
1 INTRODUCTION 

The global demand for base metals, combined with diminishing near surface resources, has 
influenced a number of deep, open pit mining operations to consider the transition to 
underground mass mining operations to recover the deeper reaches of an orebody extending the 
life of the operation. As a function of these larger, more complicated mine designs, the potential 
for complex pit slope movements to evolve into large scale failures creates cause for both safety 
and economic concerns.  

Monitoring programs involving geodetic prisms form a key component of most slope stability 
programs for modern open pits. Most pits, active or inactive, have a program in place to record 
slope displacement providing data that may be used to quantify the nature and extent of the 
hazard, the kinematics and stability state of the slope, or to provide early warning of an 
impending failure. Issues of uncertainty relating to the geological conditions, slope kinematics, 
and failure modes provide obstacles that contribute to a lack of understanding of the potential 
for failure. 

At the same time, the techniques used for monitoring and forecasting pit wall failures are 
largely empirical, relying on surface-based point measurements of displacements monitored 
over time. This data is then extrapolated or analyzed for accelerations that exceed set thresholds 
based on earlier patterns (e.g. Fukuzono 1985). These approaches are ‘holistic’ and disregard 
details pertaining to the underlying geology, controlling geological structures and slope failure 
mechanism.  
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Often, large-scale geological structures (e.g. major fault zones) play a dominant role in 
controlling the kinematics and stability of large pit slopes. With the added consideration of 
complex rock mass stress-strain interactions in response to rock mass failure and underground 
mass mining operations, the resulting 3-D deformation pattern of the pit slope becomes 
progressively more and more difficult to interpret with respect to how it will evolve. This 
creates a serious obstacle in the stability assessment of the slope or setting early warning alarm 
thresholds if the pit is in operation (e.g. during scavenging operations), near sensitive surface 
structures located near the crest of the pit slope, or underground. A number of cases exist where 
sudden collapses of cave backs, crown pillars, etc., have occurred due to unexpected geological 
structures or unexpected rock mass behaviour, including the hangingwall wedge failure at the 
Kidd Creek mine in Canada that propagated from 610-m depth to surface (Board et al. 2000), 
the 800-m high pit wall failure at Palabora in South Africa (Brummer et al. 2006), or the fatal 
air blast caused by sudden caving at the Northparkes mine in Australia (Hebblewhite 2003). 

To contend with these complex interactions, numerical modeling offers a powerful means to 
break down problems into their constituent parts and analyse cause and effect relationships and 
their evolution. Techniques such as the distinct-element method (e.g. UDEC/3DEC; Itasca 
1999, 2003) allow for the explicit inclusion of geological structures and rock mass 
heterogeneity. However, in order to effectively model the rock slope, a tight control on the 
representation of the geology is required for which monitoring data can be used as an important 
constraint. Yet the interpretation of monitoring data is far from straight forward and can be 
affected by the same issues of rock mass complexity and variability as affects the numerical 
models the data are meant to constrain.  

2 MONITORING OF PIT WALL BEHAVIOUR 
2.1 Current State of Practice 

For slope monitoring to be effective, the data must serve an investigative role before it can serve 
a predictive role, allowing an understanding of the slope behaviour to be established in order to 
properly define alarm thresholds. Thus the function of the monitoring network can be seen as 
serving two purposes (Moore et al. 1991): 

(i) Investigative Monitoring: To provide an understanding of the slope and thus avoid future 
large-scale stability issues.  

(ii) Predictive Monitoring: To provide a warning of a change in behaviour and thus enable 
the possibility of limiting damage or intervening to prevent hazardous sliding. 

Monitoring systems commonly used in an open pit environment are categorized by Jarosz & 
Wanke (2003) as surveying techniques or geotechnical methods. Surveying techniques include 
total station/geodetic monitoring of prisms, use of GPS receivers, slope stability radar, etc., used 
to determine absolute positions. Geotechnical methods employ specialized instrumentation to 
measure differential displacements over a short distance, and include extensometers, tiltmeters, 
inclinometers, etc. Examples of strategies employed at different mines based on these methods 
include those by Logan et al. (1993), Loubser (1993), Little (2006), Brown et al. (2007), and 
Day & Seery (2007), amongst others.  

New developments in pit slope monitoring include the use of remote sensing technologies 
like satellite and terrestrial radar, which provide high-resolution full area spatial coverage of a 
slope as opposed to relying on geodetic point measurements. Slope Stability Radar (SSR), for 
example (Fig. 1), works to continuously scan and compare high resolution measurements made 
from 50 to 1000 m from the slope face to detect real-time, sub-millimetre movements. This 
ability is helping to establish SSR as a key tool for managing unstable pit slopes, quickly 
identifying the size and extent of a developing failure (Harries et al. 2006, Little 2006, Harries 
& Roberts 2007, Day & Seery 2007).  

Geodetic monitoring, however, still remains the most commonly employed method in open 
pit environments due to its lower cost, reliability, and ease of execution even though the data 
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can sometimes incorporate measurement errors. The geodetic monitoring of numerous prisms 
installed on multiple benches is now routinely undertaken using robotic total stations, with more 
recent efforts being to combine these systems with global navigation satellite systems (Brown et 
al. 2007). Monitoring through GPS receivers has also been seen as an answer to large open pit 
projects where the pit diameter exceeds 1 km and refraction and pointing errors start to limit the 
effectiveness of total station measurements. Bond et al. (2007) list the advantages of GPS 
monitoring over other geodetic technologies as including continuous and high accuracy 
displacement detection, together with not requiring line of sight between stations, providing 3-D 
position information, and making millimetre-level data possible for baselines up to 10 km in 
length. Although these authors report operating in a harsh environment like open pit mining as 
being another advantage, experiences at the Palabora mine have suggested otherwise. A GPS-
based system installed in November 2004 proved unreliable due to non-systematic interruptions 
or system shut downs in response to high pit temperatures that could exceed 45°C. As noted by 
Dunnicliff (1988) and Eberhardt et al. (2008), instrument reliability is of paramount importance, 
especially if it is part of a system being relied upon for early warning monitoring.  
 

 
Figure 1. GroundProbe’s Slope Stability Radar (SSR) system showing the continuous monitoring of 
millimetre-scale movements across the entire face of an unstable open pit slope (after Harries et al. 2006). 

2.2 Investigative Monitoring 

The use of investigative monitoring has been shown to facilitate a greater understanding of the 
behaviour and mechanics of both natural (Willenberg et al. 2008) and open pit mine slopes 
(Walker et al. 2006), thus enabling the correct mitigation approach to be chosen or to confirm 
that the correct approach has been taken. The vast majority of open pit operations depend on the 
monitoring of survey prisms for early warning detection of accelerating slope movements. 
Figure 2 shows some common techniques used for visualizing prism data at Palabora Mine, 
which include: incremental and cumulative displacement plots, daily rate plots, and wander 
plots (movement direction in plan view or section). Even though most operations collect vast 
quantities of data, there is a perceived shortage of time and resources to review the data in detail 
and to determine what the data may be revealing with respect to the slope kinematics and 
mechanics of deformation. The best results are achieved when consideration of the geology, 
geomechanics, and mine operations are involved to better understand how the monitored slope 
displacements are evolving.  
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Figure 2. Examples of a) cumulative rate plot, and b) wander plot used at the Palabora Mine (based on 
Piteau, 2005).  

2.3 Predictive Monitoring 

A majority of the slopes within an open pit environment are monitored to ensure the safety of 
workers and equipment, and to evaluate the effectiveness of any mitigative measures undertaken 
(e.g. slope drainage). Early warning thresholds are usually set by trial and error, or over time, 
the experience of those involved. In turn, the data are assessed by extrapolating the measured 
displacement-time series to detect accelerations that exceed set thresholds. One such example is 
the inverse velocity method (Fukuzono 1985, Rose & Hungr 2007). It must be noted that these 
approaches are generally applied independent of the acting slope failure mechanism or its 
kinematic controls.  As such, the triggering of faulty alarms or uncertainty over misleading 
instrument readings is a frequent problem. Once an alarm is triggered, the mine will shut down 
operations in the unsafe area: if a failure is realized, the procedure is deemed a success (e.g. Day 
& Seery 2007); if a failure is not realized, the procedure results in costly down time, delays to 
production schedules and diminished confidence in the system.  

3 PALABORA MINE SITE 

3.1 Mine Characteristics and Production 

The Palabora Open Pit Mine, located approximately 500 km northeast of Johannesburg, South 
Africa, began production in 1966. In 2002, as the pit neared completion, it measured 
approximately 800 m in depth and 1650 m across. Inter ramp angles ranged from 37° in the 
upper weathered rock to 58° in the competent lithologies at the base of the pit (Moss et al. 
2006). A transition to an underground block cave mining operation commensed in April 2001 
with underground production increasing gradually until full production was achieved in May 
2005. Ramp-scavenging operations were undertaken in the pit between 2002 and 2003 to 
retrieve orphaned ore to augment the underground production. Important caving milestones in 
relation to its effect on the surface environment include:  Dec. 2002, the crown pillar was noted 
to be de-stressed (based on microseismic data); Mar. 2003, hydraulic conductivity was observed 
between the pit bottom and underground cave; and Dec. 2003 (estimated), cave break through 
into the pit.  

The current production level of the underground mine, shown in Figure 3 (Brummer et al. 
2006), is located approximately 1,200 m below the surface and 400 m below the final pit 
bottom. The production level currently consists of 20 cross-cuts giving a footprint of 650 m 
long by 250 m wide.  
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Figure 3. a) View of the open pit at Palabora prior to cave breakthrough (photo courtesy of A. Moss), and 
b) its spatial relationship with the underground operations (after Brummer et al. 2006). 

3.2 Mine Geological Model 

The ore body at Palabora involves a sub-vertical volcanic pipe emplaced within pyroxenite. A 
primary intrusion of micaceous pyroxenite was subsequently intruded by foskerite and banded 
carbonatite with late stage fracturing and intrusion resulting in the emplacement of a 
transgressive carbonatite body. Late stage dolerite dykes with steeply dipping northeast trends 
are also present as are a number of northwest and northeast trending faults. As seen in Figure 4, 
there are four main faults found within the pit: Mica Fault (82/093), Tree Fault (90/344), SW 
Fault (90/344), and Central Fault (89/024).  There are also three dominant joint sets observed 
throughout the mine including one very dominant sub-vertical set in the north wall (80/250). 
 

 
 
Figure 4. Plan view of Palabora open pit, with major structures and location of monitoring prisms on 
West Wall (red dots). 
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3.3 In Place Monitoring System 

Various monitoring methods have been used at Palabora. Initially, monitoring was carried out 
using electronic distance measurements and precise levelling, implemented in 1984 to observe 
slope displacements in response to mining. This system was supplemented in 1993 with a GPS 
system. The lack of accuracy of some of the prisms monitored deeper within the pit, and 
difficulties with the GPS system, required the continuation of conventional survey methods for 
those areas lacking coverage. Test surveys were also carried out with respect to satellite radar 
interferometry (InSAR; AMEC 2005). Microseismic data was introduced later with the 
commencement of the block caving operations. The variety of monitoring types, along with the 
history of changing data sets, is typical for many mine operations.  

3.4 Pit Movement and Failure of Northwest Wall 

After the completion of the pit operations, a series of complex slope movements within the 
northwest wall of the pit began to occur in 2003 in response to the developing block cave 
below. Pit slope displacement began to occur shortly after the crown pillar became de-stressed 
in December 2002. Cave breakthrough is estimated as having occurred in December 2003. 
Movement of all pit walls increased substantially upon cave breakthrough into the bottom of the 
pit with the largest deformations observed in the north wall where cumulative displacements in 
excess of 1.5m were measured from 1986 to 2004. Cracking was first observed inside of the pit 
in April 2004, and by June 2004 the displacement boundaries were well defined. Failure of the 
northwest wall was gradual and continued to develop slowly over a period of 18 months. 
Brummer et al. (2006) observed that within the main zone of movement on the northwest wall, 
most of the visible deterioration of the rock mass was along the western and eastern boundaries 
and that the central portion of the rock mass appeared to remain relatively “intact”. However, by 
2008, the central block of the failed mass also appeared to be heavily deteriorated (Fig. 5).  
 

 
Figure 5. Palabora northwest wall failure in present state (Feb. 2008), with distinct failure boundaries. 
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4  PIT DISPLACEMENT HISTORY AT PALABORA 

Due to planned future underground developments of the block cave at Palabora, understanding 
the kinematic state and key geological controls within the pit is of primary importance. Here, 
the analysis undertaken only considers the large-scale structures such as faults, shear zones, and 
dykes found within the pit. Prisms around the pit were plotted with displacement rates, 
cumulative displacement, and direction of displacement with respect to these major features. 
From this, any potential relationships between the movements observed and the geologic 
features present could be resolved. For preliminary review, the rock masses and different 
structural domains were treated as non-deforming blocks. 

The assessment included all geodetic data collected between 1984 and 2004. For the purpose 
of this paper, review of the West Wall is presented for the time period prior to block cave 
mining, as well as that before, during and after the failure of the northwest wall.  

4.1 Pre-Block Cave Displacements (1984-2001) 

Prior to caving, total displacement in the west wall averaged between 0.03 and 0.05 mm/day 
(between 1984 and 2001) with incremental rates up to 2.3 mm/day. Reviews of the prism rates 
for the other pit walls reveal that the rates were fairly consistent throughout the pit. The review 
showed that prisms on the northwest wall (near the intersection of the Mica and Central Faults, 
see Fig. 4) underwent more displacement than in other parts of the west wall. Incremental 
displacement values are based on measured horizontal and vertical displacement measurements. 
Review of these constituent vectors (horizontal and vertical) show that the incremental vertical 
displacement rates (0.18 to 0.36 mm/day) were higher than the incremental horizontal 
displacement rates (0.10 to 0.15 mm/day); however, for all prism data, vertical displacement 
was dominated by both up and down movement, suggesting that both strain relief in response to 
removal of overburden (rebound) and downward relaxation of the slopes towards the pit were 
active components. In general, larger cumulative vertical displacements (downward) were 
observed at prisms located within the weaker rock types, such as glimmerite, rather than in the 
harder rock within the pit. This is likely in response to the weaker rocks being more susceptible 
to downslope gravitational deformations. The monitoring data also indicates that for all prisms, 
displacement rates were increasing with pit deepening. 

Generally, the rates and direction of prism movement prior to the initiation of caving can be 
explained by normal rebound associated with the excavation of the open pit. These 
displacements would not have triggered a warning for most in-pit monitoring programs and 
would likely be ignored. However, the continuing review of such information can help 
determine the relative importance of geological structures to pit wall kinematics or provide a 
base case if mining conditions change. In this case, the data confirms that the key faults had 
little effect on the kinematics of the slope during pit excavation.  

Several observations can be made with respect to the kinematics of the western pit wall. As 
shown in Figure 6, the displacement vectors generally point towards the base of the west wall. 
However, several groups of prisms do indicate a slightly different displacement pattern. For 
example, prisms located in close proximity to the Mica and Southwest faults tend to show 
movement toward these structural features, likely due to the compression of broken rock within 
the brecciated fault zones. Similar movement is not witnessed for prisms located nearer to the 
other faults. Also, several prisms located on the western side of the Mica Fault show movement 
to the south regardless of their location within the pit. These movements do not take the form of 
sharp and distinct episodic displacements along the Mica Fault, but rather slow and differential 
movement. The coherency of the movement suggests that internal deformation of the west wall 
was minimal.  
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Figure 6. Pre-cave displacement vectors (based on geodetic monitoring) with general trend in direction, 
in this case towards the pit centre, shown in green. 

4.2 Displacements with Start-Up of Block Caving (2001-2004) 

As caving operations dprogressed, from April 2001 up to the 2004 pit wall failure, the pattern of 
displacement in the west wall began to noticeably change. Displacement data collected from 
most prisms on the west wall indicate that the rock slopes began to be drawn towards a location 
beneath the northwest wall (Fig. 7), roughly corresponding with the location of the eventual 
failure. Microseismic data collected at Palabora (Glazer 2003) supports the displacement data 
interpretation that the caving front migrated from beneath the centre of the pit, as planned, to 
beneath the north wall.  

Further interactions could also be discerned between the pit displacement patterns and the 
geologic structures. A majority of prisms located on the west side of the Mica Fault (footwall) 
underwent a sharp, distinct movement to the southwest during January to February 2002. This 
movement does not correlate well to any pit or underground development activities and is 
therefore interpreted as a strike slip motion along the Mica Fault, possibly induced by the 
growing caving front. Prisms located on the east side of the Mica Fault (hangingwall) did not 
experience this movement.  

Timing of movement can also reveal important keys to understanding slope kinematics. A 
review of the timing at which the prisms began to move toward the north wall showed that 
displacement occurred in stages. Prisms located east of the Mica Fault (both on the northwest 
and southwest walls) show consistent movement toward the failure zone as early as January 
2003, roughly the same time as the cave breakthrough occurred in the bottom of the pit. Prisms 
to the west of the Mica Fault did not begin to displace until June 2003, suggesting that the fault 
may have partially shielded the rest of the west wall from movement during these early stages of 
cave migration. The Mica Fault consists of a zone of brecciated rock, which would allow most 
of the extensional strains caused by the advancing cave to be diffused through dislocation and 
opening rather than transferred across to the west side of the fault.   

ROCKENG09: Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto, May 2009 (Ed: M.Diederichs and G. Grasselli)

PAPER 3914 8



 
Figure 7. West wall displacement vectors before block caving (shown in green) and after  (shown in red), 
together with general trends in direction. Note the shift in the trend towards where the northwest pit wall 
will eventually fail.  

Only minor differential internal displacement is interpreted as having occurred within the rock 
mass of the west wall as most of the movement is coherent and developed at the same time. 
Minor internal displacement occurring along smaller structures (e.g. persistent joints, shears, 
etc.) is notable in only two prisms. These are located away from the faults and did not begin to 
show displacement until several months after the rest of the west wall. The remaining prisms 
mostly located beyond the pit rim and behind the Glimmerite Fault (Fig. 4), did not begin to 
show movement until a few months prior to failure, in March 2004.  

Also prior to the failure, a small movement was observed in October 2003 in which only the 
area between the Mica and Central Faults was involved. The movement was to the north, along 
strike of the Mica Fault, into the projected area where the cave front was believed to be 
migrating.  

Displacement rates during this time interval were averaged and compared between those 
before and after each prism started to move towards the north wall. Total displacement rates 
prior to the shift remained steady; however incremental rates increased slightly to between 0.09 
to 0.28 mm/day, only slightly higher than those observed prior to the initiation of caving. After 
the displacement shift towards the north wall, the incremental rates increased to averages 
between 0.20 to 0.70 mm/day. Rates of the prisms closest to the eventual failure experienced 
larger increases in movement. Vertical displacement rates increased much faster (3 to 5 times) 
for the block bounded between the Central and Mica Faults than the surrounding areas of the 
wall after January 2004. This divergence is interpreted as the pit wall subsiding towards the 
cave front as it migrated towards and underneath the northwest wall.  

4.3 Displacements During and After Failure of the Northwest Wall (2004)  

Failure of the pit wall is defined here as occurring between May and June 2004. During this 
period, prisms located at or near the pit rim on the west wall underwent significant horizontal 
displacements in a clockwise direction, independent of location or nearby geological structure 
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(Fig. 8). This general horizontal movement direction could be taken up by stress relief and rock 
mass relaxation due to mass displacement in the northwest sector. Inside the pit, displacement 
appears to have been partially controlled by the geologic structures, with several prisms 
showing movement towards both the pit wall failure zone and nearby faults. This movement is 
interpreted as being accommodated through compression of the brecciated fault rock rather than 
movement along the fault. The geologic structures, being sub-vertical in nature, appear to 
control vertical displacement rather than horizontal displacement. 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Failure displacement vectors in May 2004, when most prisms undergo a major horizontal 
displacement. 

After the pit wall failure, most of the prisms resumed more non-coherent movements 
reminiscent of the pre-cave monitoring pattern, with many prisms showing no discernable 
displacement paths. Prisms that do show definable paths are similar to those of post-cave/ pre-
failure directions, i.e. toward the cave rather than back toward the centre of the pit. Incremental 
displacement rates stabilized to steady values of 0.10 to 0.30 mm/day, similar to pre-failure 
values with steady declining rates. This pattern suggests that the pit wall displacement is still 
being controlled by both the location of the caveback and the major faults crossing the pit.  

5 CONCLUSIONS AND FUTURE WORK 

The example drawn from the Palabora Mine in South Africa shows that by integrating 
displacement monitoring and geological data, the kinematic controls of complex rock slope 
displacements and interactions between a deep open pit and an underlying block cave operation 
can be achieved. The results obtained for the west pit wall show that before the transition to 
block cave mining at Palabora, most pit slope prisms indicated displacement towards the centre 
of the pit. The trends observed were indicative of normal rebound associated with the 
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excavation of the pit. However, once block caving began, movement of the west wall deviated 
towards the location of the eventual 2004 failure of the northwest wall.  

At Palabora, review of the monitoring data and previous knowledge of the pit wall failure has 
led to several important observations that provide insight into the kinematics of the west wall. 
From these, the following working hypotheses were derived: a) the caving front acted as the 
dominant control for the pit slope movements observed, but the major fault zones crossing the 
pit also had a notable influence, b) the sub-vertical nature of the geologic structures tend to 
promote vertical movements, damp those that are horizontal and extensional, and have little to 
no affect on those that are horizontal and compressional, c) the Mica Fault shielded the West 
wall from induced strains during breakthrough of the cave and failure of the northwest wall, d) 
the location of the cave front along with the vertical nature of the geologic structures interacted 
to promote subsidence of the northwest wall with a feedback that promoted migration of the 
cave back towards the northwest wall, and e) the cave back does not appear to migrate up and 
along one of the major faults, but rather along the dominant joint set in the north wall.  

As noted, these are only preliminary hypotheses based on observations, the integration of the 
monitoring and geology data sets. To further test these hypotheses, further 3-D distinct-element 
modelling is planned (to complement the completed work) as a means to provide support for or 
refute interpretations drawn from the pit slope monitoring data, as well as to explore possible 
future behaviour (e.g. Karami & Beddoes 2007). This work will also see the application of 
terrestrial laser scanning, photogrammetry and discrete fracture network (DFN) modeling, to 
develop higher resolution geological models to be evaluated for interactions related to the 
smaller-scale joint network. An ongoing collaboration with Rio Tinto, and the Resource 
Geotechnics Group at Simon Fraser University, as part of the Canadian Mine Caving and 
Subsidence Research initiative, will work towards the refinement of the geological model used 
in this analysis. 
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