discovered. Their

1Nats not realizable with shortest distances between vertices corresponding to edges probably should be
excluded. There are five aninodal nets with Z = 4 in this chapter, we know of only one other. See M.
O'Keeffe, Phys. Chem. Minerals 22, 504 (1993).
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properties are, to a large extent, determined by their structures, so we devote some space to
this topic (but by no means exhaust it).!

An invaluable guide to zeolite nets is the Awlas of Zeolite Structure Types? which
includes eighty 4-connected nets of natural and synthetic zeolites. The Arlas contain stereo
diagrams of each net, coordination sequences for cach vertex, references and synonyms.
Some structures appear dauntingly complex, but many can be described rather simply as
they contain a short axis suitable for projection. Once one learns to “read” the projection, it
will be found that the three-dimensional structure may readily be reconstructed {model
making is highly recommended). As in many instances we provide coordinates for
idealized nets (not given in the Atlas), they can be readily studied by computer.?

The term zeolite is not rigorously defined: it is used loosely to refer to any oxide with an
open structure (say r < 0.6) based on a framework of corner connected { T}O4 tetrahedra®
Some authors use the terin clathrasil to refer to those structures without large channels
(shortest ring at each angle a 6-ring or smaller). From this point of view sodalite is a
clathrasil. Pentasils are open silica-rich alumino-silicate structures in which the smallest
rings are 5-rings. Some of these are referred to as silicalites.

A number of stmpler zeolite nets have already been described (an index to zeolite nets in
this chapter is given in § 7.8.8, p. 353). Here we describe some more, using easily-
recognized structural units (such as “zig-zag” or “crankshaft” rods) as an organizing
principle. The reader uninterested in zeolites is invited to scan through this section quickly,
pausing perhaps to admire some of the more-beautiful structures that occur. '

*7.8.1 Zig-zag structures

In § 7.3.3-7.3.5 we described some nets, including those of zeolites Li-A, MAPQ-39,
AlP0O4-31 and cancrinite, which contain parallel zig-zag rods of vertices. The repeat
distance for a unit edge zig-zag is typically about 1.65 time the edge length (about 1.65 x
3.05~=5 A for zeolites) and many zig-zag structures have one short axis of abou this size,
and have all vertices lying on mirror planes, so that they are readily shown in projection. In
such a projection the framework appears as a two-dimensional 3-connected net,
Cancrinite for example {Fig. 7.19, p. 307), projects as the 4.6.12 net.

A good introduction to the properties and uses of zeolites is the article by J. M. Newsam in Sofid State
Chemistry: compounds (A, K. Cheetham & P. Day, eds.) Oxford (1992). A good source of data concerning
zeolles is Handbook of Molecular Sieves by R, Szostak [Van Nostrand, New York (1992},

2%, M. Meier & D. H. Otsen, Adlas of Zeolite Structure Types, Third Ed. Butterworth-Heinemann
(1992). This also appeared as issue 5 of the journal Zeolites, 12 {1992). Natural Zeolites by G. Gotardi &
R. Galli [Springer, Bertin (1985}] has good drawings that will be appreciated by model buitders.

3The symmetry of real materials is generaily lower that the maximum syminetry of the net. For
structures for which we do not give coordinates, see the references given in the Atlas of Zeslite Structure
Types. Note also that our coordinates may, in some instances, be rather different from those in real
structures; they do however serve to define the topology of the net. )

4When heated, zeolite minerals give off water as steam, and the name comes from the Greek for boiling
stone. Purists insist that the term “zeolite” should be restricted to alumino-sificate minerals, but the wider
sense used in this section (and in the Atlas) now has general currency.

Three-Dimensional Nets and Infinite Polyhedra 339

A particularly simple net with both double and single zig-zags occurs in the zeolite
known as NaJ with ideal composition NazAl»Si20g-H20. The net is illustrated both as a
projection down the zig-zags and in clinographic projectton in Fig. 7.53. Crystallographic
data are:

Nal Pmma, @ = 1.576, b =2.525, ¢ =2.525, r = 0.597
6:6:6-6:-62-69 In 2 g: +(1/4,1/2,2), z = 0.378
4-67-4:62:6:82 in 4 k: £(1/4,£y,z), ¥y = 0.198, 1 = 0.122

Fig. 7.53, The NaJ net. Left: projected on (100} with open and filled circles at x = 1/4 and 3/4
respectively. Right: in clinographic projection. Compare with Fig. 7.62 (A1POQ4-25) p. 346.

Fig. 7.54. The MAPO-36 net projected on {001} with b horizontal on the page. Open and ﬁlled.circles
are at z = 0 and 1/2 respectively. Note that zig-zags are shown as double lines and that double zig-zags

project as rectangles.

The net of the zeolite MAPO-36 {with a MgAl;P1204g framework) projec.ts as 4.6.12
with the squares changed to rectangles representing a double zig-zag in projf:ct]on (an.d -the
hexagons and dodecagons also distorted) as shown in Fig. 7.54 (contrast with cancrinite,
Fig. 7.19, p. 307). Data for this net are:
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MAPO-36 Cmem, a = 4357, b = 6.687, ¢ = 1.697, r = 0.485

46-4-6:6-60in 8 g: C £ (x,y,1/4), x = 0,385, y = 0.040
4-62-4-62:6-127in 8 g, x = 0.319, y = 0.183
462:4-62-6:123 in 8 g, x = 0.115, y = 0.251

A number of zeolite nets with zig
pentagons.

(LiAISi;06.H20) and CsAlSisOy; (Fig. 7.55). Data are:

bikitaite Cmem, a = 2,365, b = 5.104, ¢ = 1.656, r = 0.600
32:62:6-6-6-6.in 4 ¢: C £ (0,y,1/4), ¥ = (0.055 )
5-5:5-56-82in 8 g Ct (&xy,1/4), x=0.289, y = 0.198

CsAlSisO012 Cmem, a=1602, b= 4.713, ¢ = 5.151, r = 0.617

56:5-6-576in 8 f: C£(0y.z; 0.,1/2-2), y = 0,045, z = 0.088
5:5-5:5-6-8 in 8 f, y = 0.255, z = 0.058
36566282 in 8 £,y = 0.440, z = 0.153

Fig. 7.55. Left bikitaite Projected on (001
= 1/4 and 3/4 respectively. Right: CsAlSi
filled eircles are atx =0 and 172 respectivel

) with b_ vertical on the page. Open and filled circles are at z
5012 projected on (100) with ¢ vertical on the page. Open and
¥.

The synthetic zeolites ZSM-12, ZSM-23 and theta-1
small amounts of Na and-Al) are alse derived from two-dimensional nets, but now

includir}g either decagons or dodecagons (see Fig. 7.56). The nets of the first two contain
seven different types of vertex, but theta-1 has a simple description:

(essentially hydrous silica with

theta-1 Cmem, a=4.575, b =5638, ¢ = 1625, r = 0.573

3:5-5-5:62:102 in 4 ¢1 C = ((hy,1/4), ¥ = 0.262

3:5-5.5-63-% in 4 ¢, y = 0,635 (note the absence of a ring at one angle}
5-5.5:5-6-102 in 8 g1 C % (x,5,1/4), x = 0,209, y=0210 ”
52-62-6:62:6-62 in 8 g, x = 0.307, y = 0,052

T ¢ -Zags project as two-dimensional nets containing
Wwo simple examples basc on pentagon-octagon nets are those of bikitaite
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Z5M-12 C2im,a=803,5=162 ¢=392 f=1077,r=058

ZSM-23 P, a = 1.62, b =694, £ =3.50, r = 0.59

Fig. 7.56. Three zeolite nets with zig-zags (shown as double lines} projected down the short axis. Top
left: ZSM-12. Top right: theta-1. Bottom: ZSM-23, Filled and open circles differ in elevation by /2
the vertical repeat distance.

*7.8.2 Crankshaft structures

In § 7.3.6 (p. 308) we discussed some nets derived from the two-dimensional net 4.82
that contained vertices arranged on double crankshafts. In that section coordinates and a
schematic illustration of merlinoite and gismondine were given. It might be noted that
the repeat distance of a crankshaft is about 3.3 times an edge length: this translates into a
repeat distance of about 3.3 x 3 A =10 A for silicates and related materials (atumino-
phosphates etc.). In projections down the crankshaft axes, vertices are at elevations about
+0.15 (in units of the projection axis length) from mirror planes (which are either at 0 and
1/2 or at 1/4 and 3/4). Here we describe two more double crankshaft structures. The first
is found in the aluminesilicate phillipsite and the second in a form of aluminum
phosphate known as AIPG4-C.
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Crystallographic data for phillipsite and AlPO4-C are:

phillipsite Cmem, a =3.446, b =4322, ¢ = 4.359, r = 0.505
both vertices 4-4-4-85-8:8 in 16 4: € + (tx
vertex 1: x=0.145, y = 0.109, 7 = 0.044
vertex 2: x = 0,355, y = 1.243, £ = 0.135

W2 Ty, 1/2-7)

AlPO4-C Cmca, a =2.988, 5= 5897, ¢ = 3334, r=0545
4-4-4-82-8:82 in 16 g: C % (Eey.z £, 1/24y,1/2-7),
x=0.167, y = 0051, z = 0.120
46-4-6682in 16 g, x=0.167, y = 0.221,z=90.120

These nets, together with merlinoite and gismondine are illustrated in Fig. 7.57

Note that in the figure the projection is down the axis of the double crankshaft (which

' prodiectfzi as (2)1 ée(c):tangle). Note also that merlinoite contains octagonal prisms (shaded)
centered at 0,0,0 and 1/2,1/2,1/2. Some relationships between the st

. ? t

4.8y should be apparent from the figure. rctues (all based on

Fig. 7.57. Top left: gismondine proj i i
: projected on {100) with ¢ vertical on the pa ight:
- : : ge. Top right: AIPO4-C
prqected.on (100} with ¢ vertical on the page. Bottom left: phillipsite (100) with & veilicil on the : (]
Bottom right: merlinoite projected on (001). In ea e

ch case open circles are vertices at ab
. \ out +0.15 an
filled circles are vertices at about 0.5+0. 15, Double crankshafts project as rectangles ‘
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Another zeolite framework with double crankshafts is gmelinite (§ 7.3.7, p. 310); this
is based on the two-dimensional net 4.6.12.

A simple zeolite framework containing both single and double crankshafts is found in
AlPO4-12 (AlPO4-33 has the same framework). Data for this structure (illustrated in Fig.
7.58) are:

AlPO4-12 Pmma, a = 3276, b =2.498, ¢ = 2.863, r = 0.512
4.894-89-6-87 in 4 g: £(x,1/2,z ; 1/2-5,1/2,2), x = 0,097, z = 0.356
4-4-4-6:8-8 in 8 I: (x,Ey.z ; 12—x,%y,z), x =0.097, y =0.200, z = 0.134

The short axis of AIPO4-12 is b, It might be noted that along this direction (horizontal in
Fig. 7.58) vertices form rods (either all filled or all empty circles in the figure) that are
referred to as “saw-tooth.” We use a projection down saw-tooth rods in § 7.8.3 (next).

Fig. 7.58. AIP0O4-12 projected on (100) with b horizontal on the page. Double crankshafts project as
rectangles. Yertices not on a double crankshafl are on a single crankshaft. Open circles are vertices at x = 0.1
and 0.4; filled circles are vertices at x = 0.6 and 0.9. Compare with Fig. 7.53 {NaJ), p. 339.

*¥7.8.3 Saw-tooth structures

A rod intermediate between a zig-zag and a crankshaft is known as a saw tooth. A
double saw-tooth rod is illustrated in Fig. 7.59. Now there are two kinds of vertex—the
“teeth” (T) and the “base™ (B)—in the ratio 1:2 on the rod. The repeat distance of a saw-
tooth rod is sbout 2.4-2.6 times the edge length (about 2.5 x 3.0 A = 7.5 A in zeolites).
The T vertices are on mirrer planes at elevation either O and 1/2 or at 1/4 and 3/4 in
projection down the rod, and the B vertices are about 0.2 from the mirror planes. Again
some zeolite structures are conveniently shown as projections, but the figures must be
interpreted with care (see, for example, the legend for Fig. 7.60).

Fig. 7.59. A double “saw-tooth” rod. “B” and “T” indicate a base and a tooth vertex,
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_ Two simple nets featuring double saw-tooth rods are found in the nets of the zeolites
Linde-L and mazzite (both silica-rich aluminosilicates) shown in Fig. 7.60. '

Linde L Poimmny, @ = 6.007, ¢ =2.354, r = 0.489
4-834-85-6:12 in 12 p: Fey,0; ete), x = 0.096, y =0.359
4-4-4-6-6-8 in 24 r F(x,y,z s ele), x = 0.167, y = 0.500, z = 0.288

mazzite P6s/mme, a = 5816, ¢ = 2.505, r = 0,490
4-82:4-82:56 In 12 j: 20y, 1/4; etc), x = 0.495, y = 0.161
4-54:5-8-12 in 24 & Hxp.z ; ete.), x = 0,096, ¥y =0.364, 7 = 0050

Fig. 7.60. Top: Linde L projected on (001). Open circles are T vertices at z = 0, shaded circles are B
vertices at z = 30.29, The latter form hexagonal prisms centered at 1/3,2/3,1/2 and 2/3,1/3,1/2. Botom:
mazzite projected on (001). Open and filled circles are T vertices at z = 14 and z = 3/4 respectively.
Shaded circles on saw-tooth rods with teeth at z = 1/4 are B vertices at z=-0.05 and 0.55; shaded circles on
saw_-tooth rods with teeth at z = 3/4 are B vertices at z = 0.45 and 1.05. Note that here the rectangles are
projections of the “doubie saw-tooth™ rods of Fig. 7,59 '
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Some other saw-tooth nets found in silica-rich alumino-silicate nets are found in
mordenite, dachiardite, ferrierite and ZSM-57. Symmetries and unit cell parameters (for
unit edge) of these nets are:

mordenite Cmtem, a=5.60,6=680,¢=242 r=052
dachiardite CUm,a=5834,b=248,¢c=330, 8= 1120°, r=0.54
ferrierite fmmm,a =625 50=434, c =241, r=0,55

ZSM-57 Imm2,a=244,b=403 ¢=6.13,r=052

The nets are shown in projection in Fig. 7.61. To interpret the diagrams note that {a)
filled and open circles are T vertices on mirror planes separated by 1/2 the projection
distance; (b) shaded circles are B vertices at elevations of approximately 0.3 above and
below the T vertices to which they are connected, () saw-tooth rods are shown as double
lines.

Fig. 7.61. Top left: mordenite projected on (001) with a horizontal on the page. Bottom left: ZSM-
57 projected on (100} with ¢ horizontal on the page. Top right: dachiarvdite projected on {010) with ¢
horizontal on the page. Bottom right: ferrierite projected on (001) with a horizontal on the page. See also
the text.
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*7.8.4 More up-down structures

In § 7.3.8 we described two nets (one was of the zeolite AlPG4-5) based on “up-
down” connections of two-dimensional nets. Some rather complicated AIPO4 structures
that have recently been discovered are based on this principle, so again there is a short axis,
and they are readily depicted as projections down that axis (Fig. 7.62). The repeat distance
along the projection axis is about 2.7 the edge length (i.c. about 8.4 A in alumino-
phosphates). Note that these nets contain only even rings and that in the real materials Al
and P altemate (lowering the symmetry).

Data for the two simpler of these nets with unit edge are:

VPI-5 POy/mem, a = 6.086, ¢ = 2.674, r = 0,406
4-63-4-63-6-64 in 12 k: #(x,0,4 ; etc.), x = 0.4227, 7 = 0.063
4:626-63:62-63in 24 I H(x,y,z; ete.),x = 0.1786, y = 0.5120, z = 0.563
AlPO4-25 Cmma, a = 2,603, 5 =4.800, ¢ = 3149, r = 0610

6-62:6-67-62:67 in 8 m: C & (dx,1/4,2), x = 0308, z = 0.849
4.62-6-63-67.63in 160 C (Fey.z s 20,129,123,
x=0.192, y = 0.099, z = 0.651

Fig. 7.62. Top left: AIPO4-11 projected on (100) with b horizontal on the page. Top right
AlPO4-41 projecied on (001) with b horizontal on the page. Boutom left: VP1-5 projected on {G01).
Bottom right: AIPO4-25 projected on (100) with b herizontal on the page. Additional edges go “up” from
open circles and “down™ from filled circles, '
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The AIPO4-41 net has symmetry Cmem and four different kinds of vertex; The
AlPO4-11 net has symmetry Imma and three different kinds of vertex.

Another member of this family that has recently been discovered is known as AIPQy4-8.
This beautiful structure, shown (again slightly idealized) in Fig. 7.63, has five different
kinds of vertex and contains 14-rings. The symmetry of the net is also Cmem.

Fig. 7.63. AIPO4-8 projected on (001) with a horizontal on the page.

*7.8.5 The “ABC-6” family

Fig. 7.64. Sodalite projected on (111} with a hexagonal cell outlined. Open circles at 1/6, shaded circles
at 1/2 and filled circles at 5/6 of the repeat unit 1/22<111>. Edges joining vertices at 5/6 to those at /6 (i.e.

1/6) are not shown.

In § 7.3.5 (p. 306} we commented on cancrinite which we described as a stacking of
plane hexagons centered at 1/3,2/3,1/4 and 2/3,1/3,3/4. By analogy with the nomenclature
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?Sefj for sphere packing (§ 6.1.1), we could describe that stacking sequence A5... The
inclined edges linking the hexagons formed double zig-zag rods. Similarly in gm;l.inite
(8 7.3.7. p. 310) there are hexagonal prisms centered at 1/3,2/3,1/4 and 2/3.1/3.3/4 and
the stacking of hexagons could be described as AABB.. and the edges not perp,end;cular to
the stacking direction form a double crankshaft rod. ;

A sequence of hexagons stacked AAB... produces 4 structure hased on saw-tooth rods
This is found in the zeolite offretite. .

The primitive cell of sodalite (§ 7.3.10) is rhombohedral with g = V6, o = cos-1(-1/3)
= 109.47" and contains six vertices with X,z equal to the six permutations of 1/4,1/2.3/4.
These comprise a planar hexagon normal fo [111] and centered at 1/2,1/2,1/2, Paciciné the
rhombohedral cells will result in the hexagons being stacked ABC along a 3-fold axis as
shown in Fig. 7.65.1

Nets derived by stacking hexagons in positions A, B or C are known as ABC-6 nets and
about a l:IOZen have been recognized in natural and synthetic zeolites.2 Some of these are
summarized in Table 7.3. The entries under “vertex types” are the numbers of
topologically-distinct kinds of vertex. -

Chabazite is CazAlg8i12034-20H20; The net contains a rhombohedral stacking of
hexagonal prisms (contrast sodalite which has a rhombohedral stacking of single
hc?xagons}. The remaining space consists of large (36-vertex) polyhedra as illustrated in
Fig. 7.65. Data for the net are;

chabazite R3m, a = 4404, ¢ = 4.757, r = 0.451
: 444868 in 36 i: R (x,y.z7; etc.), x = 0.106, y = 0.439, 7 = 0.062

Fig, 7.65. Tl’-IE: large polyhedron in chabazite formed by a linked stacking of hexagona! prisms. For two
hexagonal prisms only one square face is shown (shaded).

IThe skeptical reader may wish to ransform sodalite to a hexagonal cell as outlined in § 4.4.2. The
cell has 2 = 4 and = 6 and contains 18 vertices. Compare with the 12-vertex cell of cancrinite given in
§7.3.5 {p. 306) which has the same a, and ¢ two-thirds as large.

For a systematic discussion of possible ABC-6 structures and their ! i
mmetries, see J. V. .
M. Bennett, Amer. Mineral. 66, 777 {1981). d * Smith &3
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Table 7.3. Some ABC-6 nets

sequence ner vertex types
AB cancrinite 1
ABC sodalite 1
ABAC losod 2
ABABAC liottite 3
ABABACAC afghanite 3
AABB gmelinite 1
AABBCC chabazite 1
AABBCCBBAACC AlPO4-52 3
AAB offretite 2
ABBACC TMA-E 2
AABAAC erionite 2
AABCCABRC levyne 2

%7 8.6 Pentasils (silicalites), clathrasils and related structures

We have already met the frameworks of melanophlegite (Si0O;) and dodecasil-3C
in § 7.6 where they were identified as the frameworks of clathrate hydrates cailed Type ¥
and Type II respectively. (A zeolite named ZSM-39 also has the latter structure). Another
simple structure based on a space filling of polyhedra is octadecasil (the same framework
has been found in AIPO4-16). In this structure cubes pack with truncated rhombic
dodecahedra in the ratio 1:1 to fill space as shown in Fig. 7.66. The large polyhedron with
18 faces (an octadecabedron = [46.612}) may be derived by truncating the acute vertices
(where four edges meet) of a rhombic dodecahedron. The centers of each set of polyhedra
fall on points of an fcc lattice; accordingly, taken together the centers have a NaCl
arrangement. Data for this net are given on the next page.

Fig. 7.66. The octadecasil net, Left: as cubes connected by isolated tetrahedral vertices (filled circles).
Right: the cctadecahedron.
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octadecasil Frm3m, a = 4.309, r = 0.500
6-6-6-666in8c: Fx (1/4,1/4,1/4)
4:6:4-6-4-6 inx 32 FFE(Eeen)x x=0116

A particularly beautiful clathrasil known as sigma-2 has recently been described. This is
based on a packing of 36-vertex icosahedra [512.68] and enneahedra (43.56], The large
pelyhedron, which has symmetry 42m, is called the “tennis bali” because the pentagons
form an endless strip rather like the seam of a tennis bail (see Fig. 7.67).1 Like that of most
clathrasils, the structure is difficult to illustrate satisfactorily, but it js easy to make a model.
In sigma-2 the “tennis balls™ share opposite hexagonal faces to form rods along <100> as
indicated in Fig. 7.67, and the smaller polyhedra (also shown in the figure) fill the
interstices of the packing. The rods of face-sharing tennis bafls are packed as in the 4-layer
cylinder packing of § 6.7.2 (b) (p. 264).

The crystallographic description is fairly simple:

sigma-2 Hyjamd, a =328, c = 11.17, r = 0.53
5-65636in 16 A: [ £ (0,2 ; e[c.),}‘ =0.098, 2 =0.7133
4-6:3-3-35in 16 k: [ £ (D, ; ete.}, y = 0.038, 7 = (.3669
4-6-53-5:5-5 in 16 k: [ £ (O,y,2 ; ete.), y = 0.098, ¢ = 0.5529
4-6-53-5-3-5in 16 £ 1 £(x,0,0 ; ete), x = 0.274

Fig. 7.67. Left: The “tennis ball” icosahedron as it appears in sigma-2, The 4 axis is vertical on the
page. Middle: part of the icosahedron packing of sigma-2 viewed down [001]. Right: the enneahedra that
fill the interstices are shown in two different orientations.

A zeolite named AIPO4-22 is included hers because it is another simple example of a 4-

1For more on this and related polyhedra see Appendix 4,
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connected net derived from packing polyhedra. (As the net contains 8-rings, most authors
would not classify this material as a clathrasil.) The net is shown in projection in Fig. 7.68.
Model builders will discover that it is made up of equal numbers of two kinds of polyhedra;
one with 10 faces [45.64] and the other with 18 faces [48.68.82] (Fig. 7.68). Fach kind of
polyhedron forms rods along ¢ by sharing opposite faces. Crystallographic data for the
ideal net are:

AlPOy4-22 Pdlnmm, a = 4324, ¢ = 2,547, r = 0.504
4-4-4-6-6-6 in 8 g: £ (x,x 0etc), x =0.134
4.4.6-6-6-8 in 16 k: £ (x,p,2, etc.), x = 0.029, y = 0.866, z = 0,345

The 4-4-4-6-6-6 vertices form squares at z = @ and the 4-4-6-6-6-8 vertices form octagons
at z = +0.35. How the polygons are connected should be evident from Fig. 7.68.

Fig, 7.68. Left: the ALPQ4-22 net projected on (Q01). Open, shaded and filled circles are at z = 0, 0.35
and 0.65 respectively. Right: the two kinds of polyhedra in the structure (¢ is vertical), The top and bottom
faces of the polyhedra are separated by ¢,

Fig, 7.69. Left: a pentasil unit. Right: three condensed pentasil units

The structures known as silicalites are rather more complicated. The net of silicalite 1
{ZSM-5) has twelve different kinds of vertex and that of silicalite 2 (ZSM-11) has eight
different kinds. 3- and 6-rings dominate but there are also 4- and 10-rings in the structures.
A basic building block in these structures is the “pentasil unit” (shown in Fig. 7.69) which
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is a polyhedron with eight pentagenal faces (a “pentagonal octahedron™) and two divalent
vertices. These can be condensed into corrugated slabs as hinted in the figure, The silicalite
structures are then derived by joining the slabs either across mirror planes to form silicalite
2 or through inversion centers to form siljcalite 1.!

*7.8.7 Fibrous zeolites

The materials under this heading are a group of natural and synthetic zeolites with some
fascinating crystal chemistry. The basic building unit is the rod of vertices shown on the
left in Fig. 7.70. These rods can be linked in two directions perpendicular to the rod axis as
shown on the right in the figure which illustrates the linkage in edingtonite.

Fig. 7.71. Left: edingtonite projected on (001); numbers are elevations in multiples of ¢/100. Right:
natrolite projected on {0C1); numbers are approximate elevations jn multiples of ¢/8.

1Good illustrated accounts of these structures are given by C. A Fyfe et al., J. Amer. Chem, Soc. 111,
2470 (1989) and D. H. Olsen er ai,, J. Phys. Chem. 85, 2238 (1981). Silicalites are important commercial
catalysts.
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The two simplest topologies are:

edingtonite  Pdm2, g = 2.204, ¢ = 2.122, r = 0.485
42-4384:84-84-84in 1 4: 0,00
4-83-4-83dp-84 in 4 j: (te,0,z ; 04x,7), x = 0.273, 7 = 0.376

natrolite fifamd, a = 4406, c =2.124, r = 0.485
4-42-84-84-84-84 in 46 1 £ (0,1/4,3/8)
4-82-d-82:42: 84 tn 16k T £ (03,2 ; 1/2,y,1/2~z ; 1id+y, 174,344z ;
1f4+y,3/4,1/4-7), y = 0.387, £ = -0.001

Fig 7.71 shows, on the left, edingtonite in projection. The rods project as centered
squares and together with the links between rods form a 4.82 pattern. It is important to
recogrize that we have described the net in its most-symmetrical minimum-density form. In
real material (edingtonite has the ideal formula BaAl;Siz01¢-H20) the framework collapses
as discussed for scapolite in § 7.3.8 (see Fig. 7.25, p. 312) and the unit cell is doubled. In
the real material the symmetry is further lowered by Si,Al ordering and is in fact P2,2;2.

Fig. 7.71 also shows natrelite in projection. The links between rods are now at four
different elevations and form rods arranged as in the four-layer cylinder packing of § 6.7.2
(b). Natrolite itscif has the ideal composition NapAlSi30102H70. The same framework is
found in other minerals such as scolecite, CaAl28i3G10:3H,0 (note the substitution of 2Na
by Ca+H30) and also in anhydrous synthetic materials such as RbyGaGes01p. Again the
framework is partly collapsed and its symmetry is lowered from Iy/amd to 1424, Si,Al
ordering in natrolite further lowers the symmetry to Fdd2 (with a doubled cell) and in
scolecite Ca, HzO ordering reduces the symmetry further o Ce. It is common to use the
same size of cell for these structures: this entails using a face centered cell for all four
symmetries. The tetragonal space groups become Fd1/ddm and Fad?2 (sce § 3.34, p.73)
and Cc becomes Fd. The descent in symmetry is in terms of full symbols:

parent structure F M/d 2d 2Um
collapsed F 4 d 2
Si/Al order F d d 2
Ca/H20 order F 1 d 1

The conventional Ce cell is obtained from Fd by (001/010/1/20 1/2).
Thompsonite, which has approximate composition NaCay Al58i5020-6H30, has a close-
Iy related structure with a different linkage of rods.!

7.8.8 Zeolite net nomenclature and index

The bewildering variety of names for naturaf and synthetic zeolites has lead the Structure
Commission of the International Zeolite Association to establish three-letter symbols for

IFor a systematic account of linkages and symmetries possible for fibrous silicates, see J. V. Smith,
Zeits. Kristatlogr. 165, 191 (1983).




354 Chapter 7

Structure topologies.! These are given in Table 7.4 for the zeolite rets discussed in this
chapter (three of these are in the Exercises § 7.12) together with the names that we have
used, so this section can serve as an index to those structures. It is a pity that no generally
agreed symbols are available for other common nets (such as diamend and keatite)
which oceur in many different contexts.

Table 7.4. Symbols, names and sections for some zeolite nets

ABW  Sraly §733 GIS  gismondine §7.3.6
AEL  AlPO4-11 §78.4 GME  gmelinite § 737
AET AlPO4-8 § 7.8.4 JBW  NaJ § 781
AFG  afghanite § 785 KFI1 ZK-5 §7.43
AFL AlIPOy4-5 §738 LEV levyne § 7.8.5
AFQ  AIPO4-41 § 7.84 LIO liottite § 785
AFS MAPS0-46 §7.12.12 LOS losod §7.85
AFT AlPO4-52 §785 LTA Linde A § 7.4.1
AFY  CoAPO-50 § 7.4.5 LTL - Linde L § 783
ANA  analcime §7.12.6 MAZ mazzite §78.3
APC  AIPO4-C § 782 MEL  silicalite 2 (Z5M-11) § 7.3.6
AST  octadecasil § 7.8.6 MEP  melanophlogite §76
ATN  MAPO-39 §7.35 MER  werlinoite §7.3.6
ATO  AIPO4-31 § 734 MFIL  silicalite 1 (Z8M-3) § 7.8.6
ATS  MAPO-36 § 7.8.1 MFS ZSM.s57 § 783
ATT  AIPQ4-12 § 7.82 MON montesommaite § 7127
ATV AIPQ4-25 § 784 MOR  mordenite §7.83
AWW  AIPO4-22 §7.86 MTN  type II {ZSM-39) §7.6
BIK hikitaite § 7.8.1 MTT ZSM-23 § 7.8.1
CAN  cancrinite §73.5 MITW ZSM-12 § 7.8.1
CAS  CsAlSiz0;4 § 7.8.1 NAT  natrolite § 787
CHA  chabazite §7.85 OFF  offretite § 785
DAK  dachiardite § 783 PHI phillipsite § 7.8.2
EAB TMA-E § 785 RHO  rho § 742
ED1 edingtonite § 7.8.7 SGT  sigma-2 §7.8.6
EMT  bex. faujasite § 7.4.4 SOD  sodalite § 7.3.i0
ERI erionite § 785 TON  theta-1 § 7.8.1
FAU  fauajasite § 744 VFE VPI-5 § 784
FER  ferrierite § 783

7.9 5-connected nets

Five-connected nets have received comparatively little attention, Describing them by
Schlafli symbols gets a little cumbersome as there are now ten angles and they cannot be al]
equivalent.2 Some examples are to be found jn the structures of borides which often have
extended B-B bonding with connectivity ranging from 2 {forming rods) through 3 (forming

The index of the Atlas of Zeolite Structure Types has 332 entries.
This follows from the fact thar the complete graph with five points is not plarar and therefore cannot
represent the vertices and edges of a three-dimensionai polyhedron.
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layers)to 4, 50r 6 (forming three-dimensional frameworks).

Cur first three examples also represent space filling by regular and Archimedean
polyhedra, The first of these is a space-filling by octahedra and truncated cubes (3.82) and
is found in nature as the B structure of CaBg and similar borides such as KBg and LaBg. It
is illustrated in Fig.7.72. This is a simple cubic structure; data for unit edge length are:

CaBg Prdm, a= 1442 =2.4142, r = (426
vertices in 6 e & (0,00, x = 142 + ¥2) = 0.2929

In €aBga = 4.151 A, Ca is a 172,142,142 in the center of the truncated cube (24-
coordinated by B), and the x parameter {0.302) for B is close to the ideal value given
above.

Fig. 7.73, The boron arrangement in UBq.

The second five-connected structure is a space-filling by truncated octahedra,
cuboctahedra and truncated tetrahedra that is the B structure of UB17 and isostructural
borides (e.g. NiB1z, LuB ;7). The crystallographic description is again very simple:
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UBy2 Frdm, a =18 = 4.2476, r = 0.629 {a = 7.473 A for UB15]
vertices in 48 i £ (1/2x,20K, x = 1/3

A sketch of part of the structure is shown in Fig. 7.73. In UBy3, U atoms in 4 a: F +
{0,0,0) center the Bog truncated octahedra. The centers of the cuboctahedra are at 4 b: F +
(1/2,1/2,1/2) and the centers of the truncated tetrahedra are at 8 ¢ FE{1/4,1/4,1/4).

If the truncated octahedra and half the truncated tetrahedra are omited, the rermaining
truncated tetrahedra and cuboctahedra form an infinite polyhedron 3.4.62.4. The symmetry
of the figure is now F&3m, but the positions of the vertices are the same (see Fig. 7.74).

The third polyhedron packing is a space-filling by cubes, octagonal prisms, rhombi-
cuboctahedra (3.43) and truncated cubes (3.82). n Fig. 7.74 the network of cubes and
rhombicuboctahedra is shown as an infinite polyhedron 3.44. The complementary
polyhedron (also 3.4%) consists of truncated cubes (3.82) joined with octagonal prisms.

Fig. 7.74. Left: a fragment of an infinite polyhedron 3.4.62 4. Right; Rhombicuboctahedra and cubes
forming an infinite polyhedren 3.4%,

Crystaltographic data for this structure are:

344 Pedm,a=2+2=34142, r = 0.603
vertices in 24 m: (fxtxt2)K, £ = 1/(4 +Y8) = 0.1465, £ = 1/9-x

Per unit cell there is one rhambicuboctahedron {center af cell corner), one truncated cube
(center at cell center), three octagonal prisms (centers ia cell faces) and three cubes (centers
in middle of cell edges). As an example of the occurrence of this structure we cite the
structure of Pdj7Se;s (for crystallographic data see Appendix 5) which is truly a
polyhedrist’s delight. In the unit cell of this structure, 24 Pd atoms make up the
S-coordinated packing and additionally: {Pd}Seg octahedra center the rhombicuboctahedra,
PdgSers clusters consisting of Pdg octahedra edge-capped by Se forming a Sejz
cuboctahedron {cf. § 5.2.4, Fig. 5.32, p. 159) center the truncated cube and {Pd}Ses
squares center the octagonal prisms. The unit cell content is accordingly
PdSes-PdgSe 2 (PdSeq)s-Pdag = Pd34Sesp. Rh17815 is isostructural, .

Two more five-connected infinite polyhedra foliow. The first (Fig. 7.75) is 33,62 and is
made up of truncated tetrahedra sharing triangular faces with octahedra {so that two
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opposite faces of an octakedron are shared with truncated tetrahedra). Crystallographic data
are :

33 g2 Fdim, a = 6.6024, r = 0333
vertices in 96 g: F * (x,xz etc.), x = 0.0714, z = -0.0357

In this structure, the connectivity of the truncated tetrahedra {(by octahedra acting as
links) has the diamond topology (the centers of the truncated tetrahedra form a diamond
net). The structure can also be considered as octahedra Jained to six neighboring octahedra
by a fifth edge, as in CaBg, but now the topology is different-—the centers of the
octahedra are at the points of the 7 lattice complex.

Fig. 7.75. Left: part of an infinite polyhedron 33.62. Right: part of an infinite polyhedron 3.4%.

Another infinite polyhedron with vertices 3.44 consists of truncated tetrahedra sharing
hexagonal faces with hexagonal prisms (Fig. 7.75). This arrangement is a conspiclous part
of the so-called E structure which occurs for compositions such as Mgz Al gCra, ZrZnyy
and AljgV. Crystallographic data for the five-coordinated packing are:

3.44 Fd3m, a=5.138, r = 0.709
vertices in 96 g: F # (g etc.), x = 0.0562, 7 = 0.3314

7.10 Nets with mixed connectivity

Nets with mixed connectivity inevitably involve more than one kind of vertex. Here we
give some examples of such nets with just two kinds of vertex.

*7.10.1 (3,4)-connected nets

A very simple cubic structure (Fig. 7.76) has been proposed for Pt304 in which the
atoms lie on invariant lattice complexes:
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P304 Pm3n,a =558 A
Ptin 6 c: £(1/4,0,1/2)¢
Oin 8 e 2(1/4,174,1/4 ; 1/4,3/4 3k

In this structure there are {Pt}O4 squares and {O}Pta equilateral triangles with the Pt-Q
distance equal to a/V8. The O atoms are on the points of a primitive cubic lattice. The Pt
atom positions correspond to lattice complex W and form non-intersecting rods of Pt atoms
a distance a/2 apart. The rods, parallsl to the cube axes, are packed as in the B-W cylinder
packing (§ 6.7.3).

Fig. 7.76. The structure of P304 as a {3,4} connected net.

Boron in borates is commonly found as {B}Oj3 triangles and {B 104 tetrahedra forming
frameworks by sharing vertices. Exercise 2 gives an example of a 4-connected net derived
from vertex sharing tetrahedra in CaB204 and the structure of B203 was cited (§ 7.2) as
providing an example of a 3-connected net derived from vertex-sharing triangles. The
structure of boracite, Mg3B7013Cl, which contains [B}0O; triangles and {B}0y tetrahedra
provides an elegant example of a (3,4) connected net of B atoms. Per formula unit there are
4B0Oss2 + 3BOy = B7047 in the B-O-B framework.

Here we describe just the idealized (3,4)-connected net, The basic unit consists of an
octahedron of 4-connected vertices (B) with 3-connected vertices {A) centering four of the
octahedron faces to form an A4B6 cluster (shown in Fig. 5.31, p. 155). Joining these
octahedra by vertex sharing as shown in Fig. 7.77 [in the same way as in the J lattice
complex {Fig. 6.27)] produces stoichiometry A4Bg/2 = A4B3. For unit edge the
crystallographic description is:

boracite net P43m,a =5
3-connected in 4 e; (xx.x; X.X.00K, x = 1/6
4-connected in 3 d: (1/2,0,0)x

In the real structure of boracite at high temperature,  the unit celi edge is doubled to allow
suitable B-O-B configurations, and the symmetry is Fd3c. Below 300 °C, the symmetry is
lowered to Pca2y but the topology of the framework is unaltered.
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Fig. 7.78. Generaticn of 3- and (3,4)-connected nets from diamond (left). The (3,4)-connected net
discussed in the text is shown in the middle and the ThSiz net is shown on the right. In each case 2 body-
centered tetragonal cell is shown and in the projection on (100), ¢ is vertical, and points shown as filled and
empty circles have elevations differing by dx = 1/2.

3-connected nets can simply be derived from 4-connected nets by replacing each
4-connected vertex by a pair of 3-connected vertices as shown in Fig. 7.78. The figure
shows how to generate the ThSiy net from diamond in this way. On the left diamond
projected on (:10) (cf. Fig. 7.11, p. 302} and on the right the Th&iz net is projected on
{(100) of its tetragonal (I4{/amd) cell (cf. Fig. 7.8, p. 298). Notice how each diamond
vertex becomes a pair of 3-connected vertices with their edges in planes mutually at right
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angles. If only half the diamend vertices are so altered, a simp]le (3l,4)-cennccted net is
obtained. The ring size (all 8-rings) is intermediate betweer} that‘m diamond (alll 6—r1ng§)
and in ThSiz {(all 10-rings). The net has only three vertices in the repeat unit and is
probably the simplest (3,4)-connected net. The cell is again body-centered tetragonal:

Hm2, 2 =1.800, c = 3.744
4-connected in 2 a: 7+ (0,0,0)
Jconnected ind £ 1+ (0,1/2,2 ; 172,07}, z = 0.3836

(3,4)-connected net

7.10.2 (4.6)-connected nets

Simple examples of (4,6)-connected nets with two kinds of vertex occur as the
structures of corundum (YIAlIVO3) and ViNiyivss,

In structures based on a framework of tetrahedra sharing corners with octahedra {and
vice versay}, the central tetrahedral and octahedral atoms form vertices of a (4,6)-connected
net. Examples of such structures are these of the polymorphs of Fep($04)3 and
Al (WOy)3; in these structures -O- links serve as the edges of the net, Just as for stmctgres
based on tetrahedral frameworks, “stuffed” variants are also found. In tl'.lc foliow:ng
examples the atoms in bold face are on the net (different in every case apd with -O- links
again serving as edges) and the remaining metal atoms are in cavities in the frlamework:
garnet, CazAly(8i04)3; langbeinite, KyMga(804)3; nasicon! = NagZr(8i04)3 and
AL(WO4)1.

Fig. 7.79. Corandum as a (4,6)-connected net.

INasicon is a good Na-ion conducting silicate (Na silicate eonductor).
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As for 4-connected nets, the same topology is often found in different contexts; for
example, the same (4,6)-connected pet is found in corundurm, rhombohedral Fea(504)3
and in nasicon. We call it the corundum net. The corundum structure is possibly best
appreciated as a packing of {Al}Og octahedra (see § 6.1.6), however it is shown as a bond
(Al-O} network in Fig, 7.79.! Fig 7.80 shows the connection of octahedra and tetrahedra
in thombohedral Fe, (SO3.

The occurrence of the corundum net in crystal structures illustrates the hierarchical way
structures can develop. In AlxO3, the edges of the net are Al-O bonds, in Fes830;5 the
edges are Fe-0-S bonds. In KzFeZZn3(CN)[2.xH20, the edges are Fe-C-N-7Zp bond
groups (atomns in bold correspend o the vertices of the net). The molar volume of the last
compound is over eight times that of the first ong,

Fig. 7.80. The rhombohedral Fez(804)3 structure as a network of vertex-sharing (Fe}Og octahedra and
[5}04 tetrahedra. The structure is projected down c, Although two kinds of octahedra are apparent in the
drawing, they are topelogically equivalent.

The different (4,6)-connected nets we have mentioned are readity distinguished by
comparing their coordination sequences. The example below shows (2) that the (4,6)-nets
of garnet and Ala(WO4)3 are topologically distinct {despite a statement to the contrary
sometimes encountered), and (b) that there are two topologically-distinct W atoms in
AL (WO,

net atom nj [} n3 ny ns ng
garnet Al 6 12 42 50 114 110

Si 4 16 28 74 76 162

Aly(WO,) Al 6 4 42 50 4 110
W1y 4 17 28 70 76 163

W(2) 4 16 28 72 76 162

For many people, Fig. 7.79 will merely illustrate the difficulty of interpreting “bail and stick”
diagrams of structures!
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Fig. 7.81. A part of the garnet structure shown as linked {$i)0Q4 tetrahedra and [Al}Og octahedra
projected down [111]. For clarity only about a half of the polyhedra in the repeat unit {= (a + b + ¢)/2] out
of the page are drawn,

The common, and important, structure of garnet is remarkably difficult to illustrate or
describe. Here we illustrate (Fig. 7.81) just the connectivity of octahedra and tetrahedra
which correspond to a (4,6)-connected net with -O- links as edges. Note that the vertices
of the net (Al and Si positions) are at the sites of invariant lattice complexes (see § 3.4 for
a list of coordinates); in § 6.6.4 we showed how the cation positions are related to Cr3Si.

For some low-density (4,6)-connected nets see Exercise 15,

7.11 Notes
7.11.1 More 3-connected nets

Wells (reference in § 7.11.10) made a special study of uniform 3-connected nets (those
in which the shortest rings at each angle are the same size). In contrast to uniform
4-connected nets, which are all 66, Wells found nets 73, 83,93, 103 (see § 7.2) and 123
Here we list coordinates for a few of the simpler 3-connected nets with one kind of vertex,
The reader may enjoy drawing them. They serve to illustrate the topologies that can oecur.

A simple net 124-127-124, which cannot be constructed with all angles equal to 120°, is
for maximum volume:

123 P6722, a = 2475, ¢ = 2.026
vertices in 6 g: £(x,0,0 ; x.x,1/3 ; ¥.5,1/3 ; 04x,2/3), x = 0.298
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There are many 83 nets. Known nets with one kind of vertex are a 8-8-32. The first
cannot have all angles equal to 120°, so we give coordinates for maximum volume; for the
other two (Fig. 7.82), the coordinates are for bond angles of 120°:

I Im3m, 2 = 6352
vertices in 96 [ [ + (Fxdy 47 by v te), 5 = 0.349, y = 0.190, z = 0.079

L. P6222, a =573, ¢ =
vertices in § &; (x,2x,0 (X200 23,13 50,103  20x,2/3 5 £,2%,203), x = 2/5

1L Rim,a=5,¢c=6
vertices in 18 £ R+ (x 00 0.x,0; x,x0), x =25

Fig. 7.82. The nets I (left) and III (right) projected down ¢, Open, shaded and filled circles are at
elevations 0, 1/3 and 2/3, respectively,

Net II occurs as the {(Cu,S) ret in BiCu384 (Cuand S are 3-coordinated to each other).

As the 103 ¥* (§ 7.2) net is the only 3-dimensional 3-connected net with equivalent
edges it is the only one that can be decorated with triangies to produce a uninodal
3-connected net (cf. § 7.5.2).) The 3-dimensional net is 3-205-205 and is probably the least
dense three-dimensional uninodal net (¢1g9 = 207), we call it ¥*3, Data for this net are:

¥*3 14132, a = 40024 - 18y = 6.0044, = 0. 196, o = 0.0555
vertices in 24 g1 / + (1/8,x, 1/d—x s 3/8.x,3/d—x ; 5/8,1/2x,3/4+x H
8,142+, 174+, 1 = (V12 - 3)/8 = 0.0580

The quasiregular 4-connected NbO (J*) net could not be decorated with tetrahedra as the
edges are coplanar; however if each vertex is replaced by a square, a 3-connected uninodal
net is obtained? with symbol 4-12,-12,:

4122 Ii3m, a =2 +3
vertices in 24 g: / + (x,0,172 V020, x = 14 + \fS) =(.1464

“Five-clectron” compounds AB, where A is an alkali metal and & is from group 4A

!The analagous process in two dimensions produces 3.122 from 63,
The analogy in two dimensions is the generation of 4,82 from 44,
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(column 14) of the pericdic table, have some fascinating structures, usually with B in three-
coordination. The mest common structures are KGe and NaPb in which B atoms fgrrn
tetrahedral groups. In LiGe, however, a 3-dimensional net is formed in which the vert1°ces
are 8-8-103 {(LiSi and MgGa have the same structure). The angles are less than [20° as
might be expected! and we give the actual coordinates for the structure,

LiGe e, a=995A, c=578 A
LHin 16 £ [ % (.25 W2-x35,1/247 ; 3=y, Vd+x,1d+z -
3/4+y, 3M-x, 3442, with x = G100, y = (.100, z = -0.055
Ge (8-8:103) in 16 £, with x = 0,106, y = D.051, £ = 0,304

With these parameters, the Ge-Ge distances are 2.55 (2x) and 2.60 A._The: next shortest
Ge-Ge distances are 4.10 A (2x). A sketch of the Ge structure is shown in Fig. 7.83.

Fig. 7.83. The Ge net in LiGe.

Finally, a cubic net 6:9-9 which cannet be made with angles of 120°, so is given in its
maximum volume form:
6.92 Fd3m, a = 6.521

vertices in 96 g: F & (2 ; x.1/d—x,1/4—7 ; 1/4—x.x, /A= ; d—x, 1 /d=x.2)K,
x = 00708, z = 0.8875

7.11.2 Model building
Most three-dimensional nets are best appreciated by building modeis. Fortunately,

“spaghetii” models of 3- and 4-connected nets are casily and cheaply built fmrfl readily
available triangular and tetrahedral connectors and plastic tebing.2 Connectors with 3 mm

!'1iGe may be written as Li*Ge; Ge™ with five valence elestrons is f:.xpected to have three 2-e]ec1r§)n
bonds pyramidally disposed and a non-bonding electron pair in an orbital at the apex of the pyramid.
Compare CaSt; (§ 7.2) .

2Available from many chemical supply houses. These are often sold as carbon, nitrogen, e:c. ammi for
building models of organic melecules, although the tetrzhedral stars {also known as caltrops™ or
“calthrops™} probably more often end up as vertices in zeolite frameworks.
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(1/8 inchy diameter spokes are suitable. As considerable bond strain oceurs in small (3-or
4-} circuits, it is best to use tightly-fitting flexible plastic tubing and to make the edges Just
over twice the length of the spokes from the vertices,

J.11.3 Identifying nets

It is sometimes quite difficult to identify nets in crystal structures, particularly when the
stricture is of low symmetry. A good way is to count numbers of (topological) neighbors
using a computer (it is a good idea to count out to ry = 10}. Usually edges in nets
correspond te shortest distances between vertices and it is very simple to count neighbors
in this case. We have given the signature of a number of common nets in this chapter. Tt is
also fairly simple also to get & computer o determine the Schiifli symbols of the vertices,
Counting rings and numbers of neighbors by hand from a model can sormetimes prove
remarkably difficult {nets are known with more than 1000 shortest rings at an angle). If the
net matches in both regards with a known net it is a fairly safe bet that they are the same.

The Exercises give some examples that are suitable for computer study; they are all done
readily using EUTAX,

7.11.4 Diamond and SiC polytypes

In § 7.3.1 we discussed polytypes of diamond, Polytypes of SiC are derived from these
by replacing half the vertices by Si so that each Si is surrounded by four C and vice versa.
In 4 formal sense the structure can be considered as €p Si with C in one half the tetrahedral
sites (either all “up” or all “down”). The polytypes of SiC {(a large number have been
characterized) are usually named for the nature of the close packing, e.g. as hcc or 61 or,
in Zhdanov notation 33 (see § 6.1.4).

There is an important distinction to be made between the description of SiC polytypes
and the description of close packing. In the hec sphere packing all the ¢ spheres are related
by symmetry (see Exercise 6.8.2), but in hee $iC the ¢ layers of Si are not so related (there
are two distinct kinds) and to know which is which, it is necessary to know which of the
two sets of tetrahedral sites is occupied by C. Usually the sequence of layers along the ¢
axis is written on a line; here we use the convention that the direction from left to right is
along the direction of a Si to C vector of a $iC bond parallel to ¢. Thus with Greek letters
for carbon positions 65 SiC is coded (see §6.1.4):

In this sequence A--a, B--j, C--y correspond to Si-C bonds along c. The layer B is & and
the layers A and C are ¢,

The possible symmetries for polytypes of diamond are the centro-symmetric groups:
Fd3m (only for cubic diamond itself), PG3/mme, R3m, and P3m1. In each case the center
of symmetry is in the midpoint of a C-C bond. Tn the polytypes of SiC the center of
symmetry is destroyed and we have the possible symmetries: F43m (only for the
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sphalerite form, polytype symbol 3C), Pé3me (polytype symbol NH), R3m (polytype
symbol NR), and P3m1 (polytype symbol NT). In giving coordinates for atoms in SiC
Polytypes it is convenient to take an origin midway along a $i-C bond so that for every Si
atxy.z there is a C at %,7,7. Thus we need only give explicitly coordinates for Si. It might
be noted that in all polytypes except 3C, the Symmetry at atom sites is 3m.

Table 7.5. Coordinates for idealized polytypes of SiC {see text)

type vertex  pos  z§j type vertex pos  Z§j
3C C
2H h b 116 10H, cchhh b 33/80
4H ch a 13/32 <311> chhhe b 180
<2> he b 532 hihce a 980
6 cch b 17/48 hhcch & 1780
<3> che b uag hechh a 5/16
hce a 316 10H3 chchh b 4980
9R chh a 6972 <221>  hehhe a 1780
<2i> hch a 13/72 chhch b 13116
hhc a 5372 hhche b 3380
8H| ccch b 2164 hchch b 180
<4 cche a 29/64 15R, cchch a 73120
chee b 54 <32> chche a 41120
heee b 45/64 hchee a  3/40
8H7 chhh  a 29/64 chech a 19/40
<211> hithe b 5064 heche a 8
hhach a 13/64 158y chhhh a 3940
hchh b 2164 <2111> hhkhkhe a 17724
12R cchh  a 7396 hihch a 13/120
<31> chhic a 17/96 hhchh a 1011720
hhice a 19732 hchhh a 29/120
hech  a 1132 21R ecchech  a  15/56
5T ccchh ¢ 9140 <43 ccheche a 55756
<41> cchhe a 1740 chechee a 39156
chhce b 58 hechece a 23156
hhcce ¢ 33740 cchcech a 19724
hecech b 1140 checeche a 291168
104 cceeh  a 5/16 hcechce a  31/56
<5» ecche b 33/80
cchee b 1430
cheee  a 9/%0
hcecce b 5780

In Table 7.5 we give a name (6 etc.) for all polytypes with five or fewer distinct kinds
of 8i (and hence C) atom and also fora 21R polytype. Underneath the name, the shortened
Zhdanov symbol.! Next is given in bold the symbol (h or e¥ for the Si layer followed by

'IF the number of symbols between angle brackets is odd the Zhdanov symboi is twice as long. Thus
<22 1> refers t0 221221,
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the symbol for the following layers along the ¢ axis in the direction specified by the sense
of the Si to C bond. Next we give the Wyckoff symbol of the positions and finally the z
coordinate for Si in the ideal structure with regular tetrahedra. For this ideal structure g =
4(8/3)a‘ where d is the Si-C bond length. The coordinates of special positions (z is given in
the'table) and the axial ratios are:

NH Péame, cfa = N(2/3)

2a {0.0.2 5 0,0,1/2+2) ; 2 b: (143,213, 2/3,143,1/2+2)
NR R3m, cia = N(2/3)

3a:R+(0,02
NT P3ml, cla = NN(2/3)

Ta: (0,0,z3: 1 b: (132801 ¢ {213,173,

Dozens of polytypes of SiC have heen characterized. Most are intergrowths of ke (4H)
and hee (6H). Some polytypes have been assigned special names:

B=3C, 1= 15R,, 0 =6H, OI'=4H, TV = 21R.

7.11.5 Two more nets derived from 63; "C” gnd “D phases”

Many compounds MTT'X4 have structures with nets derived from 63 nets (cf, § 7.3.3).
These are often described as derived from tridymite but this is only correct if the net of the
T atoms is lonsdaleite {§ 7.3.1). Here we mention two binodal nets derived from 63
(Fig. 7.84). The first is found as the (Be.P} net in the structure of berylionite, NaBePQy,
and in related compounds, and is often called the “C phase” structure, The second ocenrs in
compounds such as KA1GeO4 [(AlGe) net] and is known as the “D phase structure.”

Fig. 7.84. Derivation of two 4-connected nets from 62. Fourth boads go up and down from open and

filled circles respectively. Heavy lines are quadrangles seen in projection. Left: berylloaite (C phase),
Right: D phase.

In cubanite, CuFe,83, all the atoms are 4-connected, and the net of zll the atoms is
beryllonite (for crystallographic data for cubanite see Appendix 5).
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7.11.6 Nets in CdPy and CdAs,

The nets in CdP; and CdAsy provide a treat. Cd is in tetrahedral coordination and each P
{or As) atom is bonded to two other P (As) atorns so the net of all the atoms i 4-connected
[compare the (Cu,P) net in BaCupP4—see § 7.6]. In CdAsy (Fig 7.85, left), 43 helices of
Ag are cross-linked by Cd atoms. The net is remarkable for the large number of 1 1-rings
{see the vertex symbols below). The net of the Cd atoms alone (with -As- acting as edges)
is diamond, so the structure, considersd as a framework of corner-connected {Cd}Asy
tetrahedra, is topologically the same as that of cristobalite Si0,.

Fig. 7.85. Left: CdAsy projected on {0C1). Numbers are elevations in mualtiples of ¢/8 with even
numbers for Cd. Right: CdP3 projected on (110). ¢ is horizontal on the page and numbers are elevations
in units of Ka+b)IF100. Smaller cirles {at G and 50) are the 5-5-5-5-6.6 vertices.

CdP7 occurs in two forms (o and B) that are topologically the same. The net of all the
atorns has two kinds of vertex, but one kind is P and the second kind is alternating Cd and
P, so there are three kinds of atom in the structure, The net is illustrated in Fig. 7.85
(right).

Crystallographic data for the nets {with unit edge) are:

CdAsp 4122, a = 3.1706, ¢ = 1.5804, r = 0.756
55-6-6-1126- 1126 in 4 a: [ + (0,0,0 ; 0,1/2,1/4)
5-5-52:1120-6-6 in & £ [ + (x,1/4,1/8 ; ete), x = (.4549

CdP2 Pdafnem, a = 21912, ¢ = 3.9493, r = 0.633
5-5-5:5-6-6in 4 b: +(1/4,3/4,3/4 1/4,3/4,1/4)
3-6:5:6-5-T2 in 8 i Hx,x,z; etc.}, x = 0.0886, z = 0.3942

ZnP; and ZnAs; are isostructural. The {Zn,P) or (Zn,As) rets have four kinds of vertex
with 5-, 6- and 7-rings and are not discussed further. Notice that BaCug Py (p. 334) may be
written as Ba2+[CuPy-12 and that CuP3- and ZnP; are isoelectronic.
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7.11.7 More on the moganite, quartz and reiated nets

On p. 322 we mentioned the net of the §j atoms in the mioganite form of Si04. Here
we describe a simple relationship between that net and the quartz net. In Fig 7.86 we
show projections of the P6222 {*Q) and P6422 (-0) enantiomorphs on (1120) of the
conventional hexagonal cell {cf. § 7.3.1 L, p. 316). The two structures are related by
reflection in a mirror plane at elevation 1/4. The bottom left shows the moganite net
projected on (010) of Ibam as it appears in Fig. 7.37 (p. 322). Notice that the net consists
of alternating bands of left- and right-hand quartz net. Interestingly real moganite Si0;
can similarly decomposed into bands of left- and right-handed quartz 5iOs. In the
amethyst form of quartz, Brazilian twins (intergrowths of left- and right-) are common and
microscopic bands of moganite-structure material separate the two enantiomers [for details
see B, G. Hyde & A. C. McLaren, Aust. J. Chem. (1996)].

moganite lbam moganite Crmmm

Fig. 7.86. Top: the two enantiomers of the quartz net projected on (1120) with the arthohexagonal cell
outlined. Numbers are elevations in muitiples of la+bl/4. Bottom left: the moganite net projected on
(010); numbers are now elevation in units of &/d, Note the alternating bands of *Q and - (shaded). Bottom
right: an alternative conformation of moganite with 3 vertices in the repeat unit {projection on (010},
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It should be emphasized that the Ibam conformation of the moganite net is a close
approximation to the Si structure reported for the mineral and for that reason was used to
iltustrate the structure.! However the figure shows that a simpler, more symmetrical
(Cmmm} conformation of the net (with of course, the same topology) can be realized with
only three vertices in the repeat unit, The nets of § 7.3.11 (quartz, NbO and W2) are the
only others known with this property. Crystaltographic data for ¢his conformation are:

moganite net Cmimm, a=3517, b=1.786, ¢ = 1.513
4-4-62-63:82-82 in 2 a: C + (0,0,0)
4-86-0-666 in4 h: C+(x0:1/2), x = 0.186

Fig. 7.86 should readily suggest ways of generating other nets in the quartz-moganite
family. Two simple examples are shown in Fig. 7.87. That on the left (with 6- and 8-rings)
is related to quartz-—but notice that the vertices in 2 g (see below) are co-planar with their
four neighbors (as in NbQ). The net (which also has 4-rings) on the right of the figare is
closely related to moganite. Parameters derived in what should be an obvious way from
those for the orthohexagonal cell of quartz (with a shift of origin) are:

Fig. 7.87 (left) Pmna,a =8, b=+3, ¢ = (&3
62:65-62-62-84-84 in 2 &: (0,0,0 ; 172,0,1/2)
66666267 in 4 g2 2(=1/4,y,1/4), y = 1/3

Fig. 7.87 (right} Pcem, =43, b = (8/3}, ¢ = V8
4-4-68-6-82-82 in 2 e: +(0,0,1/4)
4-810:6-85-6-85 in 4 g: £(x,3,0 ; Ty12), x =13,y = 14

Pmna Pcem

Fig. 7.87. Two nets related to quartz. Lefi: projected {001}, elevations in multiples of ¢/4. Right:
projected-on (019), etevations in multiples of /4.

7.11.8 Stereo picture of nets: Y, clathrate hydrates I and I

Many people find stereo pictures of nets helpful.2 Here (Figs. 7.88-7.90) are such

!BeH., has the moganite siructure, and the structure has symmetry fbanm. See Bxercise 17.
“Steren viewers (available in many bookstores) are helpful. Some peopie find the stereo perception
easier when the picture is turned upside down.
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pictures of three important nets that are difficult to illusirate.
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Fig. 7.90. A stereo view of the Type II hydrate net.
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7.11.9 Anion positions and the possibility of open zeolite frameworks

) We have seen (§ 7.5.2, p. 330) that to make open {rarej nets with low density and large
rings, configurations which also have a large concentration of small (3- or 4-) rings are
generally needed. We have also seen (§ 5.2.1, p- 150) that small rings (<6-rings) put a
constraint on the maximum 7-X-T angle possible for catenated regular { T} Xy tetrahedra.
Thus for a ring of three tetrahedra (Fig. 5.19) the maximum 7-X-T angle is 130.5°, and for
clusters of 3-rings forming a tetrahedron (to give a supertetrahedron of four regula,r {T)X4
tetrahedra), it should be obvious from Fig. 5.18 that the T-X-7 angle is 109.47° [the
tetrahedral angle, cos-1(-1/3)]. Similarly for a ring of four tetrahedra (Fig. 5.19) the
maximum 7-X-T angle is 160.5° and for cinsters of 4-rings forming a cube {to give a
TgX0 cluster of regular {T} X4 tetrahedra, Fig. 5.20) the maximum 7-X-T angle is 148 4°,
To make a cluster of twelve tetrahedra with 7 atoms at the vertices of a pair of cubes
sharing a face, the 7-X-T angles are reduced to 109.47° {Fig. 7.91). The “cubes” are no
longer cubes, but tetragonal prisms; the faces parallel to those shared are square, but the
others have edges in the ratio 1:1.21. - '

A way of making nets of low density is to replace vertices in a net by tetrahedra of
vertices as described in § 7.5.2 (this process can be repeated ad nauseam to produce nets
of arbitrarily low density). Another way is to replace cubes in nets such as those of Linde
A (F_ig. 7.38) or W™8 (Fig.7.42) by stacks of N cubes sharing faces; nets of arbitrarily low
density can be made by increasing M. In both these cases however, some 7-X-T angles
must be as small as 109.47°. In silicas with framework structures the $i-0O-§i angle is
usually greater than sbout 140" (with similar values in related oxides), so these open
structures cannot be formed.! In fact it appears that for alumino-silicates the faujasite
structure is about the least dense that can be made, We give here coordinates for some
tetrahedral framework structures based on simple low-density nets with cubic symmetry.
The coordinates are for regular tetrahedra of unit 7-¥ distance and are such as to maximize
the minimum T-X-T angle. It may be seen that the tetrahedral siructure based on W8 is not
very likely to be formed for an alumino-silicate framework.

Fig. 7.91. Left: a cluster of twelve regular tetrahedra with centers at the vertices of two “cubes” (actually
tetragonal prisms) sharing a common face. Right: a cluster of twelve tetrahedra corresponding to a fragment
of a net containing “up-down” tetrahedra and hased on rectangles sharing a common edge (see text).

1 ) + . .
Minimun: T-X-T angles are much smaller in sulfides than in oxides, so the former offer much greater
- . i
promise for making open framework steuctures, See for example Exercise 16,
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In the case of sedalite we give coordinates for the maximum T-X-T angle; decreasing
the angle (as in the real mineral) will increase the density as described on p. 275. The
transition from (-quartz to a-quartz (§ 3.6) corresponds likewise to a decrease in density
accomplished {for rigid tetrahedra) by decreasing the T-X-T angle.! Thus for a given
topology, the density of tetrahedral framework structures can often be increased by
decreasing the T-X-T angle; but to achieve frameworks of lower minimum density the
minimum 7-X-T angle has to be decreased (see e.g. the crystailographic data below).

sodalite Im3m, a = 5.575, density = 0.0692 T' vertices per unit volume
Tin 124 (14,0172 s ete) s X in 24 ke (O,y,y ;s ete.), y = 0.3536, T-X-T = 160.6°

rhe Im3m, a = 9.2733, density = 0.0602 T vertices per unit volume
Tin 48 i {14y, 1/2—y ; etc.), ¥ = 0.1036
X(1Yin 48 j: O,z ; ete)), ¥ = 0.2242, 7= 03809, T-X(1)-T = 147.6°
X(1)ind8 & (xx,2;etc), x = 0.1658, z = 0.3707, T-X(1)-T = 147.6°

Linde A Pm3m, a = 7.4339, density = 0.0584 T vertices per unit volume
Tin24 k: (Oy,z;etc), ¥y =0.1831, z = 0.3706
X(1) in 24 m: (x,x,2; ete.), x = (0.1098, £ = 0.3447, T-X(1)-T = 148.4"
X2 in 12 A (2012 s et ), x = 02197, T-X(2)-T = 148.4°
X(3)in 12 & (0,5 1 ete), ¥ = 0.2929, 7-X(3)-T = 160.5°

faunjasite Fd3m, a = 15.1618, density = 0.0551 T vertices per unit volume
Tin 192 i: {x,y,z; etc.), x = 0.0361 y = 0.1240, z = 0.3045
X(1) in 96 k: (03,7 ; etc.), y = 0.1059, T-X(1)-T = 140.8"
X(2)in 96 g: (x.x.z ; etc.), x = 0.0697, z = 0.3211, T-X(2)-T = 140.8°
X(3) in 96 g, x =0.3284, 7 = 0.0374, T-X(3)-T = 149.2°
X(4)in 96 g, x = 0.2537, z = 0.1395, ToX(4)}-T = 152.7°

w*8 Inm, @ = 12,5567, density = 0.0485 T vertices per unit volume
Tin 96 I: (x,y,7; etc.), x = 0.0793 y = (.3231, z = 0.4267
X(1)in48 j: (0.2 ;etc), y = 0.1635, z = 0.3917, T-X(1)-T = 133.8°
X(2)in 48 & (14, 1/2-y ; ete)), y = 0.0983, T-X(2)»-T = 133.8°
X(3)m 48 k: (xx,z ; ete.), x = 0.1228, 7 = 0.3897, T-X(3)-T = 133.8°
X(4)in 48 j, y = 0.3309, z = 04281, T-X{4)-T = 168.7°

An interesting way to obtain tetrahedral frameworks of low density has been described.?
The nets are based on the “up-down” principle of coupling 3-connected two-dimensional
nets. In § 7.3.8 (p. 311) examples are given in which “up-down” rods of vertices are
derived from squares of the planar net. In VPI-5 (§ 7.8.4) the net is derived from a two-
dimensional net with pairs of squares sharing an edge (fusion of two up-down rods), and it
should be obvious that VPI-5 (Fig. 7.62) is simply derived from AIPQ4-5 (Fig. 7.23) by
replacing a square by two “squares” (actually now rectangles) sharing an edge. In Fig.

L Another tetrahedral framework than can have variable density is cristobalite (§ 6.3.9, p. 240), Note
that in cristobalite (which has all 6-rings) the T-X-T angle can be as much as 180, In the quartz structure,
which has 6- and 8-rings, with regular tetrahedra the maximum angle is 155.6" (in the - structure).

23, V. Smith & W, J, Dytrych, Nature 309, 607 (1984),
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this type, the vertices on the octagon have Schlifli symbol 4:672-6-63-6-63;
edges betwec.an two rectangles) have symbol 4:63-4-63-6-64. It may be sae,en that th t
most two 4—{mgs meeting at a vertex, so that low (in the limit zero) density is achie\? 1'; ;
this case with g relatively small number of small rings. For frameworks of : lIn
tetrahedra, some of the 7-X-T' angles cannot exceed cos1(-5/9) = 123.75° st
In the real AIPO, framework of VPI-5 [L. B. McCusker ef al.. Z.eolites 11, 308
(1991)] the tetrahedra are not very regular; in particular one { AllOy “tétrahedron:’ is ],:Jetter
thought of as part of an actahedron (with two water molecules completing the coordinatio
spht?r(_a}. The Al-O-P angles range from 137" to 162° (AL.P = 3.00 to 3 27 Ay; .
berlinite AIPOy in which the values are Al-O-P = 142.5° and Al...I-D =3 08' A Fcomeare

all the rest {on

A

Fig. 7.92, An “up-down” net derived b i
. y replacing the squares of TIZr28bs (Fi i
: 2 (Fig. 7.23) b f
t‘}f:;‘t;ngles shax.'mg an edge. L'efl:.showmg the {T}Xy4 tetrahedra in prajection down zhi 4-folc)i ai’ispall{? hot'
network in the same projection. Open (filled) circles are vertices with Tinks to layers above (bel.ow)g .

], lflhc T atoms can be considered 1o lie ona
. ) polyhedral cavity of n T atoms, there are 3n/2 X
atmps (one associated with each T...7' “edge”) generally slightly closer to the center of the
;awty: Thus, for the frarr}ework of Linde A with the coordinates given above, the
ollowing atoms are at the given distances from the center of the cavity: - ,

cavity T atoms X atoms

t.ﬁ.ZS 4.50 (48x) 4.26 (48x), 4.31 (24x)

s .6 3.07 (24) 2.81 (24x), 3.08 (12%)
47 (cube) 1.67 (8x} 163 (8x), 1.63 (4
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Similarly the TXTX... rings on the surface of cages are usually puckered and, especially
for larger rings, with X inside the ring. Fig. 7.93 shows the $-ring in Linde A.

Fig. 7.93. The 8-ring in Linde A TX> with coordinates given on p. 373. Filled circles are 7.

7.11.10 References

The pioneering work on nets and infinite polyhedra by A. F. Wells is collected in his
Three-dimensional Nets and Polyhedra [Wiley, New York (1977} A catalog of
4-connected nets {over 300} has been compiled by Smith and Bennett {see J. V. Smith,
Chem. Rev. 88, 149 (1988}]. References to zeolite nets are given in § 7.8 (p. 337) and
some references to the topology of nets are given in Appendix 3 (§ A3.9). For a review of
structures of clathrate hydrates and inclusion compounds see Chapter 7 of Crystallography
in Modern Chemistry by T. C. W. Mak & G.-D. Zhou [Wiley, New York (1992)].

Those who are skeptical about the relevance of geometry to chemistry should know that
some of the beautiful zeolite and other structures based on polyhedron packings that appear
in this chapter were first described (and illustrated as models) by A. Andrieni in a ctassical
paper Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative
EMem. Soc. Ital. delle Scienze Ser 3, 14, 75 (1907)]. The Type I and Type II hydrate
structures were predicted (and elegantly illustrated) by W. F. Clausen [J. Chemn. Phys. 19,
259 and 662 (1951)]. Many structures now known were predicted in advance, especially
by A, F. Wells and by J. V. Smith and collaborators (loc. cit. supra). Indeed some zeolite
strizctures could only be solved with the knowledge of possible structures, their symmetries
and approximate coordinates. Some nets that were described as “unknown™ in earlier drafts
of this chapter, were subsequently found in recently determined crystal structures.

7.12 Exercises!

1. A body-centered array of cubes connected corner to comer by additional edges will
produce a simple 4-connected net somewhat analogous to the connection of octahedra in the
5-connected CaBg net.2

IMost of the Exercises in this chapter will be tedious to do by hand, but are readily done using a
compuier program such as EUTAX (see the Note to the Reader).
ZThis structure (“supercubane™) has been proposed as a possible form of carbon. See R. L. Johnston &

R. Heffmann, J. Amer. Chem. Soc. 111, 810 {1989). Compare with the octadecasil net (§ 7.8.6).
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Idm, a =2+ 213 = 3.1457
482432483 in 16.£ 1 £ (Srxx)K, x = V34 + ¥48) = 0,1585

2. The 4-connected net of the B atoms in CaBz04 may described as follows for unit
edge (the same net appears in the structures of SrB204, BaAizS4 and BaGapSy):

Pa3, a = 3.5334, r = 0.544,
36777372 in 24 4 Hayz a2y 1127 U2+, y, 1127 ;
12-x,1/2+y,2)%, x = 0.1046, ¥ =0.1709, 7 = 0.3295,

3. LiAIO; is tetragonat:

FLiAIO, P41212 2= 5169, ¢ = 6.268 A
Liand Alind @ : r 005 ¥.5,1/2 5 #1120, 1/24x, 1/4))
For Li, x = (.688 ; for AL x = 0,324

q.lil 8 b (xyz P XL U242 2=y, 1724+x, 11447 124y, 1/2—x,3/4+2 Hp
Y 225 12-x,1/24y,1/4¢ 124,102y, 3/4-2),
x=0210,y = 0,164, z = 0.228. )

_Li and Al are each on diamend nets and the atomis taken all together are on a CrBy net
(this structure is derived from that of BBeO by the substitution 2Be = Li+ Al),

4. B-LiGa0; is orthorhombic:

BLiGa0O, Pral), a=35.402, b =6.372, ¢ = 5.007 A
all atoms in 4 a: (x,y,z VXLFL 24 12+x,12-y,2 ; 172-x,1/24%,1/2+7)
Litx=0421,y=0.127, z = 0.494 ;G x = 0082,y = 0.126,z=00
O(1): x=0.070, y = 0.112, z = 0.37] : O(2): x = 0407, y = 0.139, z = 0.893

Li and Ga are cach on dizmond nets and the atoms taken a]l together are on a
lonsdaleite net (this structure is derived from that of ZnO by the substitution 27n — Li+
Ga). The O atoms are hep, as are the metal atoms (combined).

5. A d-connected net considered by Heesch & Laves is derived from a space filling by
truncated tetrahedra, truncated cubes and truncated cuboctahedra, We call this net HI4;.

HLdz  Fm3m a=2+V18=6.2426, r = 0.395
34-6-86-8 in 96 & F + (e etz Ik, 7 = 14 + ¥72) = 0.0801, x = (1 + V2)z = 0.1934

A “spaghetti” model is easily made if it is realized that sach triangular face of the
truncated cubes is shared with a similar face of a truncated tetrahedron and vice versa. The
truncated cuboctahedra and truncated cubes likewise share octagonal faces,

6: Arzoth?r uninodal 4-connected net oceurs as the {Si,Al) framework of the natural
zeolite analcime, NaAlSirOg-Ha0. A formal description of the net withi unit edge [ength is:

analcime [a3d, g = \4'(96!5) =4.3818, r =0.571 ; 4-4-6-6:84-84 in 48 g: (1/8 ,x.1/d—x sete.), x=1/3
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Try to make or find a good picture of this net (difficult!).

In the bixbyite structure of ScoQs, the O atom positions are in positions 48 ¢ of Ja3:
XY,z ete, with x = 0390, y = 0.153, z = 0.380. Each O atom has four O nearest
neighbors. Show that the net of the O atoms has the same topology as that of analcime.

7. The net of the recently described mireral montesommaite [approximate composition
(K.NajoAlgSiz3Osq-10H20] is very simple [hint; project on {100)]:

moatesommaite HMylamd, a = 2258, ¢ = 5.795, r = 0.542
4:325-82-53-82 in 16 h: I £ {0,y,z ; etc.), y = 0.028, z = 0,0856

8. The diamond net is ubiguitous (see Exercises 3 and 4). Here are two more examples
of its occurrence as the metal arrays in oxides. (Note that we are concerned with the
topology of the structure, in this instance the topology of the net defined by edges joining
the first four nearest neighbors.)

corundum (Alz03) Rél‘. a=4759,¢=12.991 A
Alin 1Z e R £(0,0,7; 0,0,1/242), z = 0.3523 : O in 18 : 0.3064.0,1/4

anatase (TiOg) HMilamd, 2 =3.785,c =9.514 A
Tiind a: [ +{03/4,48); Oin 8 e: 0,1/4,0.0816

9. Another net that occurs in many different contexts is SrAlz (the Al net in SrAly).
Two examples of compounds jso-structural with SrAl; were given in Exercise 3.8.11.
Here are three other examples of its occurrence as the net of (a) Mg and St in SrMgSi, (b)
Both atoms in o-Np and {c} Al and Si in synthetic zeolite Li-A (L1AISiO4-2H;0):

StMgSi Prnma,a =778, b= 4.56,¢c=849 A
Srin4 ¢ 26 W,z 5 U2+x,1/4,1/2-2), x = 0.515, 7 = 0.683
Mgin4ec, x=0.640,2z=0057;Siind ¢, x = 0.276, z = 0.110

a-Np Prma, a=6.661,b=4271,c=4888 A
Np(l) in 4 ¢: k(x, 14,z 3 1/24x,1/4,172-2), x = 0.036, £ = 0.208
Np(2)ind ¢, x=0.319, 7 = 0.842

Li-A Praly,a=1031,5=818,c=5004
Alin 4 a: (xy.2 3 55,1242 5 124x,1/2-y,7 1/2-x,1/24y,1/2+7),
x=0.136,y =0.072,z=025;Siind g, x=0.338, y =0.378, z = 0.252

10. The compound NaGaSns can be considered in a formal sense as Na*(Ga-Sng) with
the (Ga-Sn3) part having four valence electrons per atom, so it is not surprising to find
these atoms forming a 4-connected net. The (Ga,Sn) structure was reported as:

NaGaSns P3112,a = 6328, c = 6.170 A
Mi in 3 a: (xX,1/3 ; x,2x,2/3 ; 25.%,0), x = 0.431
M2 in 3 b: (x 7,506 ; x,25,1/6 ; 2¥,%,172), x = 0.903
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with MI and-MZ being a disordered combination of Ga and Sn, Show that the net of the
atoms is a un;np@al net 5-5-.5-5-5-84 which, in its most symmetrical form has symmetry
P6122. The net is illustrated in Fig. 7.94 below {note that a and ¢ are approximately equal).

Fig 7.94. A net 5:5-5.5-5.84 projected down the ¢ axis of P6]2£, Elevatiens are in muitiples of ¢/12.

11. The P atom positions in one form of P20s5 have been given as;

Fdd2,2=163,b=812, ¢ =525 A

Pin 16 b: F + (oy,z 5z ; Vdex Udsy 144z ; 1M4x, 114—y;
25 XY R f B 14—y 1/44z),
x=0.073, y =0.083, z = 0.153 7 &

Verify that the five shortest P-P distances are 2779,2.92 (2xy and 4,34 (2x) A and that
the three shortest P-P distarices define a net with the topology of the Si net in ThSiy.

12. A zeolite we haven’t discussed, but which is aice to draw or to explore using

computer graphics, is known as MAPSO-46 (symbol AFS). Here are data for the
maximum volume form of the net with unit edge:

MAPS0-46 Pbi/mcm, a = 4.363, ¢ = 8.034, r = 0.366
4-8:4-84:8 in 8 by £(1/3,2/3 4z : 1/3,2/3,1/242), 7 = 0.438
4:4:2-82.62-8 in 24 I £(xy.z ; ete), x = 0.364, ¥ =0496, ; = 0.366
4-4-4-6-6-12 in 24 {, x = 0.570, ¥y=0703, z = 0.312

.'I‘he net is closely related to that of CoAPO-50 (Fig. 7.43, p. 328), the main difference
being that the cubes in that net are replaced by polyhedra with nine faces.

13. BaCu38; is polymorphic. One form has the ThCrzSi; steucture (§ 6.4.2) with Ba
between tetragonal layers of {Cu}Sy tetrahedra, A second form forms a three-dimensional
‘l.-cc_}nnected Cu,S net derived from 4.82 by double zig-zag connections in the manner
similar to that shown in Fig. 7.17 (p. 306). The vertices are all 4.6-4-6-6-8, but there are
two topologically-different kinds. Crystallographic data for the compound are:
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BaCuyS2 Pnma, a =9308, b=4.06L, c = 10.408 A, Atoms in 4 ¢: +x, 14z 5 1/24x,1/4,172-2)
’ Ba: x = 0240, z =822 ; Cu(ly x = 0.036, 7 = 0.111 ; Cu(2): x = 0.083, 7 = 0.545
S(1): x = 0483,z =0.169 ; S(2): x = 0.339, 7 = 0.559

Plot the Cu and S positions in projection down b to identify the net.
The net syminetry is Crmem, but Cu,S erdering lowers the symmetry to Prcn {Prmu).

14. A 4-connected net with “up-down” rods (§ 7.3.8) occurs as the Ga net in Mg;Gas.
MgzGas HMfmmm, a=8.627, c=7.111 A
Mg in 8 ke 1% (x,kx,0), x = 0.300; Ga(l) in 4 e: / +(0,0,2), z = 0.288
Ga(2yin 16 m: 1 £ (Oy,%z 5 v,0,+g), y =0.298, z = 0.18]

Ga(2) atoms form “up-down” rods (shaded in Fig. 7.95) and Ga{1} atoms link the rods.

Fig. 7.95. The Ga arrangement in MgyGas projected on (001). Numbers are elevations in units of ¢/100,

The silicate, narsarsukite, was menticoned in § 7.3.8. In that compound Ti atoms link up-
down rods of {31104 tetrahedra to produce the same 4-connected net with steichiometry
(TiSig)O1¢. An additional O atom links the Ti atoms in the ¢ direction producing distorted
[Ti}0g octahedra and the composition is often written NayTiO8i5019, Drawing the
structure of narsasukite and identifying the net is a nice exercise [for data see D, R, Peacor
& M. ]. Buerger, American Mineralogist, 47, 539 (1962)]. If you do this, you may
notice that the metat atom arrangements are nearly identical (except for a change of scale) in
Mg2Ga(1)Ga(2)4 and NayTiSigOy .

15. Open (zeolite-like) (4,6)-connected networks are often produced by linking clusters
of tetrahedra by octahedra and vice versa and indeed some authers include such structures
under the heading of zeolites. The parsasukite framework (Exercise 14) is a (4,6)-
connected net if alf -O- links are counted. Here are some other examples for exploration:

(&) Part of the pharmacosiderite structure was illustrated as clusters of octahedra linked
by tetrahedra in § 5.2.2 {see Fig. 5.23, p. 154). The coordinates of the metal atoms are:
space group P43m: Fe (octahedral) in 4 e: x,x,x ; (x,,X)K ; As (tetrahedral) in 3 &:
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(1/2,0,0)x. Fe has 3 Fe and 3 As neighbors, and As has 4 Fe neighbors, If all edges are
equal, x = 57206 - 1) = 0.145 (quite close to the actual value). For the full structure see
M. J. Buerger er al., Zeizs. Kristallogr. 125, 93 {1967).

(b) An open structure consisting of rings of three tetrahedra (corner sharing) joined b
further corner sharing with octahedra oceurs in catapleite, NayZrSi309.2H50 in whi(:l);

rings of three corner-sharing {Si}0Qy tetrahedra are Joined by {Zr} Qg tetrahedra. Data for
the non-water atoms are:

catapleite Péyimme, a =740, ¢ = 10.07 A, V=477 A3
Z.r in 2a:(0,00:00,1/2) ; Nain 4f+{1/323,7 V3.213,11242), 7 = 0,08
Siin IGk: +{0,2%, 14 ; 13,14 ; 25 %, 1/4), x = 0,205 O)in6 h x=047
O(2)in 12 &: £ (x,2x,2 TXXT 20X,z x2x k)2 ERESE L VR v XS V)
x=0.135, 7 = 0.125 '

In the Zr.Si net, Zr has 6 Sj neighbors and Si has 2 Si i
! , s Arl t and 2 Zr neighbors. Not
unexpectedly, the Zr-Si distances are rather different (larger) than the Si-Si dist‘zgmces.
(c) A related, but different, structure is fouad in benitoite, BaTiSi30g

benitoite P82, a=6.61,c=972 A, V=163 A3
B.a.in 2£(23,180; 23,1/3,0/2) ; Tiin 2 ¢ (1/3,2/3,0; 1/3,2/3,1/2)
8iin 6 k: (x,y,1/4 P Y-y 14 y-x ¥ 144 ¥x34; yexy,34 ; xx-y,3/4),
x=00711,y=0.28%; O(1) in 6 k x =0.2535, y = 0,1972

O2)in 12 £ (as 6 & but 1/4 replaced by z and 1/2—z and 3/4 repi F
~ aced by 7, 1/2+
x=0.0880, y =04302, = 0.1127 ? v ?

Compare the 71,5 net in catapleite with the Ti,8i net in benitoite. Note that the latter is
much denser (compare the volumes of the unit cells which contain 6 Si atoms in each case)

16. A fascinating open structure based on a 4-connected net is that of the zeolite-like
compound: [N(CHz)4],MnGeyS1g with a framework based on vertex sharing {Mn)S, and
{ Ge!S4 tetrahedra. Ge4S1q “supertetrabedron” units (Fig. 5.18, § 5.2.1) and MnS4 units
fxre linked as in diamend (or better, as in sphalerite) so the net of the metal atoms is
Intermediate between diamond and D4. Here are data for the framework (explore!):

f4,a=9513,c=14.28] A,
Mnin2d, I +(0,1/2,1/4)
Gein8g: F+{xyz: ey EI  VaThx= 0.570, y = 0.325, 7 = 0.089

The vertex symbols are Mn: 92:92:89.94-99-95 and Ge: 3:92:3.99.3.99.

1;. Draw thﬂ structure of BeIIE and ShOW that 1t'1s t()polo 1Ca. ly t]lf: same as tha 0[
1
nlogaﬂlte (SIOZJ~ g

BeHz tham, a =9.082, b = 4,160, c = 7.707 A iBe(l)ind a: 7 0,0 1/4)
Be(2)in 8 714 (xy,0: 1£2x,1/24,05, x = 0. 1699, y = 0.1253,
H(1) in 8/, x = 0.3055, y = 0.2823 .
H2)in 16 &7+ {xy2z; 1/2-x,1/24y,42), x = (.0895, ¥y =0.1949, z = 0.1515

APPENDIX 1
MORE INFINITE SYMMETRY GROUPS

In this appendix we describe some infinite symmetry groups other than the space groups
discussed in Chapters 1 and 3. Three-dimensional objects with translational symmetry in
only two dimensions are layers. The symmetry groups of these objects are the 80 layer -
groups that are given below. Likewise three-dimensional objects with translational
symmetry in only one dimension are rods. The 75 crystallographic rod groups are also
listed.! Two-dimensional objects with one-dimensional translational symmetry are called
bands or friezes and we describe the 7 band groups also.

A convenient way to consider these groups is as derived from space groups by removing
translations in one or twa dimensions. The reason for doing this is thai the coordinates of
general and special positions (and their site symmetries), and the nature and location of
symmelry elements, can be obtained directly from the space group tables in the
International Tables (abbreviated here to IT). As the coordinates of the general and
special positions are the same as those of the space groups from which they are derived, the
same labels (Wyckoff notation) are used for them here.

For completeness we also mention the cylindrical and spherical point groups that
describe the symmetries of objects with «-fold rotation axes.

Ald Layer groups

In the coordinate system used here it is assumed that the transiations are along the x and
¥ directions. The lattice can be oblique, either primitive (p) or centered (¢) rectangular,
hexagonal or square as for the two-dimensional space groups. The position in the plane
group symbol has the same significance as for the three-dimensional space groups.

Once the space group from which the layer group is derived has been identified {and, if
necessary, the axes relabeled as explained below) the symmetry elements and their
locations and the coordinates of special and general positions are obtained directly from the
IT (but of course there are no translations along z. In fact z is now to be considered as the
height above the z = G plane, and as such, has dimensions (e.g. z may be measured in A).
The symmetry efements of the layer group are those of the space group which are contained
in, or which intersect, the plane z = 0.

Comments and examples are taken in order of the system of the corresponding three-
dimensional groups. For the full table of groups see § A1.6 (p. 389).

Monoclinic. The cases to be considered are classes 2, m and 2/m. The 2-fold axis of
the layer group can be along z in which case the Iattice is oblique. The symbol for the layer

I'With translations in only one direction, there is no restriction on the nature of rotation axes in rod
groups. Here we restrict ourselves to those containing only 1-, 2-, 3-, 4- and 6-fold axes.
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{1/2,0,0)x. Fe has 3 Fe and 3 As neighbors, and As has 4 Fe neighbors, If all edges are
equal, x = 5/\’2(\/6 - 1) = 0.145 (quite close to the actual value). For the full strzcture see
M. J. Buerger et al., Zeits. Kristallogr. 125, 93 (1967).

(b) An open structure consisting of rings of three tetrahedra (corner sharing) joined b
further corner sharing with octahedra occurs in catapleite, NapZ1S8i309.2H50 in whicg

rings of three corner-sharing {5i}Qy tetrahedra are Joined by {Zr} Qg tetrahedra. Dara for
the non-water atoms are;

catapleite P6yimme, a =740, ¢ = 10.07 A, V=477 A3,
Z_r in 24:(0,0,0;00,1/2) ; Nain 4£ 217325325 1/3213,112+7), £ = 0.08
Stin 6 A & (0,2x,1/4 3 x,%,1/4 V28X, 1i4), x =020 ODinb A x=047

O2)in 12 k: + (x2x,z; 5%,z ; 2¥.%.2: %, 2x2+1/2 - 2.5 ; 2X,X,
2N 6X,7 2522k, ;5L 2% R, R
x=0,1357=0.125 Bl

In the Zr,Si net, Z.r I}&S 6 Si neighbors and Si has 2 Si and 2 Zr neighbors. Not
unexpectedly, the Zr-Si distances are rather different (larger) than the Si-Si distances.
{c) A related, but different, structure is found in benitoite, BaTiSi3Oq

benitoite PBe2, a=661,c=972 &, V=168 A3
B.a.in 2ABAB0:25313,02); Tin2 ¢ (1/3,203,0; 1/3,2/3,1/2)
Siin 6 & (x,y.1/4 ; Fo—v,1M ; y—x,7,1/4 V¥ X34 y-x 3,304 xx—y,304),
x=0.0711, y = 02894 ; O(1) in 6 &, x = 0.2535, ¥ =0.1972

O(2) in 12 I (as 6 & but 1/4 replaced by z and 1/2~z and 3/4 re faced by 7
, 12
x=0.0880, y =0.4302, z = 0.1127 ? a =

Compare the Zr,5i net in catapleite with the Ti,8i net in benitoite. Note that the latter is
much denser (compare the volumes of the unit cells which contain 6 Si atoms in each case)

16. A fascinating open structure based on a 4-connected get is that of the zeolite-like
compound: [N(CH3z)4]2MnGe4S g with a framework based on vertex sharing {Mn}S4 and
{Ge}34 tetrahedra. GegS1g “supertetrahedron” units (Fig. 5.18, § 5.2.1) and MnS4 units
are linked as in diamond (or better, as in sphalerite) so the net of the metal atoms is
Intermediate between diamond and Dd. Here are data for the framework (explore!):

H,a=9513,¢c= 14281 A,
Mnin2d, [+ (0,1/2,1/4)

Gein8g:l+{xyz;x,y.2;y47; ¥x7), x=0570,y = 0.325, 7 = 0.089
The vertex symbols are Mn: 92-92:92-92:94-95 and Ge: 3:92:3-97-3.94.

17. Draw the structure of BeHy and show that it is topologically the same as that of
moganite (Si0s).
BeHy fham, a =9.082, 6 = 4,160, c =7.707 A ; Be(l) in 4 a: 1 + (0,0,1/0)
Be(2) in 8 j: /& (x,3.0; U/2-x,1/24y,0), x = 0.1699, y = 0.1253,
H{1)in 8 j, x = 0.3055, y = 0.2823
H2)in 16 k: { £ (x,y 4z ; 12, 1/2+y,42), x = 0.0895, y = 0.1949, z = 0.1515

APPENDIX 1
MORE INFINITE SYMMETRY GROUPS

In this appendix we describe some infinite symmetry groups other than the space groups
discussed in Chapters 1 and 3. Three-dimensional objects with translational symmetry in
only two dimensions are layers. The symmetry groups of these objects are the 80 layer
groups that are given below. Likewise three-dimensional objects with transiational
symmetry in only one dimension are rods. The 75 crystallographic rod groups are also
tisted.! Two-dimensional objects with one-dimensional translational symmetry are called
bands or friezes and we describe the 7 band groups also.

A convenient way to consider these groups is as derived from space groups by removing
translations in cne or two dimensions. The reason for doing this is that the coordinates of
general and special positions (and their site symmetries), and the nature and location of
symmeiry elements, can be obtained directly from the space group tables in the
International Tables (abbreviated here to IT). As the coordinates of the general and
spectal positions are the same as those of the space groups from which they are derived, the
same labels (Wyckoff notation} are used for them here.

For completeness we also mention the cylindrical and spherical point groups that
describe the symmetries of objects with ee-fold retation axes.

Al.1 Layer groups

In the coordinate system used here it is assumed that the translations are along the x and
y directions. The lattice can be oblique, either primitive (p} or centered {¢) rectangular,
hexagonal or square as for the two-dimensional space groups. The position in the plane
group symbol has the same significance as for the three-dimensional space groups.

Once the space group from which the layer group is derived has been identified (and, if
necessary, the axes relabeled as explained below) the symmetry elements and their
locations and the coordinates of special and general positions are obtained directly from the
IT (but of course there are no translations along z. In fact z is now to be considered as the
height above the z = 0 plane, and as such, has dimensions (e.g. z may be measured in A
The symmetry elements of the layer group are those of the space group which are contained
in, or which intersect, the plane z = 0. '

Comments and examples are taken in order of the system of the corresponding three-
dimensional groups. For the full table of groups see § A1.6 (p. 389).

Monoclinic. The cases to be considered are classes 2, m and 2/m. The 2-fold axis of
the layer group can be along z in which case the lattice is oblique. The symbol for the layer

IWith translations in only one direction, there is no restriction on the nature of rotation axes in rod
groups. Here we restrict ourselves to those centaining only 1-, 2-, 3-, 4- and 6-fold axes.
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group is the same as that for the setting “unique axis ¢” in the J7 Only those monoclinic
groups with primitive lattices and that do not have screw axes will have layer groups as
subgroups in this instance.!

If the 2-fold axis of the layer group is parallel to one of the translations, it is taken as the
b direction and the symbol for the tayer group is the same as that for the three-dimensional
group in the setting “unique axis & except that (a) the lattice symbol is lower case and (b
the glide direction (if present) must be along a (so the glide planes are a). The lattice is now
rectangular (either p or c).

It may be seen, for example, that information in the IT about p112/b {oblique) and
P12/al (rectangular) are both contained under “nonstandard” settings of number 13,
P12/cl (*unique axis ¢, cell choice 3” and “unique axis b, cell choice 3 respectively),

Orthorhombic. The cases correspond to classes 222, mm?2 and mmm. Layer glide

planes can now be a or b or, for glide planes in the xy plane, r. Thus there is a layer group
pban derived from Pban.
Another layer group is p2jam derived from P2iam, which is a nonstandard setting of
Pmc21 (number 26). Thus to get the information about P21am, one should first transform
Pmc2| to P2 am. This involves interchanging x and z. Thus from the IT for Pme2| we
find the general positions: (x.y.z ; £0,3,1/242). For p2iam the corresponding general
positions are: (x,y,+z ; 1/24x,547) and the symmetry elements of the layer group are those
of the space group intersecting, or contained in,the old x = 0 (iew z = 0) plane.

A second layer group derived from Pmc2| is p2yma. We first get the general positions
of P2ma from those of Pmc2| by cyclic permutation x — Y=z xas (xty,z7;
12+x,%y,7). These are also the general positions of p2yma and the symmetry elemenis of
the layer group are those of the Space group contained in the old y = 0 (new z = 0) plane.

At the time of writing, there does not appear to be a generally agreed “standard” setting
for oblique and rectangular layer groups. Thus, to continue with the same examples,
p21am could be (and sometimes is) written pb2m, and p2 ma could be written pm2:b. In
both cases the labels of the x and ¥ axes have been interchanged.

If in doubt the transformations of axes for different settings of the orthorhombic groups
are given on p. 441-442. Note that the last position in the symbol given here for rectangular
layer groups aiways refers to the unique direction (normal to the lattice). Layer groups
such as p2mm and pmm? are distinct groups although they are both derived from Prum?
(number 23). cmm2 and c2Zmm are also distinct groups but are now subgroups of two
different space groups: Cmm2 {number 35) and C2mm {a non-standard setting of Amm?2,
number 38). On the other hand cm2m is an alternative setting of c2Zmm.

Tetragonal and Hexagonal, The layer groups are derived from the space groups
with a primitive lattice that do not have symmetry elements with transiational components
along z, The layer group symbols in these instances are simply derived from the space
group symbols by the substitution of p for P. The positions of the individual entries of the
layer group symbol have exactly the same significance as they do for the three-dimensional

iClezu-ly one cannat have symmetry elements that involve translations out of the plane of a and b.
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tetragonal and hexagonal space groups. The symmetry elements of the layer group are now
those of the space group contained in, or intersecting z = 0.

AlL.2 Rod groups

The only one dimensional lattice is primitive and we use the symbol p for it. .

Many of the remarks of § Al.1 apply also to the rod group symbols. The major
difference is that the translational symmetry is along the z direction, so symmetry elements
with translational components must be atong that direction. In particular glide is always ¢.

Note that for tetragonal, trigonal and hexagonal rods the last two positions of th_e rod
group symbol can be interchanged. This is because the orientation of the x and y axes is not
determined by the directions of lattice translations. Thus although P3m1 and P31m are
different space groups and p3m1 and p31m are different layer grpups,'p3mi and p31m are
the same rod group with the orfentation of x and y chosen differently (just as 3}m and 3ml
are also the same point group). Such redundant rod groups are in parentheses in the Table
below (p. 389). .

The coordinates of general and special positions are directly available from the IT now z
is a dimensionless fraction of ¢, and x and y must be considered to have the dim§n31ons of
léngth. The syrmetry elements of the rod group are those of the space group which are on
or pass through the line z = 0.

Al.3 Examples of layers and rods

There is a large group of layer compounds made up of MX; layers of either {M1Xs
octahedra or {M}Xg trigonal prisms sharing edges. The lattices in both cases are hexagonal
(Fig. Al.1).

Fig. ALL Left part of a layer of MXg octahedra. Right part of a layer of MXg prisms.

In the octahedral layer M is at 0,0,0 and X is at 1/3,2/3,z and 2/3,1/3,7; these f?re positigns
1 & and 2 d of p3ml. The site symmetries are 3m and 3m respectively. In the .tr.Igonal prism
layer M is again at 0,0,0 and X is at 2/3_,1/3,z and 2/3,1/3,27_. These are positions 1 g and
2 i of pm2 and the site symmetries are &m2 and 3m respectively. ] ) .
Another common unit in crystal chemistry is a rod of alternating trigonal prisms and
antiprisms (octahedra) sharing triangular faces normal to the rod axis (Fig. A1.2). The
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vzz{tges aizz;ct t(x,2x,7 ; 23,)?,2: ;_x,‘f_,z 3 X2, 124z 5 2x.x, 17247 ; T, 1/2+2). These are
positions of pbyimme with site symmetry m. The centers of the antiprisms are at 2 a:

0,0,0 ’ 0 0 172 Wlth stte Symme[[y 3m an lle centers of the r.s S & b' + 4
h 2 W,
' prism: re at 2 i 4 (0,0,1/ )

Fig. A1.2. Part of a rod of alternating trigonal prisms and octahedra,

Exercises:

gp}};.rldda, and 3 for the layers of Fig. A1.1 made of regular polyhedra'c;f edge 1 A

11} Find x, z an i ;.

AT z ¢ for the rod of Fig. Al.2 made of regular polyhedra of edge 1 A.
() a=1 A, octahedral layer z = 1V6 A, prism layer z = 1/2 A,

) 4 x. 2 4+ 4 s + 8 A. I‘i()te t! at X ha. i
( ) ) t h S dlmEHSlOns and 218

Al.4 One- and two-dimensional “rods” (bands)

I_n one dimension there are but two point symmelry operations, reflection in a point
which we represent by the symbol m, and the identity 1. There are th,erefore just two e t
groups: 1 ar.1d m. Combined with the lattice p we get the two one—dimensione,ll space rp .
pl and psm illustrated below (mirror points are shown as smail circles, and the cI:)mbi'a?l:tlich))rst

of long and short lines, — -, re i i
. : » — -, represents an asymmetric object). Note that j
Iwo mirror points per unit celi. et f pm there are

pl —— ——— ——— —

P s Qumame (O o () m — O —— ) —— O = (7 - —

Fig. A1.3. One-dimensional space groups

. A:i twt?-dimensional object with one-dimensional periodicity is variously referred to as a
and, frieze, or border. The symmetry groups of such objects are readily enumerated, and

can relatcd to the two-dimensional Space [) 1 ofe Ve 1O e
bﬁ wo-dim Pa roups just a
i . 1 bi g 5 d il abo 1 thre
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pl l k \ l i

Ah_ | AN AN | AN | AN

pem o= o~ 1-0|-0-1-0-|-0-1-0-

AANEA! ANl AN 4

Fig. Al.4. The band groups. In each case the unit ceil is the same size. Full lines represent mirror lines
and broken lines represent glide lines, Small open circles represent 2-fold rotation points.

The permissible point groups are 1, 2, m and mm.! The first two simply give pl and
p2. For groups containing mirror lines we must specify their orientations, and we employ
Cartesian axes x and y with the lattice translations along y. In accord with the conventions
for three-dimensions we take the first position after p in the symmetry group symbol to
refer to mirror (or glide) lines perpendicular to x and the next symbol to refer to mirror lines

11t should be abvous that a one-dimensional lattice is not compatible with 3-, 4-, or 6-fold rotation
points in the plane containing the lattice.
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perpendicular to y. If there is no symmetry element we use “1” as a place marker. Note that
a glide line must be along v {perpendicular to x). Thus corresponding to point group m we
get band groups pm1, plm and pgl. From point group mm we get pmm and pgm,
Patterns with these symmetries (generated by the symmetry elements acting on a scalene

triangle) and the symmetry elements are illustrated in Fig. Al.4. Here they are tabulated as
in§ AlLG:

N 2D groups  band groups

1 pl pl

2 P2 p2

3 pm plm, pml
4 P pgl

6 pmm pmm

7 pmg pgm

N is the number of the space group given in the 7T. Note that (a) in the IT the long
symbols for the space groups are used. To be consistent with the usage in the IT we should
write as “long” symbols pZmm and p2gm instead of pmm and pgm. (b) for groups pml
and pgm, x and y have to he interchanged from the setting used in the IT.

Al.5 Point groups of infinite order and the symmetry of vectors

In Table 2.4 (§ 2.5.6, p.32) we listed non-crystaltographic groups containing a single
axis of arbitrary order N. A shortened version of that table js reproduced here using only
Hermann-Maugin symbols so we need only consider the cases N even and ¥ odd. We use
short symbols for convenience.

N= | N | N IN22) |Nmim) | Nim [Nim2im2im | N <m
2n NN N2 | Nem | Nm | Nisunm N2m
2n+1 N |~ N2 Nm Nm

There is an interesting relationship between these groups and the band groups. Tmagine a
finite fragment of the patterns of Fig. A1.4 containing N translations with N even. Now
fold the fragment round to make a circle with beginning and end motifs superimposed.! If
this is done with the pattern of p1, an object of symmetry N is obtained. The same exercise
repeated with the p2 pattern will preduce symmetry N22 (note the two sets of 2-fold axes).
Similacly plm will produce Nmm (again note the two sets of mirrors}), pml will produce

LThe reader whe finds the mental exercise difficult is invited to copy Fig. Al.4 and cut the different
patterns (which show N = 4 wanslations) into bands, which can then be folded into aring.
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Nim, and prmm will produce Nmmm. The patterns with glide will probably require a listle
more thought, but it wilt be found that N is obtained from a fragment of pgl, and Nm?2 is
obtained from a fragment of pgm. As N gets larger the finite patterns approach the band
patterns more and more closely and we can think of the band groups as limiting cases with
N = = of the point groups with N even, Thus there is a one-to-one correspondence
between the band groups and the entries for even N in Table 2.3,

Let us consider the correspondence Nmm —» Plm a little further. Fig. Al.5 shows two
mirrors inclined at an angle o = 360°/2N. Successive reflections in the mirrors generate an
N-fold axis at their line of intersection. We can reduce the angle between the mirrors by
increasing r and at the same time keeping d constant (see the figure). In the limit r — oo we
have parallel mirrors separated by  and successive reflections in'these generate a
translation by 2d. Thus the correspondence between point groups and band groups
discussed in the previous paragraph is equivalent to considering the infinite set of
translations as equivalent to rotations ahout an axis infinitely far away.

Fig. A1.5. Tllusteating the effects of successive reflections in two inclined mirrors (shown as solid
straight lines). See the text for details.

There is a second way of reducing the angle between the mirrors. This is by reducing d
while keeping r constant; as d goes to zero we will have a finite pattern with an eo-fold
symmetry axis, The symmetry group is now com (only one “m” as it is meaningiess to talk
of sets of misror planes) and this is the symmetry of, for example, a cone. There are in fact
five cylindrical symmetry groups. The reason that there are only five (rather than seven as
in the case of the band groups) is that for a finite object with an -fold axis, eo/m cannot be
distinguished from & (recall that, for example, 6 = 3/m). Thus the cylindrical point groups
are to be considered as limiting cases as N — oo of the entries in Table 2.3 for N odd.
Accordingly the cylindrical groups are:
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oo . rotating cone

% = co/m Cooty = Cog rotating cylinder or rotating double cone
o2 D, antirotating deuble cone

com Coop cone

o = oofm2im  Dug = Doy cylinder or double cone

In the table we give the peint group symbols (first Hermann-Maugin, then Schoenflies)
and then examples of objects with these symmetries. The {ast two symmetries in the table
are realized in linear molecuies either without a center of symmetry {as in CO = C..,) or
with one (as in Oy = D). To realize the first three symmetries we must consider rotating
objects. Fig. A1.6 illustrates these. Note that the rotating cone and antj-rotating double
cone exist in left- and right-handed (enantiomorphic) forms. In contrast a rotating double
cone (or cylinder) has a center of symmetry. The reader who finds this puzzling is asked to
look at Fig, AL.6 and then turn the book upside down, and to lock at the figure again.}

Fig. AL.6. From left to right: a rotating cone, a rotating double cone, and an antirotating double cone.

It is important to recognize that vectors can have one of two symmetries. Polar vectors,
such as one corresponding to an electric dipole morment have the symmetry (eort} of a cone.
Axial vectors, such as one representing a rotation axjs2 or a magnetic moment have the
symmetry (=) of a rotating cylinder. Confusion can arise because it is conventional to
represent both kinds of vector by the same symbol—an arrow.3 As shown in Fig. 1.7
improper operations such as reflection and inversion transform the two kinds of vector
differently.

Vit is useful to recall that the apparent sense of rotation depends on one's point of view. A person
looking at a clock will see the hands rotating “clockwise.” However from the point of view of the clock,
the hands retate “anticlockwise.” Similarly the rotating double cone in the figure is rotating clockwise when

" viewed from the top but anti-clockwise when viewed from the bottom.

2A 2-fold ratation axis is a special case because 2% = 27 50 the symmetry is =m and a 2-fold axis does
not have a sense (direction), Ironically the symbol for a 2-fold rotation axis in crystallography is an atrow.

35ee Chapter | of fcons and Symmetry by 8. L. Altmann [Oxford University Press (1992)]. Altmann
gives an informative and entertaining account of the @rsted experitent in which a magnetic needle is
deflected by a current flowing i 2 parallel direction above it. if the magnet and current are both represented
by arrows, it appears that the plane coataining the magnet and wire is a plane of symmetry. In fact the
magnet and current have different symmetries (of axial and polar vectors respectively), and as illustrated in
Fig. A1.7, they behave differently on reflection in (hat plane, which is therefore not really a mirror plane.
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= )

axial

|

Fig. A1.7. Showing how polar and axia! vectors (arrows) and cones and rotating cylinders are transformed
by reflection in a mirror (shown as vertical line) and inversion in a center {open circle).

What about groups with more than one N-fold rotation axis? In Chapter 2 we
enumerated all the possibilities for finite N. With one eo-fold axis we get the cylindrical
groups, With more than one se-fold axis we get the spherical groups. A sphere has in fact
an infinity of «-fold axes and also a center of symmetry so they are actually = axes. We
need at least two to generate spherical symmetry so the symmetry of a sphere is expressed
as o oo, If the center is removed we get the infinite pure rotation group eooo, This second
case is hard to imagine: think of a sphere rotating about an axis, and that axis rotatin g about
a second axis at right angles to the first. Thus the spherical groups are (K and K}, are the
Schoenflies symbeols):

s000 K rotating sphere
20 & Ky stationary sphere

In two dimensions the point symmetry groups are N and Nm. If again we fet N go to
infinity we get the two one-dimensional space groups pl and pm (§ Al.4), and the two
infinite point groups (circular groups) which are the symmetries of a rotating circle (co) and
of a stationary circle (eom),

Al.6 Table of layer and rod group symbols

The table on the following pages is intended to be self-explanatory. N is the sequence
number in the IT of the three-dimensional space groups, which are given in their standard
settings. The first page consists of groups with at most 2-fold axes. Then follow groups
with 4-fold axes (tetragonal) and groups with 3-fold or 6-fold axes (trigonal and
hexagonal)
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N | 3-D groups layer groups rod groups
triclinic oblique Tetragonal (square) layer and rod groups
1| Pl ol 1
Pl pl gi
N | 3-Dgroup layer group | rod group
monoclinic oblique rectangular
3| P121 pli2 pl2] pliz pl2l o 75 | P4 p4 p4
4 | Pi21 pl2;1 pllz; 76 | Pa P4
5| c121 i 4
6 | Plml plim plml pllm plml PR e
7| Picl plib plal plcl A e T s
8 | Clml clmi 81 P4 pé P4
10| P12/m1 pl1i2im | pliml pll2m  pi2mi 83 4 Pdim palm paim
11| P12y/ml pl2iim pli2iim 84 | Pyim péa/m
12| C12/ml cl2/m] 85 | Pdin | pain
13| Pl2/ci pl12/b plfal | pl2/cl 89 P42 pa22 p422
4] P12)/cl pl2i/al 90 | P42;2 P22
91 P4422 p4 22
orthorhombic | rectangular 93 P4,22 pd222
16 | P222 p222 p222 95 | pP4422 P22
17| P222, 2122 p222, 99 | Pdmm phmm pamm
181 P21242 p21212 100 | P4bm pabm
21} €222 €222 101 | Pdsem placm
25| Pmm2 pmm?2 plmm pmm? Plmm 103 P4?: pdcc
26 | Pmc2 p2ima pLiam pmcy hing 4 vy
27 | Pce2 plaa pee? L1 | P42m pa2m pi42m
28 | Pma2 pma2 P2mb pc2m ' HZ ] P42 L paZe
29 | Peads 21 113 | PA2ym pA21m _ ~
30 | Pre2 p2an , 115 | PEm2 pam2 [pdm2 = p42m]
31| Pmn2,; pP2imn 17 | Pab2 pao2
32 | Phaz pha2 123 | Pd/mmm phlmmm | pdimmm
35 | Cmm2 cmm 124 | Pdimec pd/mec
38 | Amm2 c2mm 125 | Pdinbm pdinbm
39| Abm2 c2mb 127 | Pa/mbm pdimbm
2; ;Tcmm pmmn pmmm 129 | Pa/nmm pAinmm
m pmaa com
o oo i p 131 | Paofmme pda/mme
51} Pmma pmma pmam pmcm
53 | Pmna pbmn
534 1 Peca phaa
535 { Pbam pbam
57 | Pbem pmab
59| Pmmn pmmn
65 | Cmmm cmmm
67 { Cmma cmma
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trigonal and hexagonal layer and rod groups

N 3-D group layer group | rod group

1431 P3 3 p3

44 | F3, P31

145 | P3; P32

147 { P3 3 p3

149 | P312 p3l2 [p312 =p321]
150 | P321 p321 p321

152 | P3321 p3121

154 | P3,12 p3321

156 | P3ml p3ml p3ml

157 | P3lm p3lm [p31m = p3mi]
158 | P3cl P3el

162 | P3lm p3lm p3 tm = pPm1)
164 | P3m! P3ml p3ml

165 | P3cl p3cl

168 | P§ pé po

169 | P6, PO

170 ¢ P64 pos

171 | P62 po2

172 | P6y Po4

173 1 P63 P63

174 | PG pé pé

175 | P6/m pbim péim

176 | P63/m p63im

177 | p622 p622 p622

178 | P6122 pa122

179 | P6522 po522

180 | P§322 p6222

181 | P6422 p6422

182 | P6322 p6322

183 | P6émin pomm pémm

184 | Pécc ’ péec

185 | PBicm pbicm

187 | Pém2 p6m?2 p6m2

188 | P6c2 p6c2

189 | P62m p6am [p&2m = pbm?)
191 | P&/mmm p&immm pS&/mmm

192 | P6/mcc pS/mcc

194 { P63/mmc péa/mme

_APPENDIX 2
A GLIMPSE INTO HIGHER DIMENSIONS
A2.1 Introduction: polytopes

There are many reasons for considering structures in higher dimensions—some of them
practical, some of them aesthetic. Here we can only give a few teasing hints of the richness
of the geometry of higher dimensions, but it is hoped they will remove some of the
irrational fear of the subject and perhaps kindle a desire to delve more deeply into the
subject. Our main purposes are to introduce terms that are gaining increasing currency in
crystailography and to give some insight into how higher dimensional problems are
handled. ‘

We start by generalizing a three-dimensional Cartesian axis-system to n dimensions so
that there are # orthogonal axes aj, ay,...a,. The n coordinates of a point in this space are
X{, X2,...4,. The Pythagoras theorem gives the distance between two points xyi,
X31,...Xp1 and x12, x22,...x,2 as

2= (k1) = 21202 4 (021 = 222)2 + .+ (K1~ )2 (A2.1)

The generalization of a polygon {in two dimensions) and a polyhedron (in three
dimensions) to n dimensions is a polyiope. A hypercube or measure polytope of edge b
with center at the origin has 27 vertices at (+b/2,+5/2,... ~b/2) and has content (“volume™)
b7 It is an example of a regular polytope. It is amusing that for a four-dimensional cube
(known as a fesseract) the distance from the center to a vertex [which is
V(b4 + b2/4 + b2/4 + b2/4)] is equal to the edge length (b).

Another regular polytope is the cross polytope. For edge length b this has 2n vertices at
i(bN2,0,...O)K. The three-dimensional version is the regular octahedron. The volume is V
= prani2iy)

A third polytope of importance is the simplex which has # + 1 vertices each of which is
Jjoined to all the others by edges, so that there are n{n + 1)/2 edges. A two-dimensional
simplex is a triangle and a three-dimensional simplex is a tetrahedron. A regular simplex
has all edges equal, say b, and volume V = b(n + 1)/[n!1272]. The angle subtended by an
edge at the center is cos-1(—1/n) and the vertex to center distance is b\f[n/(?.n + 2]. The
order of the symmetry group of a regular simplex is (n + 1)1,

These are the only regular polytopes for n 2 5, but four-dimensional space has some
beautiful surprises (recall that ir three dimensions we have two more regular polyhedra, the
icosahedron and dodecahedron) that are mentioned below.

Points on the surface of a iypersphere (or just sphere) in n dimensions with center at
the origin (0,0,...,0) and with radius r are givea by:

Pax24x?+  +x2 (A2.2)
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trigonal and hexagonal layer and rod groups

N 3-D group layer group | rod group

143 | P3 p3 p3

144 | P3, p3;

145 | P3» p3a

147 | 23 73 p3

1491 P312 p312 [p312 =p321]
150 | P321 P32l p321

152 | P3,.21 p3121

154 | P3;712 p3221

156 | P3ml p3ml p3ml

157 | P3lm p31m [p31m = p3m1]
158 | P3cl D3l

162 | P3im P3lm (p31m = pim1]
164 | P3ml paml p3ml

165 | P3¢l p3cl

168 | P6 PO po

169 | P6, P61

170 | P65 pés

171 | P6g po2

172 | P6g pba

173 | P6a P63

174 | P& o pé

175 | P6/m poim poim

176 | P6aim pos/m

177 | P622 p622 p622

178 | P6122 p&122

179 | P6522 p6522

180 | P6y22 p6222

181 | P6422 po422

182 | P6322 p6122

183 | Pomm pomm PSmm

184 | Péec p6ece

185 | Péscm pbaicm

187 | P&m2 pom2 pém2

188.| Péc2 pée

189 | P62m pé2m [p62m = pém2)
191 | P6immm poimmm P6/mmm

192 | P6/mcc po/mcc

194 | P6s/mme pO3/mmc
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A GLIMPSE INTO HIGHER DIMENSIONS
A2.1 Introduction: polytopes

There are many reasons for considering structures in higher dimensions—some of them
practical, some of them aesthetic. Here we can only give a few teasing hints of the richness
of the geometry of higher dimensions, but it is hoped they will remove some of the
irrational fear of the subject and perhaps kindle a desire to delve more deeply into the
subject. Our main purpeses are to introduce terms that are gaining increasing curfency in
crystallography and to give some insight into how higher dimensional preblems are
hardled. '

We start by generalizing a three-dimensional Cartesian axis-system to n dimensions so
that there are # orthogenal axes aj, a7... -a,. The n coordinates of a point in this space are
X[, x3,...x5. The Pythagoras theorem gives the distance between two points xj71,
X215+.. X1 and x12, x72,...X,7 a8

@ =1y — 21202+ (v21 - 10202 + ..+ () —2g2)2 (A2.1)

The generalization of a polygon (in two dimensions) and a polyhedron (in three
dimensions) to n dimensions is a polytope. A hypercube or measure polytope of edge b
with center at the origin has 2% vertices at (+5/2,+5/2,.. -,2b(2) and has content (“volume™)
b7 1t is an cxample of a regular polytope. It is amusing that for a four-dimensional cube
{known as a resseract) the distance from the center to a vertex [which is
V(b4 + b2/4 + b2/4 + b2/4)] is equal to the edge length (b).

Another regular polytope is the cross polytope. For edge length b this has 2n vertices at
i(bNZ,O,...O)K. The three-dimensional version is the regular octahedron. The volume is V
= B2,

A third polytope of importance is the simplex which has # + 1 vertices each of which is
joined to all the others by edges, so that there are n{n + 1)/2 edges. A two-dimensional
simplex is a triangle and a three-dimensional simplex is a tetrahedron. A regular simplex
has all edges equal, say b, and volume V= bm(n + 1)/[n1272). The angle subtended by an
edge at the center is cos'(~1/n) and the vertex to center distance is Win/(2n + 2)]. The
order of the symmetry group of a regular simplex is (n + 1)

These are the only regular polytopes for n = 5, but four-dimensional space has some
beautiful surprises (recall that in three dimensions we have two more regular polyhedra, the
icosahedron and dodecahedron) that are mentioned below.

Points on the surface of a hypersphere {(or just sphere) in n dimensions with center at
the origin (0,0,...,0) and with radius r are given by:

r2=_x]2+x22+ ...+}€n2 (A22)
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The volume is given by {the second form avoids non-integral factorials for odd n):
V= a2 (ni2)] = (2R in - DI2[(y 1)/2]n! (A2.3)
An often useful formula is for the volume of a general simplex with vertices (in
Cartesian coordinates) (x01.%02,...X0n), (Xi1.x12,-- X1, ..o, {Xn1,Xn2y - Xpn) [compare

Eq. 4.25]:

L %, x

On
. “ee .
L Xpp Xng (A2.4)

The sign of V depends or the order of numbering of the vertices.

A2.2 Four-dimensional polytopes and honreycombs

It is convenient to rewrite the Schi4fli symbols we have been using on one line. Thus the
symbol for a cube 43 becomes {4,3) and an octahedron 3% becomes {3.4}. The symbol for
a 4-dimensional hypercube becomes {4,3,3). This is interpreted as a polytope whose
hyperfaces (cells) are {4,3} (i.e. cubes) and three of these meet at an edge,

Two-dimensional tessellations can be considered as degenerate cases of three-
dimensional polyhedra. For example {3,3}, {3.4} and (3,5} are the (etrahedron,
octahedron and jcosahedron respectively whereas (3,6) is & covering of the piane by (an
infinite number of} triangles. Likewise [4,3} is a cube but {4.4} is a covering of the plane
by squares. The other regular tessellation of the plane is {6,3). In the same way a three-
dimensional space filling by cubes (with four meeting at every edge) can be considered a
degenerate case of a four-dimensional polytope and symbolized {4,3,4). The way to
interpret {p,q,r} is that » figures that are {p.g}’s meet at an edge. A space filling by
polytopes is often called a honeycomb (elsewhere we reserve this term for {63

The four-dimensional simplex is {3,3,3) and the four-dimensional cross polytope is
{3,3,4}. There is also a polytope {3,3,5} (which might be thought of as the four-
dimensional analog of the icosahedron) whose 600 celis are tetrahedra. Its dual is the
regular polytope {5,3,3} (again we might consider this the analog of the dodecahedron)
whose 120 cells are dodecahedra. It is noted in passing that the order of the symmetry
group of these polyhedra is 14400—this is small for mathematicians but rather impressive
compared to the order (48) of the largest three-dimensional crystallographic point group
(m3m) and the order (120) of the icosahedral group.

It transpires that there is a sixth polytope in four dimensions. This is {3,4,3) whose 24
cells are octahedra {3,4} with three meeting at every edge. {3,3,4} and {3.4,3} are space-
filling polytopes so there are also four-dimensional honeycombs {3.3,4,3} and {3,4.3.3].
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Only in two and four dimensions are there regular honeycombs other than a space filling by
hypercubes. The reader who wants to learn about these beautiful figures can do no better
than read the book by Coxeter cited at the end of this appendix.

It is interesting that four dimensions is richest in regular polytopes, The geometry of
higher dimensions is not dull however, there some remarkable lattices with special
properties known. One teaser: the problem of the number of equal spheres that can contact
a central one (this is sometimes called the maximum “kissing number™) is remarkably
difficult to solve. It is known to be 12 in three dimensions, but mathematicians don't know
the answer in four dimensions.! The maximum kissing number is known in 24 dimensions
and is 196560; a lattice with this coordination number is also known. The order of the point
Symmetry group of this lattice is 8315553613086720000 which is s#ill smail by
mathematical standards (the order of the point symmetry group of the primitive hypercubic
lattice is 2"n!—work thar out for n = 24).

A2.3 Four- and higher-dimensional lattices

In four-dimensions we specify a lattice by four vectors a), as, a3, a4 of length ay, a3,
a3, a4 and with angles between them of a3, 03, Op4, 023, 0624, &34; i€, in general, ten
unit cell parameters. It transpires that there are 64 Bravais lattices. We look at one or two
here. Conceptually the simplest of these is the primitive hypercubic with a; =ag = a3 = a4
= a and all angles equal to 90°, The point symmetry of this lattice is the same as that of the
hypercube and has order 384, Each lattice point has 8 neighbors. The primitive hypercubic
lattice in # dimensions may be symbolized Zn.

Recall that in four dimensions the distance from the center to 2 vertex of a hypercube is
equal to an edge length. This means that a copy of the simple hypercubic lattice displaced
by 1/2,1/2,1/2,1/2 can be fitted into the first one and generate a new lattice which is known
to crystallographers as Z-centered hypercubic (mathematicians know it as Dy}, Each point
of the new lattice has 24 neighbors. The point at 0,0,0,0 has 2s neighbors, the original
eight of the primitive fattice at (+1,0,0,09% and 16 more from the second hypercubic lattice
at the vertices of a hypercube with coordinates TU2,£1/2 4172 £1/2. If spheres of unit
radius are put at the lattice points the arrangement with z = | corresponds to the densest
(lattice) packing of spheres in four dimensions. Another way of looking at this lattice is as
the vertices of the regular honeycomb {3,3,4.3 }. The interstices of the lattice at
(1/2,1/2,00 5 1/2,0,172,0 ; 1/2,0,0,1/2 : 0,1/2,172,0 0,1/2,0,1/2 ; 0,0,1/2,1/2) are at the
centers of the {3,4,3} polytopes.

Now for some vertigo. The positions of the interstices given above are the regular
honeycomb {3,4,3,3) and the Voronoi polyhedren of the lattice points is a {3,4,3}. This
figure is just the same as that of the 24 lattice points surrounding a given lattice point. In

Mathematicians are hard lot to convince. Tt is a safe bet that the 24-coordinated lattice described heiow
provides the answer to this problem and that of densest sphere packing in four dimensions. Only receatly
has it been proved that there js not a sphere packing in three dimensions that is denser than cubic closest
packing.
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fact the point symmetry of the lattice is the same as that of {3.4,3} and is higher than that
of the primitive hypercubic lattice: the order of the point group is 1152. This means that in
four dimensions there are distinct crystal systems corresponding to primitive hypercubic
and centered hypercubic. :

If we combine the lattice positions (0,0,0,0 ; 1/2,1/2,/12,1/2} with the positions of the
interstices {given above) we have eight points which fall back at the points of the same
lattice but with separation reduced by a factor of V2. In other words we can describe the
same lattice using a non-primitive hypercubic unit cell with either 2 points per cell or §
points per cell. Thus we have two descriptions of the same lattice: (a) 0,0,0,0 :
1/2,1/2,1/2,172 ; (5) 0,0,0,0 ; 1/2./12,1/2,1/2 and all six permutations of 1/2,1/2.0,0.

The matrix transforming the first description into the second is:
1100

1-100
5= 0011
001-1 (A2.5)

In more than four dimensions there are two distinct lattices, reciprocal to each other, that
can be described using a centered hypercubic cell and that are generalizations of the one
above. The first, called D,*, has laitice points at ,0,...,0 and 1/2,1/2,...1/2. The second,
called Dy, has lattice points at 0,0,...,0 and all combinations of 0 and 1/2 that add up to an
integer. If the coordinates of the points in this second unit cell are doubled, it may be seen
that they consist of combinations of integers that add up to an even number, and the lattice
points consist of half of the lattice points of a primitive hypercubic lattice; for this reason
Dy is 2ls0 called the checker-board lattice. The unit cell of Dy, contains 21 points, and for
unit distance between lattice points & = V2. We have seen that the reciprocal lattice of the
Z-centered hypercubic lattice (£4*) is the same lattice (D4). Only when n = 4 is the point
symmetry of D, different from that of Z~,

We can’t resist mentioning that in eight dimensions two copies of Dg fit together (in the
same way as two primitive hypercubic lattices gave Dy) to give a new laitice Fg. The
second Dy is displaced by 1/4,1/4,...,1/4 from the first. The reader will possibly find it a
stimuiating exercise to verify that Eg represents a 240-coordinated sphere packing (the
densest known in eight dimensions). For spheres of unit radius, the cell edge remains v2
and there are 256 points in the unit cell, i.e. 16 per unit volume. Eg has attracted some
attention in connection with quasicrystal structures; also of interest is that the points divide
space into regular simplices and cross polytopes (how many and where?). Note that two
D3 (= A3 = fec) lattices displaced by 1/4,1/4,1/4 give the diamond structure (not a lattice).

Another family of lattices has non-orthogonal lattice vectors. In a plane we can have
three vectors equally inclined to each other at an angle of cos-1(-1/2) = 120°. Two of these
of equal length generate a hexagonal lattice. In three-dimensions four vectors all making an
equal angle with the others are possible; the angle is the tetrahedral angle, cos 1(~1/3) =
109.47°. Three of these vectors of equal length generate a body-centered cubic lattice (recall
that a primitive cell for body-centered cubic has a = b = ¢ and & = B=v=10947". In

Higher Dimensions 397

general in » dimensions n+1 vectors can be equally inclined at an angle of cos-!(~1/n) and
we can define a lattice using n of them of equal length. Note that the n + 1 vectors are
equivalent so there wiil be a symmetry operation of order #7 + 1 relating them as discussed
betow. The four-dimensional lattice with ar=az=az=as=daand a2 = o3 = a4 = 03
= 024 = 034 = cos{(=1/4) = 104.48° is known as the primitive icosahedral lattice. The
order of the point symmetry group of the lattice is 240.

The lattice reciprocal to this 4-dimensional lattice is easily found to have al=az=az=
ap=laand o= o3 =a=o03= 04 = o3g = cos1(1/2) = 60° . (Recall that in three
dimensions, the lattice reciprocal to bee is the Jec lattice which has primitive cell a = b = ¢ ;
o= f=y=60"). The simplest way to see this is to find the reciprocal of the G matrix:

L -1/4 -1/4 —1/4
-4 1 —14 —1y4
VL VS R Y
-4 ~U/4 -1/4 1

G=a

Lowvz 1z 172

/2 L1212
G'=G =g 2.
Tz o1 Yy (AZ.6)

vz 12 142 1

The off-diagonal elements of the matrices are cosay;.

The new lattice can be described using a centered cell of the same shape as the primitive
icosahedral lattice and it is then called the SN-centered icosahedral fattice. In this description
there are 125 lattice points in the ( non-primitive) unit cell.

We have remarked that these two lattices are four-dimensional analogs of the bec and fee
fattices which, it so happens, are cubic. It is sometimes useful though to consider the bee
lattice in terms of its primitive cell. It is left as a non-trivial exercise for the reader to
describe the fec lattice in terms of a unit cell with the same shape (it needs 16 points per
celll). The general n-dimensional lattice with primitive cell edges all equal and all angles
equal to 60° is known as A, and its reciprocal lattice with alt angles equal to cos-1(~1/n) is
known as 4,". A, represents a lattice sphere packing with n(n+1) neighbors and 4,*
Tcpresents a lattice sphere packing with n + 2 neighbors. ‘

A24 Symmetry operations in four dimensions

It is instructive to see how symmetry operations arise as the dimensionality of space is
increased. We restrict ourselves to point syrmumetry operations {those that leave ar legst one
point invariant). In one dimension there is just one operation m that takes a point to another
place by refiection in a point. In two dimensions  reflects in 4 line and in three dimensions
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m reflects in a plane. In general m changes position in one direction (the normal to the
mirror} and leaves an n — 1 figure unchanged. Thus in four dimensions there are MACTor
hyperpianes.

In the transition from one to two dimensions we recognize a new operation that changes
two coordinates (ieaves 2 point invariant). The symmetry element is a rotation point. In
three dimensions we have a rotation axis {(a line is left invariant} and in four dimensions a
rotation plane (a plane is left invariant),

Continuing from two to three dimensions, we identify a new operation thai changes
three coordinates (leaves just a point invariant). This is a (rotation-) inversion point. In four
dimensions there are inversion axes! and we must seek new symmetry operations that leave
only a point invariant. To see their nature it is easiest to appeal to the matrix representations
of symmetry operations.

If we use a suitable basis, the matrices representing symmetry operations will always
have elements £1 and a determinant 21 (such matrices are termed unimodular). For
example an inversion point (at 0,0,0) in three dimensions is represented by the matrix
shown below converting x,y,z to X,7,7: -

0-~10f ¥Y|=|—-¥

-1 00 x} ~x
0 0-1tA\z) \- (A2.7)

The four-dimensicnal inversion axis (along the w direction) is represented by:

-1 0 0 O\x —x
0-10 0} » -y
0 6-10|z| |-z
00 0 1/Aw w {A2.8)

An operation that leaves only a point {0,0,0,0) unchanged is:

-1 0 0 O0\rx —-x
0-100fy| |~
0 0-10|z | |-
00 0-t)w,) \~w (A2.9)

There are no generally agreed symbols for these symmetry operations, let’s call the last

LThere appears not lo be an agreement on the meaning of the word “axis”. We use it to mean a one-
dimensional figure (straight line) left invariant by a symmetry operation. However one commonly sees the
statement that one can have 5-fold symmetry axes in four dimensions: as discussed next the five-foid
symmetry operation cnly leaves a point invariant, The axes in four dimensions are (rot?-) inver.smnlaxes.
The difficulty arises in part because (for example) in three dimensions one needs to spe.cxfy the du:ecuon’ of
the rotation component of a & symmetry operation as well as the location of the posnt o.f the inversion
component even though neither the rotation axis or the inversion point exist separately in this example.
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one Z.1 It is instructive to break this operation into components,

-10 00y /-1000yt 00 0
0-100], {0-100/l01 0 0
00-10|7{0010loo-1o0
0oo0-) Looo1lhooo-l _ (A2.10)

To identify the two matrices on the right we recall that in a three-dimensional Cartesian
axis system a two-fold rotation ahout z is represented as:

=100
0-10

001 (A2.11)

so that the first of the two matrices on the right of Eg. A2.10 can be identified as rotation
about the zw plane. The second is clearly a rotation about the xy plane. Thus the operation
= corresponds to two 2-fold rotations about orthogonal planes (in four dimensions
orthogonat planes have only a point on common). It should be obvious that repeating =
twice produces the identity, so the order of the operation is 2. It transpires that there are a
number of other operations that may be considered as combinations of rotations and that
have orders of 3, 4, 6, 8, or 12. The rotations are restricted to 2-, 3-, 4- or 6-fold rotations
as in lower dimensions, but the new Symmetry operations may have different order.

There is also a 5-fold symmetry operation compatible with translational symmetry in
four dimensions. It is instructive to approach it by first considering lower dimensions. A
three-fold rotation about a peint in two dimensions can be represented by:

Az(?:}), A2=[j (I)] AB:((I) ?) (A2.12)

In particular this operation takes the point 1,0 to 0,1 to 1,1 and back to 1,0; i.e. it
interchanges the three equivalent axes of a hexagonal lattice,

In three dimensions thete is a 4-fold operation that leaves only 2 point invariant; this is 4.
We describe this operation using the basis of a primitive bec celi [ie. axes inclined at
cos 1(=1/3) to each other]. Successive powers of A = 4 in this basis are represented by

00-1y _ (0-11 119 /100
A=[10-1aA"=|0-10/,A°=|<1 01 A*={01 ¢
01 -1 1-10 -1 00 001 {A2.13)

The nature of A can be verified (see § 3.7.3) by checking that Tr(A) = —I and det(A) = -1
as well as observing that it has an order of 4. Now the point 1,0,0 is successively taken to

ISymbols encountered include 22, 2222, IT and deg.
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0,1,0; 0,0;1; 1,1,1 and back to 1,0,0. Normally the 4 operation is described using an
orthogonal basis so that the matrix representation is differeat; but of course the trace and
determinant of the matrix are unchanged.

Finally coming to four dimensions, there is a five-fold operation that can be represented
simply using a basis with axes at cos-1(~1/4} to each other and which is represented by the
matrix V:

00c0C-1
1 0 Q-
V=101 0
001-1 (A2.14)

The reader should verify that V3 = E (the unit matrix) and that successive operations on
e.g. 1,0,0.0 produce 0,1,0,0;0,0,1,0;0,0,0,1; 1,1,1.1 and back to 1,0.0.0. Note that
det(V) = 1, so this is a proper operation. As it transforms a set of integers p,g.r.s
representing a fattice point into another set of integers Tepresenting another lattice point it is
a symmetry element of a lattice and hence compatible with translational Symmetry.

Some words of caution. The two-dimensional hexagonal lattice actually has a six-fold
symmelry element (6-fold rotation) and the four-dimensional icosahedral lattice has a ten-
fold symmetry element (which is a combination of V with 1) but the three-dimensional
[attice does not have an eight-fold symmetry element.2 The genera] four-dimensional iattice
with a ten-fold symmetry element is referred to as decagonal. The unit cell parameter
constraints are @y =@z =a3=asand @12 = o33 = oy = O, 03 = Olg = oz = f3,
with cosg; + cosf = -1/2 (i.e. there are two independent unit cell parameters), we have
referred in the previous paragraph to the case ¢ = B.

To completely identify symmetry operations corresponding to matrices in four
dimensions one needs as well as the trace and determinant, the second invariant which,
for a matrix with elements aj, 18

{an1a22 — appaz1) + (a11a33 — @13a31) + (11444 ~ @ aa4)) +
(22033 - az3a32) + (a2844 — az0a43) + (333044 — 234043) (A2.15)

Interest in quasicrystals, some of whose diffraction patterns have icosahedral
symunetry, prompts the observation that in six dimensions, 5-fold “axes” 3 oriented as in
icosahedral symmetry are possible (as weli as 7-, 9-, 14- and 18-fold symmetry
operations).

With orthogonal axes the V operation is represented by the matrix;

It should be obvious that just as every three-dimensional lattice has 1 for a symmetry elemenl, every
four-dimensional laitice has = (which reverses the direction of lattice vectors) as a symmetry element,

%A combination of Z with [ {existing separately) is d/m.

33ee footnote on p. 398.
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cos g sinp O 0
._|=sin pcos p 0O 0
V= 0 o C95P sinp,
0 g -sin p, cos p, (A2.16)

which represents a double rotation first about the zw plane by pi and then about the xy
plane by p3 (compare the discussion of = given above). From the fact the trace rust be —1
and the second invariant must be 1 {as for V) it can easily be found that 21 = 27/5 and that
p2=4m/5. Thus the V operation is the combination of rotations by 1/5 and 2/5 of a circle
about orthogonal planes. .

A2.5 Numbers of crystallographic symmetry groups

There are 4895 four-dimensional space groups and, as we have seen, the order of the
point group can be as high as 1152 so that an International Tables for four dimensions
with the same detail as Volume A4 ( 1983) would run to hundreds of volumes, and five
dimensions would be out of the question. The table below lists the numbers of
crystallographic groups in n dimensions and with lattices of differing (< #) dimensions of
periodicity.

space lattice dimension —  © 1 2 3 4 7
0 1
1 2 2
2 0 7 17
3 3275 80 230
4 227 7 ? 1651 4895
n ? ? ? ? ? ?

The entry under column 0 is the number of crystallographic point groups. Tt is known that
the entry in every column is finite for finite n.
A2.6 Generalization of Euler’s formula for polyhedra
The generaiization to n dimensions of Euler’s formula for polyhedra is:
n=1 .
2 (0P =1- -y
i=0 (A2.17)
Where P; is the number of i-dimensional figuses (Pg is the rumber of vertices, P is the

number of edges etc.). For # = 3, this gives the familiar formula Po-Pi+Py=2(e.
V—E+F =2). In four dimensions: Py — Py +P3 ~ P13 = 0. For a four-dimensional
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simplex Py =5, Py = 10, Py =10, P3 = 5.
From Eq. 2.17 the analogous formula for a honeycomb (space filling by n-dimensional
polytopes)can be derived!:

2 (-1 P =0
i=0 {AZ.18)

Where now the numbers should be interpreted as relative numbers of figures of the
appropriate dimensicnality. For a plane tessellation Eq. A2.18 gives the result; V- E+ F =
0 which we have used many times. We use the analogous expression for three-dimensional
honeycombs in Appendix 3.

A27 References

One of the best introductions to clementary n-dimensional geometry is still An
Introduction to the Geometry of n Dimensions by D M. Y. Sommerville (Dover, New
York, 1958). The definitive work on regular polytopes in n-dimensions is Regular
Polytopes by H. S. M. Coxeter [third edition, Dover, New York, 1973] and on polytopes
in general Convex Polyropes by B, Griinbaum [fnterscience, New York, 1967]. Feur-
dimensional lattices are described fully by H. Wondratschek et al., Acta Crystallogr. A27,
523 (1971} and an account of the four-dimensional space groups is in Crystallographic
Groups of Four-Dimensional Space by H. Brown et al. [Wiley, New York, 1978]. A
good introduction to four-dimensional crystallographic point groups and symmetry
operations has been given by E. J. W. Whittaker [An Atlas of Hyperstereograms of the
Four-Dimensional Crystal Classes, Clarendon Press, Oxford, 1985]. The four-
dimensional hyperlayer groups (i.e. the symmelry groups of four-dimensional objects with
translations in three dimensions) are described in Colored Symmetry by A. V., Shubnikoy
and N. V. Belov [Pergammon Press, Oxford, 1964]. For a wild ride into many-
dimensional space (but with some excellent introductory material) Sphere Packings,
Lattices and Groups [Springer-Verlag {1988)] by J. H. Conway and N. I. A. Sloan is
highly recommended (this beok also includes an enormous bibliography). There have been
many recent examples of higher-dimensional crystallography applied to real world
problems a good starting point is T. Janssen, Acta Crystallogr. A42, 261-271 (1986),
Applications to quasicrystals witl be found in the review by W. Steurer, Zeits. Kristailogr.
190, 179 (1990). Two commonly used notations for point symmetry operations in four
dimensions are those of C. Hermann [Acta Crystaliogr. 2, 139-145 (1949)] and A. C.
Hurley [Proc. Cambridge Philos. Soe. 47, 650-661 (1951)].

IFor Egs. A2.17 and A2.18, sce the Coxeter reference cited in the next section,
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THE TOPOLOGY OF POLYHEDRA, NETS AND MINIMAL SURFACES

A3.1 Introduction

Topological aspects of crystal chemistry are attracting increasing attention. One reason
for the interest is that zeolite catalysts are of major economic importance and their properties
are intimately related to structural features such as the size of the pores and cages. These in
turn are related to topological properties such as the connectivity and the sizes and numbers
of rings in the net of the framework atoms. This Appendix describes some topological
aspects of structures, particularly of 3- and 4-connected nets and infinite polyhedra. Tt will
be seen that the subject poses some interesting and challenging unsolved problems.

A3.2 Finite polyhedra

Normally a polyhedron is thought of as a simple convex object topologically equivalent
to a sphere: thus if the faces were deformable, it could be “blown up” so that it became a
sphere in the same way as a truncated icosahedron (5.62) becomes a soccer ball. A finite
polyhedron of this sort is topologically equivalent to a tiling of the surface of a sphere. The
well-known Euler equation for the number of faces (F), edges (F), and vertices (V) of such
atilingis F-E+V=2

A torus (an object shaped like a doughnut or the inner tube of a tire) has a hole through
it, and is topologically different from a sphere. For a tiing of a torus, F — E + V=0, This
is the same as for a tiling of the plane (see § 5.6.11),

What about surfaces with more than one hole in them? A teacup with ore handle is
topologically the same as a torus and contains one hole. A soup bowl with two handles has
two holes and is thus topologically distinct. The number of holes in a surface (H) is related
to the Euler-Poincaré characteristic ¥ of a surface by:1

¥=2-2H A3l
and for a surface with characteristic y:
V-E+F=y A32

Thus the torus (and the infinite plane) have = 0 and 2 simple closed surface (such as
that of a sphere) has y =2 (H = 0).

1See H. 8. M. Coxeter, introduction 1o Geometry {Book List). A simple proof of Eq. A3.2 is given by
R. Courant & H. Robbins, Whar is Mathematics? [4th Bd. Oxford (19471,
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simplex Pp =35, P| = 10, P; = 10, Py=35,
From Eq. 2.17 the analogous formula for a honeycomb (space filling by n-dimensional
polytopes)can be derived!:

2 (-1'P =0
i=0 {A2.18)

Where now the numbers should be interpreted as relative numbers of figures of the
appropriate dimensionality. For a plane tessellation Bq. A2.18 givesthe result: V- F + F =
0 which we have used many times. We use the analogous expression for three-dimensional
honeycombs in Appendix 3.

A2.7 References

One of the best introductions to elementary n-dimensional geometry is still An
Introduction 1o the Geometry of n Dimensions by B. M. Y. Sommerville (Dover, New
York, 1958). The definitive work on regular polytopes in n-dimensions is Regular
Polytopes by H. S. M. Coxeter [third edition, Dover, New York, 1973] and on polytopes
in general Convex Polytopes by B. Griinbaum [Interscience, New York, 1967]. Four-
dimensional Tattices are described fully by H. Wondratschek et al., Acta Crystallogr. A27,
523 (1971) and an account of the four-dimensional space groups is in Crystallographic
Groups of Four-Dimensional Space by H. Brown et al. [Wiley, New York, 1978]. A
good introduction to four-dimensional crystallographic point groups and symmetry
operations has been given by E. J. W. Whittaker [An Atlas of Hyperstereograms of the
Four-Dimensional Crystal Classes, Clarendon Press, Oxford, 1985]. The four-
dimensional hyperlayer groups (i.e. the symmeiry groups of four-dimensional objects with
translations in three dimensions) are described in Colored Symmetry by A. V. Shubnikov
and N. V. Belov [Pergammon Press, Oxford, 1964]. For a wild ride jnto many-
dimensional space (but with some excellent introductory material) Sphere Packings,
Lattices and Groups [Springer-Verlag {1988)] by J. H. Conway and N. J. A. Sloan is
highly recommended (this book also includes an enormous bibliography). There have been
many recent examples of higher-dimensional crystallography applied to real world
problems a goed starting point is T. Janssen, Acta Crystallogr. A42, 261-271 (1986).
Applications to quasicrystals will be found in the review by W. Steurer, Zeits. Kristallogr.
190, 179 (1990). Two commonly used notations for point symmetry operations in four
dimensions are those of C. Hermann [Acta Crystallogr. 2, 139-145 {1949 and A. C.
Hurley [Proc. Cambridge Philos. Soc. 47, 650-661 (195D).

1For figs. A2.17 and A2.18, see the Coxeter referente cited in the next section.

APPENDIX 3

THE TOPOLOGY OF POLYHEDRA, NETS AND MINIMAYL SURFACES

A3.1 Introduction

Topological aspects of crystal chemistry are attracting increasing attention. Qne reason
for the interest is that zeolite catalysts are of major economic importance and their properties
are intimately related to structural features such as the size of the pores and cages. These in
tirn are related to topological properties such as the connectivity and the sizes and numbers
of rings in the net of the framework atoms. This Appendix describes some topological
aspects of structures, particularly of 3- and 4-connected nets and infinite polyhedra. It will
be seen that the subject poses some interesting and challenging unsolved problems.

A3.2 Finite polyhedra

Normally a polyhedron is thought of as a simpie convex object topologically equivalent
to a sphere: thus if the faces were deformable, it could be “biown up” so that it became a
sphere in the same way as a truncated icosahedron (5.62) becomes a soccer ball. A finite
polyhedron of this sort is topologically equivalent to a tiling of the surface of a sphere. The
well-known Euler equation for the number of faces (F), edges (E), and vertices (V) of such
atilingis F-E+V=2

A torus (an object shaped like a doughnut or the inner tube of a tire) has a hole through
it, and is topelogically different from a sphere. For a tiling of a torus, F — E + V = 0. This
is the same as for a tiling of the plane (see § 5.6.11).

What about surfaces with more thar one hole in them? A teacup with one handle is
topologically the same as a torus and contains one hole. A soup bowl with two handles has
two holes and is thus topelogically distinct. The number of holes in a surface (&) is related
io the Euler-Poincaré characteristic y of a surface by:!

¥=2-2H A3l
and for a surface with characteristic y:
V-E+F=y% A32

Thus the torus (and the infinite plane) have ¥ = 0 and a simple closed surface (such as
that of a sphere) has ¥y =2 {H =0).

1See H. S. M. Coxeter, [ntroduction io Geametry (Book List). A simple proof of Eq. A3.2 is given by
R. Courant & H. Robbins, What is Mathematics? [4th Ed, Oxford (1947)].
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A simple example of a pelyhedron with ¥ = 0 can be obtained from a ring of eight cubes
fused together as shown on the left in Fig. A3.1. There are 12 faces, 64 edges and 32
vertices. Note that there are eight vertices of the sort 43, sixteen 4% and eight 45,

Also shown in the figure is 2 polyhedron made by fusing together 20 cubes. It has five!
holes (y, = ~8) and 72 faces, 64 vertices and 144 edges, so V-~ E + F = -8 confinming the
formula above.

Fig. A3.1. Polyhedra with holes.

A3.3 Infinite polyhedra

An obvious next step is to repeat the above process to make an infinite polyhedron with
connecting holes. Consider a cubic unit cell with side 2 containing a cube of side | centered
at 1/2,1/2,1/2 and fused to unit cubes centered at the face centers {0,1/2,1/2)k. Repetition
of the unit cell will produce a solid figure with $ vertices, 12 faces, and 24 edges per unit
cell. The empty space left behind will be exactly the same: empty cubes at 0,0,0 and at
(0,0,1/2)x (the same coordinates as before but displaced by 1/2,1/2,1/2). The structure
shown on the right in Fig. A3.1 is an element of the infinite structure; it may be seen that
square holes emerge through each face of the unit cell. As holes emerging from opposite
faces are equivalent (really the same hole) the number of holes per unit cell is 6/2 = 3,

It is interesting to consider this figure as an infinite periodic polyhedron with y < (). The
numbers of vertices, edges, faces and holes per repeat unit are expressed as lower case
letters (v, e, fand & respectively), we then have with x = 2 — 2%

Vv—e+f=2-2h =x A33
This formula applied to the infinite polyhedron constructed from fused cubes gives

8-24412=2-2x3 = —4. Note that each vertex is 45. This polyhedren is an example
of a skew polyhedron.2 The edges and vertices form a 6-connected net,

lCounting holes can be tricky. Start with a cube and make a hole between twe oppasite faces {one
hole). Make a hole through a third face to join the first hole (the total is now two holes). Repeat for the
fourth, fifth and sixth faces (three more hales for a total of five).

. 8. M. Coxeter, Proc. Lond. Math. Soc. 43, 33 (1937,
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The polyhedron and the complementary empty space have the same connectivity, In this
case the connectivity of the network of face-sharing cubes is just that of the primitive cubic
lattice (six) and % is one half this connectivity., As discussed particutarly by Wells
(reference in § A3.9) it is often simpler to consider the connectivity of the polyhedron than
to count holes. In some cases (those in which the polyhedron in question and its
complementary polyhedron are topologically identical) care must be exercised in deciding
the repeat unit and the cornectivity, and we now give some examples which also illustrate
how to count vertices, edges and faces.

For a polyhedron with just one kind of vertex, once the number of vertices in the repeat
unit is identified, counting edges and faces is easy. The number of edges is just one-half
the number of vertices times the connectivity (i.e. 2y if four polygons meet at a vertex). To
count faces note that each rn-gon is shared by » faces, so that if there are {for example) v
vertices of the type nj.1y.m3.14, the number of faces is ving +ving + ving + ving.

An infinite polyhedron can be obtained from the sodalite net (§ 7.3.10) by considering
one-half the polyhedra of a space filling by trancated octahedra, Again the filled and empty
space regions are identical. The cubic unit cell contains a truncated octahedron at 0,0,0 and
it is fused together with its neighbors by sharing square faces, and has the same
connectivity (6 = 2k) as the first infinjte polyhedron. The reader should confirm that v =
12, f'= 8 (the hexagonal faces) and ¢ = 24, 5o that again v —e + f = —4 for a unit cell
including three holes. This structure is also a regular (skew) polyhedron, in this case 64,

In § 7.4.1 {p. 323} we described the two complementary Archimedean polyhedra 42.62
of the Linde A structure. [n this stnicture the number of vertices in the repeat unit (unit cetl)
is v =24, Accordingly ¢ = 48 and /= 20. The connectivity is again six (h=3andx=-4)
as ¢an be seen readily from Fig. 7.38 (p. 324) and again v-e+f=x.

Consider next the infinite polyhedron 43.6 corresponding to the zeolite rho net (Fig.
7.39, p. 325). The body-centered cubic cell has again three holes and contains 48 vertices.
Note that in considering this structure as an infinite palyhedron we consider points at the
origin as inside the polyhedron and poinis at 1/2,1/2,1/2 as outside so in this sense the
unit cell is primitive (so care must be taken in deciding what is the repeat unit). Thus the net
of the tunnels is again the §-connected simple cubic array and A= 3, x = —.

We also described the same set of points as the polyhedron 4.8.4.8 which was shown
(Fig. 7.39) as a packing of octagonal prisms; the structure is now connected as the
8-coordinated body-centered cubic array so in this case # = 4 and x =6 for the primitive
unit as shown in Fig. A3.2. The number of vertices in the primitive unit is 24 so the
number of edges is 48, the number of faces is 18 and v— ¢ +f=24-48+ [8=—6=4x,

Fig. A3.2. Left: a repeat unit of bee. Right: the repeat unit of the diamond structure: each bond {except
the one in the center) traverses a face of the primitive unit cell.
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The infinite polyhedron corresponding to the faujasite net (Fig. 7.41, p. 326) is another
43.6. There are 192 vertices in the face-centered cell, or 48 in the primitive cell. The
network of tunnels in the faujasite structure has a diamond connectivity so now a hole
enters (and leaves) through each face of the primitive cell (see Fig. A3.2) so there are now
three holes per primitive ceil. Enumeration shows that for the primitive cell v = 48, ¢ = 96
and f=44, Again v— e+ f=—4 as expected for 4 = 3.

So far we have considered infinite polyhedra with four polygons meeting at cach vertex.
In § 7.2 (Fig. 7.7) we described two nets 6.87. The one we called 6.82P is a tifing of a
surface with primitive cubic connectivity {h =3, x = -4). The repeat unit contains 48
vertices (eight hexagons) and as the net is 3-connected the number of edges is 48 x 3/2 =
72 and f = 48/6 +48/4 = 20. Note that the repeat unit is taken as the body-centered cell; this
because, just as for the polyhedron 43.6 {zeolite rho) discussed above, the complementary
potyhedron is the same as the original polyhedron,

The other polyhedron 6.82 (also shown in Fig. 7.7) called 6.82D also requires some
care, again because the complementary polyhedron is the same. The repeat unit contaings 24
vertices. The net of the structure (the surface being tiled) is that of diamond but now the
unit cell contains just one “diamond” unit and the connectivity is 4 (h = 2, x = -2) (contrast
the discussion of the faujasite structure abave). The number of edges is 24 x 3/2 = 36 and
the number of faces is 24/6 + 24 % 2/8 = 10 and v—e+f=24 .36 +10=-2=x as
expected.

Other infinite polyhedra with just one kind of vertex have also been described. In
Chapter 6 on the right of Fig. 6.73 (p. 276) an infinite polyhedron 3.42.3.42 was
illustrated. The reader may wish to verify that for this structure x = ~4, v =12, e =36, and
S=20and that again f—¢ +v=x

In § 6.8.5 we also mentioned {p. 277) the polyhedron 33.43 made from rhombi-
cuboctahedra and octahedra sharing faces {not illustrated). The net of the surface being tiled
is eight connected {as in bee) so 7 = 4.

Examples of infinite polyhedra with five faces meeting at a vertex were described in
3 7.9. These are: 3.4% and 33.62 (Fig. 7.75, p. 357) and a second 3 .44 (Fig. 7.74, p.
356); all have k = 3 (for the primitive cell in the last two cases),

A polyhedron 37 was described in § 6.8.6 (Fig. 6.78, p. 280). Again & = 3 for the
primitive cefl which contains 24 verlices, 84 edges (7-connected) and 56 faces. This
polyhedron was derived from the packing corresponding to the Al vertices in WAl; The
reader might verify that in the latter structure nine triangles meet at every vertex and they tile
a surface with the connectivity corresponding to bee (2 = 4) and can therefore be
considered as an infinite polyhedron 3%, It should be clear that many of the sphere packings
of Chapter 6 can also be described as infinite polyhedra. As examples we leave the reader
to verify that the pyrochlere packing {p. 236) and that of the atoms on the snub cubes in
NaZnj3 (p. 273) are both polyhedra 38! These polyhedra are included in Table A3.1.

An interesting (and equivalent) way of considering the above polyhedra is in terms of the
sums of angles of the polygons meeting at a vertex. The interior angle at the vertex of a

IThe second of these requires some care. The primitive repeat unit js a pair of (opposite hand) snub
cubes. The ten (so far) unshared square faces of this unit zre sach shared with other pairs so h = 1072 = 5.
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.regular N-gonis = m{i — 2/N). Now fora polyhedron the angular defect at each vertex k
i3 defined as & = 2 minus the sum of the angles c. Thus consider a vertex common to an
11-8ON, Np-gON, ..., 7-gON:

8, =27r[1—z(§~?{7)] A34

This formula defines & for any vertex even if the individual polygons are not regular; all
that matters is the n;, the number of edges of the polygons. With 8 so defined an
alternative way of writing equation A3.3 is:

Zﬁk =2mx
k A3.5

Thus for a finite convex polyhedron (x = 2) we have Descarées’ formula for the sum
over the k vertices:

Z 8,=4r
k A3.6
- For a plane titing (net) with x = 0:
2.6,=0
k A3T

For infinite polyhedra with a topology characterized by &, the sum over the v vertices in
the primitive unit gives;

28, =4x(1- k)
k A3.8

"These formulas hold for all polyhedra of the types indicated even if there are many kinds
of vertex and irregular polygons. They are quite useful for determining the numbers of
different kinds of vertex that can be combined in a polyhedron (or a plane net),

To eliminale the factors of 7 we define 4 = &4z, then for a pelyhedron with one kind of
vertex, the number of vertices in the repeat unit for a given connectivity are v = (1 - A,
Table A3.1 below lists some of the infinite polyhedra we have mentioned above. It may be
verified by referral to the crystallographic data given in the rext that indeed v is given
correctly.

Yet another useful form of Eq. A3.3 can be obtained for infinjte polyhedra with all
vertices with the same connectivity r (the number of polygons meeting at a point). Let there
be f; polygons with ¢ sides per repeat unit so that Ef; = £ The number of edges is e = rv/2
and, as each polygon contributes i/r vertices, v = Lifi/r, Substituting these expressions in
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Eq. A3.3:
227+~ if 1=2 1
i A3.9
With the special cases;
r=3 (three-connected) Z(6 - i)f; = 6x A39a
r =4 (four-connected) L4 - O = 4x A3.9b

As polygons with faces all having r sides are dual to polyhedra with r-connected
vertices, the number p,, of s-connected vertices of polyhedra made of F-gons is:

S[2r+(2- Pnp,1=2rx
n A3.10a

In particular for simplicial polyhedra (all faces triangles), r = 3 and:
Y(6 - n) = 6x A.3.10b

Table A3.1. Data for some infinite potyhedra (see text for symbeols),
Notice that a vertex symbol can refer to more than one polyhedron,

pelyhedron name or comment page -1/4 k v=(h- D{-1/4)
6.82 682D 296 24 2 24
6.82 6.82p 296 24 3 48
435 tho, faujasite 324, 326 24 3 48
4262 Linde A 323 12 3 24
4.6.4.6 analcime 376 12 3 24
&4 regular 405 6 3 i2
46 reguiar 404 4 3 8
438 tho, W8 325, 327 16 4 48
4,8.4.8 Fig. 7.39 325 3 4 24
3362 Fig. 7.75 357 12 3 24
3.44 Figs. 7.74 and 7.75 356, 357 12 3 24
14624 partof UBy; packing 356 6 3 12
342342 Fig. 6.73 (tighy) 276 6 3 12
33,43 not illustrated 277 8 4 24
37 Fig. 6.78 280 i2 3 24
38 pyrochlore 234 6 3 12
38 NaZn;3 273 6 5 24
32 WAl 257 4 4 12

Note that a 4-connected net has six angles at a vertex and only four of these are
considered when we consider the structure as a 4-connected infinite polyhedron. As the
omitted angles are an opposite pair, there can be as mrany as three different deseriptions of a
given structure as an infinite polyhedron. Thus the net A-B-C.D-E.F could be described as
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polyhedra A.CB.D, CEDF or AERBF.)!

A3.4 Space filling by polyhedra: nets and ring sizes

Instead of considering infinite polyhedra (tilings of surfaces with holes), we could
constder the patterns arising from the vertices of a space filling (or tiling) by finite
polyhedra. Let there be P polyhedra, F faces, E edges and V vertices. Euler’s equation
becomes now (see Fq. A2.18):

P-F+E-V=0 A311

We will discuss infinite patterns with P.f e and v polyhedra, faces, edges and vertices
respectively per repeat unit. We start by verifying Eq. A3.11 for some simple cases.

In closest sphere packing there are two tetrahedra and one octahedron (p = 3) per vertex
(v = 1}. Each vertex is connected to 12 others, so (per vertex) e = 6. The octahedron has &
faces and each of the tetrahedra has 4 faces, but as each face is shared with another the total
aumber of faces is f= (8 + 2 x4)/2 = 8. In this casep-fre-v=3-8+6-1=0,

The body centered cubic structure divides space into six tetrahedra per atom so for v = 1,
P =6,f=6x4/2 =12 To count edges we note that the edges of the tetrahedra are half
cube body diagonals and cube edge lengths, so we consider the vertices as coordinated to
the 8 nearest neighbors and the 6 next-nearest neighbors; accordingly e = (8 + 6)/2 = 7.
Aganp—f+e-v=(.

Many intermetallic structures (“topologically close packed”) are made up of a packing of
tetrahedra (sharing faces) only. For these f= Zp and 50 p = ¢ — v. If further there are N,
vertices that are n-coordinated, then ¢ is half the sum of Ny, i.e.

p=ZnNn /12—
n A3.12

We now apply this formuia to the B-W structure of A3B (§ 6.6.4) in which A is
{4-coordinated and B is 12-coordinated. Per unit A3B,p=(3x14 + 12)/2 -4 =23,

Note that if we divide Eq. A3.12 on both sides by p we get the result that the number of
tetrahedra per vertex is half the average coordination number rminus one:

piv =ZnN,,/2u -1
n A3.12a

An example of a 4-connected net derived from a polyhedral packing is that of sodalite
(see Fig. 7.30, p. 316). Per primitive cell: p= 1, v =6, ¢ = 12 and f =7 (half the number

INote also that we group the angles by opposite pairs when determining the long Schléfli symbol for 2
4-connected net; but, ir accord with established usage, give the sizes of rings contained in angles in cyclic
order when describing a polyhedron.
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of faces of a truncated octahedron). Again p - f4e—yp =0 We use below the fact that
there are 3 square faces and 4 hexagonal faces in the primitive cel}.
For a 4-connected net e = 2 and Eq. A3.11 becomes:

f-p=v A3.13

Let £, be the number of n-faces per repeat unit (fy = 3 and f = 4 for sodalite) then as
each vertex is shared with 6 faces {(a 4-connected net has six angles), the number of vertices
is:

v = Enf,/6 A3.14

The average ring size is <> = Znfuif so that from Egs, A3.]2-14:
<> =6 - Gpif A3.15

1t should be verified that for the sodalite net p/f = 147 and <n> = 36/7,

The derivation of Eq. A3.15 shows that we only count the shortest rings at each angle
{corresponding to polyhedron faces) and not the larger rings inside the polyhedra (for
example the 12-rings around the truncated octahedra in the sodalite structure),

A number of nets dertved from a space {illing by polyhedra were described in Chapter 7.
(See the exercises § 7.12.5 for HL42). Some of those with Just ore kind of vertex are listed
in Table A3.2 below. ris the density expressed as the number of vertices per unit volume
{for unit edge length). Clearly there js not a strong correlation between average ring size
and density. Generally the larger the range of ring size the smaller the density, The nets of
§ 7.6 (clathrate hydrates etc.) with 4-, 5- and 6- rings all have » about 0.57. This suggests
that the geometric mean ring size should be considered.! This is shown in the last column
of the table as {n} and clearly correlates better with r than does <n>.

Be sure to distinguish the two different descriptions of a structure {such as rho} as an
infinite polyhedron (4%.6) and as a four-connected net (4-4.4-6.8-8), Nets that can be
described as polyhedron packings have no subscripts in the long Schisfl symbol.

Other 4-connected nets based on pelyhedron packings were described in § 7.6, For the
packings of 14-hedra, the average ring size is the same as for sodalite {(<n> = 5.142). For
the packings of dodecahedra and lasger polyhedra corresponding to the nets of the hydrates
the average ring size is given in Appendix 4 (§ Ad.5) and ranges from 5.06 10 5.11. The
average ring size in all known zeolite structures (including those with more than one kind
of vertex) that are derived from polyhedron packings falls in the narrow range 144/20 =
4.966 < <n> < 36/7 = 5.142. We conjecture that for any 4-connected net realizable with
edges of equal length, and derived from packings of finite polyhedsa, the average ring size
is in the range 9/2 = 4.5 < <n> < 36/7 = 5.14.2

IRemember to count rings per vertex. An n-ring at a vertex is Un of an n-ring per vertex as an n-ring
belengs to a vertices.

2The restriction to finite polyhedra is necessary. A net like MAPQ-30 (Fig. 7.17, p. 306) is composed
of finite and infinite (in one-dimension) polyhedra and the average ring size is 16/3 = 5.33.
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Table A3.2. Average <n>, and geometric meanring size [r}, and density r of some polyhedron packings.

net symbol <> r {n}
w4 38312312 144731 = 4.645 0.197 3.545
w's 4-4.4.8.4.12 144/29 = 4.966 0.302 4.636
Linde A 4-6-4-6-4-8 144729 = 4.966 0.428 4.806
faujasite 44.4-6-6:12 36/7T=5.142 G.380 4,858
HL4y 3-4-6-8-6-8 36/7 = 5.142 0.395 4.799
rho 4-4.4.6.8.8 36/7 = 5.142 0.426 4.917
ZK5 4.4-4.8-6.8 36/7 = 5.142 0.448 4917
sodalite 4-4-6.6-6-6 36/1=5.142 0.530 5.043

In § 7.6 we mentioned the similarity between bubble packings and the hydrate
structures. Experimental studies of froths of approximately equal-velume bubbles show
that some of the bubble faces have four sides and that the average number of edges per face
is 5.14.1 It has been calculated? that for a random froth (i.e. with-a random distribution of
edge lengths) the average ring size is 6/(1 + 35/2472) = 5.23,

Many of the 4-connected nets of interest in crystal chemistry have more than one ring of
4 given size at an angle. (Diamond has two §-rings at each angle). They cannot be
considered as packings of polyhedra with three edges meeting at each vertex and for this
reason the above analysis does not apply directly to them. However we saw in §5.1.10
(Fig. 5.16, p. 148) that diamond could be considered as a packing of hexagonal
letrahedra (containing divalent vertices) to produce a structure with 2 faces common to each
angle (12 common to each vertex). Let there be i faces meeting at a vertex in a 4-connected
net derived from 2 space filling by polyhedra, then instead of A3.15 (which applies for =
&):

<n> =yl - plf) A3le

In the case of diamend u = 12, and for tetrahedra sharing faces p/f = 1/2, so Eq.
A3.16 gives <n> = 6 as is indeed the case.

Note that for quartz, which has Schlifli symbol 6:6-62-63-87-87, iz = 20 and <n> =
80/1 1. If we were to consider that net as derived from a packing of polyhedra, Eq. A3.16
shows that p/f=7/11; so some, at least, of the “polyhedra™ have less than four faces.

A3.5 Coordination sequences and topological density

In Chapter 7 the number ng of kth topological neighbors of a vertex of a net was
defined. The sequence of numbers 1, is called the ceordination sequence. A measure of the
local topological density is defined as P which js the sum of all the topolagical neighbors
in the first k shells divided by 43.

"For iilustrations of bubble shapes see E. B. Matzke, Amer. J. Botany 33, 58 (1946).
21. L. Meijering, Philips Res. Rep. 8, 270 (1953).
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4
3
P, = Z ntk
=1 A3.17
As ny is_ often given by a quadratic in kong=akl + bl 4 ¢ (see Chapter 7 for exam-
ples), the limit of p as & — o js the global topological density p.. = a/3, For uninodal 4-
connected aets p., seems to be a rational number between 1/3 and 2 and correlates well with
the geometrical density. !

A3.6 Enumerating and identifying nets

Itis d‘ifﬁcult to enumerate nets in a systematic and comprehensive way, The problem: can
be considered purely topological, or it could he required that the nets be realizable, A

The topology of a realizable net is very simply specified. Bach vertex must be connected
to others either in the same unit cell or one of the 26 contigucus ones (i.e. the 6 sharing a
cell face, the 12 sharing a cell edge and the 8 sharing a cell comer). Fig A3.3 shows the
Tepeat unit of diamond (compare Fig. A3.2). The vertices in the primitive cell are Jabeled
“1" and “2” and are connected to each other; each “1” is also connected to a “2” in a
neighboring cel] refated by a primitive lattice translation in the x, y or z direction, and

sin;i!arly for each “2.” We could code this information in what we cal] a connectivity table
as follows:

L 2[000] 2[100} 2 [010] 2 [001]
2 1[000] 1[00] 1ol 1 [001]

redundancies in the connectivity tables,

The regular ¥* (SrSiy) net has four vertices in the primitive cel] and the connectivity is
also shown in Fig, A3.3. The connectivity table is;

1 2[000) 3[000] 4 [000]
2 3[100] 4{010]
3 4 [001]

IFor more on coordination sequences for d-contected nets see M. O’ Keeffe, Zeits. Kristaliogr. 196, 21
(1991} and M. O'Keeffe & S. T. Hyde, Zeits. Krisiallogr. 1996},
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I+y 3z 44z
14z 2 I+x
2-z 2-x
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2.y

Fig. A3.3. The connectivity of diamond (ieft) and ¥ (8rSi2) nets (right).
The connectivity table of the quartz net is:

L 2[000] 2[100} 3[000] 3{01Q]
2 3[011] 3(io1}

It should be noted that the topology of the net is completely specified by the cornectivity
table and all topological properties such as numbers of rings and coordination sequences
may be obtained from it. Unfortunately as both the nembering of the vertices (v!
possibilities) and the labeling of directions are arbitrary, there are many apparently different
connectivity tables that can describe the same net. A further difficulty in crystal structares is
that frequently the crystallographic unit cell is larger than the topological repeat unit. In
practice coordination sequences combined with Schlfli symbols (both of which are readily
found by computer from the connectivity table) serve to identify a net with some reliability.

This method of describing nets allows ready generalization to higher dimensions {see
references § A3.9). An example of the many interesting unsolved problems in this area is
that of identifying the regular n-dimensjonal m-connected nets {3 < m < n + 1) corre-
sponding to the three-dimensional nets ¥* {(n=3,m=13) and diamond (n =3, m = 4).

A3.7 Curvature and periodic minimal surfaces

There is currently great interest in periodic minimal surfaces (see § A3.9 for references)
in g variety of contexts. We touch on some aspects of relevance to crystal structure here,
starting with some elementary definitions and a discussjon of curvature—a concept that
has not entered into our discussion so far as we have been considering discrete, rather than
continueus, structures, !

The curvature at a point P on a two-dimensional curve can be defined informally as
follows (see Fig. A3.4). Draw a circle through P and two neighboring points P and P; on

1%We are content simply to state results that are derived in standard mathematics texts. Two excellent
books (see Book List) are Introduction to Geometry by H. §, M. Coxeter and Geometry and the
Imagination by D. Hilbert & S. Cohn-Vossen. We have borrowed heavily from the latter for this section.
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either side of P and on the curve (three points define a circle). As Py and P, approach
closer and closer to P we will obtain a limiting circle with radius 7. » is called the radius of
curvature at P and its reciprocal k = 1/# is called the Curvature. It should be clear that the
curvature of a straight line is zero and that the curvature of a circle is constant,

Fig. A3.4. Defining the curvature at 2 point on a curve (see text).

Now consider a three-dimensional surface such as an ellipsoid {Fig. A3.5) or a hill top,
We can find two plane sections through the surface such that the lines of intersection are (a)
of maximum curvature, k1 and (b) of minimum curvature, k2. These are known as the
principal curvatures, Their product K = kikg is known as the Gaussian curvature. We
adopt the convention that as the centers of curvatare are “inside” the surface, the curvatures
are considered positive, !

Fig. A3.5, Left: illustrating a point of positive Gaussian curvature and the directions of principal
Curvatures (heavy lines; the point in question is the intersection of these two lines). Right: simitarly
illustrating a point of negative Gaussian curvature.

An important property of the Gaussian curvature of a surface is that it remnains invariant
under bending; bending in this context referring to a deformation in which distances and
angles on the surface remain invariang.2

The mean curvature, H = (k1 + k)2, A sphere has constant mean curvature and
constant Gaussian curvature and is the only closed surface with these properties. The

1 may happen at a point on a surface that the curvature is the same in all directions, so that the
principal directions are indeterminate. Such a point is called an wumbilical point. Al peints on 2 sphere or a
plane are of this type. More generally there are isolated umbilica points on a surface (there are four on an
ellipsoid). If ane of the principle curvatures is zero at a point, the point is referred to as parabolic.

_ Z‘Thus imagine a plane sheet of paper {with zero Gaussiar curvature) being rolled up inte a cylinder, the
minimum curvature (in a direction paralle! w the axis of the cylinder) remains zerc; 50 toop does the
Gaussian curvature. The maximum curvature becomes eaual tn the recinrneal of tha rarding f the rotindoe
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sphere is also the solid with smallest total mean curvature for a given surface area; the total
mean curvature being the mean curvature integrated over the surface.

We turn now to a hyperbolic surface (or a mountain pass or a saddle) as shown
schematically in Fig. A3.5 (right). The two directions along which the principal curvatures
are measured are indicated. The centers of the circles defining the radii of curvature are now
on opposite sides of the surface so we adopt the convention that now one of the curvatures
is negative. At such a point on such a surface the Gaussian curvature is negative and the
mean curvature may be positive, negative or zero.

A minimal surface is one for which the principal eurvatures are everywhere equal in
magnitude but opposite in sign; i.e. the mean curvature is everywhere zero, A film of soap
solution formed inside an arbitrarily-shaped loop of wire forms a bounded ninimal surface.

The integral curvature of & surface is the integral of the Gaussian curvature over the
surface. A remarkabile result (the Gauss-Bonnet theorem) is that this surface integral is
simply related to the characteristic of the surface (discussed in § A3yl

LK-dG=2:rx A3.18

Thus the Gaussian curvature of a sphere (¥ = 2} is /72 and the integral over the surface
(area = 4mr?) = 47,

A geodesic line connecting two points on a surface represents the shortest line on the
surface joining the two points.

The surfaces of infinite polyhedra are (Faceted) infinite surfaces, and some, at least, are
closely related to periodic minimal surfaces.

The cuprite (Cuz0) structure can be described as two interpenetrating nets, Tmagine the
nets to be replaced by hollow tubes of elastic material and then that the tubes were inflated
equally until they met at a surface. The surface (clearly periodic) divides space into two
halves. It also has negative integral curvature and (less obviously) zero mean curvature,
and is an example of a periodic minimal surface, As the topology of the labyrinth of each
set of turnels (inflated tubes) is the same as that of the diamond net, this is usually calied
the D surface.2 The symmetry of the surface is the same as that of cuprite (Pn3m).

A second minimal surface can be derived from two interpenetrating tubes with a six-
conrected simple cubic topology (Fig. A3.6). Again the surface separating the two sets of
equaily inflated tubes (in contact) is a periodic minimal surface, this time designated P. The
symimetry is [m3m. An alternative way to generate this surface is to arrange red and blue
balloons as in CsCl; the P surface will separate the red and blug balioons after they are all
equally inflated. Red balloons will touch red and blue will touch blue also; but the P
surface corresponds to the boundary between red and blze. An approximation to the P

1An interesting property of a convex closed surface (such as an ellipsoid) is that it can not be bent (in
the sense used above). Recall that a convex poiyhedren is rigid (§ 5.6.3). When a football is deformed by
kicking, the surface must be stretched as well as bent. Those who haven't tested it will be astonished by
the rigidity of a plastic globe. Or, for that matter, of a ping peng ball.

21n the older literature this is also called the F surface,
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surface can be obtained by packing truncated octahedra to fili Space as illustrated in Fig,
7.30 (p. 316). The hexagonal faces approximate the minimal surface,

Fig A3.6. Left: part of two interpenetrating network of rods with cubic symmetry. Right: part of one set
of rods shown partly “blown up” 1o form intersecting tubes.

A third minimal surface that is often discussed is known as Schoen’s gyroid. The
thought experiment suggested to the reader is now to inflate the two sets of cylinders in the
intergrowth packing 9Si (§ 6.7.3). The surface separating the two sets of equally inflated
cylinders (no longer cylinders when “blown up”) is the gyroid. The symmetry is [a3d;
because of this, the surface is particularly difficult o illustrate satisfactorily. The references
in § A3.9 may be consuited for help.

Much of the interest in crystal chemistry arises from the fact that some structures can be
considered as tilings of pericdic minimal surfaces, A good example of a 4- connected tiling
of the P surface by hexagons and squares is provided by the net of the zeolite rho structare

(see Fig. 7.39, p. 325-if the framework shown in the figure is mentally replaced by a

structure is listed as an infinite polyhedron in Table A3.1,

A3.8 Some conjectures about nembers and sizes of rings

The following observations (in this and the next paragraph) apply only to uninodal
4-connected nets and the statements should be construed as conjectures. It is possible that
proving (or disproving!) them could lead to better constraints on the numbers and sizes of
tings in 4-connected nets in general. For convenience the shortest ring at an angle is
referred to as a SR. For 4-connected nets at least one of the SR's is a 6-ring or larger. For
nets realizable with equal length edges corresponding to shortest distances between vertices
at least one of the SR’s is a 6-circuit or smaller. (Our “dense™ net of § 7.5.1 contains only
7-rings but cannot be realized with shortest distances only corresponding to equal length
edges). The largest SR is a 20-ring and the largest ring is a 24-ring.
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In a net containing S-rings there is always exactly one 5-ring per vertex.! In nets
containing 10-rings, the total number of such rings meeting at a vertex is always a multiple
of 5, and in a net containing 7-rings or 14-rings, the totai number of such rings meeting at a
vertex is always a multiple of 7. Unirodal 4-connected nets containing 11-, 13-, 15, 17-,
19-, 22- or 23-rings have not been described. ]

Although the number of rings meeting at a vertex must be finite, the number can be quite
farge. Here for eatertainment, and 1o test ring-counting skills of computer programs, are
coordinates for a uninodal 4-connected net (Schiifii symbol 4-62-4-63-6-181422) with two
4-rings, six 6-rings and 3615 18-rings meeting at each vertex (1422 of the 18-rings are the
shertest rings contained in one of the angles):

R3c,a= 6700, ¢ = 1.881, r = 0.084

{6p-1)"7+1)'2; that paper may be consulted for coordinates. Some connectivity tables are
given below for other simple n-dimensional m-connected nets. The challenge is to derive
coordinates for uniform edge lengths and to derive the systematics of the connection
between ring size and dimensionality and connectivity. Note that 3 < m < a1, Is there a
regular net for every n and m? How many?

The connectivity table for a regular 3-connected 4-dimensional net 124-124-124 is:

I 200000 4[0000] 6 [0000]
2 3[0000] 5 [0000]
3 4110001 6 [0100]
4 5 10010]
5 6 [0001]

This net, which also has fourteen 14-rings meeting at each angle (3 per vertex), might be
compared with the 3-dimensional regular net (¥*) 105:105-105 (p. 295).

A very simple uniform (but not regular) 4-connected, 4-dimensional net with vertex
symbol 84-86-87-87-87-87 has connectivity table:

1 2 [0000) 2 [1000] 3{01001 - 3([0010)
2 3 [0000) 3 [coo1)

A regular 4-connected 6-dimensional net, 1010-1010-1010-1010-1010-1010, 18

IThis means five 5-rings (each of which belongs to five vertices) meet at each vertex and the net cannot
be composed entirely of S-rings (even though the average ting size may be 5). In the nets of § 7.6, which
have more than one kind of vertex there is more than one S-ring per vertex; for example the type Il hydraie
net has 18/17 5-rings per vertex.
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2[000C00T  3[C000CO]  4[000000] 5 [000000]
3[100000)  4[GIOO00) 5 {001000]
4000100] 5 [000010]

5 [000001]

EoE B SR

A3.9 References
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Introduction to Percolation Theory [Taylor & Francis (1985)]. . o

For applications of topology to molecular chemistry see Chemical Applications of
Topology and Graph Theory [R. B. King (ed.) Elsevier, Amsterdam (198331, and Grc_zph
Theory and Topology in Chemistry {R. B. King & D. Rouvray, (eds.) Elsevier,
Amsterdam (1987)]. ) ‘ . o

The Hhterature on periodic minimal surfaces is rapidly expanding, A good introduction is
Crystalline frameworks as hyperbolic films by S. T. Hyde [in Defects .and Processes in
the Solid State: Geoscience Applications, ]. N. Boland & J. D. Fitz Gergld (eds.),
Elsevier, (1993)]. Other references (which should be consulted for illustrations) t.hat
emphasize crystal-chemical applications are: S. T. Hyde & S. Andersson, Zeits.
Kristallogr. 174, 225 and 237 (1986); H. G. von Schnering & R. Nesper, An'g:_zw. Chem.
(Inz. Ed.) 26, 1059 (1987}, S. Andersson, S. T. Hyde, K. Larsson & S. Lidin, Chem.
Rev. 88, 221 (1988); W. Fischer & E. Koch, Acta Crystallogr. A45, 726 (1989).. E.
Koch & W. Fischer, Acta Crystallogr. Ad6, 33 {1990). The last two references describes
a number of surfaces. A number of applications to chemistry, physics and biology are
described in a collection of papers in J. Phys. C7 (1990).

APPENDIX 4

LARGE POLYHEDRA

Ad.1 Imiroduction

In Chapter 5 we discussed some polyhedra with emphasis mainly on those polyhedra
with a small number of vertices that commonly occur as coordination figures. Here we
discuss some larger polyhedra (with mare than 20 vertices) that are of increasing interest in
several areas of chentistry and biochemistry. ! First we review some basic material.

Simple polyhedra are those for which three edges meet at every vertex; clearly for vV
vertices there are 3V/2 edges, so the number of vertices is even, Simplicial polyhedra have
ouly triangular faces, It should be obvious that they are the duals of simple polyhedra.

Polyhedra with F faces, all of which are either m-gons or {m+1)-gons, where m =
{6 - 12/F),2 are sometimes called medial. Their duals are simplicial polyhedra with m-
and (m+1)-connected vertices. For m < 4 these latter are topologically eguivalent to the
deltahedra of § 5.1.6 (i.e. they, and only they, can be realized with equilateral triangles as
faces). The interest in this appendix is mainly with the case of simple medial polyhedra
withm = 5, L.e. those simple polyhedra with pentagon and hexagon faces (and their duals).
For convenience we refer to these polyhedra as 5-6 polyhedra in what foilows. In general,
polyhedra cannot be realized with all faces as plane regular polygons although they are
often “almost” regular polygons.

Non-crystallographic symmetries are commeonly encountered; as well as icosahedral
symmetry, 5-fold and 10 and 12 axes often occur. Now the {probably more familiar)
Schoenflies symmetry symbols are more appropriately used. Commonly encountered f non-
crystallographic symmetries in Hermann-Mauguin notation are Dgg=12m2, D3y = T0m2
and Dsg = 5m. We use the number of vertices to identify the polyhedron as this is generally
more yseful in chemistry {i.c. it is the number of atoms making up the polvhedron); the
notation Vy refers to a polyhedron with & vertices,

A4.2 5-6 Polyhedra

For 5-6 polyhedra there are exactly 12 pentagon faces and for V vertices there are E =

15ee 2.g. T. G. Schmaltz er al,, J. Amer. Chem, Soc. 110, 1113 (1988) for chemical applications and

D. L. D. Caspar & A. Klug, Cold Spring Harbor Symp. Quant. Biol 27, 1 (1962) for biological
applications,

ZHere brackets indicate rounding down to the nearest integer,
3The dudecahedron and the truncated icosahedron are the only 5-6 polyhedra that can be constructed from

regular plane polygons. See V. A. Zalgaller, Convex Polyhedra with Regular Faces [Consultants Bureau,
New York (1969)].
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1 2 [0G0000} 3 [000000] 4 [000000] 3 1000000
2 3 [1000007 4 [G10000] 5 [001400]
3 4 [00C100} 5 [000010]
4 5 [G00001]

A3.9 References

There is a large literature on the topology of nets and polyhedra. Some refer.ences.were
giver in § 7.11.10. The classic references are A. F. Wells’ works: Threg-d:menszonal
Nets and Polyhedra [Wiley, New York (197731 and Further Studies of Three-
Dimensional Nets fAmerican Crystallographic Association Monograph No. 8 ( 1979)]..

The number and sizes of rings in 4-connected nets has been discussed by C. §. Marians
& L. W. Hobbs, J. Non-Crystalline Solids 124, 242 (1990); L. Stixrude & M. S, T.
Bukowinski, Amer. Mineral. 75, 1159 (1990); K. Goetzke & H.-I. Klien, J. Non-
Crystalline Solids 127, 215 (1991); M. O’ Keeffe, Zeits. Kristallogr. 196, 21 (1991). On
the density of three-dimensional nets and its refationship to ring size, see S. T. Hyde, Acra
Crysiallogr. A50, 753 (1594). . _ )

The topological characterization of linkages of pelyhedra ha§ also given rise to quite a
large literature. Some recent papers include E. Parthé, Zeizs. Kristallogr. 189, 101 (1989);
E. Parthé & B. Chabot, Acta Crysiallogr. Bd6, 7 (1990); N. Engel, Acta Crystallogr.
BA47, 217 (1991). o _

A topological topic, which we den’t diseuss, but which is neverlthelesls qf considerable
interest, is that of percolation in nets. A good introduction to this topic is D. Stauffer,
Introduction to Percolation Theory [Taylor & Francis (1985)]. . o

For applications of topology to molecular chemi_stry see Chemical Applications of
Topology and Graph Theory [R. B. King (ed.) Elsevier, Amsterdam (1983)], and Grqph
Theory and Topology in Chemistry [R. B. King & D. Rouvray, (eds.) Eisevier,
Amsterdam {i987)]. ) ) _ o

The literature on periodic minimal surfaces is rapidly expanding. A good introduction is
Crystalline frameworks as hyperbolic films by S. T, Hyde [in Defects .ana‘ Processes in
the Solid State: Geoscience Applications, I. N. Boland & J. D. Fitz Gergld (eds.),
Elsevier, (1993)]. Other references (which should be consulted for illustrations) t.hat
emphasize crystal-chemical applications are: S. T, Byde & S. Andersson, Zeits.
Kristallogr. 174, 225 and 237 (1986); H. G. von Schnering & R. Nesper, An'ggw. Chem.
(Int. Ed.) 26, 1059 (1987), S. Andersson, S. T. Hyde, K. Larsson & 8. Lidin, Chem,
Rev. 88, 221 (1988); W. Fischer & E. Koch, Acta Crystallogr. A45, 726 (1989).. E.
Koch & W. Fischer, Acta Crystailogr. A46, 33 (1990). The last two references describes

a number of surfaces. A number of applications to chemistry, physics and biology are
described in a celiection of papers in J. Phys, C7 (19903,

APPENDIX 4

LARGE POLYHEDRA

A4.1 Introduction

In Chapter 5 we discussed some polyhedra with emphasis mainly on those polyhedra
with a small number of vertices that commonly eccur as coordination figures. Here we
discuss some larger polyhedra (with more than 20 vertices) that are of increasing interest in
several areas of chemistry and biochemistry.? First we review some basic material,

Simple polyhedra are those for which three edges meet at every vertex; clearly for V
vertices there are 3V/2 edges, so the number of vertices is even. Simplicial polyhedra have
only triangular faces. It should be obvious that they are the duals of simple polyhedra.

Polyhedra with F faces, all of which are either m-gons or {m-+1)-gons, where m =
[6 - 12/F1.2 are sometimes called medial, Their duals are simpliciai polyhedra with m-
and {m+1)-connected vertices, For m < 4 these latter are topologicaily equivalent to the
deltahedra of § 5.1.6 (i.e. they. and only they, can be realized with equilateral triangles as
faces). The interest in this appendix is mainty with the case of simple medial polyhedra
withm = 5, i.e. those simple polyhedra with penlagon and hexagon faces (and their duals).
For convenience we refer to these polyhedra as 5-6 polyhedra in what foilows. In general,
often “almost” regular polygons.3

Nonﬁcrysta]lographic Symmetries arc commonly encountered; as well as icosahedral
symmetry, 5-fold and 10 and 12 axes often occur. Now the (probably more familiar)
Schoenflies symmetry symbois are more appropriately used. Commonly encountered non-
crystaliographic symmetries in Hermann-Mauguin notation are Dgy=12m2, Dsp = 10m2
and Dy = 5m, We use the number of vertices to identify the polyhedron as this is generally
more useful jn chemistry (i.e. it is the number of atoms making up the polyhedron); the
notation Vy refers to a polyhedron with & vertices.

A4.2 5-6 Polyhedra

For 5-6 polyhedra there are exactly 12 pentagon faces and for V vertices there are F =

18ee €8 T. G Schmaltz et al, ). Amer, Chem, Soc. 110, 1113 (1988) for chemical applications and

D. L. D. Caspar & A. Klug, Cold Spring Harbor Symp. Quant. Biol. 27, 1 (1962} for biological
applications.

2Here brackeis indicate rounding down to the nearest integer.
3The dodecahedron and the truncated icosahedron are the only 5-6 polyhedra that can be constructed from

regular plane polygons. See V. A. Zalgaller, Convex Polyhedra with Regular Faces {Consultants Bureau,
New York (1969)].
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3V/2 edges and F = V/2 + 2 faces.

The first member of this family is the pentagonal dodecahedron (Vap), already described
in Chapter 3. This and some of the next members are encountered i the structures of the
clathrate hydrates and clathrasils (see § 7.6 for Va4 and Vg which are also illustrated in
Figs. A4.] and A4.2). Note that Va7 is topologically impossible, For V > 26 there is more
than one isomer: two for Vog (Fig. A4.2) and three for Vs (Fig. A4.3) and the number of
isomers grows very rapidly with V so we only list some of the simpler cases in Table A4.1.
The first four of the entries in the table are the duals of the Frank-Kasper polyhedra
{§ 5.1.7, p. 143). It foliows that these are the only 5-6 polyhedra in which hexagonal
faces are completely surrounded by pentagons (“isolated” hexagons).

Table A4.1 Some smaller 5-6 polyhedra

v Symmetry
20 pentagonal dodecahecron Iy =m35
24 14-hedron of Type 1 hydrates Deg = 12m2
26 15-hedron Dyp=6ml
28 16-hedron of Type 1T hydrates Tq=43m
28 isomer of above Dy =222
30 pentagonal barrel Dsp = 10m2
30 isomer of above (9 kinds of vertex) Cay =mm2
30 isomer of above (10 kinds of vertex) Cay=mm2
36 hexagonal barrel Dgp = 6/mmm
36 tennis ball Dag=dm2
36 isomer of above D3j, = 6m2

Fig. Ad.1. The V34 (left) and Va4 (right) pelyhedra of Table Ad.1.

The isomers of Vog are iflustrated in Fig. A4.2 and those of V3g are illustrated in Fig.
A4.3. 1t might be noted that the latter are easily inter-converted by rotation of two vertices
and their connecting edge in the manner shown in Fig. 5.76 (p. 206).

Also listed in the Table are three symmetrical isomers of V3g (see Fig. A4.3). The
“tennis ball” is so named as the pentagons form a continuous edge-sharing strip that goes
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round the polyhedron in the same fashion as the seam goes round a tennis balt {which has
the same symumetry). This is the smallest 5-6 polyhedron in which there are no vertices 53
(i.e. vertices at which three pentagons meet),

Fig. Ad.2, The isomers of V23 (Table Ad.1). Left: Dy viewed down 2 2-fold axis. Right: Tz viewed
down a 3-fold axis. :

Fig. A4.3. The isomers of Vap (Table Ad1). Left; Dsy (pentagonal barret). Middle and right: the two
oy isomers viewed down the 2-fold axjs.

Fig. Ad.4. Three isomers of V34. Left: Dep (hexagonal barrel). Middle; D3y, (tennis bali). Right: D3p.

A4.3 Fullerene polyhedra

Large polyhedral carbon molecules C,, (n = 60) have come to be known collectively as
Jullerenes. These have structures based on 5-6 polyhedra in which pentagons are
completely surrounded by hexagons. This restriction (known as the isolated pentagon rule
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or IPR), which can be justified by simple chemical arguments, greatly reduces the number
of possible strucrures. The simplest possibility, and the easiest to prepare pure, is Cgp
which has the structure of a truncated icosahedron (5.62}. The next possibility is C7p which
is also fairly easy to prepare. Thereafter all stoichiometries with an even number of vertices
are realizable as IPR polyhedra, Fig. A4.5 illustrates the only possibilities for Cyp, C72 and
C74 and Fig. A4.6 itlustrates the two possibilities for C7e; interestingly, the Dy isomer with
19 distinct vertices is favored over the Ty isomer with only 5 kinds of vertex.

Fig. A4.5. From left to right: the structures of the fullerenes €70, C72 and C74. On the top as “ball and
stick” models, and below as opaque polyhedra,

The numbers of JPR isomers and symmetries of small fullerene polyhedra are given in
Table A4.2.2 The numbers grow rapidly; for 82 vertices there are 9 isomers, for 84 vertices
there are 24 jsomers and for 96 vertices there are 196 isomers.

There have been very many reviews, conference proceedings, ete. describing fulierenes. A collection of
articles appears in Accounts of Chemical Research 25, No, 3 {1992). A good review with maay
illustrations and references is Electronic Structure Calculations on F ullerenes and Their Derivatives by
J. Cioslowski [Oxford University Press (1995)]. Like other new materials that have brought so much
excitement to selid state chemistry in recent years (quasicrystals, oxide superconductors) fullerenss are very
easy and inexpensive to prepare. Indeed, it has been said, with some justification, that the greatest obstacle
to fullerene synthesis was recognition of how remarkably simple it could be; and, as was the case for the
other materials mentioned, it took non-chemjsts {W. Kritschmer and D. R, Huffinan in this instance) to
lead the way.

2We give the highest symmetry of polyhedra; molecules which are predicted to have degenerate ground
states with that symmetry will probably distort 1¢ {ower symmeltry in accordance with the predictions of the
Jahn-Teller theorem {this is the case for Ty Cq5 and Iy, Cgp for example).
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Possible cubic symmetries for fullerene polyhedra are T (23), T4 (43m) and Ty, (m3).
Compositions for T, include C76. and Cgy4. Fig. A4.7 illustrates Ci16 with Ty, symmetry
(the smallest IPR fullerene with this symmetry) and Cya0 with Ty symmetry. The smallest

IPR polyhedron with T symmetry is Cgg.! Icosahedral polyhedra are discussed in the next
section.

Table Ad.2 Symmetries of the isomers of the first few fullerenes.

v isomers symmetries

60 i In

70 1 Dsp,

72 1 Dsg

74 1 Dy

74 2 T4, Do

78 5 D3 (2), D3, Cou (2)

80 & I Dsg, Dsp, D2,Cy, (2)

Fig. A4.6. The structures of the isomers of C7s. Left: 3 projected down a 2-fold axis, Right: Ty
projected down a 3-fold axis (note that some vertices and edges are superimposed in the projection).

e
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Fig. A4.7. The structures of the fullerene polyhedra Ty, Cj g (left) and T4 Cyag {right).

Large fullerene (IPR) polyhedra can be generated from smaller 5-6 polyhedra by a

UThe interested reader wili find that knowing the number of vertices and the symmelry makes it easy to
construct models of the more-symmetrical polyhedra that are not illustrated (see Notes).
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process known as “leap-frogging.” In this method, edges joining two new vertices are
placed as a perpendicular bisector of each of the edges of the parent polyhedron. The new
vertices form (smaller) hexagons inside the original hexagons and pentagons inside the
original pentagons; additionally each of the old vertices is in the center of a new hexagon as
shown in Fig. A4.8. It should be ciear that even if the original polyhedron had adjoining
pentagonal faces, the new polyhedron will have isolated pentagonal faces. Indeed the
truncated icosahedron 5.62 { Vi) is obtained by leap-frogging from the dodecahedron 53
(V20). A polyhedron that is obtained by leap-frogging must have three times the number of
vertices of the original polyhedron and hence a multiple of six vertices. Note that only one
of the five isomers of C7g can be obtained by leap-frogging from Vog

Fig. A4.8. Generating part of a larger polyhedron (heavy lines and fified circles} from a smailer
polyhedron (lighter lines and open circles) by leap-frogging.

Ad.4. Tcosahedral polyhedra

We discuss here only 5-6 polyhedra and their duals,! The icosahedral 5-6 polyhedra are
of interest as symmetrical isomers of larger fullerenes and their duals are of considerable
interest in connection with virus structures and have been extensively investigated in that
connection.2 To have icosahedral symmetry each of the twelve pentagons centers have to
be on 5-fold axes. The remaining swiface of the polyhedron is made up of hexagons. The
arcs of great circles joining each pair of 5-fold axcs of icosahedral symmetry enclose an
equilateral spherical triangle covering 1720 of a sphere as illustrated in Fig. A4.9,

To see how the potyhedron is developed, it is convenient to consider such a triangular
pateh which will be made up of a 63 net with the hexagons at the corners replaced by

I These icosahedral polyhedra are sometimes called Goldberg polyhedra, as they appear (o have first been
described by M. Goldberg, Tohoku Math. J. 43, 104 (1937), We must admit to not having read this paper.
After discovery of the fullerenes, many authors (including us) independently “rediscovered” the icosahedral
polyhedra. A treatment simitar (o the present one is o be found in T. G, Schmaliz er al., J. Amer. Chem.
Soc, 110, 1113 (1988) who give further references and describe some other poiyhedra.

2A beautiful pitture of the polyoma virus which is based on the dual of 2,1 (see the discussion below)
appeared on the cover of the February 13, 1992 issue of Narure, See I. P. Griffith et al., Nature 335, 652
(1992),
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pentagons,

Fig. A4.10 shows a fragment of 63 with a triangular tile that is ha!f a unit cell outlined.
The tile contains ane point. Suppose we take a larger hexagonal ceil with new axes a' and
b' related to the axes a and b of the elementary cell by:

G500 o

The new cell is larger by a factor equal to the determinant of the matrix above, i.e,
P?+ pg + g% and a triangular tile (again one half of a unit cell) will contain p2 + pg + 42
points. If now the hexagons at the corners of the iriangle are changed to pentagons we will
have a patch corresponding to 1/20 of a polyhedren. The example of p,g = 3,2 is shown in
Fig. A4.11 and basic units for some smaller polyhedra shown in Fig. A4.12.

There are distinct icosahedral polyhedra corresponding to each distinct pair p,g with p >
q 2 (. The number of vertices is V = 20(p? + pg + ¢2). The number of edges is 3V/2 and
the number of faces (of which 12 are pentagons) is V/2+2, For the symmetry to be fy, the
edges of the triangles must lie on mirror planes; it should be evident that this is only the
case if p =g or g = 0, otherwise the symmetry is /. Note that there can be distinet
icosahedral polyhedra with the same number of vertices: the first case is for p.g = 7,0 and
5,3 each of which have 980 vestices. :

The first few simple icosahedral polyhedra with hexagon and pentagon faces are listed in
Table A4.3 below. For their duals interchange V and F. As the rumber of vertices
increases the shape of the polyhedron tends to that of an icosahedron with pentagons at the
twelve vertices. Fig. A4.13 illustrates Vaag.

Fig. A4.9. Some of the icosahedral symmetry elements. On the left 2. 5 and 3 axes of /3 are shown with
heavy lines representing the traces of mirror planes. On the right are shown the corresponding 2, 3 and 5
axes of [

i
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Table Ad.3 Properties of the first few icosahedral 5-6 polyhedra. “pg” is the point group and ky, kg and
kF are respectively the numbers of topologically-distinct vertices, edges and faces.

P4 v £ F P8 ky kg kp

0 30 12 Iy 1 I {

L1 6 90 32 I, 1 2 7

20 8 120 42 A 2 2 2

2,1 140 210 72 { 3 4 2

30 180 270 92k 3 4 3

2,2 240 300 122 Iy 3 3 4

. . . 3,1 260 390 132 I 5 7 3
Fig. Ad.11. A tile of the icosahedral polyhedron 3,2 (triangular cutline). The arows correspend to 4,0 320 480 162 In 3 6 4
VECtOZFS of length 3a and 24 (a is the distance between centers of hexagons), It might be verified that there 3,2 380 570 192 ! 7 10 4
are 32+ 3x2 + 22 = 19 vertices in the tite. 41 40 80 22 J 7T U s
50 500 750 252 I 7 9 5

33 540 810 272 iy 6 9 5

A4.5 Space filling packings of 5-6 polyhedra

The structures of two clathrate hydrates (Types 1 and II) were mentioned in § 7.6. These
are based on space-filling packings of dodecahedra (Vzg) and, respectively, 14-hedra (Vo4)
and 16-hedra (V3). It is also possible to fill space with combinations of Vg, Va4 and Vag.
These structures are difficult to illustrate clearly, but it easy to make models of them (see
§ A4.7). The simplest is a combination of Vag, Va4 and Vag in the ratio 3:2:2, for want of a
better name we call this structare IIL! Crystallographic data for unit edge length are:

Packing IIT PSimmm, a = 4.401, ¢ = 4.399

Fig. A4.12. Triangular patches of icosahedral potyhedra. The number under each diagram is the number 333533 En Ghx=103y =205 0= 01137

of vertices in the full polyhedron. ¥ ;gssgg m 2 i’ x= %1232;22' y= %)x‘ z= 320
5.55606iIn Lx =1, sy=0,2=1

5.55.5.5.51in 12 o, x = 02085, y = 2x, z = 0,1386

3.53556in12 n,x = 03579,y =0,z = 0.3140

Another combination is known in the hydrate of tetra n-butyl ammonium benzoate which
we call structure V.2 The relative proportions of polyhedra and the average ring size, <n>,
are listed in the table below.

The small range of average ring size is striking. Qbviously 5 < <n> < 6 for any packing
of 5-6 polyhedra, but it would be nice to have tighter bounds and to know the largest

I'This is the framework of the hydrate of tetra iso-amy! ammonium fluoride. The real crystal structure is
orthorhembic [D. Feil & G. A. Jeffrey, J. Chem. Phys. 35, 1863 (1961)).

2This is a rather complex structure: there are 172 vertices of 17 crystallographic kinds in the letragonal
cell. See M.Bonamico, G. A, Jeffrey & R. K. McMillan, J. Chem. Phys. 37, 2219 (1962). It should be
Fig. A4.13, The icosahedral polyhedron Va4g. remarked that much of our knowledge of hydrate structures is due to the wark of Teffrey and collaborators
published in the early 1960s.
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polyhed-rep which can participate in such packings. We are not aware of a proof that a
space _ﬁllmg b.y polyhedra topologically equivalent to pentagonal dodecahedra is
impossible. Notice that these packings only involve polyhedra with isolated hexagons

structure Vao Vaa Vag Vg <>
I:[ 1 3 5.111

2 1 5.100

m 3 2 2 5.106

v 5 8 2 5.100

A4.6 Large coordination polyhedra

In § 5.1.7 (p. 143) we described the Frank-Kasper polyhedra which are simplicial
Polyhcdra with 33 and 36 vertices and commonty found as coordination pot hegra in
mfermetallic compounds. The 16-vertex tetra-capped truncated tetrahedroﬁ {Friauf
poly.hedron) is the largest such polyhedron without adjacent 36 vertices (i.e. 36 vertices
shann'g an edge). To have larger coordination numbers without adjacent 3E5 ;;ertices the
coordination polyhedra roust have n-gon faces with # > 3. An example is provided b ; the
snub cube (3%.4) which has triangular and quadrangular faces and occurs as the [Na}%ﬂ
polyhedron in NaZn 3 {p. 273); it is shown again in Fig. A4.14. 24

There are polyhedra with 34.4, 35, and 36 vertices in which the 36 vertices are not
adjacent. The largest is perhaps the polyhedron obtained by capping the eight hexagonal

faces of the truncated octahedron (4.62). The resultin olyh i
: 62), d
vertices (8 x 36 and 24 x 34.5), § pohecion (Flg. 14.14) has 32

Fig. Ad.14. Left: the snub cube (34.4). Ri

ght! the truncated octahedron (4.62
truncated octahedron with 32 vertices (in the ¢ - e oy

onformation shown they are all equidistant from the center).

In the structures of BaHg11 and ThMn;s (these are the roto i g
families) there is a tetragonal (4/mmm) 20-vertex coordinationio}ygggfgn%iéiigglari
{Th}Mnag). This poiyhedron can be considered to be derived by capping the hexa 2c?nal
faces of a polyhedron [38.42.64] known as 2 “tetragonal hexagon prism”! to prodice a
polyhedron with four 36 vertices, eight 3 vertices and eight 35.4 vertices as shown in Fig

“tatr CH |
mm “tetragonai hexago 1 prism” 1s used by E. Hellner & W. B, Pea on [P, 14 n/ Ph 5
The te; t( a, ) . Pears hysik Datan / YSIC.

prism in the usual sense.

who discuss its occutrence in intermetallic compounds. The polyhedron is not a
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A4.15.

Fig. A4.15, Left: The “tetragonal hexagon prism™ and the 20-vertex polyhedron obtained by capping its
hexagonai faces. Right: a polyhedron with two hexagonal faces (top ard bottom) and the polyhedron with
22 vertices ebtained by capping the hexagonal faces.

Another family of structures is named for BaCdy 1. In this structure there are {BajCdgs
polyhedra. These are again tetragonal {now the symmetry is 4m2} and contain two 3%
vertices, four 3% vertices and sixteen 34.5 vertices. This is shown in Fig. A4.15 together
with the polybedron obtained by removing the two 36 vertices. The following table, listing
the number of vertices and faces in the four polyhedra with triangular and quadrangular
faces, suggests that there are more polyhedra between Va4 and Vao.

polvhedron 33 36 34,4 triangles  gquadrangles
Vao 8 4 g 32 2
Vao 4 2 16 32 4
Vag 4 0 24 32 4]
V32 G 8 24 48 6

A4.7 Models of large polyhedra

Most of the pelyhedra describe here have irregular faces, so constructing maodels with
(e.g.) cardboard faces is rather difficult. However satisfying “ball and stick™ models can be
made using tetrahedral or triangular stars. For smaller polyhedra, the tetrahedral star is
more suitable (compare the angles of 108" in Vag with the tetrahedrat angle of 109.5%).

The net III of § A4.5 may be made the following way: (a) construct a column of Vaq
polyhedra sharing hexagon {aces, (b) surround the neck between alternate pairs of these
polyhedra with a ring of six Voq sharing the exposed pentagon faces (it will be found that
there is only ene way to do this). It will now be found that a ring of Vag’s fits snugly
(again sharing pentagon faces) in the depressions of the new structure. Remember to keep
the hexagon faces of Vag parallel to the axis of the original cotumnn (which is the ¢ axis),

To make large fullerene polyhedra 3-pointed “stars” are best. A good strategy is to
construct the 12 isolated pentagons first, and then to explore ways in which they can be
linked using the appropriate number of connectors of a different color (these are 63),
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CRYSTAL STRUCTURE DATA

A5.1 Introduction

In this volume we have been almost exclusively concerned with structure, and have paid
little attention to the chemical compositions that have a given structure. There are several
reasons for this approach. One is that some common structure types occur for a rather wide
range of compounds; another is our belief that it is important to have some feeling for
structures in general without being oo weighed down with the baggage of theories that
pretend to explain the ocourrence of certain structure types for different compositions.

Nevertheless chemists, at least, should have some idea of the sorts of compounds that
adopt the common structure types described in the téxt, so here we indicate some typical
compositions for these. Of course many compounds are polymorphic, and in particular
many transform under pressure. The general rule {there are some exceptions) is that
increasing pressure causes a transformation to a structure with higher coordination
numbers, Thus sphalerite compounds with 4-coordination generally transform to NaCl
with 6-coordination; and NaCl compounds transform under pressure to CsCl with
8-coordination with, of course, an increase in density in each case.!

Crystal data for some compounds, referred to in the text, are given in the final section,

A5.2 Elements

The metallic elements are nearly all either ¢p or bee (Mn, and the early actinides are
exceptions and they have generally rather complex strictures). Periodic trends are fairly
well developed; for example Ni, Pd, Pt and Cu, Ag, Au are all ccp and V, Nb, Ta and Cr,
Mo, W are all bee. However many metals are polymorphic; for example Fe is bee at low
temperature, fec at higher temperature, and hep under pressure. It should be noted that for
most polymorphic metals the bee and ep forms have very similar densities; in particular the
cp forms are not always the densest modification,

C (at high pressure), $i, Ge and Sn {at low temperature) are diamond with 4-
coordination. The remaining non-metallic elements have “covalent” structures with low
coordiration numbers (3 for P, As, Sb, Bi; 2 for S, Se, Te: 1 for N, O, F, Cl, Br, I).

IBut note that although the density is greater in the high-pressure phase, the A-X bond length is also
greater; indeed the driving force for the transformation under pressure is to reduce the repulsion between
atoms forced to be close together. Notice also in the examples we have given, that the structure of AX
combined is diamond for sphalerite, pe {primitive cubic) for NaCl and bee for CsCl 50 the overall
array is transforming to a more efficient packing under pressure.
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AS5.3 Composition AR (4X)

There are hundreds of different AB (or AX) structure types. Some different structures
we have mentioned briefly are those of AuCd, BaCu, FeSi, LiGe, LiP, MoB, NaP, NaPb,
NbO, PbO and WC. These have either just one or at most a few representatives. Other
structure types such as ZnS, NaCl, NiAs, CuZn (CsCl), CuAu, CrB and FeB have
dozens or even hundreds of examples and we discuss them below.

A5.3.1 Sphalerite and wurtzite

The polymorphs of ZnS (see § 4.6.4 and § 6.1.5) lend their names to the two common
structure types with atoms in tetrahedral coordination.

Waurtzite is based on hep arrays of both cations and anions (each in tetrahedral holes of
the other array) and occurs mainly for oxides and nitrides such as BeO, ZnO, AIN and
GaN. Very many ternary, quaternary, etc. compounds such as -NaFeQs, LiSiON, etc.
have derived structures.

Sphalerite is more common and occurs for many binary compounds particularly of
elements of columns 13-17 of the periodic table with eight valence electrons (excluding d
electrons) per atom pair. Examples are “I-V” compounds AX with A = Al, Ga, In and X
=P, As, Sb. and “II-VI” compounds AX with A = Be, Zn, Cd and X = 8, Se and Te.
Some compounds have both structures (ZnS!) and then it is common also to find polytypes
based on more complex close packings. SiC is notable in this regard (see § 7.11.4).
Interestingly, SiC is the only known “IV-1V” compound—GeC is unstable (has not yet
been made) and GeSi is a disordered composition in the Ge,Sij_ solid solution series. Just
as for wurtzites there are many derived ternary, ete. structures; the most common type is
chalcopyrite (CuFeS3).

A5.3.2 NaCl and NiAs

NaCli and NiAs {see § 6.1.5) are the G-coordinated analogs of sphalerite and
wurtzite which are based on cep and hep respectively.

NaCl (also known as rock salkt) is of course one of the more common structure types.
It is often considered the prototypical “ionic” crystai structure and at normal pressures and
termperatures it is that of all the alkali hydrides and halides other than CsCl, CsBr and Csl.
Other NaCl compounds are the alkaline earth chalcogenides (MgQ, SrS, BaTe etc.) other
than MgTe and Be compounds {these have ZnS structures) Further examples are
compounds AX with A = Sc, Y and lanthanide and X = N, P, As, Sb. Carbide examples
include ThC and TiC. Hundreds of ternary compounds ABX, with the o-NaFe(Qy structure
{Na and Fe order) are also known. These are mainly oxides and sulfides, but also include
antistructure compounds with ordered aniens such as BagPBr and CasNCL

NiAs is also a very common structure type. For most of the compounds AX, A is a
transition metal and X is 8, Se, Te, V, As or Sb. Recall that the structure is hexagonal (sce
§ 4.6.3) and it should be noted that many compounds have an axial ratio (c/a) rather




432 Appendix 5

different from the ideal value for hep As. Many of the compounds assigned to this type

also have a wide range of stoichiometry and some authors include compeositions in the
range A2X to AX7 in the NiAs classification.

A5.3.3 CuZn (CsCl) gnd CuAu

CsCl ionic crystais are rare (CsCl, CsBr and Csl are the only alkali halides) at rormal
pressures, but many NaCl compounds transform to CsCl under pressure. The structure
type, now often called CuZn is found for about a hundred intermetallic compounds such
as L}Ag, BeCu, CaTl, YIn, MnNi, etc. We saw in § 6.6.2 that the structure is in sense a
special case of AuCu (which appears to be confined to intermetallic examples)

A5.3.4 CrB and FeB

CrB and FeB were described briefly in § 6.4.2. Together they comprise the structures
of another large group (well over 100 binary examples) of intermetallic compounds. These
othorhombic structures have a number of free parameters (see data below) and the trigonai
prisms {occupied by B) can vary significantly in shape from one compound to another and
some authors recognize subgroups according to the shapes of the trigonal prisms (e.g.
“short and fat” or “tall and skinny”). Some CrB compounds are CaAg, BaSi, ScGa, LaNi
VB and NiB; some FeB compounds are BaAg, LaSi, ZrGe, LuNi, TiB and, MnB.’ Somé
have been found to transform to CuZn with increasing temperature and/or pressure.
Although common as silicide and boride structures, no isostructural carbides are known.

A35.4 Composition AB3 (AX3 and A2X)

Tust as for compounds AB, the composition AR, give rise to hundreds of structure
types. Some like cuprite (known only for CuyO and Agz0) and quartz (known only for
forms of 8103, GeQy and BeF») have only a few examples. Notice that silica (Si07) and
water (HyO) are perhaps the most intensively studied of all binary compounds and the
structures of their crystalline forms have much in common (§7.3.13).

We give examples of compositions belonging to some of the targer families below. We
si‘lould point out here that BaMgSi (PbFCI) is also called Cu;Sb, and SrMgSi is called
either PhCl2 or Coz8i. Both these very farge groups are really ternary structure types
Another large group of compounds is known as FepP and in fact this is really a quateman;
structure type A3B3X2Y although most reported compositions are ABX (ie. X=1).

A5.4.1 ABy compounds with {A)Bg octahedra or trigonal prisms

_An important §tmcture type with {A}Bg octahedra is rutile (Ti0O2) which is found for
oxides (e._g. of Ti, Ge and Sn) and also for fluorides of (e.g. of Mg, Mn, and Zn) and for
MgHa. It is closely related to CaCls (see Exercise 6.9.7) which is found only for a form
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of PtQ; and for halides other than fluorides.

A second group of structures is that of CdCly and Cdlz with respectively ccp and hep
anions and all the octahedral sites in alternate layers filled with cations (§ 6.1.5}. These are
mostly halides (but not fluorides) but also include a few chalcogenides. Examples of
CdClz compounds are MgClp, NiCly and ZnBrp; some anti-structure compositions are
Cs20, SN, YoC and AgsF. Cdlz compositions include MgBry, Mgly, TiS,, PtSes and
IrTez; anti-structure compositions are WoC and TipQ. If the H atoms are ignored, then
hydroxides such as Mg(OH); (brucite) and Ca(OH); are Cdls.

A related series of structures has trigonal prism layers These are mostly compounds of
the early transition elements (Nb, Ta, Mo and W) with S, Se and Te and most compounds
are polymorphic—the simplest forms are 2H,, 2Hp and 3R described in § 6.4.1.

A35.4.2 Fluorite and antifluorite compounds

Fluorite (§ 6.1.5) compounds form a large group of mainly “ionic” crystals such as
CaF3, 5rClz, ThO,, UO7 but the family alsc includes compounds such as CoSiz and
NiSiz. The group of antifluorite compounds is also large; typical “ionic” compositions
are Liz0, Rba0, K28, RboSe. Some other isostructurai phases are BepC, MgzSi, MgoSn,
PtAl; and Ptlng.

A5.4.3 Intermetallic structures: AlBa, Cualy and MgCua

These three structure types are probably the largest groups of intermetallic AB;
structures. There are hundreds of AlB2 compounds with the characteristic graphite-iike
honeycomb layers of B (§ 5.3.5), typical compositions are ThAgs, ThAly, CrBa, MgBa,
CaGag, LizPt, ScSiz, YHgy and ThNi;. The largest group of compounds is that of borides
and gallides, but as the examples given show, a rather wide range of intermetallic
COmpositions gccur.

Some CuAls compounds (§ 6.4.3) are ThyAg, ThpAl, CrzB, ZrpNi, ThoCu and TapSi.
Notice that the first three examples contain the same elements, but in different proportion,
as the first three AlB2 compounds.

The MgCuz (§ 6.6.3) group is the largest. Pearson’s Handbook (Book List) has many
hundreds of entries under this heading (not all binary compounds}). Most compositions
involve one or two transition elements, but there are alse compounds such as CaAl; and
CsBi; with the same structure; some other compositions are PbAug, TaCoy, DyPtz, Zrwp,
and ZzZn3.

AS5.5 Other binary structure types

Tt would 1ake a sizable book to do justice to binary structures in general.! Important

IThe classic reference is Kristatlsirukturen zweikomponentiger Phasen by K. Schubert [Springer-
Verlag, Berlin (1964)].
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structure types we have met include corundum (oAl QO ich i i
' ¢ ~Al03—§ 6.1.6) which is mainly an
gm@e s_tructure (of AL, Cr, Pe, etc.) with 63 layers of A} in octahedral sites of hep g A
erivative st is i i i03) i i i .
de dl ]:a‘i.wc structure is ilmenite (FeTiO3) in which Al is replaced by alternate layers of Fe
ThaPy4 (§ 6.3.7) is the structure of a large group of compounds AsXs with A = Th, U
Y, .Ln and X = R, As, Sb, 8, Se and Te. Antistructure compounds A4X3 are also comm:on,
typn:a! cpmposmons are LagAs3 (contrast La3S4) and LayGes. The structure type is notablf;
for ex15tmg. over a range of composition with (presumably) incomplete occupation of one
]s:et c;f atomic sites. Notable compounds of this sort are compositions in the range LngSs-
nadg.

A5.6 Ternary structure types

) With over 102 elements, there are over 106/3! different combinations of three elements:
in many of these cases compounds of several different stoichiometries are formed anc{
these in turn are often polymorphic. It may be seen therefore, that to givea comprehe;lsive
account of crystal chemistry would be a daunting task. Here we just mention typical
compositions of some popular ternary structure types that have been met in the text.

A3.6.1 Oxide structures: spinel and perovskite

The prototypical spinel (§ 6.1.6) composition is Mg Al O, ; ot iti
(with A in one eigth of the tetrahedral sites and B in ong;: hilf tgf{zhte;;zﬁﬁ;tg??; ﬁf(z:?l
X} are M1:12G804, NayW0y4, ZrAloS4 and CdCraSeq. “Inverse” spinels are compoundI;
AByX4 with B on tetrahedral and half the octahedral sites and A on the other half of the
octahedral sites; examples are LipNiF, and ZnTia04. Notice that there are now two kinds
of B atom {with different coordination) and the structure is really quaternary and
compositions such as LiZoNbOy4 are also included as spinels (but in some, at least, of
these 1a§t compositions, cation ordering oceurs to produce a lower-symmetry s,tmcture), In
Ir}agnctlte, Fe30y4, the tetrahedral sites are occupied by Fe3* and the octahedral sites ar.e a
disordered combination of Fe2+ and Fe3+.

The mineral perovskite is CaTiOj; its structure is a small orth ic distorti
cubic ABX3 structure {described in § 6.6.2 and § 5.3.4) withofg?gggifif:zsltt:;t tznzltr)afiﬂfl;E
coordinated B. Many perovskites have the orthorhombic structure, usually known as
G_dFeO;;. Examples are NaMgF3, KPdF3, CaZrQ3, SmAlO; and NalOs. MgSiOs5 at
high-pressure has the same structure and is thought to be the major component of 3Ithe
earth's lpwer mantle, and thus to be the major phase in the planet. Other cubic perovskite
compositions are compounds AB31X with A and B being metallic elements with CuzAu
arrangement and X = B, C or N in {X)Bg octahedra. Examples are SelrsB, ZnCosC and
SnMnaN. An anti-perovskite composition is NazClO {with {C11Na;3 and [ O]Na;').
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AS5.6.2 Intermetallic structures: BaMg8i (PbFCY), SrMgSi (PbCly) and ThCraSiz

BaMgSi or PbFCI (§ 6.4.1) is also known as Cus8b or FezAs, but the first two
designations are preferred as they emphasize the ternary nature of the structure. There are
two main groups of compounds. In the first group thers are two “anions™ as in PbFCI,
YQC}, BalI and UAsSe with the smaller (given first) in tetragonal layers of (e.g.} (F}Pbyg
tetrahedra, The second group are antistructure compounds with two metal atoms such as
BaMgSi, NaLi$ and YFeSi; CupSh and FepAs are in this category also.

SrMgSi (§ 3.3.7) is also known as PhCly or Co2Si, but 2gain we prefer the first
name which makes the temary nature of the structure clear. In compourds with two
crystallographically-distinet “anions,” these are often the same element as in PbCly, BaHa,
Baly, US; and ThP. Compounds Hke SrMg8i, NbFeP and ReCoB are formally the
antistructure, but often the composition consists of two or three metallic elements a5 in
LuzAu and LuCoSn. ’

ThCrsSiz (§ 6.4.2) is aiso named after a chemically hinary composition viz. BaAly,
but again we use the ternary designation. This has the most known examples of all
structure types and we just mention a few typical compositions here. In ThCr3Siz there
are layers of {Cr)Si4 tetrahedra. In the following formulas the tefrahedratly-coordinated
atom is second: BaAgpSng, UOsySia, CaCooAsy, LaPtaGes, YNizPz, TINi252. Some
compounds with two elements are BaAly, CaGay, RbIng and ThZng. In the anti-structure
type, ThyFeNa, there are (N} Thy tetrahedral layers; another composition is LayTeO.

AS5.7 Crystailographic data

" Crystallographic data for some of the simpler structures discussed in Chapters 5-7 are
given here in condensed form (the International Tables or some other source should be
consulted for equivalent positions). The listing is in alphabetical order of the chemical
formula as normally written. See the Book List part D for sources of data.

AlBy P6immm, & = 3.005, ¢ = 3245 A. Al 1 2, 0,00 ; B 24, 113,273,112
AlyOs Ric,a =475, ¢ = 12.991 A Al 12 ¢, 0,0,0.3523 ; O 18 &, 0.3064,0,1/4
AuCd (HT) Podm, a=3.323 A. v =367 A% Au 0,0,0; Cd 1/2,1/2,1/2 (CuZn structure)

AuCd (LT) Prma, a = 4765, b = 3.154, ¢ = 4.864 A, V=2x35.5 A
Aulf 17400312 Cd 2 e 1/4,1/2,0.812

AuZns Pmin, a =7.903 A. Au(1)2a,000; Au@) b¢, /40,112 Zn 24 k., 0,0.165,0.300
B203 P3|, a=4336, c= 8340 A, all atoms in 3 @

B(1), 0.223,0.393,0.980 ; B(2), 0.828,0.603,0.092

0O(1), 0.547,0.397,0.0 : O(2), 0.149,0.600,0.078 ; O(3), 0.005,6.161,0.871

BaCu P6y/mme, a = 4499, ¢ = 16.25 A, c/a = 3.6
Bod £ 1/3.2/3,0.1217 ; Cu(1) 2 b, 00,14 ; Cu(2) 2 4, 1/3,2/3,3/4
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BaCuaPy Fddd, a = 5.345, b = 18.973, ¢ = 10.244 A,
Ba 8 a, 1/8,1/8,1/8 ; Cu 16 f, 1/8,0.5048,1/8 ; P 32 &, 0.195,0.1789.0.817
B-BaFe)Sy H4im, 2 =7.678, c = 5292 A
Ba2a 0,00;Fed4d 0,1/21/4:S8 &, 0.6196, 0.1986,0
BaMgSi Pifnmm, a = 4.610, c = 7.870 A
BaZe, /41740339 : My 2 &, 3/4,1/4,0 ; 81 2 ¢, 1/4,1/4.0.794
BaNiOq Péyimme, a=5629,c=438i1 A

BaZe 13,2314 1 Ni24,000:06 4, 0.1462,0.2924,1/4

BaTi03(200°C) Pm3m, a=4.012.Ba | a, 0.00;Tilb, 12,/2,1/2, 03¢, 0,112,112

BBO Pagfnmm, a =475, ¢ =274 K. Be 4 g, 0.164,0.836,0 ; O 4 £, 0.190,0.190.0
C graphite Pa/mme, a = 2461, ¢ = 6.709 A, C{132 5, 0,0,1/4 ; C(2) 2 =, 1/3.2/3.1/4
CaBg Pmdm, a=4151A. Ca | b, 12121121 B 6 ¢, 0.302,0.0
Cdcly R3m, a=3.846,c = 17493 A. Cd 3 4, 0,00 ; CI 6 ¢, 0,0,0.2519
Cdly Piml,a=4224,c=6859A.Cd1a,000;124d, 1/32/3.0.249
CogSg Fm3m, a=9.927 A Co(1} 4 b, 1/2,1/2,12 ; Co(2) 32 £, 0.1266, 0.1266,0.1266
S(1) 8 ¢, 1/4,1/4,1/4 ; $(2) 24 ¢, 0.2624,0,0
CrB Lmem, a =2.978, b= 7870, c =2.935 A
Crde, 0,0.1433,14 ; B 4 ¢, 0,0.4360,1/4
CrBy Immm, @ = 4.744 y b= 5477, c=2866 A Cr2a,00,0;B8n, 0.175,0.346.,0
CuAl, Himem, a = 6.067, ¢ = 4877 A Cuda,00,1/4 ; AL 8 &, 0.1581,0.6851.0
CuFeS, [d2d, a = 5.289, c = 10.423 A

Cv4a,000;F45,001/2;584, 0.2574,1/4,1/3

CuFe;3, Prma, a=6231, 5= 11117, ¢ = 6467 A
Cude, 0.123,1/4,0.417 ; Fe 8 d, 0.137,0.0870,0.915
$(1) 4 ¢, 0.258,1/4,0.087 ; S(2) 8 4, 0.267,0.0846.0,588
FeyAlBa Crmmm, a=2.923, b= 11.034, ¢ = 2870 A
Al2a,000;Fedj. 603540,1/2; B 4, 0,0.2071,0
FeB Prma, a =35495, b = 2946, c = 4,053 A
Fe 4 c, 0.180,1/4,0.125 ; B 4 ¢, 0.036,1/4,0.610
FeoP PBam, a = 5.868, ¢ = 3.465 A. Fe(1) 3 /. 0.2568,0,0 i Fe(2) 3 g, 0.5946,0,1/2
P() 14, 00,1/2; P(2) 2 ¢, 1/3,213.0
FeSo(pyrite)  Pad,a=5418 A Fe 42,0005 8 ¢, 0.384,0.384,0.384

FeSi

¥ Ge

Hg3NbEg

Hgz 95bFg

KlnTe;

KoMgFy

KaVsO4

LaBoCa

Laz03

LiP

LiY2Sis

MnzHgs

a-MoB
Mo3z (2Hp)

MoSy (3R)

NaP

NaPb
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P213,a=451T A Fe 4 g, 0.136,0.136,0.136 ; Si 4 a, 0.844,0.844,0.844

P43212, a = 5.93, c = 6,98 A. [origin chosen for comparison with SiC»—keatite]
Ge(l} 4 a, 0.4088,0.4088,0 ; Ge(2) 8 b, 0.3270,0.1216,0.2486

Piml, a=5.02c=768 A.
Hg(1) 1 &, 0,0,1/2 ; Hg(2) 2 4; 1/3,2/3,0.500 ; Nb 1 a, 0,0.0 ; F 6, 0.309,0,0.143

Hylamd, a = 7655, ¢ = 12.558 A. Hg disordered in positions 16 A: O,y,z with z = 0
8b: 4 b,0,1/4,3/8 ; F(1) 8 e, 0,1/4,0.230 ; F(2} 16 g, 0.672,0.922,1/4

Itmem, a =852, c =739 A
K4aq001/4:Inab 0,1/2,1/4; Te 8 k, 0.177,0.678,0

Himmm, 2 3.995, ¢ = 13.706 A
K4e 0,0,0350 ;Mg 2a 000;:F4c 0,1/2,0; F2) 4 e 0,00.150

P3lm,a=8.680, c = 4991 A. K 3 ¢, 0.605,0,0.000 ; V(1) 3 ¢, 0.231,0,0.472
V(2)2 b, 1/3,2/3,0.472 1 O(1) 2 b, 1/3,2/3,0.79 ; O(2) 3 ¢, 0.240,0,0.782
O(3) 3 ¢, 0.838,0,0.367 ; O(4) 6 4, 0.469,0.177,0.366

Pd2c,a=3.822,c=7924 A
La2e 0,0,0:B4h 1/2,02261/4; C 4, 0.173,1/2,1/4

Piml,a=3938, c=6.136 A. La2 4, 1/3,2/3,0.2467
O 1 g, 0,0,0 ; O(2) 2 d, 1/3,2/3,0.6470

PZife, a=5.582, b =4.940, ¢ = 10.255 A, § = 118.15". All atoms in 4 ¢
Li(1)x 0.2151,0.3876,6.3299 ; Li(2): 0.2257,0.6597,0.0293
P(1): 0.3165,0.8952,0.292C ; P(2): 0.3050,0.1565,0.1125

Pdimbm, a =7.105, ¢ = 4.144 A.
LiZza 0,00;Y 4% 0.181,0.681,1/2 ; Si 4 g, 0.383,0.883,0

Pdimbm, a =9.758, ¢ =2.998 A
Mn 4 #, 0.180,0.680,1/2 ; Hg(1) 2 d, 0,1/2,0 ; Hg(2) 8 i, 0.063,0.204,0

Hyfamd, a =3.105,¢=16.97 A. Mo & &, 0,1/4,0.071 ; B 8 ¢, 0,1/4,0.227
P63y/mme, a =3.161, ¢ = 12295 A. Mo 2 d, 1/3,2/3,3/4 : § 4f 1/3,2/3,0.1275

R3m,a=3.166,c= 1841 A
Mo 3 ¢, 0,0,0.0 ; S(1) 3 ¢, 0,0,0.2477 ; 8{2) 3 ¢, 0,0,0.4190

P212121, a =6.038, b = 5.643, ¢ = 10.142 A. All atoms in 4 g
Na(l): 0.4174,0.9089,0.0318 ; Na(2): 0.1338,0.6367,0.3313
P(1): 0.3086,0.1404,0.2838 ; B(2): 0.4287,0.4020,0.1341

Myfacd, @ = 10.580, ¢ = 17.466 A. Na(1) 16 ¢, 0.375,0,1/4
Na(2) 16 £, 0.375,0.625,1/8 ; Ph 32 g, 0.0694,0.3814,0.4383
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NajPtyGeyq
NaZnj;

NbgF15
NBO
NbSes (2H,)

PbFCi

PhO

PdF,
Pdj7Sers
Pr3RhgSnys
ResB
S¢p0nS

¥-8i

5i0 (coesite)

810 (keatite)
8107 (moganie)

SrMgSi

SrSiy

H3m,a=7614 A
Na6 b, 0.1/2,1/2 5 Pt 8 ¢, 0.1366,0.1366,0.1366 ; Ge 8 ¢, 0.3136,0.3136,0.3136

Fm3e,a=12284 A
Na8a, 1/4,1/4.1/4 ; Zn(1) 8 b, 0.0,0 ; Zn(2) 96 i, 0,0.1806.0.1192

Im3m, a2 8.19 A Nb 12 2, 0242,00 ; (1) 6 6, 0.U2,1/2 : F(2) 24 . 0,0.25,0.25
Pm3m,a =421 A,Nb3 ¢, 0,1/21/2; 03 4, 0,0,1/2
Pbyfmme, 2 = 3.445, ¢ = 12,554 A Nb 25, 0,014 : Se 4 £, 1/3,2/3.0.1172

Pdinmm, a = 4.106, ¢ = 7.230 A
Pb2c, V4,1/4,0.800  F 2 a, 34,1140 : CL 2 ¢, 1/4,1/4.0.350

PAinmm,'a =3.972, ¢ =5.018. Pb 2 ¢, 1/4,114,0.7615 : O 2 a, 3/4,1/4,0
Pa3,a=5239 A Pdda, 000;F8e, 0.343,0.343,0.342

Pm3m, a = 10.606 A, PA(1) 2 b, 112,1/2,1/2 ; Pd(2) 3 d, 1/2,0,0
Pd(3) 6 e, 0.238,0,0 ; Pd(4) 24 m, 0.352,0.352,0.150 ; Se(1} 6 £, 0.257,1/2,1/2
Se(2) 12 4, 0,0.230,0.230 ; Se(3) 12, 1/2,0.168,0.168

Prmi3n,a=9.698 A. Pr 6 d, 1/4,1/2,0 ; Rh 8 e, 1/4,1/4,1/4
Sn(1) 2 a, 0,0,0; Sn(2) 24 £, 0,0.3073,0,1535

Cmem, a =2.890, 5 =9.313, c = 7258 A,
Re(1} 4 ¢,0.0.426,1/4 ; Re{2) 8 £, 0.0,0.135,0.062 ; B 4 ¢, 0,0.744,1/4.

PGy/mme, a =3.520, ¢ = 12.519 A, ¢/a = 3.56
Se4f 1/3.203,03930 ; O 4 £, 1/3,2/3,0.0661 ; S 2 b, 0,014

1a3, a = 6.636 A. 5i 16 ¢, 0.1003,0.1003.,0.1003

Ce,a=7135b=12372,c = 7173 A, f = 120.36°

Si(1) 8 £, 0.140,0.1084,0.072 ; 5i(2) § £, 0.506,0.1590,0.540

O(1) 4 a, 0,00; O(2) 4 ¢, 0.0.3839,1/4 ; O(3) 8 £, 0.266,0.1233,0.940
0(4) 81, 0.311,0.1037,0.328 ; O(5) 8 7, 0.018,0.2119,0.478

Pd3212, a = 7464, ¢ = 8.620 A, Si(l) 4 4, 0.410,0.410,0
Si{2) 8 b, 0.326,0.120,0.248 ; O(1} 8 b, 0.445,0.132.0.400
0(2) 8 b, 0.117.0.123,0.296 ; Q(3) 8 b, 0.344,0.297,0.143

Iila, 2 =8.758, b = 4.786. ¢ = 10.715 A, B=150.08". Si(1) 4 ¢, 1/4,0.9908,¢
Si(2) 8 £, 0.0115,0.2533,0.1678 ; O(1) 8 f, 0.9686,0.0680,0.2860
0(2) 84, 0.1711,0.1770,0.1050 : O(3) 8 7. 0.8657,0.2148,0.0739

Prnma,a=778,b=456,c=849 A. Sr 4 ¢, 0.515,1/4,0.683
Mg 4 ¢, 0.640,1/4,0.057 ; Si 4 ¢, 0.276,1/4,0.110

P4332, 2 = 6.540 A, Sr 4 a, HB,L/R,1/8 ; Si § ¢, 0.428,0.428,0.428

TbB,C

ThBy

ThB,C

ThCrSip

ThiMoBg4

Th3Py

ThaPds

ThSiz

ThaTeNy

TIsVS,
WAz
WC

YCrBy

YiReBg

Zn{CN)

Zao

ZrFesSin
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Pdgimbe, a = 6791, ¢ = 7.522 A, Tb 8 g, 0.313.0.813,1/4
B(1) 8 £, 0.095,0.595.0 : B(2) § &, 0.140,0.035,0 ; C 8 &, 0.456,0.322,0

Pdimbm, a="17.256,c=4.113 A. Th4 g, 0313,0.813,0
B(1}4 e, 0,0,0.212 ; B(2) 4 h, 0.087,0.587,1/2 ; B(3) 8/, 0.170,0.042,1/2

R3m, a=6.700, c = 14.467 A
Th(1) 3 2, 0,00 ; Th{2} 6 ¢, 0,0,0.3156 ; B 18 £, 0.276,0,1/2 ; C94, 1/2,0,1/2

Himmm, a=4.043, ¢ = 10577 A
Th2a 000;Crad 0,1/2,1/4;Si4e 000374

Cmmm, a=7481,b=9.658,¢c=3771 A. Mo 4 g, 0.171,0,0 ; Th 4 i, 0,0.302,0
B(1) 4 £, 0.379,0,172 ; B(2) 4 j, 0,0.093,1/2 ; B{3) 8 g, 0.234,0.155,1/2

f43d,a=8.618 A, Th 12 2, 3/3,0,1/4 ; P 16 ¢, 0.083,0.083,0.083

P82m,a=7.149, c = 3.899 A
Th 3 g, 0.350,0,1/2 ; PA(1) 2 ¢, 1/3,2/3,0 ; Pd(Z) 3 £, 0.780,0,0

14)/amd, a = 4.134, ¢ = 14.375 A. Th 4 a, 0,3/4,1/8 ; St 8 &, 0,1/4,0.2915

I8fmmm, a = 4.094, ¢ = 13.014 A
Th4e, 000344 ;Te 2 q, 00,0 N4d, 0,1/2,1/4

A3m,a=750 A TI6 5, 01/2,1/2:V 24,000:5 8¢, 0.175,0.175.0.175
fm3,a=T580 A. W 2 a, 0,00; Al 24 g, 0.0,0.184,0.309

Poml, a =2.906,c= 2837 A. W 1 4,0,00: C 14, /323,12

Pham, a=5972, b= 11.46, c = 3461 A.

Y4g, 012501500 ; Cr4 g, 0.125,0.419,0 ; B(1) 4 &, 0.280,0.315,1/2

B(2) 4 h, 0.340,0.465,1/2 ; B(3) 4 A, 0.385,0.056,1/2 ; B(4) 4 h, 0.485,0.180,1/2
Pbam,a=9.175, b = 11,55, c = 3.673 A

Y(1}4 g, 0.823,0.087,0; Y(2) 4 g, 0.445, 0.131,0 ; Re 4.g, 0.138, 0.178,0

B(1) 4 &, 0.050,0.060,1/2 ; B(2) 4 &, 0.250,0.075,1/2 ; B(3) 4 A, 0.300,0.240,1/2
B(4) 4 &, 0.140,0.310,1/2 ; B(5) 4 h, G.480,0.290,1/2 ; B(6) 4 &, 0.110,0.470,1/2

Pi3m,a=5928 A.Zn(1) 1 2, 0,00 Za() 1 &, 112,172,112
C4e, 0.1938,0.1938,0.1938 ; N 4 £, 0.3092,0.3092,0.3092

P6amce, a =3.250, c = 5207 A, Za 2 b, 1/3,23,0.0 ; O 2 b, 1/3,2/3,0.3819

Pdoimam, a = 7.004, c =3.755 A
Zr2 b,00,1/2; Fe 8 i, 0.0920,0.3468,0 ; Si 4 g, 0.2201,0.7799,0
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TABLES OF 3-DIMENSIONAL SYMMETRY GROUP SYMBOLS

Crystallographic peint groups

System point group Schoenfiies spacegroups | center?
triclinic 1 C, i no
(anorthic) 1 G ves
moneckinic 2 o) 3-5 no
m C; 6-9 no
2/m Coy 10-15 yes
orthorhombic 222 Dy 16-24 no
mm?2 Cyy 25-46 no
mmm Dzh 47-74 yes
tetragonal 4 Cy 75-80 no
4 S4 81-82 no
4/m Cap, 33-88 yes
422 Dy 89-98 no
dmm Cyy 99-110 no
42m Dyy 111-122 no
4fmmm Dy 123-142 ves
trigonai 3 C3 143-146 no
3 Cy; 147-148 yes
32 Dy 149-155 no
3m G, 156-161 no
3m Dy 162-167 yes
hexagonal 6 Cs 168-173 no
6 C3h 174 no
6/m Cep 175-176 | yes
622 Dy 177-182 no
bmm Cey 183-186 no
6m2 Dy, 187-190 no
6/mmm Dy, 191-194 yes
cubic 23 T 195-199 no
(isometric) m3 T, 200-206 yes
432 a 207-214 no
43m T, 215-220 ro
m3m O, 221-230 yes
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Monoclinic space group symbols for various cell choices and settings

[n the following list the first symbol in cach row is “standard” and those on the right of it are other
possibilities. It is a common practice to omit the “1” space markers when b is the unique axis (so that, e.g
C12/¢] becomes C2/c). The number is the space group number in the {nternational Tables. For numbers
9 and 15 interchanging the labels of the oblique axes results in additional “legal” symbols not used in the
Tables. .

b unique cunique
3 121 P12
4 | P2p1 P12
3 Cl21 Al2l 21 Al12 Bl12 niz
4] Piml Plim
7 Plcl Plnl Plal Plia Plln Plib
8 Clml Alml Hml Allm Blim llm
9 Clel Alrl Ilal Alla Blin 115
Alal Clnl flel Bllb Alln Ila
10 P12/m1 Pl12/m
11 | Pl2y/ml P112y/m
12 C12/ml Al2/ml I12/m| All2im Bl112/m 112m
13 Pl2/el FPl12/nl P12/al Pl1Z/a Pl112/n P12/
14 | P12y/cl  Pl2inl  P12y/al Pli2yje  PU2Yr P14k
15 C12/cl Al2/r1 f12/al Al Bl112/n I12/b
Al2/al Cl12/n1 N2/} Bl12/b Al12/n Ni2/a

Orthorhombic space group symbols for various settings

The following table gives erthorhombic space groups for various choices of axes.The second column
headed a b ¢ is the “standard” setting. The remaining columns are the symbols for different labeling of the
axes. For example in the column headed ¢ a b, the new a axis corresponds to the old ¢ (in the standard
setting), the new b is the old a and the new ¢ is the old b.

abe cab bca a-ch bBa-c| -cba
16 P22 P22z P222 P222 P22 P222
17 P222, P2122 P222 P2212 P222 P2122
18 P21292 P22,24 P21224 P21224 P212,2 P2212
19 P22 P21212y FP21212) P21 212 P212124 P212124
20 €222, A2,22 B2212 B2212 C222 A2122
21 222 A222 8222 8222 c222 A222
22 F222 Fi22 F222 222 F222 F222
23 1222 1222 1222 222 2 1222
24 21212 21212, 1212124 12212 212,12, 121212
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abec cab beca a-ch ba-c -cba Tetragonal space groups

25 Prm2 Plmm PrmiZm Pmi2m Ptm2 P2mm
26 Pme2q PZima Pb2im PmZb Pem2 Pliam
27 | Pec2 Plaa Pb2b PB2H Pec2 Plaa 750 P4 76 P4y 71 P4y 78 P4y
28 | Pma2 Plmb Pc2m Pmla Pbm? P2em 9 4 80 14y
29 Pea2y Piab P21k Pb21a Pbhe2y P2ica
30 Pnc? Plna Ph2n Pn2b PenZ Plan i a
31 Pmin2y Pliymn Pn2im Pm2n Prm2y PZinm . 81 P4 82 1
32 Pba2 Plch Pc2a Pcla Pha2 P2ch
3B | Pl P2inb Pe2in Pn2ya Phn2, P2en 83 Pd/m 84 Pdyim 85 Pd/n 86  Pdain
34 | Pam2 P2un Pr2n Pri2n Pan2 Pnn . 87  HMim 88 M/
35 Cmim2 A2mm Bmm Bm2m Cmim2 Almm
gg gmczll igtm gﬁ% i gg;b gcm221 A%xam 890  P422 90 P42 91 P4122 | 92 P4y22

cc aa cc Alaa
38 | Amm2 B2mm Cmam AmZm Bmm? C2mm 33 ﬁ4222 gg Pdg2(2 95 Pas22 | 96 Pa3212
39 Abm2 Blem Cm2a Ac2m Bma?2 CZmb 7 22 141_22
40 Ama2 B2mb CcZm Am2a Bmb2 CZeemn g
41 | Abal Blch Ccla Ae2a Bba2 Clch 99 Pimm 100 P4bm 101 Pdycm 102 Pdonm
:g g’"d’f g?é“ ? :j”zzc;” a\;: ;"22‘;” i;nafrﬂzz g'ﬂ" 103 Pdcc 104 Pinc 105 Pdyme | 106 Pdobe
14 P D o il . Fovm : 107 dmm 108  MHem 109 Mymd 110 Myed
45 ha? Rcb fcla fe2a a2 Reh — — - - —
45 | a2 ot Ieom T2 prie Do : 111 P32m 112 Pd2e U3 PE2ym | 114 PE2c

. 115 P4m2 116 P_4c2 117 Pap2 118 P_{l-nZ

47 Prmm Prmm Pmmm Pmmim Prumm Prumm 119 f4dm2 120 [4¢2 121 I42m 122 1424
48 Prnn Pnnn Prnn Prnn Pnnn - Prinn
49 Peem Pmaa Pbmb Pbmb Pecm Pmaa
50 Phan Puch Pena Pena Phan Preh 123 Pd/fmmm 124 PA/mec 125 P4inbm | 126 Pd/nnc
51 Pmima Pbmm Pmem Pmam Prumb Permm 127 Pd/mbm 128  Pd/mnc 129 Pdinmm | 130 Pdincc
52 Pnna Pbnn Prcn Pran Pnnb Penn 131 Pdy/mmc 132 Pdafmem 133 Pao/nbe | 134 PaA2/nnm
53 | Pmna Phmn Prcm Pman Prmb Pcnm 135 Pdymbce 136 Pdofmnm | 137 Pdpinme| 138 Poincn
54 | Pcea Phaa Pheh Phab Peeb Peaa 139 M/mmm 140 [fmcm 141 My/amd | 142 I4i/acd
55 Pham Pmch Pema Pema Pbam Pmch
56 Peen Praa Pbnb Pbnb Peen Praa
57 Pbem Fmca Pbma Pcmb Peam Pmab .
38 | Pnnm Pmnn Prmn Prmn Prnm Prnn Trigonal space groups
59 Pmmn Pnmm Pmnm Pminm Pmmn Primm
60 Pben Pnea Pbra Pcnb Pean Prab
61 Pbca Pbeca Pbca Peab Peab Peab
62 Pnma Pbnm Pmen Pram Pmnb Pemn 143 P3 144 P34 145 P33 146 R3
63 Cmcm Amma Bhbram Bramb Cenim Amam — —
64 Cmca Abma Bbem Bmab Cemb Acam 147 P3 148 R3
63 Cmmm Ammm Brmmm Bmmm Crunm Ammm
66 | Cecm Amaa Bbmb Bbmb Cecm Amaa 149 P32 150 P321 151 P3;12 152 P3;21
67 Crmima Abmm Bmcm Bmam Cmmb Acmm 153 P3,12 154 P3,21 155 R32
68 Ceea Abaz Bbeh Bbab Ceeh Acaa 2 2 |
69 Fmmm Fmmm Frmmm Fmmm Frmm Frnin
70 | Fddd Fddd Fddd Fddd Fddd Fddd 156 P3ml 157 P3lm 158 P3¢l 159 P3lc
71 Immm - Immm Immm Immm Trmm Tmmm 160 Rim 161 Ri3c
72 Ibam ) Imch Iema Tema Tbam Tmch
3| feca Ihea bea feat feab feab 162 P3im 163 P3lc 164 P3m1 165 P3el
74 Tmma Tbmm Imem frnarm Immb femm 166 R3m 167 R3e
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Hexagonal space groups

168 P6 169 P&, 170 Pés 171 P63

172 Poy 173 P63

174 PG

175 Ppéim 176 P6s/m

177 P622 178 P622 | 179 P6522 180 P6222

181 P6422 182 P6322

183 P6mm 184 Péec 185 Pésem 186 P6yme

187 PEm2 188 P82 189 P62m 150 Pé2c

191 P6fmmm | 192 Pb/mecc | 193 Péy/mem | 194 Péy/mme
Cubic space groups

195 P23 196 F23 197 123 198 P23

199 12,3

200 Pm3 201 Pn3 202 Fm3 203 Fd3

204 Im3 205 Pa3 206 [a3

207 P432 208 P4y32 | 209 F432 210 F4132

211 r432 212 P4432 | 213 P432 214 1432

215 P43m 216 Fa3m | 217 [A3m 218 Pddn

219 Fd3c 220 H43d

221 Pm3m 222 Pa3n | 223 Pm3n 224 Pn3m

225 Fm3m 226 Fm3c | 227 Fd3m 228 Fdic

229 Im3m 230 Ja3d

BOOK LIST

Here is a short list of books mostly in English that we have found particularly useful.
Some more-specialized books we have referred to in the text, References to all the crystal
structure data given in this book are to be found in the various compilations listed in D (this
is where they came from}.

A. INTERNATIONAL TABLES FOR X-RAY CRYSTALLOGRAPHY
These are: Volume A: Space-Group Symmetry, 3rd ed. 1992 [the indispensable reference]. Velume B:
Recipracal Space, 1993. Volume C: Mathematical, Physical and Chemical Tables, 1992, Kluwer
Academic, Dordrecht.

B. Some beoks on crystallography and crystal chemistry

BLOSS, F. D.
Crystallography and Crystal Chemistry, reprinted by Mineral. Soc. Amer., Washington, D.C. (1994),
Very clear exposition of the crystallographic point Broups.

BURNS, G & GLAZER, A. M.
Space Groups for Solid State Scientists 2nd £d., Academic Press, New York (1990). A good informal
account of space groups with useful tables.

BOISEN, M. B. & GIBBS, G. V.
Mathematical Crystaliography, Reviews in Mireralogy 15, Mineral. Soc. of Amer., Washington,
D.C. (Revised, 1590). A systematic account of how to do crystallographic calculations, and a
derivation of the three-dimeasional point and space groups.

DE JONG, W. F,
General Crystallography. Freeman, San Francisco (1959). Subtitled “A brief compendium™ this
useful little book contains a wide variety of information. Particularly useful for geometric aspects,

HYDE, B. G. & ANDERSSON, §.
Inorganic Crystal Structures, John Wiley & Sons, New York (1989). Systematic description of
crystal structures with special emphasis on the development of “complex” structures from simpler ones
using simple building principles, Numerous tables of data.

MEGAW, H. D.
Crystal Structures: A Working Approach, Saunders, Philadelphia (1973). Clear descriptions of
symmetry and the crystailographic description of siructures.

PEARSON, W. B.
The Crystal Chemistry and Physics of Metals and Allgys, John Wiley & Sons, New York (1972). A
comprehensive aceount of the subject at the lime and still very useful.

SMITH, J. V.
Geometrical and Strucrural Crystaliography, John Wiley & Sons, New York (1982). A good
introduction ta formal crystallography. Intended for those who are prepared to work through a number
of carefuily considered examples.

WELLS, A. F.
Structural Inorganic Chemistry, 5th Ed., Clarendon Press, Oxford (1984), Contains a wealth of
organized structural information with due attention 10 crystal structures. Introductory chapters discuss
polyhedra, sphere packings etc. Every chemist should own a copy.
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Hexagonal space groups

168 PG 169 P6, 170 P6s 171 PGy

172 Po6y 173 P63

174 PG

175 P6im 176 P6ym

177 Pé22 178 P6122 | 179 P6522 180 P6,22

181 P6422 182 P6322

183 Pomm 184 Poee 185 P6icm 186 Poésmc

187 Pém2 188 P62 189 P&2m 190 P82

191 P8/mmm | 192 P6/mce | 193 P6y/mem | 194 FP63yfmmc
Cubic space groups

195 P23 196 F23 197 123 198 P23

199 12,3

200 Pm3 201 Pn3 202 Fm3 203 Fd3

204 Im3 205 Pa3 206 la3

207 P432 208 P4932 | 209 F432 210 F432

211 1432 212 P4332 | 213 P42 214 J4;32

215 Pd3m 216 F43m 217 [43m 218 Pd3n

219 Fiie 220 I43d

221 Pm3m 222 Pn3n | 223 Pmln 224 Pn3m

225 Fm3m 226 Fm3c | 227 Fd3m 228 Fdic

229 Im3m 230 Ja3d

BOOX LIST

Here is a short list of books mostly in English that we have found particularly useful.
Some more-specialized books we have referred to in the text, References to all the crystal
structure data given in this book are to he found in the various compilations listed in D (this
is where they came from).

A, INTERNATIONAL TABLES FOR X-RAY CRYSTALLOGRAPHY
These are: Volume A: Space-Group Symmetry, 3rd ed. 1992 (the indispensable reference]. Volume B:

Reciprocal Space, 1993, Volume C: Mathematical, Physical and Chemical Tables, 1992. Kluwer
Academic, Dordrecht,

B. Some books on crystallography and crystal chemistry

BLOSS, F. D.
Crystallography and Crystal Chemistry, reprinted by Mineral. Soc. Amer., Washington, D.C. (1994).
Very clear exposition of the crystallographic peint groups.

BURNS, G & GLAZER, A. M. :
Space Groups for Selid State Scientists Ind Ed,, Academic Press, New York (1990). A good informal
account of space groups with useful tables.

BOISEN, M. B. & GIBBS, G. V.
Marhematical Crystaliography, Reviews in Mineralogy 15, Mineral. Soc. of Amer., ‘Washington,
D.C. (Revised, 1990). A systemalic account of how to do crystallographic calculations, and a
derivation of the three-dimensional point and space groups.

DE JONG, W. F.
General Crystallography. Freeman, San Francisco {1939}, Subtitled “A brief compendium” this
useful little book contains a wide variety of information. Particularly useful for geometric aspects.

HYDE, 8. G. & ANDERSSON, S.
fnorganic Crystal Structures, John Wiley & Sons, New York (1989). Systematic description of
crystal structures with special emphasis on the development of “complex” structures from simpler ones
using simple building principles. Numerous tables of data,

MEGAW, H. D.
Crystal Structures: A Working Approach, Saunders, Philadelphia (1973), Clear descriptions of
symumetry and the crystallographic description of structures.

PEARSON, W. B. :
The Crystal Chemistry and Physics of Metals and Alloys, John Wiley & Sors, New York (1972). A
comprehensive account of the subject at the time and stil] very useful,

SMITH, J. v.
Geometrical and Structural Crystaiiography, John Wiley & Sons, New York (1982). A good
introduction to formal crystaliography, Intended for those who are prepared 16 work through a number
of carefully considered examples.

WELLS, A. F.
Structural Inarganic Chemistry, 3th Bd., Clarendon Press, Oxford (1984). Contains a wealth of
organized structural information with due attention to crystal structures. Introductory chapters discuss
polyhedra, sphere packings erc. Bvery chemist should own a copy.
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C. Some beoks on geometry

COXETER, H. 5. M,
Introduction te Geometry, John Wiley & Sons, New York (1971). A classic that everyone should
own and read. Includes a good account of two-dimensional symmetry groups.

CUNDY, H. M. & ROLLET, A. P.
Mathematical Models, 2nd Ed., Clarendon Press, Oxford (1961). ‘Written for English sixth-formers,
this book has, among other things, a lot of useful information on, and practical tips for making, poly-
hedra,

GRUNBAUM, B. & SHEPHARD, G.C, :
Tilings and Patterns, W. H. Freeman, New York (1986). An astonishing book, beautifully illustrated,
that should dispel any illusiens that two-dimensional patterns are boring. Heavy going in places.

HILBERT, D. & COHN-VOSSEN, §.
Geometry and the Imagination, Chelsez, New York {(1952). Another classic, and one that is as fresh
today as when it was written (originally published in 1932). 330 figures, some very beautiful. Every
personal library should contain a copy.

SHUBNIKOV, A.V. & KOPSTIK, V. A.
Symmerry tn Science and Art, Plenum Press, New York (1974). A readable guide to symmetry groups
(including black-and-white and color groups} in different dimensions (e.g. rod and layer groups). Also
malerial of general interest as suggested by the title.

WENNIGER, M. J.

Polyhedran Models, Cambridge University Press (1971). lustrations of beautiful polyhedra and
instructions for making them.

D. Reference books and data bases

STRUCTURE REPORTS
Originally Strukturbericht (Vols. 1-7), these are annual compendia of crystal structure data. The earlier
volumes gave encugh information to be a sufficient reference source, but later volumes have become
mainly bibliographies (references without author’s names!), The last volume was for 1990 and the
series which started so auspiciously under P. P. Ewald and C. Hermann in 1931 seems to have died
ignominiously without even a whimper. Hampered by a highly eccentric indexing system.
VILLARS, P. & CALVERT, L. D,
Pearson’s Handbook of Crysiallographic Data for Intermetailic Phases. 2nd edition, American
Society of Metais, Metals Pack, Ohio (1991). “Handbook™ may not be the correct term for Four
velumes, each weighing more than 3 kg. Comprehensive and valuable reference source of structural
data fer compounds involving metallic elements, also includes data for paictides and chalcogenides.
Only binary oxides and no halides are included, and the price preciudes personal ownership for most.
The second edition omits some compounds reported in Yolume I of the first edition, so one needs to
have both. The assignments 1 structure types are not always reliable and one shouald check the original
papers if unit cells and/or origins are changed. We have found a number of errors and misprints.
WYCKQFF, R. W. G.
Crystal Structures. John Wiley & Sons, New York. Vol 1 (1963), Vol 2 (1964}, Vol 3 (1965), Vol 4
(1968). A convenient reference organized by structure type if one does not want the latest information.
INORGANIC CRYSTAL STRUCTURE DATA BASE - Gmelin Instizut, Karlsruhe.
Conzains 39,000 entries and growing at a rate of = 1500 per year.
Criteria for inclusion are {a) no C-C and/or C-H bonds (these are in the Cambridge Structure Data Base)
(b) contains at least one of H, He, B, C, N, O, F, Ne, Si, P, 8, CL Ar, Se, Br, Te, 1, Xe, At and Rn
(i.e. elements right of the “Zinil line” on the periodic table). Neither perfect {we find errors) or
comprehensive (some surprising omissions) but excellent value for meney.

Formula Index

This index lists chemical compounds for which some structural information appears in Chapters 1-7 or
Appendix 3. If the page number is in bold face Full crystallographic data are given. Lock also for trivial
names in the subject index (especially for minerals and zeolites).

AgO, 77

Ags0, 129

Ag70gF, 277

AlBg, 172, 233, 244, 435

AlCrpC, 288

Alz0Oq, 221, 360, 435

Al(OH)3, 183

AlPOy, 87

AlPO4-2H;0, 304

Al2Si0s, 131

AlrSin05(0OH)y, 185

Al2Sig01p{0H),, 186

Ala(W0Oy)s, 360

Am, 285

Asa8y, 148

AnCd, 271, 435

AuZny, 279, 435

B, 152

ByQ3, 129, 298, 435

BaAly, 253

BaAlzSipOg, 181

BaCu, 246, 435

BaCusSq, 378

BaCuzPy, 334, 436

BaFe;84, 273, 436

BaMgSi, 249, 436

BasMgTayg03p, 171

BaNiO3, 257,436

BaTiO3, 257, 436

BaTiSiz0g, 151, 380

BaSi;03, 182

BeHj, 380

Be(NHsz),, 151

BeQ, 304, 436

Bila, 287

BiCu3S3, 363

C, 299, 436

CioHie, 148

Ci4Hap, 149

Cla07, 151

CaAly8ip0g, 181, 293,
" 304

Ca3All8iy044, 80, 261,
" 266, 360

CaBg, 355

CaB304, 376

CaB25i20g, 306

CaBeqP,0g, 306

CaCusTigOyp, 279

CaCly, 286

CaFp, 118, 218

Ca(GapQy, 303

CdAsy, 368

CdClIy, 220, 436

Cdia, 220, 436

CdP,, 368

CdS0Qy, 329

CeCuy, 98, 306

Clz07, 151

CogSg, 196, 436

Co28i, 176

CrB, 176, 250, 436

" CrBa, 303, 436

CrsBj3, 255

Cr381, 260

Cs, 234
CsAl8i50q9, 340
Cs3Mo4P20q, 154
Cs1103, 153
CsW30Qo, (71
CuAlz, 255, 436
CuAu, 257

CusAu, 256
CuFeS3, 241, 436
CuFes51, 367, 436
Cup0, 97

Cuy8b, 249
CuSiQ3.H70, 151
CuZn, 257
CusZng, 159
EuCogPs, 180
FeqAlB2, 253, 436
FeB, 251, 436
FeyP, 204, 436

FeSa, 156, 195, 436
Fe3S4, 286
Feq(SO4)3, 361
FeSi, 238, 243, 437
FesWsC, 237
Ga, 237

Gag03, 130

GagTes, 273

Ge, 322, 437
HPFg-Ho(, 333
H,0, 321

Hfly, 287

Hf3NizSi3, 180

Hg, 231, 285

Hzl,, 288
Hg3NbFg, 265, 437
Hg3SbFg, 264, 437
KAlGeOQy, 367
KAI18i3019(0H)3, 186
KCuy83, 288
KHzP04, 82,92
KHgo, 98

KInTes, 255, 437
KoMgFy, 258, 437
K2Mga(504)3, 360
KMg3A18i3010{CH),,186
KiNaCaTh3ig0sp, 152
K3V5014. 171, 437
KaWsOys, 171
LaB;Cs, 173, 437
LaCosF3, 179
LaFeqPya2, 279

LaFe Shy4, 279
LaNisP3, 179
LaNisSi, 179

Las03, 220, 245, 437
LigAlg, 131
LiAlQOs, 376
LiGa0s, 376

LiGe, 364

Lia0, 219

LiP, 263, 437
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LisPzNs, 150
LiY;Siz; 254, 437
MgAlyOy, 78, 223, 259
MgaBy013Cl, 358
MgClg, 136

MgCug, 258

MgGa, 364

MgorGas, 379
MgNisq, 260
Mg{OH),, 183
MgSiOs, 151
Mg381,05(0H)y, 184
Mg38ig00(0H);, 186
MgZn3, 260

Mn, 266

MnrAls, MnAly, 189
MnBy, 123
MngHgs, 168, 437
MoB, 252, 437
MozBC, 287

MaS2, 246, 437
MoSia, 257
Ng(CHz7)g, 143

NagAliSiz012Cl, 82, 316

NaBePQy, 367
NajpBeySiaQy7, 152
NaCl, 118, 219
NaCu0s, 130
NaFe(y, 220
NaGaSng, 377

NaP, 263, 437
NaPb, 333, 437
Na3PiGeg, 195, 438
Na3S8b8y, 195
Naa8inOs, 182
Nay8iz8s, 150
NagFiSiq0y |, 379
NaW0s, 171
NaZayjz, 273, 438
NagZra(SiOg)3, 360
NazZr8iz0g¢-T,0, 380
NbCls, 153

Nb3Clg, 153
NbCoB, 176
NbsCuySi, 180
NbgF|s, 155, 438

Nbglt, 150

NbO, 317, 438
NbSq, 246, 438
Nb3Teq, 153
NdRe4Sis, 180
Nias, 119, 219
Ni2S83, 318, 360
NisSn, 256

Np, 377

P20s, 297, 378
P4Cyg, 148

PsCg, 150

P4Syg, 150

Pa, 287

PbEC1, 249, 438
PbO, 248, 438
PbMogSg, 150
PdF3, 239, 438
PdF3, 222, 235
PdGas, 255
Pd;78e;s, 356, 438
Prl3, 288
PrsRhySny3, 280, 438
PtB, 219

PtCly, 159

P304, 358

PtPby, 255

Pu, 247, 287
Rb7Csi104, 153
RbgOs, 153
RbScOs, 219
ResB, 176, 438
ReOs, 171,235
Sca03, 377
Scp048, 245, 438
8¢35ip07, 151

Si, 233, 267, 319, 438
SiC, 301, 365
SigN20, 129
Si0n, 83, 241, 315,

T 317, 321, 369, 438

SiP707, 151
Sn, 273

Snlg, 287

Sraly, 306
SrMgSi, 176, 377

S18in, 267, 295, 438
Ta3zBy, 287

TaCoB, 176
TazFeOyg, 82

TaTeq, 255

TbB.C, 173, 439
TeqClyg, 154
Tealjs. 154

ThBa, 174, 439
ThB,C, 174, 439
ThCra8iq, 253, 439
ThMoBy, 172, 439
Th3Ny, 220, 286
ThaP4, 237, 439
ThsPds, 171, 439
ThSig, 234, 297, 439
Th;TeN,, 252, 439
TiQq, 78, 228, 286, 377
TiP, 119, 219, 246
Tip58C, 288
TisTeyq, 272
TI3VS84, 195, 439
TlZn3She, 311
UBq3, 355

UB.C, 174

UBC, 250

UHs, 280

Uly, 288

U30g, 168, 201
UsSip, 254

W, 260, 266
WAL, 278, 439
WC, 244, 439
WCoB, 176
WCoBg, 178
W4CoBj, 178
YAiCo, 176
YCosP3, 179
YCrBy, 172, 439
Y2ReBg, 172, 439
Znla, 151, 287, 333
ZnQ, 218, 439
ZnS, 116, 120, 217, 243
Zr3CuySig, 180
ZrFe4Siy, 178, 439
Zr8i0y, 98

Subject Index

The Table of Contents should be consulted for major topics discussed in this book {space groups,
polyhedra, sphere packings, etc.). The subject index serves mainly to guide the reader to definitions of
terms, mineral names, etc. so only the principal (defining) occurrences of a term are indicated. Note also we
normally use the “natural” order of words as in “clathrate hydrate” not “hydrate, clathrate” (but try different
combinations). For chemical compounds, alse consult the formula index.

ABC-6 zeolites, 347 Bisdisphenoid, 141

Abelian group, 24 Bixbyite, 377

Acentric, 29 Black-and-white symmerry, 54
Adamantane, 148 Beoracite, 358

Adjacency matrix, 191 Boranes, 142

Afghanite, 349 Boron (B rhombohedral), 162
Alchemist’s gold, 264 Bragg indices, 102, 114, 125

ALPQ zeolites, index, 354 Brass, 159, 257

Alumina = Afz03, 158, 221 Bravais lattices

Amman polyhedron, 188 symbols for 3-dimensional, 58
Analcime (= analcite), 376 table of 2-dimensional, 10
Anatase = TiOg, 377 tables of 3-dimensional, 60, 61
Angles (calculation of), 111 Brazil twinning, 86

Anorthic, 60 Bronze, 170

Antifluorite, 219, 433 hexagonal tungsten, 166, 171
Antigorite,184 tetragonal tungsten, 171
Antiprisms, 139 ' Brucite = Mg(OH)s, 183, 433
Antistructure, 219 C phase, 367

Antisymmetry, 54 Cairo tiling, 207

Archimedean polyhedra, 136, 193, 197 Cancrinite, 306, 349

Archimedean tiling, 13, 165, 194, 197 Cartesian coordinates, 112

Asbestos, 184 Cartesian rotation matrix, 47
Austenite, 230 Catalan polyhedra, 141

Axial glide, 62 Catapleite, 380

Axial vectors, 388 Ceo = C-centered orthorhombic, 231
Bain relationship, 229 Ccep = cubic close packed, 213, 231
Band groups, 384 Centrosymmetric, 29

Bee = body-centered cubic, 225,239, 257, 271 Chabazite, 348

Bet = bady-centered tetragenal, 229, 231, 247 Chalcopyrite = CuFeSy, 241, 431, 436
Benitoite = BaTiSi30g, 151, 380 Chevrel phase, 150

Bentonite, 186 Chrysotile (asbestos), 184

Berlinite = AIPOy, 87 Circuit (in a net), 290

Bernal spiral, 205 Class of a crystal, 76

Berry pseuderotation, 190 Clathrasil, 349

Beryllonite = NaBePQy, 367 Clathrate hydrates, 333, 371, 427
Bikitaite, 339 Clatbrin cages, 429

Biot convention, 84 Clay, 186

Bipyramids, 141 Clinographic projections, 114
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Clese packing symmetries, 268
Coesite = Si09, 313, 438
Commutative group, 24
Compatible patterns, 199
Congressane, 149
Connectivity table, 412
Coordinates
hand of axes, 30
hexagonai crystals, 6
polyhedra and nets, 193
transformations, 103
Coordination sequence, 269, 293, 411

Corundum = AlpQ3, 221, 360, 361, 377

Crankshaft rod, 308, 341
Cristobalite = $i0Qy, 240
Cross polytope, 393
Crystal ¢lass, 70
Crystallographic symmetry, 2
Cubarite = CuFe;53, 367, 463
Cube, 133
snuh
truncated, 136
Cubic-hexagonal transformation, 107
Cubic symmetry, 40, 47, 60, 74
Cuboctahedron, 53, 136
coordinates, 193
truncated, 136
twinned, 215
Cuprite = Cuz0, 97
Curie’s law, 50
Curvature, 413
Cylinder packings, 262, 284
B-Mn, B-W. garnet, 266
1-Si, SrSig, 267
* Cylindrical groups, 387
D phase, 367
D surface, 415
Dachiardite, 345
Danburite, 308
Dauphiné twinning, 86
Decorating (nets)
Deltahedra, {41
Density {of a sphere packing), 227
Dextrorotatory, 85
Diagonal glide, 63
Diamond, 218, 299, 430
Diamond giide, 63
Dihedral angle, 111
Dihedral groups, 32
Dioctahedral layer, 183 )
Dioptase = CuSiQ3-H70, 151

Dodecahedron (pentagonal), 133, 193
rhombic, 137, 141, 193
snub, 136
truncated, 136
Dedecasil, 337, 349
Dual of a net, 165
Duazl of a polyhedren, 133
Eclipsed conformation, 39
Edingtonite, 352
Enantiomorphous groups, 50
Ensatite = MgSiQs, 151
Erionite, 349
Enier equation, 198, 401, 403
Euler-Poincaré characteristic, 403
Eutactic, eutaxy, 147, 209
Faujasite, 326, 372

. Feldspar, 3{3

Ferrierite, 345

Fluerite = CaFj, 116, 218, 433
Framework density {FD of a net
Frank-Kasper polyhedra, 143

Friauf polyhedron, 144

Friedel’s law, 50

Friezes, 384

Fullerenes, 421

Fuller’s earth, 186

G matrix, 110

Garnet, 80, 261, 360, 362
Gauss-Bonnet theorem, 415

Gaussian curvatare, 415

General positions, 22, 77

Generators {of groups), 51
Gismondine, 308, 342

Glide symmetry, 14, 62

Gmelinite, 310

Goldberg polyhedra, 424

Graphite, 172, 436

Gyroid, 416

H phase, 288

Hand of quartz, 85

Hand of screw axes, 65

Hep = hexagonal close packed, 213, 231, 271
Herrmann-Mauguin netation, 29
Heteropolyanion, 152

Hexagonal lattice (2-dimensional), 10
Hexagonal-thombohedral transform., 104
Hexagenal system, 46, 60, 74
Hexagonal tetrahedron, 148
Hexamethylenetetrammine, 148
Hole, 208

Heneycomb pattern (63, 13, 165, 221

Honeycombs, 394

HTB (= hexagonal ngslen bronze), 166, 171

hurlbutite, 308
i subgroup, 81
Icosahedral polyhedra, 424
lcosahedral symmetry, 42, 57, 96
Icosahedron, 133
coordinates, 193
truncated, 136
Icosidedecahedron, 136
truncated, 136
Improper operation {axis), 28
Incommensurate crystals, 95
Infinite polyhedra, 276, 404
International tables, 445
Inversion poim, 28
PR rule, 421, 422
Isometry, 24
Isomorphic subgroup, 81
Isopotyanion, 152
J lattice complex, 234, 277
Jones symbol, 6
k subgroup, 81
Kagome pattern (3.6.3.6), 13, 166, 221
Kainosite, 151
Kaolinite, 185
Kearite = Si0s9, 321,
Keggin cluster, 157
Kissing numbers, 283
Klassengleiche, 81
Langbeinite, 360
Lattice (see also Bravais lattices), §, 58
Lattice complexes, symbols for, 88, 281
Laug classes, 50
Laves phase, 260
Layer groups, 381
Leap-frogging, 424
Levorotatory, §5
Levyne, 349
Linde A, 323, 372
Linde L, 344
Liottite, 349
Lonsdaleite, 218, 299, 367
Eosod, 349
MacMahon’s net, 207
Magnetic symmetry, 54
Makinawite = FeS, 248
MAPO zeolites, index, 354
Martensitic transformation, 230
Matlockite = PbFECI, 249, 435
Maus's salts, 157

Subject Index 451

Maximal subgroup, 80
Mazzite, 344
Mean curvature, 415
Medial polyhedron, 419
Melanophlogite, 335
Merlinoite, 308, 342
Metaprisms, 140
Metavariscite, 304
Metavolting, 157
Metric tensor, |10
Mica, 186
Miller indices; 101, 125
Minimal surface, 415
Moedulated structure, 95
Moganite = Si0q, 322, 369
Moissanite = SiC, 302
Monoclinic, 43, 60, 67
Montesommaite, 377
Montmorilionite, 186
Mordenite, 345
Muscovite, 186
Narsarsukite, 313, 379
Nasicon, 360
Natrolite, 353
Met
dual (2-D), 165
primary and secondary (2-I), 169
regular, quasiregular (3-I3), 295
self-dual, 175
uniform (3-I3), 294, 417
unincdal (3-13) 294, 415
Niggli matrix, 110
Non-crystallographic groups, 53
Oblique lattice, 10
Obverse setting (for rhombohedraly, 105
Octadecasil, 349
Octahedral symmetry, 44
Cctahedron, 133
cartesian coordinates, 193
super, 154
truncated, 136, 193
Offretite, 349
Cmpal, 274283
Optical activity, 50, 84
Order {of a group), 48
Origin of unit cell, 91
Orthographic projections, 114
Orthorhombic, 46, 60, 70
P surface, 415
Paracelsian, 304, 308
Pearson symbol, 61
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Pearson’s Handbook, 446
Penrose tiles, 187
Pentasil, 349
Perovskite, 171, 234, 257, 434
Pharmacosiderite, 154, 379
Phillipsite, 341
Phlogopite, 186
Phyllosilicates, 184
Piezoelectricity, 50, 88
Pilfared clay, 186
Peint group (table), 440
Poiar vectors, 388
Polarity and pelar classes, 50
Polybenzene, 267
Polytope, 393
Polytype (of SiC), 365
Primary net, 169
Prisms, 139
Proper operation (axis), 28
Pseedorotations, 190, 202
Pyramids, 141
Pyrite = FeSy, 156, 436
Pyritohedron, 195
Pyro- (silicate, phosphate, etc.), 151
Pyrochlore {unit}, 155, 236
' Pyrophyllite, 186
Quartz = 5i0g, 83, 316, 369
Quasicrystals, 95, 187
Quasiperiodic, 189
Quasiregular net, 295
Radiolaria, 429
Radius ratio rules, 224
Realgar, 148
Reciprocal lattice, 108
Rectangular lattice, 10
Regular net, 295
Reverse setting (for thombohedrai), 105
Rho (zeolite), 324, 373
Rhombic dodecahedron, 137,141
Rhombicosidodecahedron, 136
Rhombicuboclahedron, 136, 276
great, 136
small, 137
Rhombohedral, 46, 60, 74
Rhombohedral-hexagonal transtorm., 104
Rhombohedron, 135
Amman (golden), 188
Ring (in a net), 290
Rod groups, 383
Rotation groups, 2, 32
Rotatior matrix, 47

Rutile = Ti04, 78, 228, 286, 432
§ lattice complex, 237
Saw-tooth structures, 343
Scapolite, 312
Schlifli symbol
for tilings, 13
for polyhedra, 133, 137
for 3-dimensional nets, 290, 292
Schlege! diagram, 191
Schoenflies notation, 29, 52, 440
Scolecite, 353
Screw symmetry, 63
Secondary net, 169
Seitz operator, 90
Setting (of a space group), 70
Sheet silicates, 184
Sigma-2 (zeolite), 350
Silicalite, 351
Similarity, 24
Simpie polyhedra, 419
Simplex, 393
Simplicial polyhedra, 408, 419
Skew polyhedron, 404
Snub cube, 33, 136, 273
Snub dodecahedron, 136
Sodalite, 82, 274, 315, 348, 373
Space groups
frequency of occurrence, 94, 203
three-dimensional (table), 441
two-dimensional (table), 21
Special positions, 23, 77
Sphalerite = ZaS, 116, 120, 218, 243, 299, 431
Sphere packing, 227, 255
Spinet = MgAloQy, 78, 223, 259, 434
Spinel unit {cluster), 158
Square lattice, 10
Staggered conformation, 39
Steacyite = KNaCaThSigOxq, 152
Stelia (cctangula or quadrangula), 136, 195
Stereo drawings, 116 '
Stishovite = §j03, 321
Subgroups of space groups, 80
Supergroups of space groups, 80
Superoctahedron, 154
Supertetrahedron, 150
Symmorphic groups, 14
System, crystal
three-dimensionai, 45, 60
two-dimensional, 1}
¢ subgroup, 81
7 lattice complex, 240, 258

Talc, 186
Tammes’ problem, 146, 190
Tapiolite, 82
Tennis ball (polyhedron), 350, 420
Tessellation, 13, 164
Tetragonal, 46, 80, 73
Tetragonal tetrahedral layer, 248
Tetragonal tetrahedron, 148
Tetrahedral symmetry, 43
Tetrahedron, 133
circumscriptibie, 126
cartesian coordinates, 193
hexagonal, 148
super, 150
tetragonal, 148
truncated, 136, 193
velume of, 113
Theta-1 (zeolite), 340
Thixotropy, 186
Thortveitite = Sc28i07, 151
Tiling, 13, 164
Topological close packing, 144, 409
Topological density, 411
Translationengleiche, 81
Triclinic, 45, 60, 67
Tridymite = 8109, 302, 322
Trigonal, 46, 60, 74
Trioctahedral fayer, 183
Trirutile, 82
Truncated cube, 136, 193
Truncated cuboctzhedren, 136, 193
Truncated dodecahedron, 136, 193
Truncated icosidodecahedren, 136, 193
Truncated octahedron, 136, 193
Truncarted tetrahedron, 136, 193
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TTB (= tetragonal tungsten bronze), 171
Twinning

mimetic, 202

in quartz (Brazil, Dauphiné), 86
Ultramarine, 316
Uniform net, 294
Unimodular matrix, 398
Uninodal net, 294
Unit ¢ell, 10, 38
Unit cell volume, 108
Up-down nets, 311
V lattice complex, 320
Vacancy, 208
Variscite, 304
Veclors (symmetry of), 388
Vermiculite, 186
Varonoi polyhedron, 138, 141, 226
VPL-5 (zeolite), 346, 373
Wigner-Seitz cell, 138, 141
Williams’ polyhedron packings, 333
Waurtzite = ZnS, 121, 217, 300, 431
Wyckoff notation, 23, 77
¥ lattice complex, 242
¥* lattice complex, 295, 319, 363, 371
Zeolite index, 354
Zhdanov symbal (for cp), 216
Zircon = ZrSi0y, 98, 130
Zigzag (in nets), 338
ZK-3 (zealite), 325
Zone, 99
Zone law, 102
ZSM zeolites, index, 354
Zuniite, 158
U-phase polyhedron, 144




