
Kumar Hemant Singh   
Ritesh Mohan Joshi   Editors

Petro-physics 
and Rock Physics 
of Carbonate 
Reservoirs
Likely Elucidations and Way Forward



Petro-physics and Rock Physics of Carbonate
Reservoirs



Kumar Hemant Singh • Ritesh Mohan Joshi
Editors

Petro-physics and Rock
Physics of Carbonate
Reservoirs
Likely Elucidations and Way Forward

123



Editors
Kumar Hemant Singh
Department of Earth Sciences
Indian Institute of Technology Bombay
Mumbai, Maharashtra, India

Ritesh Mohan Joshi
Department of Earth Sciences
Indian Institute of Technology Bombay
Mumbai, Maharashtra, India

ISBN 978-981-13-1210-6 ISBN 978-981-13-1211-3 (eBook)
https://doi.org/10.1007/978-981-13-1211-3

© Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-13-1211-3


Preface

Carbonate reservoirs hold 60% of the world’s hydrocarbon reserves. In order to
obtain a reliable estimate of reserves in a given reservoir and also to prepare a
development plan for optimum production of hydrocarbons from the reservoir,
a quantitative assessment of the petrophysical parameters of the reservoir is
essential. However, petrophysical properties of carbonates are not easy to predict
because of the post-depositional processes like dissolution, re-crystallization and
re-precipitation, which alter the properties of the carbonate reservoirs and make them
extremely heterogeneous and, hence, bear a profound effect on the productivity and
flow dynamics in the reservoir. However, we lack an adequate understanding of how
to dynamically model these post-depositional processes. The evolution of porosity
through dissolution channels, solution vugs, fractures, etc., is all post-depositional
processes. For realistic modelling of the reservoir, we need to understand the
dynamics of the fluid flow through the complex network of the carbonate matrix.
This calls for proper integration of various geophysical, geological, petrophysical,
core data and dynamic data such as MDT, PLT, well test analysis.

Although the challenges in the study of carbonate rocks have led to the devel-
opment of many techniques, these technologies largely have been patented and,
therefore, are not accessible to all workers in this field. With an objective of sharing
whatever sharable information is available in the industry and academia in India, a
workshop was organized at IIT Bombay in November–December 2017. This vol-
ume is an outcome of the deliberations in the workshop.

The volume has been divided into various sections based on the review of the
geo-scientific data by different workers in this field in order to understand the
various aspects of carbonate reservoirs which make them different from a clastic
reservoir. The first section discusses the geological processes in carbonates from a
perspective of distribution of porosity and permeability and fluid flow properties
of the reservoir. This includes historical review and latest trends on different rock
characterization techniques that are being employed by the researchers globally.

Due to the diversity and inherent heterogeneity of carbonates, various
laboratory-based results are classified among various empirical models derived for
carbonates. This comprises the second section of the proceedings. The laboratory
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experiments combined with the log data including high-resolution data acquired by
the oil and gas industries are used to develop petrophysical and rock physics models
of reservoirs which comprise the next section of the volume. Integrated with
seismic data, the existing and new trends in providing solutions to seismic reservoir
characterization form the subsequent section of the volume. Characterization of
clastic reservoirs and challenges to the wellbore instability problems is addressed in
the final section. It is hoped that these proceedings will provide a useful reference
for the researchers and practitioners in this field. Your feedback will be valuable for
organizing workshops in this field in future.

Mumbai, India Kumar Hemant Singh
Ritesh Mohan Joshi
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Chapter 1
Carbonate Reservoirs: Recent Large
to Giant Carbonate Discoveries Around
the World and How They Are Shaping
the Carbonate Reservoir Landscape

Ritesh Mohan Joshi and Kumar Hemant Singh

Abstract Carbonates are very heterogeneous when compared to clastic reservoirs
in terms of reservoir properties. Yet, some of the biggest discoveries in recent times
have come from carbonates alone. In 10 years, between 2006 and 2015, there have
been four major discoveries and some of them have the potential of being called
giants and supergiant. First, it was Tupi discovery renamed as Lula in the pre-salt
which opened a new play in the deep-waters of Santos basin. A fewmore discoveries
followed in the same play but then the next big discovery, even bigger than Lula, came
in the year 2011 with the discovery of another Oil pool Libra in the same basin. Till
2006, Santos basin was underexplored as it was considered a frontier basin and all
the focus was in the neighbouring Campos basin where there were many pre-salt and
post-salt discoveries. Post-2006, with a couple of discoveries, the Lower Cretaceous
carbonate reservoirs have come up as a new play in the upper Synrift and post-rift
sequences. Looking at the tectonic reconstruction of the plate, 140 million years
ago (Early Cretaceous) the conjugate margins of Brazil and Angola were juxtaposed
before the opening of south Atlantic. This also tells us that Santos and Campos
basin of Brazil was located adjacent to Benguela and Kwanza basin of Angola.
It is common wisdom that two basins with similar geological history should have
similar hydrocarbon prospects. So, the question was whether the pre-salt success of
Brazil would recur in Angola where pre-salt drilling was nearly absent before 2011.
The answer came with the discovery of Azul by Maersk, which proved a working
petroleum system and later Cameia discovery by Cobalt in 2012. With reserves to
the tune of 30 TCF (5.5 billion BOE) housed in a 100 km2 of carbonate mound, it
has a potential to become one of the largest gas discoveries of the world. It is already
the biggest in Egypt and the Mediterranean. These discoveries and many more are
changing the carbonate reservoir landscape. Once upon a time when talking about
Carbonates, the reservoir of Middle East basins used to come to mind, not any more.
In the age of globalization, it appears that carbonates and large to giant carbonate
discoveries have also globalized.

Keywords Carbonate discoveries · Santos Basin · Lula · Cameia · Libra
R. M. Joshi · K. H. Singh (B)
Indian Institute of Technology Bombay, Mumbai, India
e-mail: kumar.h.singh@iitb.ac.in
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1 Introduction

Carbonates and Clastics are the main two reservoir rocks considered in hydrocar-
bon exploration and production. Globally, more than 60% of the oil is hosted in
carbonate reservoirs (Roehl and Choquette 1985). 62% of the world’s proven con-
ventional oil reserves are in Gulf Countries. 70% of these oil reserves are contained
in carbonate reservoirs. Carbonates can be formed by both biochemical as well as
inorganic processes. However, it is observed that the deposition of most of the car-
bonates in the world is controlled by biological activities (Moore 1989). Carbonate
deposition needs very specific environmental conditions in reference to light, tem-
perature, salinity and the availability of nutrients. Therefore, most carbonates are
formed in tropical, shallow marine depositional environment. These rocks are prone
to significant diagenetic changes as they are highly susceptible to chemical alter-
ation, re-crystallization and dissolution processes (Major and Holtz 1997). Giant
hydrocarbon fields are discovered and being exploited in the Middle East, Russia,
Kazakhstan and Libya. The world’s largest conventional oil field in Saudi Arabia is
Ghawar which contains multi-billion barrels of oil reserves in the Jurassic carbonate.
54.5% of the newly discovered significant hydrocarbon reserves have been found in
marine carbonate and 12% in the lacustrine carbonates during 2000–2012 (Bai and
Xu 2014).

A number of significant oil and gas discoveries have been made in carbonate
reservoirs around the world in the last decade. Tupi and Libra oil discovery in Brazil
by Petrobras in 2006 and 2011, respectively, Cameia discovery in Angola by Cobalt
International Energy in 2012 and Zohr gas discovery in Egypt by ENI in 2015 (Eni
2015) are real game-changers. New play types in carbonate have opened up through
these big hydrocarbon findings. Giant oil discoveries have been made in Pre-salt car-
bonate reservoirs in Santos Basin in Brazil and Pre-Caspian salt basin in Kazakhstan
(discovered in 2000).

2 Petroleum System

The generation and entrapment of hydrocarbon in the above mentioned giant discov-
eries are well related to the tectonic evolution of the basins. Large scale intraplate
rifting between South America and Africa during the final breakup of western Gond-
wana in Late Jurassic—Early Cretaceous resulted in South Atlantic rift basins (Heine
et al. 2013). The Santos basin in Brazil and Benguela basin in Angola were formed
during the last stage of the breakup of the conjugate margin at around 113Ma (Heine
et al. 2013). Microbialite and coquina are the main carbonate rocks identified as
hydrocarbon-bearing reservoirs within these rift basins on both sides of the margin.
These carbonate rocks are sealed by evaporates which were deposited in shallow
marine condition during the first marine transgression in Aptian. The origin of these
carbonates is quite controversial. One school of thought is that the carbonates are
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associated with reefs and other buildups (stromatolites) formed during various stages
of sea-level rise. However, the other model suggests chemical precipitation of car-
bonates in travertine conditionwith secondary biogenic growth (Mohriak 2015). This
Barremian/Aptian pre-salt carbonate play in upper rift/sag phase in Brazil offshore
is proven to be prolific in terms of hydrocarbon reserves after the discovery in 2006.
Lula oil field estimating around 5–8 billion barrels, Lara estimating about 3–4 billion
barrels, Libra oil field of around 8 billion barrels, are but a few giant discoveries in
pre-salt carbonates in Brazil. Libra oil field has an approximate area of 1500 km2.

The conjugate margin Campos basin in Brazil is the Kwanza basin in Angola
on the other end of Atlantic. Microbialite and coquina are reported in the Syn-rift
Lower Cretaceous play in Kwanza basin, Angola, similar to that of Campos Basin in
Brazil. The carbonate Syn-rift is capped by Aptian salt in Kwanza basin which also
witnessed many significant oil and gas discoveries in 2012. Benguela and Namibe
basins in West Africa are the conjugate margin of Santos basin of Brazil. However,
this part of the West African margin is affected by Valanginian volcanics (Teboul
et al. 2017). High concentration of Carbon dioxide in the present-day deep-water of
the LowerCretaceous Syn-rift play associatedwith deep-seated faults is also reported
in Kwanza basin.

The recent discoveries have changed the landscape of the Carbonate reservoirs.
Here we discuss only a few major discoveries during the 10-year span from 2006 to
2015. These discoveries have made a significant change in the way we look at the
carbonate reservoirs. Some are deep to very deep, some are extensive, while some
are in places, which, a few years back, were not possible to even map (shadow zone).
We discuss these interesting discoveries in the subsequent sections.

3 2006—Tupi (Now Named Lula) Oil
Discovery—Brazil—Petrobras

The discovery of the Tupi oil field (Renamed as Lula) in Brazil (Fig. 1) was a
historic event. Petrobras drilled Lula in deep-water of Santos basin (Petrobras 2010).
In 2100m of water depth, the well was drilled about 5200m frommudline. So, a total
well depth of 7300 mwas quite deep and resulted in a high cost of over $200Million.

Despite its very high drill cost, the well proved rewarding. The 2 km of thick salt
bed is underlain by 6 billion barrels of Oil in HPHT condition.

Coming to the petroleum system, the organic-rich lake shale is themain oil source.
Lacustrine beach sands, porous limestones and dolomites (Microbialites) are the
reservoirs and impervious salt acts as a seal. Figure 2 shows a seismic line passing
through Lula (Tupi) discovery with the massive evaporates acting as a seal, which
can be seen in magenta above the Microbialites reservoir.

The carbonate rocks (limestones and dolomites) that are associated with growths
of algae known as stromatolites are referred to as Microbialites. These kinds of
stromatolites can be seen in present-day Shark Bay, Australia. The reservoir in which
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Fig. 1 Location map of Lula and Libra discovery (reproduced with permission from Koning 2015)

Fig. 2 Geological cross-section showing the location of Tupi (Lula) discovery well. (https://www.
aapg.org/publications/copyright, Modified after Mohriak 2015)

https://www.aapg.org/publications/copyright
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Fig. 3 Field wise production per day from pre-salt reservoirs (reproduced with permission from
Oddone et al. 2017)

top section is Microbial carbonates in the sag sequence and the lower section is
Coquinas of the Syn-rift sequence mostly have typical vuggy porosity with 9–12%
range and permeability pegged at 100 mD.

As per Offshore Technology (Petrobras Dec 30, 2010), today the recoverable
volume in the Lula Field is 6.5 billion BOE with 28° API, while the recoverable
volume in the Iracema area, Cernambi Field is 1.8 billion, with 30° API. The total
recoverable volume amounts to 8.3 billion BOE.

As per the latest numbers shared by ANP 2017–2019 bidding rounds document,
the Lula is producing 650,716 bbl/d of oil and 27,628 Mm3/d of gas. Referring to
Fig. 3which is taken fromANPdocument fromJune 2017 “Oil andGasOpportunities
in Brazil; 2017–2019 Bidding Rounds”, it is clear that around 75wells in the Pre-Salt
reservoirs are producing a total of ~1.2 million bbl/d of oil and ~46,000 Mm3/d of
gas as of May 2017, which is suggestive of an extremely good production. This is
without the contribution of Libra production.

4 2011—Libra Discovery—Brazil—Petrobras

Lula was a game-changer, and it changed the game rapidly not only in the deep-
water of Santos basin but also nearby Campos basin. Since Lula, many more pre-



8 R. M. Joshi and K. H. Singh

salt discoveries (Carioca-Sugar Loaf, Jubarte, Lara and also gas giant Jupiter) have
taken place and the number of recoverable hydrocarbons is increasing steeply. As an
estimate by private agencies, the pre-salt oil reserves could be 20–30 billion barrels
whereas as per ANP: National Agency of Petroleum, Natural Gas and Biofuels, the
number stands at somewhere 50 billion barrels.

Around 230 km off the coast of Rio de Janeiro in the Santos basin and north of
giant Lula field (Fig. 1) lies an ultra–deep-water oil field named Libra which was
discovered inMay 2010. Libra covers an area of 1550 km2 and the reservoir is below
2000 m of water and approximately 5000 m of sand, rock and shifting salt layer.
Figure 4 shows the Geological section through the Libra discovery where the thick
salt is marked in magenta colour and the reservoir is in faded sky blue just below it.
The oil–water contact is clearly brought out in the seismic section (not shown here).

As reported in Total’s website which was last updated in September 2016 (Total
2016) an article in World oil, one of the world’s largest offshore oil and gas accumu-
lations is Libra field where the recoverable reserves are estimated to be 8–12 billion
BOE. This makes the earlier discovery of the decade (Lula) looks smaller and had to
settle for the next largest discovery in ten years after Kazakhstan’s 17.2 billion bbl
Kashagan Field.

In a presentationmade byBrunoMoczydlower of Petrobras (Moczydlower 2014),
who is also Libra Reservoir Manager and SPE Brazil Section Chairman, outlines the

Fig. 4 Geological cross-section showing the location of Libra discovery well (https://www.aapg.
org/publications/copyright, modified after Mohriak 2015)

https://www.aapg.org/publications/copyright
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main characteristics of the reservoir. He mentions that the Libra reservoir is a very
thick pre-salt reservoir with good reservoir quality in terms of permeability and
porosity. The oil is light of around 27 API with low H2S and high GOR (440 m3/m3)
but the CO2 content is slightly higher of about 44%. From the structural map of the
base of salt (top of the reservoir) there are a few numbers worth noting for structure
Libra2 C1. Referring to Libra Base of Salt Structure Map, Moczydlower (2014)
shows that the spill point is at around 5700 m, the area above the oil-water contact
is 578 km2, the reservoir top is at 4750 m and the maximum gross pay is around
950 m. Similarly, from the well log of well 2-ANP-2A-RJS (Moczydlower 2014),
the reservoir parameters look impressive. The gross pay is around 329 m, with net
pay of around 278 mwhich gives an N/G ratio of ~85%. The poro-perm is calculated
to be 14% and 13%, respectively.

5 2012—Cameia Discovery—Angola—Cobalt
International Energy

The first month of the year 2012 and Maersk was happy to announce its first well
Azul-1 to penetrate pre-salt reservoir in the deep water of Angola block #23. The
total depth drilled by the well was 5330 m out of which the water column was 920 m.
Among the many firsts, this was the first deep-water well in the Kwanza basin that
targeted the pre-salt reservoirs (Fig. 5).

The second month of the year 2012, and this time Cobalt International Energy
(CIE) was happy to announce the results of its well Cameia-1. This was drilled in
slightly deeperwater (i.e. 1680mofwater) in deep-water Block #21 (Fig. 6). A 360m
of gross Oil column with 75% N/G was penetrated in the Pre-Salt target reservoir.

In the absence of any clear gas–oil or oil–water contact on wireline logs an
extended DST was performed. The production of the well was at 5010 bopd of
44° API oil and 14.3 million cubic feet per day of gas which approximately amounts
to a total of 7400 bopd.

The well result actually surprised and surpassed all expectations. The reservoir
had 365-m-thick oil column and 275-m-thick gas column with over 75% N /G ratio
(Fig. 7). The reservoir is highly permeable and fractured carbonates. The area is
between 20 and 101 km2.

6 Angola’s Petroleum Systems

The Azul and Cameia well discoveries in the Kwanza basin confirmed a working
pre-salt petroleum system similar to their conjugate margin in Brazil. It helped to
de-risk the play.
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Fig. 5 Locationmap of theKwanza basin showingmajor discoveries includingAzul-1 andCameia-
1 (Cobalt 2012)

Angola’s hydrocarbon-bearing basins are namely Kwanza, Congo and Namibe.
So far only Kwanza and Congo have discovered oil in commercial quantities while
Namibe Basin remains underexplored.

A very strong Lower Cretaceous and Tertiary petroleum system is the reason
behind the success of Cameia discovery. Continental breakup during Early Creta-
ceous (Fig. 8) developed lacustrine rift basins and Bucomazi formation, an organic-
rich shale became the main source rock for the pre-salt traps in the Kwanza basin.

7 2015—Zohr Gas Discovery—Egypt—ENI

The mother of all discoveries, however, was Zohr discovery, offshore Egypt (Eni
2015). No wonder when someone exclaimed! “The truth? I have never seen 600 m
of gas permeated rock with pressure point so aligned”. Let’s have a look at why this
is known as a supergiant.

With over 850 billion cubic meters (30 TCF) of lean gas resources, or 5.5 billion
BOE housed in a 100 km2 field is undoubtedly the largest discovery of Egypt and in
the Mediterranean Sea which has a potential of becoming one of the world’s largest
natural gas field. Located in the deep-water of Egypt’ Shorouk block at a water depth
of 1450 m the field was announced on August 30th, 2015. A total depth of approx.
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Fig. 6 Block location map of the Kwanza basin showing block #21 and discovery well Cameia-01
(reproduced with permission from Duval et al. 2015)

Fig. 7 Geological cross-section of the discovery well Cameia-1 and also Cameia-2 well (modified
after Koning 2014)
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Fig. 8 Structural elements map of the West Africa basins

4131 mwas drilled for Zohr 1X NFW and had around 630 m of hydrocarbon column
out of which 410 m were the net pay (Nikolaou 2016). The reservoir is Miocene
age carbonate Reef and has very good reservoir parameters. Digging deep into a bit
of geology, it was understood that the geological evolution and tectonic history of
Eratosthenes carbonate platform, is the main reason for the existence of Zohr field.
As per press release of ENI, “The discovery, after its full development, will be able
to ensure satisfying Egypt’s natural gas demand for decades”. As of Dec 20th, 2017;
the first gas started flowing from the supergiant Zohr field in record time. No wonder
that the Zohr discovery was a game-changer for the region and it indeed opened up
a new play (Fig. 9).
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Fig. 9 Geological section of the Zohr discovery

8 Conclusions

Lula (Tupi) pre-salt oil field was discovered because with the advancement of tech-
nology it is now possible to see beneath salt in the seismic data. And also, because the
geologists were able to understand the depositional environment. And also, because
the reservoir engineers were able to understand the reservoir properties of Micro-
bialite reservoirs. It has never been possible to work in silos and come up with an
astounding result. Always a cooperative approach and integration of data have done
wonders. So it did in Lula, Libra, Cameia and Zohr. Given the pace of advancement
of technology and geoscientist’s understanding of their respective domain, the day
is not too far when the Lula, the Libra, the Cameia and the Zohr’s will appear dwarfs
on the worlds carbonate discovery map.
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Chapter 2
Conquering Carbonate Complexities:
Understanding Geological Processes
that Control Poro-Perm Relationships

K. Vasudevan

Abstract Carbonate reservoirs, although contain the lion’s share of discovered In
Place hydrocarbons globally, present the most complex challenges in reservoir char-
acterization, accurate estimation of hydrocarbon volume and consequently in optimal
field development planning and exploitation. The main causative of such complex-
ities is the multi-scale heterogeneity in carbonate rocks that affect the rock fabric
right fromnanoscale to seismic scale, which renders any realisticmodelling in spatio-
temporal domain an arduous task. It has been observed that the porosity-permeability
(poro-perm) relationship in carbonates does not exhibit any direct linear relationship
contrary to siliciclastic reservoirs. Although it has been empirically demonstrated
that reservoirs that have high depositional porosity (high energy carbonates) tend to
have higher effective permeability, the complex diagenetic history, the natural com-
paction-induced fracturing at reservoir scale and tectonic-induced fracturing at the
field scale, result in a very complex poro-perm relationship in most carbonate reser-
voirs. Added to this is the phenomenon of dual porosity-dual permeability reservoirs
encountered in many carbonate reservoirs, makes the task even more challenging.
The pore throat geometry and hence, the aspect ratio of pores in carbonates is very
complex due to primary depositional control, various intrinsic and extrinsic factors,
thermodynamic constraints, diagenetic potential and history and kinetic factors. The
influence of Green House/Icehouse periods and the Milankovitch cycles on carbon-
ate deposition imparts different sequence architecture and frequency of individual
cycles resulting in large scale heterogeneities in the distribution of primary porosi-
ties. The diagenetic overprint on the primary rock fabric further renders the reservoir
more complex. Thus, the poro-perm preservation, enhancement or reduction can
be understood by unravelling the depositional cyclicity and the diagenetic overprint.
Wherever well-preserved cores are available, this task can be accomplished relatively
easily, but in cases where the data set are sparse as is often the case, the Gamma-ray
and effective porosity logs can be used to decipher both the primary depositional
cyclicity and the diagenetic cycles by using the detrending method. The analysis of
Eocene, Oligocene andMiocene carbonates of several hydrocarbon fields ofMumbai
Offshore basin has lucidly brought out the differing nature of Milankovitch cycles,
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the depositional versus diagenetic cyclicity and the impact on the poro-perm rela-
tionships in the spatial and temporal domain. It has been observed that carbon-
ates deposited during Paleocene Eocene Thermal Maxima (PETM) exhibit relatively
thick, high-amplitude–low-frequency carbonate cycles with low clay volume (often
<20%) with diagenetic enhancement of porosity at the top of the cycles correspond-
ing to the long exposure surfaces with destruction of porosity in the lower part of
the cycles. The poro-perm relationship in these reservoirs exhibits a relatively direct
linear relationship although moderate scatter is observed. In contrast, the Oligocene
and Miocene carbonates have high-frequency low amplitude cycles with frequent
thin shale layers followed by shallowing up Mudstone to Grainstone cycles often
capped by uranium-rich high Gamma high resistivity carbonates representing expo-
sure hard grounds. The Poro-perm relationship in these carbonates is much more
complex resulting in a higher degree of heterogeneity in the distribution of speed
zones, baffles and seals.

Keywords Poro-Perm relationship ·Milankovitch cycles · Oligocene ·Miocene
carbonates ·Mumbai Offshore

1 Introduction

Approximately 40%of present global hydrocarbon production comes fromcarbonate
reservoirs and are expected to continue in future years also mainly owing to numer-
ous giant fields of Middle-East. Therefore, understanding the carbonate reservoirs
and produce them effectively is the prime challenge to global E&P industries. Deci-
phering the enigma of carbonate rock’s complex pore space, permeability barrier and
conduits behaviour are the key challenges that geoscientists face.

Extremity is the common feature of carbonates. Carbonate reservoirs can be gigan-
tic though the majority of the pores being microscopic. In such a case, matrix perme-
ability would be immensely low while the fractures would act like highway allowing
fluid to flow through them. This makes carbonate rocks significantly different from
siliciclastic reservoirs due to different depositional process, depositional environ-
ments and complex diagenetic history (Anselmetti and Eberli 1993; Lucia 1995,
1999). Shallow and deep marine areas, evaporitic basins, lakes, etc. are the places of
carbonate deposits. Majority of the ancient carbonates formed in a marginal marine
environmentwhile themodern carbonates arewidespread in the deepmarine settings.
Carbonates being chemically less stable, undergo intense cementation, dissolution,
dolomitization, etc., as a consequence of a change in water depth, burial depth, tem-
perature and pressure (Brie et al. 1985). Often, intense diagenetic alteration com-
pletely obliterates mineralogy and texture of the original framework, causing carbon-
ates to exhibit varied porosity types, such as interparticle, intraframe, moldic, vuggy
and micro-cracks or fractures. The prime hurdle of quantitative carbonate reservoir
characterization is the identification of producible economic reserves and to distin-
guish it from non-recoverable reserves. The producibility can be better understood
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from the permeability estimation which in turn is related to the complexity of the
pore structures mentioned above (Anselmetti and Eberli 1993; Lucia 1995, 1999;
Baechle et al. 2005; Baechle et al. 2007). Therefore, for the purpose of delineation of
the sweet zone and flow properties determination, prediction of pore throat architec-
ture from seismic and well log is utmost essential. Presence of varied types of pore
structures in carbonates makes characterization a very complex process to accom-
plish. The modified response of rock physics parameters due to diagenetic effects
and the presence of different clay minerals within pores escalate the complexity to a
greater degree.

2 Factors Controlling Carbonate Deposition

Biological control over the carbonate deposition is overwhelming. Over 90% of
deposited carbonate is of biological origin. Distribution and species assemblage of
carbonate-secreting organisms have changed significantly through geological time.
Since the character of carbonate rock depends heavily on its parental organisms,
therefore, the character of carbonates also changes significantly through geological
time.

Carbonate deposition is controlled by various factors like Bathymetry, Eustatic
Sea Level Change, Turbulence of water, Ocean circulation, Nutrients, Climate belts,
Global Atmosphere, Tectonic setting, Biological community, etc. Deviation from the
normality of in any single factor leads to the cessation of deposition.

Water Temperature: Temperatures between 25 and 30 °C are optimum for carbon-
ate deposition. Temperatures above 35 °C kill carbonate-secreting organisms. Since
more than 30 °C temperature is rare in the open ocean, so the main influencing factor
is the absence of cold water.

Water Depth: The depth to which carbonate-secreting organisms can thrive is
a function of light penetration. Therefore, water depth coupled with light penetra-
tion governs the carbonate deposition. In exceptionally clear water this limit can be
extended up to 100 m but for normal cases, it ranges between 70 and 80 m.

Turbulence in water: Organisms don’t flourish in turbid waters. Turbidity impedes
the light penetration thereby restricts the carbonate deposition.

Nutrients: Carbonate-secreting organisms need continuous nutrient supply. The
abundance of planktons is governed by the open ocean current that carries nutrients
in solution. Currents are thus favourable to carbonate deposition.

Salinity: Normal salinity is required for carbonate growth. Organisms live within
the salinity range 27–40%. Carbonate deposition is stopped by great floods of fresh
water sweeping over them from land killing the organisms.
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3 Carbonate Uniqueness

Carbonates and siliciclastic rocks are diametrically opposite to each other. Composi-
tionally siliciclastic rocks are polymineralic, silica being the primary constituent,
whereas carbonates are mono-mineralic or bi-mineralic (mineral composition is
restricted to calcite/aragonite, dolomite, gypsum and evaporite minerals/anhydrite)
only. Majority of carbonates rocks are in situ and having biological origin whereas
siliciclastic rocks are having a mechanical origin and may have travelled thousands
of kilometres from source before deposition. Mono-mineralic carbonates are vested
with the complexity of multiple order starting from scale-dependent to petrographic
to petrophysical. Key challenges associated with carbonates are complex multi-scale
heterogeneity, low porosity-permeability correlation, complex sonic velocity,V p/V s,
porosity relationship-pore size and types, wettability related issues, fracture compart-
mentalization impact, etc.

Unlike siliciclastics, pore architecture in carbonates are very complex and often
shows polymodal pore systems. Presence of polymodal pore systems makes the
petrophysical evaluation very difficult. It is often found that there exists no relation-
ship between porosity and permeability which cumulated to give rise big difference
between storage and flow capacity. Moreover, non-correlation in both numerical and
spatial domain makes the job of model preparation a real nightmare.

Diagenesis plays havoc in case of carbonate. This is the single most significant
difference between siliciclastic and carbonate systems.Almost all the carbonate rocks
undergo diagenetic changes but the impact of diagenesis may be variable. Diagenesis
can invert primary depositional texture and completely reorganize the pore network
system. The impact of diagenesis on petrophysical properties and dynamic flow
properties is still uncertain and poorly understood. The petrophysical response of
two identical rocks but with different diagenetic episode can be extremely different.
Two identical oolitic grains of sand subjected to two opposite diagenetic episode, e.g.
early compaction followed by cementation and on the other hand, early cementation
followed by compaction will have totally different contact architecture and hence
have a differing response to P-wave velocity (Brigaud et al. 2010). The rockwhich has
undergone early compaction will have grain to grain contact even after cementation.
Therefore, P-wave velocity will be higher in this case. On the other hand, the rock
which underwent early cementation will have cement between the two grains in all
cases even after cementation.Cement acts as a cushionduring theP-wavepropagation
and dampens its velocity. Therefore, P-wave velocity will be lower in this case.

The porosity-permeability relationship in carbonate is very complex. Different
facies can have similar petrophysical, hydrodynamic properties while similar facies
can have widely different properties. For a given porosity, a wide range of permeabil-
ity is possible. High porous carbonates (>30%) often have negligible permeability
(<1 mD) since micropores or disconnected moldic/vuggy porosity form a dominant
porous network. Moderate porosity carbonates (15–20%) often have excellent per-
meability (>100 mD) because of well-connected pore network, e.g. via secondary
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pores and fractures. Extremely low porous (2–4%) carbonates may have good per-
meability because of well-connected fractures (Karst breccia).

Carbonates have low sonic/density contrast between the reservoir and sealing unit.
Velocity in carbonate is a function of the dominant pore types and total porosity.
There exists Inverse porosity velocity relationship but significantly deviated due
to dolomitization and presence of various pore types. Frame forming pore types
such as moldic/vuggy porosity have significantly higher velocity at equal porosities
compared to interparticle/micro/fracture porosity (Xu and Payne 2009). The validity
of Gassmann fluid substitution in carbonates is uncertain owing to the complex
presence of different pore system and multi-scale heterogeneity.

4 Porosity-Permeability Relationship

Porosity-Permeability distribution is a very critical factor in reservoir characteriza-
tion. This distribution plays a significant role in determining completion strategies
for the implementation of water flooding program, construction of simulation model
(Shirer et al. 1978; Chopra et al. 1989). Each microfacies as per Dunham classifica-
tion clearly demonstrate a different poro-perm relationship (Dunham 1962).

Matrix-supported facies such as mudstone, wackestone shows little correlation of
porosity with permeability. Grain supported facies shows linear poro-perm relation-
ship but subjected to diagenetic changes. Diagenesis acts in both ways. It can both
increase or decrease the poro-perm relationship. Progressive compaction and cemen-
tation destroy both storage and flow capacity but leaching and fracturing works in the
opposite way. Grain leaching increases the porosity but cement leaching and fractur-
ing increase the permeability. Dolomitization can affect the poro-perm relation in a
great way. A global study of limestone and dolostone indicates that (Ehrenberg et al.
2006), in deep-buried platforms average porosity in limestone is much lower than
associated dolostones, but average permeability hardly differs for given porosity. But
in shallow buried platforms the scenarios is totally reversed. Average porosity does
not differ much for limestone and dolostone but there is a huge difference in average
permeability, dolostones being more permeable. With an increase in burial depth,
there is hardly any reduction of porosity in carbonates but in clastics the reduction
is considerable.

Classically permeability is determined from porosity using Eq. (1)

ln k = aϕ + b (1)

where k is permeability, ϕ is the porosity, a and b are arbitrary constants.
However, this equation is often based on statistically insignificant data sets and

lacks theoretical background. A linear relationship between logarithms of porosity
and permeability is assumed because it appears that permeability is log-normally
distributed over the space but the correlation between two parameters may not show
any relationship. Theoretically, porosity is independent of grain size but permeability
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is strongly inversely proportional to grain size. The plot of porosity versus log per-
meability may indicate linear relationship but there remains very high and very low
permeability zone within the same porosity level. The plot of porosity and perme-
ability of all data contained from the routine core analysis of the cores retrieved from
the NBP field of ONGC (Fig. 1) elucidates this complex poro-perm relationship.
The present context exhibited clearly in the plot. If we take 10% porosity value, the
variation of permeability ranges from 0.01 to 100 md.

Therefore, the estimation of accurate permeability from porosity data cannot
be made from the traditional approach. There exist various alternative models for
porosity-permeability transform, proposed by several authors (Timur 1968; Dubrule
andHaldorsen 1986; Stiles andHutfilz 1992;Dorfman et al. 1990) but lack theoretical
background. Hence for any given rock type, the different relationships estimated for
porosity and permeability are suggestive of the manifestation of different hydraulic
units (Hearn et al. 1984; Slatt and Hopkins 1990).

Hydraulic Unit (HU) is the characteristic part of the reservoir facies within which
the geological and petrophysical properties that influence the fluid movement are
consistent within but different from the other rock facies while comparing on similar
properties. Therefore, hydraulic flow unit (HU) is a part of the reservoir that has
both lateral and vertical extension and with similar flow and geologic characteristics
(Hearn et al. 1984). As already discussed pore geometry is the prime influencer
of fluid flow through porous media. Pore throat attribute, in turn, is dependent on
mineralogy (type, abundance, location) and texture (grain size, grain shape, sorting

Fig. 1 Poro-perm relationship from cores of NBP field of ONGC
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and packing). Various permutation and the combination of these petrophysical and
geological properties could lead to the determination of distinct flow units that will
have similar fluid transport properties (Abbaszadeh et al. 1996). The basis of HU
classification is grouping of rocks that follow from fundamental flow attributes.

5 Rhythmic Sedimentation and Milankovitch Cycle

Depositional cyclicity in carbonates is influenced largely by Milankovitch Cycles
viz. Obliquity, Eccentricity and Precession. Eccentricity is Earth’s orbit shape around
Sun. Orbital shape changes from more elliptical to less elliptical (0–5% ellipticity)
with a cycle of 100,000 years. These oscillations, from more elliptic to less elliptic,
are of prime importance for season change and glaciations. As a consequence, the
distance between sun and earth changes and subsequently solar radiation received at
the Earth’s surface get reduced or increased in different seasons. Obliquity or Axial
tilt is the inclination of the Earth’s axis. Axial tilt oscillates from 21.5° to 24.5°
with a periodicity of 41,000 years. Precession is the slow wobbling of Earth as it
spins on its axis. It has a periodicity of 23,000 years. During half of the time North
Pole points towards Polaris and another half of time, it points towards Vega. These
perturbations due to orbital variations force climate changes which in turn triggers
the progression and retreat of ice caps causing high-frequency eustatic cycles. As
Ahr (2008) points out in his paper—“The amplitude of relative sea-level change in
these cycles may range from 100 to 10 m depending on whether the sea level change
happened during “icehouse” (extensive continental glaciation) or “greenhouse” (lim-
ited continental glaciation) times”. The thickness of polar icecaps increases to its
maximum during icehouse periods. Increase and decrease of ice sheets of the size
of continents are controlled by Milankovitch cycles and the subsequent sea-level
changes are huge, often beyond 100 m. The magnitudes of the changes due to the
glacio-eustatic sea-level generally exceed the background sea-level variation. These
sequences which are high-frequencies are greater than the high-frequency counter-
parts caused by greenhouse effect. There exist differences in porosity evolution and
diagenetic trends between greenhouse and icehouse conditions. The high-amplitude
sea-level changes in icehouse condition associated with high-frequency sequences
under humid climatic conditions lead to the formation of deep, intense and overlap-
ping karst. During lowstands, hydrologic head in open meteoric aquifers will create
rapid meteoric water flux and intensely modifies the primary porosity. The entire
platform will be exposed during arid conditions at high-amplitude low stands result-
ing in massive low stand evaporite deposition in adjacent basins. Under greenhouse
conditions in a humid climate, surfacial karst will develop at the top of sequences.
Sequence-bounding unconformities will be the place for the development of open
gravity-driven aquifer systems. Because of lower water flux, the modification of
porosity during icehouse times will be more intense than greenhouse periods.

To understand the cyclicity as observed in the logs, detrending approach has been
followed. Detrended logs were generated using the operation stated in Eq. (2):
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xd = xi − x (2)

where,

xd Detrended log value
xi Recorded log value t particular depth point i
x Mean value of recorded log in the particular section.

The detrending approach brings out the cyclicity very clearly. Different detrended
logs provide different information, e.g. detrended Gr log indicates the cleanliness of
the facies and in turn infers about the depositional energy and when coupled with
detrended effective porosity logs the diagenetic alteration cycles can be inferred.

Using this approach, the cyclicality pattern of carbonate formations from Eocene
to Miocene age of Mumbai Offshore basin is analyzed. Carbonate of Middle to Late
Eocene age shows very broad cyclicity (Fig. 2) on detrended GR log indicating
greenhouse period. When this detrended GR log is interpreted along with detrended
effective porosity logs it brought out that upper part is heavily karstified as its showing
both dirty and facies with huge porosity. This is the sign of secondary porosity
enhancement through diagenesis. On the contrary, the middle part is bone tight in
both clean and dirty facies indicating porosity destruction through diagenesis.

Early Oligocene formation shows an increase of cyclicity as a number of cycles
in both GR and Effective porosity logs increase (Fig. 3). This is the initiation of the
Ice house period. Ice house period prevails in overlying Late Oligocene Formation

Fig. 2 Detrended GR and effective porosity logs eocene carbonate
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Fig. 3 Detrended GR and effective porosity logs early oligocene carbonate

(Fig. 4) of Late Oligocene age and Bombay Formation ofMiocene age. Bombay For-
mation shows a very high frequency of oscillations indicating the smaller amplitude
of sea-level fluctuation (Fig. 5).

To quantify the periodicity of the cycles observed in the logs, Fourier Transform
was applied to change amplitude domain to the frequency domain. Before apply-
ing the transform, a depth log was converted to time log using the standardized
markers’ age. One conspicuous peak at ~400 k.y. after the fundamental frequency is
observed for all the formations indicating the role of seasonal fluctuations associated
with Eccentricity (Fig. 6). Change in the amplitude and frequency is also observed
from Eocene to Miocene Carbonates through Oligocene. Fourier Transform high-
amplitude and low-frequency signal mostly dominated in the Eocene carbonate.
High-frequency signals started to appear in Oligocene carbonate and in Miocene
high-frequency signals are most prevalent. High-amplitude–low-frequency signals
are the signature of greenhouse period and icehouse period is marked by abundant
high-frequency signals.

6 Conclusion

• Carbonate reservoirs present most complex challenges in reservoir characteriza-
tion, In Place Volume estimation and in planning effective exploitation strategy.
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Fig. 4 Detrended GR and effective porosity logs late oligocene carbonate

Fig. 5 Detrended GR and effective porosity logs miocene carbonate
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Fig. 6 Spectral density plot of carbonates of all ages

• In-depth understanding of the geological processes that control and influence the
deposition and diagenesis of carbonates aids in the effective characterization of
these complex reservoirs.

• The main causative of such complexities is the multi-scale heterogeneity in car-
bonate rocks that affect the rock fabric right from nanoscale to seismic scale.

• Contrary to siliciclastic reservoirs, Porosity—permeability (poro-perm) relation-
ship in carbonates do not exhibit any direct linear relationship.

• Key challenges associated with carbonates are complex multi-scale heterogene-
ity, low porosity-permeability correlation, complex sonic velocity,V p/V s, porosity
relationship-pore size and types, wettability related issues, fracture compartmen-
talization impact, etc.

• The porosity–permeability (poro-perm) relationship in carbonates do not exhibit
any direct linear relationship.

• Although it has been empirically demonstrated that reservoirs that have high depo-
sitional porosity (high energy carbonates) tend to have higher effective permeabil-
ity, the complex diagenetic history, the natural compaction-induced fracturing at
reservoir scale and tectonic-induced fracturing at the field scale, result in a very
complex poro-perm relationship in most carbonate reservoirs.

• The influence of Green House/Ice house periods and the Milankovitch cycles
on carbonate deposition imparts different sequence architecture and frequency
of individual cycles resulting in large scale heterogeneities in the distribution of
primary porosities.
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• The poro-perm preservation, enhancement or reduction can be understood by
unravelling the depositional cyclicity and the diagenetic overprint.

• Thegamma-ray and effective porosity logs canbeused to decipher both the primary
depositional cyclicity and the diagenetic cycles by using the detrending method.

• The analysis of Eocene, Oligocene and Miocene carbonates of several hydrocar-
bon fields of Mumbai Offshore basin has brought out that carbonates deposited
during Paleocene Eocene Thermal Maxima (PETM) exhibit relatively thick, high-
amplitude–low frequency carbonate cycles with low clay volume (often <20%)
with diagenetic enhancement of porosity at the top of the cycles and the Oligocene
and Miocene carbonates have high-frequency low-amplitude cycles with frequent
thin shale layers followed by shallowing up Mudstone to Grainstone cycles often
capped by uranium-rich high Gamma high resistivity carbonates representing
exposure hard grounds.

• The poro-perm relationship inMiddle to late Eocene carbonate reservoirs exhibit a
relatively direct linear relationship although moderate scatter is observed whereas
in Oligo-Miocene carbonates it is much more complex, resulting in higher degree
of heterogeneity in the distribution of speed zones, baffles and seals.
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Chapter 3
Understanding Clastic-Carbonate
Interplay in Distal Part of Tapti-Daman
Sector of the Mumbai Offshore Basin
and Its Implications on Hydrocarbon
Prospectivity

Debakanta Biswal, Nasimudeen Nedeer, Subrata Banerjee
and Kumar Hemant Singh

Abstract The prolific gas prone Tapti-Daman Block of the Mumbai Offshore Basin
is one of the thrust areas for exploration and development along the west coast of
India. Hydrocarbon accumulations generally occur in clastic and carbonate reser-
voirs of Early Oligocene Mahuva Formation and Late Oligocene Daman Formation.
During Early Oligocene, the basin experienced the maximum subsidence that led to
the deposition of Mahuva Formation. In the proximal part, the Mahuva Formation
comprises of thick under-compacted claystone relating to the prograding delta from
the northeast which has also resulted in the formation being overpressure in many
instances. However, towards the distal part, the clastic influence diminishes and car-
bonates become more predominant. The close of Early Oligocene is marked by a
minor period of non-deposition in Tapti-Daman area. During Late Oligocene, Tapti-
Daman Block witnessed reduced subsidence resulting in a regressive coastline. Dur-
ing this period, a fluvial system with distributary channels, coastal bars, tidal deltas
and other transitional environments encased inmarginal silty and carbonaceous shale
known as Daman Formation formed in the proximal part. The depositional regime
changes from clastic to carbonate in the distal part particularly towards the south-
ern and western part of the B9 area. Sea-level changes due to regional-tectonic and
climatic parameters during Oligocene formed a major controlling factor for sedi-
ment deposition. The westerly tilt of the basin created additional accommodation
space. The sediment supply during this period in the proximal part was controlled
by increasing input of clastic material from northeast. However, in the distal part, a
thick carbonate succession was formed due to low sediment supply, adequate rate
of subsidence and conducive climatic conditions. As a result, the carbonate factory
in the subsiding distal part of the basin was influenced by this interplay which fur-
ther complicates the understanding of the distribution of reservoir facies. However,
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in the proximal part, the carbonate build-up was restricted by increasing input of
silici-clastics and eventually led to the termination of the carbonate factory during
Late Oligocene. The formation of a potential reservoir for hydrocarbon accumula-
tion and seal was significantly influenced by this interplay, particularly along the
clastic-carbonate transition areas in the distal part of the basin. Through this study,
an attempt has been made to understand:

1. The basic litho-facies deposition, their disposition in time and space and the
physical properties associatedwith these litho-facies that can aid in the prediction
of reservoir distribution and in the refinement of geologic models.

2. Its implication on hydrocarbon accumulation through the integrated interpreta-
tion of seismic and well data and previous studies in the area.

About 20 wells from proximal to distal set-up along B12 and B9 areas have been
analysed to develop an understanding of the distribution of potential reservoir rocks
and thickness variation. Well correlation is carried out and a number of geological
sections were prepared to understand the interplay between the clastic and carbon-
ate litho-facies and its implications on hydrocarbon accumulation. An attempt has
been made to delineate the sand, shale and carbonate litho-facies through integrated
interpretation of 3D seismic data. Key seismic attributes have been generated to
understand the limit of clastic input and carbonate distribution patterns.

Keywords Tapti-Daman · Clastic-carbonate ·Mahuva formation · Potential
reservoir rocks · Litho-facies

1 Introduction

The mixed carbonate-siliciclastic Daman formation depositional systems occurring
in the distal part of Tapti-Daman block in Mumbai offshore basin consist of ter-
rigenous clastic deposits from the Tapti-Daman delta system, marginally marine
silty and carbonaceous shale and shelfal carbonates formed in shallow marine con-
ditions. Many discoveries have been made in this deltaic facies consisting of sand
bodies. These facies comprise of sand bodies deposited under various geological
environments like coastal bars, distributary channels, tidal deltas and other transi-
tional environments. Hydrocarbon is mainly being produced fromDaman formation;
the reservoirs facies are from delta front distributary channel sand and mouth bar
silty sand. The extensive post-Miocene shale acts as a regional caprock in the basin.
The local shale inter-beds within limestones act as a local cap rock for different pay
zones (Goswami et al. 2007).

The study area is located in the western and southwestern part of Tapti-Daman
block (Figs. 1 and 2). Being situated in the distal part of the basin, the development
of reservoir grade sand is restricted due to increase in bathymetry and decrease in
clastic influx. Towards further west and southwest, these sandstones are shaled out
and grade into shelfal carbonates with shale intercalation. Carbonates are chalky and
mixed typevarying frommudstone,wackestone to packstone.At places, the growthof
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Fig. 1 Location of study area

Fig. 2 Geological map of Mumbai Offshore Basin (https://pubs.usgs.gov/bul/2208/F/b2208-f.pdf,
Wandrey 2004)

https://pubs.usgs.gov/bul/2208/F/b2208-f.pdf
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these limestones has been subdued due to increased clastic supply and vice versa. This
has resulted in inter-fingering of clastic and carbonates lithology and significantly
influenced the distribution and quality of reservoir facies and their hydrocarbon
accumulation potential particularly along the clastic-carbonate transition areas in
the distal part of the basin.

Through this study, an attempt has been made to delineate the sand, shale and
carbonate litho-facies through well log correlation, integrated interpretation of 3D
seismic data and key seismic attribute study.

2 Geological Setting

Tapti-Daman tectonic block is located in the shallow shelf region ofMumbai offshore
basin on the Western Continental margin of India. The water depth varies from 25
to 30 m (Fig. 2). The area is marked by presence of vast thickness of sedimentary
rocks ranging from Palaeocene to Recent. Figure 3 depicts the general stratigraphy
of the area. It is based on well information which also indicates age relationships,
lithostratigraphy and depositional environments.

The Palaeocene to Lower Eocene Panna formation is deposited under fluvial to
shallow marine conditions. The Panna formation acts as the major source rock in
the area. Panna formation is overlain by Middle Eocene Belapur formation. It com-
prises of mostly calcareous shale. Middle to Upper Eocene Diu formation overlies
the Belapur formation. It consists of silty shales. Lower Oligocene Mahuva for-
mation overlies the Diu formation. It comprises of mostly shales with thin bands
of carbonates. The environment of deposition is estuarine to shallow open marine.
Mahuva formation is unconformably overlain by Daman formation belonging to
Upper Oligocene age. Potential sandstone reservoir rocks are abundant in Daman
formation. These reservoir rocks are deposited under fluvial/estuarine regime with
tidal influence. The Mahim formation belonging to Middle Miocene age overlies the
Daman formation and is dominated shale lithology. This paper is mainly focused on
Upper Oligocene Daman formation.

3 Deposition of Daman Formation

The Upper Oligocene in the distal part of Tapti-Daman is characterised by a rapid
decrease in the sea level. During this period, there was reduced subsidence in
Surat Depression. This has given rise to a regressive coastline (Source: http://
www.dghindia.gov.in/assets/downloads/56cfd7ae55eb2Mumbai_Offshore_basin.
pdf). An increase in clastic influx from north resulted in the deposition of thick
clastics in an overall prograding deltaic regime. This has resulted in the deposition
of a package of sediments comprising of sand bodies deposited in distributary
channels, coastal bars, tidal deltas and other transitional environments. These

http://www.dghindia.gov.in/assets/downloads/56cfd7ae55eb2Mumbai_Offshore_basin.pdf


3 Understanding Clastic-Carbonate Interplay in Distal Part … 33

Fig. 3 Stratigraphy column of Tapti-Daman block (reproduced with permission fromHuggett et al.
2015)

sand bodies are enclosed within normally pressured silty and carbonaceous shale
deposited under marginal marine condition. The present area of study represents
the southwestern limit of these prograding clastics. The litho-facies is represented
by sub-aqueous prodelta thick clastics with very thin inter-beds of carbonates and
shales in the distal part transitioning into off shelfal carbonates formed in shallow
marine conditions towards further SW which is away from the influence of the
delta deposits. Litho-biostratigraphic studies suggest that these sediments represent
deposition in an intertidal (foreshore) set-up with periodic tidal influence.
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Fig. 4 Location of wells considered for this study

4 Daman Lithology

The Late Oligocene succession in the study area is represented by mixed clastic and
carbonate rocks. The coarser clastic sediments dominating in the north-eastern part
of the area in wells viz.,Well-E,Well-J,Well-K,Well-M, gradually decrease towards
southwest with an increase in carbonates (Fig. 4). In southwestern wells Well-Q and
Well-P, dominantly limestone with finer clastics have been observed. Further, shale-
carbonate inter-beds are prominent in the lower part and dominantly clastics (sand,
silt and shale) in the upper part. Three wells situated in different parts of basin i.e.
well Well-J in the proximal part, well Well-P in the distal part and well Well-M in
proximal-distal transition are selected for detailed study and to develop a greater
understanding of change in litho-facies in Daman as one move from proximal to the
distal part of the basin.

5 Well-J

The sedimentary succession in well Well-J comprises of intercalations of limestone
and Shale in the lower part of Daman formation and mainly intercalation of siltstone
and shale with few limestone bands (Fig. 5). Limestone is off white, dirty white,
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Fig. 5 Lithostratigraphy along Daman section in Well-J well

moderately hard, dense and comprises of bio-clasts, chalky at places. The upper
part of Daman formation is dominated by sandstone, siltstone and shale. Sandstone
is grey, moderately hard and compact, coarse to fine-grained, subangular to sub-
rounded, poorly sorted and non-calcareous. Matrix is argillaceous. Siltstone is grey
to dark grey, moderately hard, ferruginous, carbonaceous and non-calcareous with
the argillaceousmatrix. Shale is grey, brownish, fissile, thinly laminated and at places
turning to claystone.

6 Well-M

The Lower Daman in wellWell-M is mainly composed of shale with limestone inter-
beds with the dominance of sandstone beds in the Upper Daman (Fig. 6). Sandstone
and Sandy siltstones are fine to very fine grained, subangular to subrounded with
occasional sand-size quartz grains at places, floating in the argillaceous matrix and
have moderate microporosity. These are essentially delta front sands representing
the farthest part of deltaic lobes. Shale is light to dark grey, moderately hard to hard,
fissile, lenticular bedded, feebly calcareous, trending to sideritic siltstone at places.
Limestone is found to be wackestone and packstone. Wackestones is light to dark
grey, very hard, compact occasionally pyritic with poor porosity. Packstones is light
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Fig. 6 Lithostratigraphy along Daman section in Well-M well

grey; off white, brownish, friable to moderately hard, compact, skeletal grains are
common.

7 Well-P

Lower Daman section in Well-P well consists mainly of limestone with minor shale
intercalations and upper part consists of mainly shale with minor limestone interca-
lations (Fig. 7). The limestones (foraminiferal wackestone) are dirty white to light
grey to light brown at places, moderately hard, micritic, pyrite specks, and black
specks, algal matter, small and larger foraminifera. Presence of grey clayey lenses
is observed. Some foraminifera are ferruginised. Owing to low porosity, these lime-
stones are poor reservoir rock. Shales are mostly grey, moderately hard and soft,
silty, feebly calcareous. Siltstones are grey to brownish grey, hard, feebly calcareous
with black ferruginousmaterial. At places calcareous, greenish clay patches are seen.
Pyritic nodules are also present.
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Fig. 7 Lithostratigraphy along Daman section in Well-P well

8 Log Correlation

To understand the facies variation across the study area, a number of well sections
are prepared by carefully selecting the wells encompassing proximal to distal set-up
(Figs. 8 and 9). Within the Daman Mega sequence, two sub-units are identified on
the basis of log signature and litho-facies association. The gamma-ray values are
lowest at the bottom, highest in middle and moderate on top.

Lower Daman: The lower sub-unit (Lower Daman) comprises of limestone with
inter-bedded shale. A gradual change in litho-facies from shale in the northeast to
limestonewith an increase in thickness towards southwest has been observed (Fig. 8).
These sediments were deposited in a shallow inner shelf set-up ranging from water
depth 10 to 20 m. Two distinct depositional regimes are observed in this sub-unit.
While the finer clastics dominate the area northeast of Well-M, the carbonates are
the major litho-facies in wells Well-Q and Well-P in the area southwest of Well-
M. In well Well-P, limestones are mainly sandy wackestone and chalky limestone
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Fig. 8 Well correlation along wells J, K, M, O and S

Fig. 9 Well correlation along wells D, E, M, O and S
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with no appreciable porosity. Similar facies with no appreciable porosity have also
been observed in mud supported wackestones of well Well-P and Well-K. These
limestones in the lower part have shown an indication of gas. As stated above, the
facies of this unit becomes more argillaceous in northeast across the Well-M well.
Thin carbonates in wells Well-L, Well-M and Well-J are represented by compact,
dense wackestones in the lower part and foraminiferal packstone in the upper part.
In general, the porosity is moderate to poor and dominantly intra-granular in nature.
Towards the north-eastern part where the facies is dominantly shaly, the thin inter-
bedded mudstones show very poor vuggy porosity.
Upper Daman: The overlying sub-unit (Upper Daman) is characterised by thick
shales with thin inter-beds of limestone in the southwest area of Well-Q and Well-P.
In the area around the wells Well-L and Well-M and east of it, a gradual increase in
sand, silt and shale have been observed. Limestones are either absent or present as
very thin streaks. Sedimentological studies suggest that the sands are medium to fine
and coarse to very coarse-grained, poorly sorted and associated with kaolinitic clay,
carbonaceous matter, pyrite nodules and shell fragments. The sedimentary structures
observed are massive bedding with floating clay clasts, bioturbated and lenticular
bedding in finer clastics.

9 Facies Association

A wide range of facies is recognised in this mixed carbonate-siliciclastic environ-
ment that shows substantial variations both laterally and vertically. Threemajor facies
association are identified representing proximal to distal transition from fluvial chan-
nel sand in the proximal part to intertidal to subtidal distal delta front grading into
carbonate platform in the distal part.

Fluvial channel sand: The microfacies in sandstone are quartz arenite/quartz wacke
with moderate to good inter-granular porosity. Further, quartz over-growth and
argillaceous matrix have reduced the primary porosity. Siltstone is observed with
good microporosity. These sands are gas-bearing in wells Well-A, Well-F, Well-E
and Well-H. In the upper part of Late Oligocene in well Well-E, a thick channel
fill has been observed. The sands of this channel fill are medium to coarse-grained,
bioturbated with clay clasts. Further southwest up to the Well-M well, the channel
character diminishes with a decrease in grain size and thickness of homotaxial sands.
Intertidal to subtidal distal delta: This indicates a transition of the environment
from intertidal (inWell-E) to subtidal (equivalent to distal delta front) inwellsWell-K
andWell-L andWell-Mwith deterioration in reservoir quality towards the southwest.
The southwestern limit of sand influx is observed up to northern and north-eastern
part of B-9 area. Further southwest towards Well-O, Well-P and Well-Q, prodelta
regime appeared to be prevalent which is marked by the complete absence of sands
and dominance of shale in the area. They grade into an alternate with fluvial channel
sand facies in the proximal direction and the carbonate in the distal direction (Figs. 8
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and 9). This creates an inter-fingering pattern of clastics and carbonates in the distal
delta front area which diminishes the abundance and quality of reservoir sand with
the increased supply of carbonates from the down-dip.
Carbonate platform: Biostratigraphic studies carried out in some of the wells;
suggest that at the commencement of Late Oligocene, sedimentation took place in
a stable shallow shelf set-up with an active carbonate platform towards south and
southwest of Well-O well thus restricting the sand influx up to north and north-
eastern part of B-9 area. These carbonates are thick in the lower part. In the upper
part, they are thin and are in alternation with thin inter-beds of silt and sand. In the
southwestern part of the study area, these carbonates are mainly sandy wackestone
and chalky limestone with no appreciable porosity. Further northeast in wells Well-
L, Well-M and Well-J, the carbonates streaks are thin and represented by compact,
dense wackestones in the lower part and foraminiferal packstone in the upper part.
The limestones in the lower part have shown an indication of gas. In general, the
porosity is moderate to poor.

10 Seismic Attribute Analysis

The sum of positive amplitude surface attribute on top of Lower Daman reflector
shows low amplitude in the north-eastern part indicating very extensive clastic reser-
voir sand deposition that appears to be in the form of sheet sand distributed along
Well-K, Well-L and Well-M area (Figs. 10 and 11). Sum of positive amplitudes
increases from northeast to southwest. The reflection pattern in the seismic changes
from low amplitude discontinuous reflection to high amplitude continuous reflection
as we go SW towards Well-O.

While the area around Well-O well shows moderate amplitude values indicating
non-reservoir facies and is dominated by shale inter-bedded with limestone, further
southwest, high amplitude anomaly is observed due to significant impedance contrast
indicating limestone as dominant lithology. Thus, seismic attribute analysis further
supports the prodelta clastic dominance in the proximal part (north-eastern part of
the study area) and grading into shale and limestone in the distal part.

11 Implication on Hydrocarbon Accumulation

The Daman formation is a progradational sequence, during which, a major delta
system existed at north and north-eastern part of Tapti-Daman block. Most of the
clastic deposited during this period were maximum limited to north and northeast to
B-12 and B-9 areas. The coarser clastic sediments dominating in the north-eastern
part of the area in wells viz., Well-E, Well-J, Well-M, Well-L, gradually decrease
towards the southwest with an increase in carbonates. In southwestern wells Well-Q
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Fig. 10 Sum of positive amplitude on top of Lower Daman

Fig. 11 Seismic sections across wells Well-K, Well-L, Well-M, Well-O indicating increase in sum
of positive amplitude from NE to SW as highlighted in blue
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and Well-P, Daman lithology is dominantly limestone with finer clastics has been
observed. Further, shale-carbonate inter-beds are prominent in the Lower Daman and
dominantly clastics (sand, silt and shale) in Upper Daman. However, during periods
of major influx, finer sands were carried down to B-12 and B-9 areas, through delta
front channels and canyons, and deposited as sheet sand, by tidal action. Though
few channel signatures are observed in some wells like Well-E and Well-J, the wide
spread areal extent of the sand and limited thickness as observed across all the wells,
clearly indicate the sheet nature of sands. Thus, reservoir rocks in the study area
are expected as sandstones from the upper part of Daman formation and limestone
inter-bedded with shale from Lower Daman.

The reservoir in Lower Daman: In the southwestern part, Lower Daman formation
is dominated by limestones that are mainly sandy wackestone and chalky limestone
with no appreciable porosity. These are basically mud supported wackestones in
wells Well-P and Well-S. Though the limestones in the lower part have shown indi-
cation of gas during drilling, these limestones are tight in nature with no appreciable
porosity and therefore poor reservoir. The facies of this unit becomes more argilla-
ceous towards northeast. Thin carbonates in wells Well-L, Well-M and Well-J are
represented by compact, dense wackestones in the lower part and packstone in the
upper part. In general, the porosity is low indicating poor quality of reservoir.
Reservoir in Upper Daman: In the north-eastern part, towards Well-K and Well-E,
the Upper Daman is dominantly clastics with reduced influence of carbonates. These
clastics have shown the presence of hydrocarbons on testing. Geological analysis
suggests that these clastics represent the distal part of prograding Late Oligocene
delta from Tapti – Daman area and deposition in an intertidal regime with tidal
influence towards the northeast. The quality of these clastic reservoirs deteriorates
in wells Well-O, Well-P and Well-Q. The significant feature of these hydrocarbon-
bearing reservoir sands towards the northeast part of the study area is the presence
of inter-granular porosity in the medium to fine-grained sands. Therefore, these
reservoirs have good potential to hold a significant amount of hydrocarbon.

12 Conclusions

Hydrocarbon discoveries in the distal part of Tapti-Daman block in Mumbai off-
shore basin are largely restricted to the deltaic facies of Daman formation. These
facies comprise of sand bodies deposited under various geological environments
like coastal bars, distributary channels, tidal deltas and other transitional environ-
ments. Good quality medium to coarse-grained reservoir sands with moderate to
good inter-granular porosity are prevalent in the north-eastern part of the study area.

The southwestern part of the study area is represented by a transitional environ-
ment from intertidal to subtidal (equivalent to distal delta front) with deterioration in
reservoir quality. Further southwest a prodelta regime appeared to be prevalent which
is marked by the complete absence of sands and dominance of shale and limestone
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in the area. This creates an inter-fingering pattern of clastics and carbonates in the
distal delta front area which diminishes the abundance and quality of reservoir sand
with the increased supply of carbonates from the down-dip. These carbonates are
thick in the lower part of Daman formation and thin and are in alternation with thin
inter-beds of silt and sand in the upper part. Though the limestones in the lower part
have shown indication of gas, the porosity, in general, is low indicating poor quality
of the reservoir.

Analysis of seismic data andwell data also suggests the prodelta clastic dominance
in the proximal part (north-eastern part of the study area) and grading into shale and
limestone in the distal part. Therefore, a proper understanding of the clastic-carbonate
interplay and their delineation in space and time across Daman lithology will add
significant value to the future exploration programme that will further enhance the
chances of success.

Acknowledgements Authors are thankful to the management of AdaniWelspun Exploration Lim-
ited for giving permission to publish the paper.
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Chapter 4
Accelerated Weathering of Limestone
for CO2 Mitigation

Moulishree Joshi

Abstract Rock weathering is a natural phenomenon which brings about several
changes on the Earth’s landscape but it has one more useful function. It controls the
CO2 concentration in the atmosphere by precipitating the magnesium and calcium
carbonates. The process is slow and takes place over a long period of time. However,
if this process is accelerated, the atmospheric CO2 can be removed in sufficient
volumes at a faster rate and converted to bicarbonates thus mitigating the greenhouse
effect. A geochemistry-based capture and sequestration process that reacts CO2 with
water to produce a carbonic acid solution is one of the methods to understand this
phenomenon. This carbonic acid solution is then reacted with carbonate rocks to
precipitate bicarbonates. The rate of reaction depends upon the temperature, flow
rate and particle size. In the present study, the accelerated weathering of limestone
was carried out using different sizes of limestone cuttings (4 mm, 500, 250, 100 and
50 µm) under different flow rates of carbonic acid (0.5, 1.0 and 1.5 L/min) for a
duration of 2 h at a constant temperature of 80 °C. SEM and elemental analysis were
done before and after the experiment. Results from the experiment showed that the
highest flow rate (1.5 L/min) exhibits the greatest weight loss. This weight loss is
brought about by the dissolution of calcium to release bicarbonate and carbonate ions.
EDXanalysis shows a reduction in both calcite and dolomite indicating dissolution of
these two minerals. Acid attack on the samples forms dissolution patterns which are
visible in SEM images. The principle mode of sequestration in limestone formation
is ionic trapping. CO2 trapped in this way in the form of bicarbonate solution can be
safely discharged in a water body or reservoir for storage.

Keywords Carbon dioxide · Global warming · Accelerated weathering ·
Limestone
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1 Introduction

Global warming caused by increasing industrial and fossil fuel emissions is the
biggest challenge being faced by the world in the twenty-first century (Lackner
2003; Pacala and Socolow 2004). Increasing CO2 concentration has increased the
global temperature significantly. By the year 2100, it has been predicted that the rise
in the global temperature could be up to 4 °C due to the possible increase in the
atmospheric CO2 concentration by 540–970 ppm (Solomon et al. 2007; Houghton
2001). Sequestration of atmospheric CO2 in geological formations and oceans has
come up as one of the remedies of this problem (Metz et al. 2005). Among some of the
proposed techniques for sequesteringCO2, injection into deep geological formations,
particularly in saline aquifers, seems to be the most promising alternatives (Bachu
et al. 1994; Holloway 2001; Metz et al. 2005). This technique is favoured as it offers
substantial storage capacity for large volumes of CO2. However, the success of this
option is questionable as geological formations are susceptible to fracturing and
thereby leaking the stored CO2 back to the atmosphere which could prove hazardous
(Hawkins 2004; Rochelle et al. 2004).

Anothermethod includes a geochemistry-based capture and sequestration process
inwhich initiallyCO2 is capturedwhich then reactswithwater to forma carbonic acid
solution (Rau and Caldeira 1999; Caldeira and Rau 2000). The solution then reacts
and neutralizes with limestone, thereby converting the original CO2 gas to calcium
bicarbonate in solution. The chemical process can be summarized as follows:

CO2 + CaCO3 + H2O => Ca+2 + 2HCO3 (1)

The dissolved calcium bicarbonate produced as a result of this process gets mixed
and is diluted in the ocean. The concentration of calcium bicarbonate would add only
meagerly to the large pool of these ions already present in seawater. This process is
similar to the weathering phenomenon that is an ongoing continuous process on the
earth surface which can naturally consume the anthropogenic CO2 but the process
is slow and takes place over thousands of years and hence is ignored as a potential
technique in CO2 mitigation. Venus, a planet close to the earth in terms of distance
and size has a much higher concentration of CO2 due to the fact that on the earth
the runoff water from the incessant rains removes the topsoil and weathered rock
which exposes the fresh rock from within, while Venus is devoid of such weathering
process. The earth is believed to have a similar CO2 budget as Venus, but instead
of the substantial part of it is in the form of gas, it largely exists as carbonate rocks
which are produced from chemical weathering of silicates (Holland 1984).

Accelerated Weathering of Limestone or AWL has been known to effectively
convert CO2 emissions to benign carbonates (Caldiera and Wickett 2005) without
any environmental impact at a low cost. The present work was carried out to explore
the feasibility of AWL technique in CO2 mitigation using different sizes of limestone
cuttings and different flow rates of carbonated water.
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2 Experimental Procedure

Limestone samples were collected from a limestone outcrop at Pahang region of
Peninsular Malaysia. The samples were ground and sieved to obtain different sizes
(4 mm, 500, 250, 100, 50 µm). High purity CO2 was injected into deionized water
and stirred at the rate of 100 RPM to obtain carbonated water. The rock samples
were injected with carbonated water at different flowrates (0.5, 1, and 1.5 L/min) for
2 h in a glass reactor after which the reactor was sealed for 2 weeks. After 2 weeks
SEM and EDXwere performed on the rock samples to analyze the effect of CO2 and
mineralogical changes as a result of carbonation.

The effect of the CO2 flow rate on the dissolution of limestone is investigated from
fifteen sets of experiments under atmospheric pressure and controlled temperature
(80 °C) conditions.Aglass reactor of volume300mlwas used to prepare all solutions.
In the experiment, the glass reactor was enclosed by an open water bath maintained
at a constant temperature through heating filament (Fig. 1) (Jalilavi et al. 2014).
The evaporation losses were reduced by cooling the reactor through a condenser
cooled with tap water. The temperature and pH of the solution were measured at the
beginning of the experiment. CO2 was injected through the solution at different flow
rates with the help of a gas bottle connected through a pressure regulator and a flow
meter. Crushed rock samples of 4.0 mm particle size weighing 10 g were poured into
a glass reactor containing 300 ml of carbonate water. CO2 bubbled through the slurry
at a flow rate of 0.5 L/min. The flow of the carbon dioxide was stopped after two

Fig. 1 The experimental setup to investigate the effect of the CO2 flow rate on the dissolution of
limestone (reproduced with permission from Jalilavi et al. 2014)
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hours. A Whatman 45 µm filter paper was used to filter the solution immediately,
and the filtered solution was sealed for four weeks for sample ageing or weathering
to take place. The same procedure was repeated with 1.0 L/min and 1.5 L/min flow
rate of CO2 respectively. The filtered debris and rocks were washed using deionized
water and dried at 120 °C overnight then weighed and prepared for the next set of
experiments. The reactor glass was washed at the end of each experiment. The rock
samples (4 mm) subjected to 1.5 L/min were analyzed with SEM and EDX before
and after the experiment.

3 SEM Analysis

In order to study the effect of acceleratedweathering on limestone, SEM investigation
was conducted. Figure 2 show SEMmicrophotographs of limestone surface textures
after the experiment. The surface abnormality and etching effects can be clearly seen
in the SEM images.

4 Discussion

Behaviour of calcium carbonate (limestone) is governed primarily by equilibrium
reaction:

CaCO3 + H2CO3 = Ca+2 + 2HCO−3 (2)

where CaCO3 is the solid calcite while HCO3 is the weak carbonic acid.
The reaction is reversible and the process continues until equilibrium is reached.

Any process that increases the amount of CO2 in a calcite system will promote the
production of H2CO3. In this case, it is has been observed that the equilibrium shifts
to consuming the increased CO2. The increased H2CO3 leads to the reaction to shift
to the right causing the dissolution of CaCO3 in the system.

In the present work, it was observed that as the flow rate of CO2 was increased
from 0.5 to 1.5 L/min there was an increase in the rate of limestone dissolution.
Since calcium is more reactive than magnesium, a significant reduction in the wt%
of calcium was observed while there was the very little dissolution of magnesium.
Dissolution of calcite is initiated because of the reduction in pH due to the increase
in acidity. However, after ageing the limestone samples in the acidic environment
resulting in the dissolution of calcium carbonate, the pH is seen to become higher
indicating the increasing concentration of calcium carbonate.

The experiment was carried out at 80 °C. Further increase in temperature would
disturb the equilibrium and move the reaction towards left and consequently more
carbonic acid would be produced thereby precipitating calcium. CO2 dissolution
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Fig. 2 SEM micrographs showing the effect of dissolution caused by accelerated weathering of
limestone

in water is temperature-sensitive. In this work, the effect of temperature was not
monitored.

As pH decreases, the number of hydrogen ions increases in solution. Carbonates
go into solution as the pH is lowered releasing calcium carbonate in solution. When
the limestone samples are left in the CO2 solution for ageing, with an increase in
the concentration of calcium ions in solution the pH of the solution swings towards
basic thereby precipitating calcite.

Accelerated weathering of limestone can be used as a feasible solution for CO2

mitigation as the overall procedure is very simple. The natural procedure of weath-
ering can be enhanced by increasing the rate of reaction of CO2 with the carbonate
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rocks. The smaller the grain size the better is the rate of reaction so it may be assumed
that fine-grained limestones are better candidates for this procedure than the coarse-
grained varieties. The process is seen to hasten with an increase in the flow rate.
The required experimental setup and the chemicals are inexpensive. Carbonate rocks
required for the neutralization of carbonic acid are abundantly found on the earth’s
crust. The storage of CO2 in this method is effective and long term. The end products
of the reaction are environmentally benign.

For a suitable setting, for CO2 mitigation AWL seems to be conducive and an
attractive option since the required reactants are relatively inexpensive, environment-
friendly and abundant. The technology is relatively modest and affordable and the
storage is effective and long-term. The AWL process accelerates the CO2 mitigation
mechanism, the carbonate weathering.

Acknowledgements The support of Faculty of Chemical and Energy Engineering, Faculty of
Mechanical Engineering, Faculty ofBioscience andMedical Engineering andCentre for Sustainable
Nanomaterials is gratefully acknowledged.

References

Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral
trapping. Energy Convers Manage 35(4):269–279

Caldeira K, Rau GH (2000) Accelerating carbonate dissolution to sequester carbon dioxide in the
ocean: geochemical implications. Geophys Res Let 27:225–228

Caldeira K,WickettME (2005) Oceanmodel predictions of chemistry changes from carbon dioxide
emissions to the atmosphere and ocean. J Geophys Res Oceans 110(C09S04). https://doi.org/10.
1029/2004JC002671

Hawkins DG (2004) No exit: thinking about leakage from geologic carbon storage sites. Energy
29:1571–1578

Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University
Press, Princeton, NJ, USA

Holloway S (2001) Storage of fossil fuel-derived carbon dioxide beneath the surface of the earth.
Annu Rev Energy Environ 26:145–166

Houghton JT, Ding Y, Griggs DJ et al (2001) Climate change: the scientific basis. Intergovernmental
Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, 881 p

Jalilavi M, Zoveidavianpoor M, Attarhamed F, Junin R, Mohsin R (2014) Artificial weathering as
a function of CO2 injection in pahang sandstone Malaysia: investigation of dissolution rate in
surficial condition. Sci R 4:3645. https://doi.org/10.1038/srep03645

Lackner KS (2003) Climate change: a guide to CO2 sequestration. Science 300:1677–1678
Metz B, DavidsonO, de ConinckH, LoosM,Meyer L (2005) IPCC special report on carbon dioxide
capture and storage. Cambridge University Press, New York, p 442

Pacala SW, Socolow RH (2004) Stabilization wedges: solving the climate problem for the next 50
years with current technologies. Science 305(5686):968–972

Rau GH, Caldeira K (1999) Enhancing carbonate dissolution: a means of sequestering waste CO2
as ocean bicarbonate. Energy Convers Manag 40:1803–1813

Rochelle CA, Czernichowski-Lauriol I, Milodowski AE (2004) The impact of chemical reactions
on CO2 storage in geological formations: a brief review. Geol Soc London Spec Publ 233:87–106

https://doi.org/10.1029/2004JC002671
https://doi.org/10.1038/srep03645


4 Accelerated Weathering of Limestone for CO2 Mitigation 51

Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007)
Climate change 2007: the physical science basis. The contribution of working group 1 to the
fourth assessment report of the intergovernmental panel on climate change. CambridgeUniversity
Press, Cambridge, UK



Part II
Empirical Models in Carbonate Reservoirs



Chapter 5
Petrophysical Modelling of Carbonate
Reservoir from Bombay Offshore Basin

Monesh Sharma, Kumar Hemant Singh, Sanjay Pandit, Anil Kumar
and Ashok Soni

Abstract The integration of well logs with laboratory measurements derived from
core to analyse the reservoir characteristics of WELL P, of Bombay Offshore Basin,
India. The reservoir properties such as permeability (k), Porosity (φ), shale volume
(V sh), lithology, water saturation (Sw), net pay thickness and other parameters were
determined from well logs. The petrophysical model was derived from depth X150
m to X400 m. But the main focus of analysis were four pay zones named as Zone A
(X195 m to X212 m), Zone B (X226 m to X282 m), Zone C (X299 m to X310 m)
and Zone D (X338 m to X374 m). The logs used for analysis were CGR, NPHI,
RHOB, LLD, DTCO and DTSM. Fluid types were identified by NPHI versus RHOB
crossplot, VP, VS (vp/vs) versus DTCO crossplot and neutron/density log signatures
which indicate the absence of gas and the presence of oil and water in the given well.
The signatures of DTCO and DTSM followed each other indicating the absence of
gas in the pay zones. Wet resistivity quick look technique was applied to locate the
hydrocarbon-bearing zones of interest and any crossovers on density and neutron
logs as indicators of the presence of oil zones. Saturation cross plots (Pickett plot)
was used to determine the saturation exponent (n), cementation factor (m), tortuosity
factor (a), and formation water resistivity (Rw), a prerequisite to their use in the
determination of water saturation from Archie’s equation. The main lithology in
the region of the study was limestone (calcite) and shale (illite). Shale although
present but was in a very small amount. The final volume fractions obtained of each
mineral mainly calcite and dolomite from the petrophysical model were compared
with those obtained from X-ray Diffraction (XRD). The average porosities of four
zones were found to vary from 14.1 to 16.9% which indicated good porosity for
a carbonate reservoir. The average water saturations of zones varied from 0.631 to
0.667. The results of the study indicate that the zones where the porosity is good,
the measured permeability turns out to be poor (less than 5 mD) which suggests that
the pores perhaps are not interconnected. This could be true for carbonates. Thus,
the measured values need to be compared with the porosity and permeability values
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obtained fromother laboratorymeasurements likeRoutineCoreAnalysis (RCA) and
MicroCT scan to study the connectedness and non-connectedness of the pore-system
in the cores.

Keywords Petrophysical model · Well logs · RCA · XRD

1 Introduction

Carbonates hold up to 60% of the world’s hydrocarbon reserves and hence plays a
major role in fulfilling the hydrocarbon demand of the coming generations. How-
ever, carbonates display strong heterogeneity in terms of porosity distribution and
their permeability primarily due to the post-depositional processes like dissolution,
recrystallization, precipitation, collectively known as diagenesis, which affects and
alter the properties of the carbonate reservoirs entirely (Ahr 2008).

Porosity is defined as the ratio of pore volume to the total volume in a given
rock sample. However, the porosity in Carbonates is completely in contrast to clas-
tics (except in some cases). The genesis of the carbonate porosity lies in ‘post-
depositional chemical dissolution’, and as a result the secondary porosity takes dom-
inance (Akbar 2001) in the form of fracturing or dissolution channels or vugs. Nor-
mally the carbonate is made up of two items: (a) Finer grained matrix material which
is very fine, sub-crystalline texture and interstitial material calledMicrite. They could
also be found as fine textured, coarsely crystalline called Sparite. (b) Allochems are
Fossils, Molds, Oolites or Intraclasts.

One of the major challenges of petrophysical evaluation of carbonate reservoirs
is to estimate important properties of reservoirs such as porosity, permeability, water
and hydrocarbon saturations and mineralogy as accurately as possible. Unlike sand-
stone with well-established porosity, permeability, saturation, etc. the heterogeneous
pore-system of carbonates defy routine petrophysical analysis since most of the
relationships were developed for the clastic depositional environment (Lucia 1995;
Marzouk et al. 1995).

An accurate prediction of the petrophysical parameters can be achieved by using
log data along with the integration of core data obtained from the same well. The
paper presents the preliminary results fromWell P of the Bombay offshore region for
all pay zones as inferred from the log data and Well Completion Report. The X-ray
Diffraction (XRD) experiments and Routine Core Analysis (RCA) were performed
on core samples to identify minerals present in the core samples which is then used
to constrain the petrophysical models derived from log data analysis.
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2 The Study Area

2.1 Geology and Stratigraphy

The Bombay offshore basin is a divergent passive continental margin basin which is
situated on the continental shelf off the west coast of India. The basin is confined to
the bounds of the western coastline of India, Bombay Offshore is a pericratonic rift
basin located on the western continental shelf of India (USGS 2000). In the North-
west, it is bounded by Saurashtra peninsula, north by Diu arch, East by Indian craton
and south by Vengurla arch which divides the Mumbai offshore with Kerala-Konkan
basin. There are five structural provinces viz. Surat Depression in the north, Panna-
Bassein-Heera Block in the east-central part, Ratnagiri in the southern part, Mumbai
High-/Platform-Deep Continental Shelf (DCS) in the mid-west and Shelf Margin
adjoining DCS and the Ratnagiri Shelf.

According to the DGH (2019), this is a category-I basin which has a proven com-
mercial productivity and it covers an area ~116,000 km2 for up to 200 m bathymetry.
Bombay high field in the western offshore region of India is a giant carbonate field.
The field was discovered in 1974 by Indian National Oil Company ONGC is produc-
ing since 1976 and now is in its mature phase. The field covers an area of 1200 km2

with over 600 drilled well. The field produces from Miocene L-III limestone reser-
voir. It has around 10 separate hydrocarbon-bearing layers with very less vertical
communication. The current study is from one such reservoir in a well of one such
field in Bombay offshore basin in western offshore of India.

2.2 Well Log and Core Data

In our study area, Bombay High-DCS and Ratnagiri Block of Mumbai Offshore
Basin has reservoir rock of carbonates of Lower Miocene period. The logs used for
analysis were CGR, NPHI, RHOB, LLD, DTCO and DTSM. Core samples from
carbonates were made available for research work in the laboratory (Fig. 1). The aim
of this work is to integrate the laboratory measurements like RCA and XRD with
traditional logs to derive the most accurate estimates of the petrophysical parameters
of the reservoir (for instance lithology, hydrocarbon volume in place, porosity, water
saturation, and permeability).

Data from one well (Well P) was made available for the study with a suite of logs,
including caliper, spontaneous potential (SP), gamma-ray (GR), density (RHOB),
neutron and density porosity (PHIN and PHID), PEF and shallow and deep resistivity
(LLD, LLS) (Fig. 1). P- and S-wave sonic logs are also available for detailed analysis.
The well is located in the South-West region of the Bombay Offshore Basin. The
mentioned suite of well logs is used in evaluating petrophysical properties such as
Porosity (phi), Hydrocarbon saturation (Sh), Water Saturation (Sw), Permeability
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Fig. 1 Core samples for Well P collected from Regional Geological Laboratory, Panvel, Maha-
rashtra, India

and Water Resistivity (Rw) and hence the Hydrocarbon potential of the region can
be assessed.

2.3 Petrophysical Modelling

The log analysis begins with the identification of the zones of interest and demarcate
the clean and shale baselines on the logs. Certain quick look methods such as density
and neutron porosity crossover, wet resistivity method can be used which provide
indicators that point to certain hydrocarbon zones requiring further investigation
(Tiab and Donaldson 1996; Schlumberger 2008).

2.3.1 Lithology Determination

Lithology is best determined using Neutron-Density crossplot. The natural radiation
of the formation is measured through Gamma log which are indicative of litho units
in the subsurface in the vicinity of wells. On the crossplot, the clustering of data can
be studied on the lithology line. This could indicate the dominant lithology present



5 Petrophysical Modelling of Carbonate Reservoir from Bombay … 59

in the area. The crossplots between Vp/Vs and DTCO could also be used to identify
the lithology. These crossplots are also routinely used to identify the gas zones and
shale zones (Mheluka and Mulibo 2018).

2.3.2 Wet Resistivity (Ro) Quick Look Technique

The quick look technique is applied to identify the hydrocarbon-bearing zones. In
this method, Ro from the porosity and an estimate of formation water resistivity
(Rw) is calculated. Ro is then plotted as an overlay on the deep resistivity curve. In
water-bearing zones, Ro and the deep resistivity should overlay seamlessly while in
hydrocarbon-bearing zones, the deep resistivity should be higher than Ro, with the
separation increasing with increasing hydrocarbon saturation. The basic formulation
of the technique is (Archie 1952):

Ro = F × Rw = (a × Rw)/∅m (1)

where Ro is the resistivity of the formation saturated with water, Rw is the Formation
water resistivity, ∅ is the Porosity, and a is the tortuosity factor.

2.3.3 Shale Volume Estimation Using Gamma-Ray Log

The volume of shale can be estimated using non-linear and linear equation functions.
A linear response is used because age information of lithounits is generally unavail-
able. The non-linear responses have been formulated by Steiber, Larionov (for older
strata), Larionov (Tertiary) and Clavier. This method does not work well in areas
where radioactivity is not primarily associated with the clays, such as in feldspathic
sands. Linear Scaling method is used in this study for estimation of the volume of
shale.

The volume of shale and Gamma-ray index are related as:

Vsh = IGR = (
GRlog − GRmin

)
(GRmax − GRmin) (2)

where V sh is the shale volume fraction calculated using the GRlog response, IGR is
the gamma-ray index, GRmin is the minimum gamma-ray from the log, GRlog is the
gamma-ray reading from the log, and GRmax denotes the maximum gamma-ray from
the log.

2.3.4 Porosity Estimation

The estimation of porosity is done using density and neutron logs. Porosity parameter
is determined from the density logs by taking the bulk density readings obtained from
the formation density log within each reservoir and then applying the value to Eq. (3)
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for calculating the porosity. The porosity can be calculated from the density log as
follows:

∅D = (ρma − ρb)/(ρma − ρf) (3)

where ∅D is the porosity calculated though the density log, ρma is the matrix density,
ρb is the bulk density as obtained from the log and ρf is the fluid density. The total
porosity is the average of the two measurements obtained from Density (∅D) and
Neutron (∅N):

∅T = (∅D + ∅N)/2 (4)

The effective porosity ∅E is the actual porosity needed in determining water
saturation and reserve estimation. The effective porosity is determined from the total
porosity (∅T) after eliminating the effect of shale using the following relationship:

∅E = ∅T(1 − Vsh) (5)

2.3.5 Saturation Crossplot (Pickett Plot)

The water-bearing zones are equally important as hydrocarbon-bearing zones, hence
they both need to be determined. The Pickett plot is one such technique which is
used for their estimation. The Pickett plot provides information about the parameters
Archie’s constants like a, m, n and Rw which is crucial for determining the water
saturation from Archie’s equation.

log(φ) = − 1

m
log(Rt) + 1

m
( log(ax Rw)−nlog(Sw)) (6)

2.3.6 Water Saturation Estimation

After calculating the effective porosity, water saturation is determined from Archie’s
equation. The Archie equation for calculating water saturation in clean, porous rocks
is given by:

Snw = aRw

φm × Rt
(7)

Sh = 1 − Sw (8)
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where Rt is the Formation Resistivity, Sw is the water Saturation, φ is the Total
Porosity, m is the cementation exponent, a is the Tortuosity Factor, Rw is the Water
Resistivity and Rsh is the Resistivity of Pure Shale.

2.3.7 Permeability Estimation

Permeability is a measure of the ability of a porous media to transmit fluid (Tiab and
Donaldson 1996). Permeability can be computed from empirical models like Wylie
and Rose (Eqs. 9 and 10), Timur (Eq. 11) based on grain size, pore dimensions,
mineralogy and surface area, or water saturation. The details of these methods can
be found in Tiab and Donaldson (1996). Typically, the log derived permeabilities are
valid only for estimating permeability in formations at irreducible water saturation.
So before using the equations for determining permeability, whether the formation
is at irreducible water saturation or not, must be determined.

K =
(
250 × φ3

Swirr

)2

(9)

K =
(
79 × φ3

Swirr

)2

(10)

K =
(
93 × φ2.2

Swirr

)2

(11)

where K is permeability, φ is porosity and Swirr is irreducible water saturation.

2.3.8 Core Sample Analysis

Core data can be used as a reference to study the parameters interpreted with wireline
logs. Routine Core Analysis data points can be plotted on the log analysis depth plots
for comparison. The volume fraction ofminerals obtained frompetrophysicalmodels
can be compared with those obtained from the XRD analysis for available for cores
at respective depths. The XRD data points can also be plotted on the log analysis
depth plots for comparison.

2.3.9 Net Pay

The porosity cut-off of 5% was used for the analysis while shale volume cut-off of
50% was defined for the quality of the reservoir rock. Water saturation, Sw, cut-off
value of 70% was used to define pay. The reservoirs were defined by the porosity
greater than 5% and less than 40% and shale volume less than 50%. For the net pay, if
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the water saturation within the reservoir is less than 70%, it is considered to contain
hydrocarbon.

2.3.10 Quanti-Elan

The petrophysical was created using the Quanti-Elan module of Techlog software
provided by Schlumberger. Themodule follows the principle of inversion of the data.
Linear equations in Quanti-Elan has a general form as:

L1 = C11V1 + C12V2 + · · · + C1nVn, (12)

where Vn’s are the volumetric components and Cn’s are endpoints values for Ln

equation at 100% of n component in the rock. A response equation is a mathemat-
ical description of how a given measurement varies with respect to each formation
component. The simplest linear response equation can be expressed as:

measurement =
fc∑

i=1

Vi × Ri (13)

where, Vi is the volume of formation component i, Ri is the response parameter
for ith formation component fc. Although some linear equations include additional
terms, and the non-linear equations are more complex, the concept displayed by
Eq. (12) remains the same. Hence, the total measurement observed is determined by
the volume of each formation component and how the tool reacts to that formation
component?

3 Results

Themethodologydescribed above is basically applied to create aPetrophysicalmodel
from X150 m to X400 m. There are four zones of interest in the WELL P which are
described as pay zones A to D (reservoir zones) (Fig. 2). The depths ranges of pay
zones are mentioned in Table 1.

3.1 Lithology Determination and Gas Indication Using

NPHI versus RHOB Crossplot
The crossplot calculated for NPHI versus RHOB is shown in Fig. 3. The depth
between X150 m to X400 m shows most of the data points to cluster along the
limestone and dolomite lines. The data points away from the dolomite line indicate
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Fig. 2 Depth ranges of pay zones (A–D) highlighted on well log data of Well P

Table 1 Depth range of pay
zones (A–D) in Well P

Pay zone Top (m) Bottom (m)

Zone A X195 X212

Zone B X226 X282

Zone C X299 X310

Zone D X338 X374

shale zones. There are no points towards low bulk density values which indicate that
there are no gas zones present in the given data. Thus the dominant lithology in the
reservoir is limestone.
Vp/Vs versus DTCO crossplot
The result highlighted in Fig. 3 is also confirmed from the Vp/Vs versus DTCO
crossplot. If gas is present in the formation the compressional wave becomes slower,
while the shear wave is not affected. The Vp/Vs versus DTCO in gas sand will,
therefore, be different from a water-saturated sand. Thus, if DTCO becomes slower
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Fig. 3 NPHI (Y-axis) versus RHOB (X–axis) crossplot forWELLP fromdepthsX150m toX400m

while shear stays constant (thus a lower VP/VS) then this can be interpreted as a
qualitative indication that gas is present. It is only an indication of gas (or light oil),
but it does not help quantify the exact amount of gas present. All the lines on the
plot are theoretical lines based research on a few data sets, and not all formations
follow the standard. Figure 4 shows most data points to cluster on the limestone line
indicating that the prominent lithology is limestone and shale.
Saturation Crossplot
The Pickett plot shown in Fig. 5 provides the relationship between the porosity
values and resistivity for the entire depth range of the reservoir for all four zones.
The estimated values are a = 1, m = n = 2 and Rw to be 0.11 � m.

3.2 Depth of Interests from Wet Resistivity Quick Look
Method

To illustrate the methodology, zone B is shown in Fig. 6 for the depth range X226
m to X282 m. At depths where LLD (Deep resistivity) exceeds Ro (Resistivity of
formation water), the presence of hydrocarbon is indicated and is confirmed from
the crossovers seen in RHOB and NPHI curves for corresponding depths.
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Fig. 4 Vp/Vs (Y-axis) versusDTCO (X-axis) crossplot forWELLP fromdepthsX150m toX400m

Fig. 5 Pickett plot of Porosity (Y-axis) versus Deep Resistivity (LLD) (X-axis) crossplot forWELL
P from depths X150 m to X400 m

3.3 Petrophysical Model

4 Summary and Conclusions

The petrophysical well logs were used to derive petrophysical properties for the
hydrocarbon-bearing zones. The resultant properties were then calibrated using the
RCA and XRD from the core samples. The result of calibration can be summarised
as follows (Figs. 7 and 8)
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Fig. 6 Quick look Technique has shown for WELL P shown for zone B in the second track

1. The calculated petrophysical properties such as dry mineral volume fractions
from well logs agree well with the volume fractions obtained from XRD.

2. The grain density and porosity calculated from well logs matches well with the
grain density and porosity obtained from core samples.

3. The above properties obtained from well logs matches well with the core equiv-
alent with the margin of error in the estimation of depth for core samples.

The resultant petrophysical properties such as average porosity, average satura-
tion and average shale volume along with Net Pay and Net to Gross ratio has been
presented in Table 2. The lithology is mainly calcite dominated with a small fraction
of dolomite at a few intervals. The shale volume in the studied zone is negligible.
The average porosity in the analysed zones is from 14 to 17% with an oil saturation
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Fig. 7 Final Petrophysical Model for WELL P (from depth X195 m to X282 m). The shaded
portions are Zone A and B. From left shale volume (first track), permeability (second track), water
saturation (third track), porosity (fourth track), calcite volume fraction (fifth track), dolomite volume
fraction (sixth track). Points in the second (permeability) and fourth (porosity) track indicate core
data whereas in fifth (calcite volume fraction) and sixth (dolomite volume fraction) indicate XRD
data
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Fig. 8 Final petrophysical model for WELL P (from depth X299 m to X374 m). Zone C and D are
highlighted

Table 2 Petrophysical model of Well P for all pay zones

Pay
zone

Top (m) Bottom
(m)

Net/Gross
(frac-
tion)

Net pay
(m)

Gross
(m)

Avg.
Por.

Avg.
Sat
(Sw)

Avg.
Shale
Volume

Zone A X195 X212 0.388 5.893 15.187 0.161 0.649 0.026

Zone B X226 X282 0.295 16.002 54.292 0.169 0.631 0.011

Zone C X299 X310 0.283 2.602 9.208 0.141 0.667 0.000

Zone D X338 X374 0.134 4.724 35.190 0.158 0.650 0.006

of ~35%. The permeability obtained from RCA suggests that the above zones have
1–10 mD.
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Chapter 6
Foam for CO2 EOR in a Carbonate
Reservoir: Scale-up from Lab to Field

M. Sharma, Z. P. Alcorn, S. B. Fredriksen, M. A. Fernø and A. Graue

Abstract Carbon dioxide has been used for more than five decades in fields for
tertiary oil recovery; and because of commercial and environmental reasons, it has
received lot of attention in the last few years. Based on the experience with large-
scale CO2 flooding, it is well understood that even with a high local displacement
efficiency, the process suffers from poor volumetric sweep due to reservoir hetero-
geneity, viscous instability and gravity override. Based on laboratory studies, foam
has been found to address these limitations at small-scale, however understanding
of CO2-Foam flow at field-scale is limited within industry. Field pilots performed so
far have shown technical success especially near well, but there exist a gap to estab-
lish a methodology to scale-up the CO2-Foam technology to large-scale. A research
program was established to run CO2-Foam field trial in a field with heterogeneous
carbonate reservoir onshore in west Texas, USA to guide technology scale-up. The
research aims at implementing a modelling and monitoring approach as part of the
roadmap. The static model created by integrating geologic framework, well logs and
core data, and dynamic model created based on analysis of reservoir engineering
data, including relative permeability, fluid phase behaviour and EOR coreflood stud-
ies forms the basis for reservoir simulation study for the pilot area. In this paper, we
provide an overview of various elements of the three-dimensional numerical model.
We demonstrate the application of a systematic approach to incorporate the uncer-
tainties associated with model inputs, which is used to guide decision making for the
baseline survey. The success will be validated via an appropriate monitoring plan in
the ongoing pilot program.
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M. Sharma (B)
The National IOR Centre of Norway, University of Stavanger, Stavanger, Norway
e-mail: mohan.sharma@uis.no

Z. P. Alcorn · S. B. Fredriksen · M. A. Fernø · A. Graue
Department of Physics and Technology, University of Bergen, Bergen, Norway

© Springer Nature Singapore Pte Ltd. 2020
K. H. Singh and R. M. Joshi (eds.), Petro-physics and Rock Physics
of Carbonate Reservoirs, https://doi.org/10.1007/978-981-13-1211-3_6

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1211-3_6&domain=pdf
mailto:mohan.sharma@uis.no
https://doi.org/10.1007/978-981-13-1211-3_6


72 M. Sharma et al.

Nomenclature

BOPD Barrels of oil per day
BWPD Barrels of water per day
CCE Constant composition expansion
CCUS Carbon capture utilization and storage
EoS Equation of state
epcap Foam model parameter in Fshear

epdry Foam model parameter in Fwater

epsurf Foam model parameter in Fsurf

fmcap Foam model parameter in Fshear

fmdry Foam model parameter in Fwater

FM Mobility reduction factor
fmmob Maximum gas mobility reduction factor
fmsurf Foam model parameter in Fsurf

KPI Key performance indicator
MMscfd Million standard cubic feet per day
MPZ Main pay zone
OIIP Oil initially in place
PR Peng-robinson
ROZ Residual oil zone
SAG Surfactant-alternating-gas
Sorw Residual oil saturation for water
UP Uncertainty parameter
USBM U.S. bureau of mines
WAG Water-alternating-gas (CO2)

1 Introduction

CO2 injection has proven to be an attractive technique for improving oil recovery in
mature fields, which have been waterflooded for several years (Jarrell et al. 2002).
Although CO2 has properties making it favourable compared to other solvents, it
also suffers from phenomena like gravity segregation, viscous fingering and chan-
nelling, eventually leading to poor volumetric sweep. Previous studies (Heller 1994;
Kibodeaux and Rossen 1997; Turta and Singhal 1998; Fernø et al. 2015a) confirm
the effectiveness of foam for mobility control at the core-scale. Figure 1 (Haugen
et al. 2014) shows that for oil-wet fractured core plugs, use of foam can significantly
improve tertiary recovery and sweep efficiency, especially undermiscible conditions.
Based on these studies, it is well understood that foam can improve conformance for
solvent-based EOR by reducing gas mobility away from the injectors and selectively
isolating high permeability zones within the reservoir.
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Fig. 1 Comparison of oil recovery (in % OOIP) for pure CO2 injection and CO2-foam injection
in oil-wet core plugs (Edwards Limestone). Mobility control by foam injection increased both rate
of recovery and ultimate recovery significantly. Miscible foam injections produce more oil than
immiscible foam injections

The challenge is to ensure the scalability of displacement mechanisms to a larger
scale, and development of a fit-for-purpose approach thatwill assist in advancingCO2

foam technology to high risk and high-cost environment. So, a field pilot research
program has been initiated which aims at integrating traditional laboratory studies
with data acquired from field pilot studies to get insights into fluid dynamics at
multiple scales.

A few field pilots have been run in the past with varying extent of success. One of
the earliest field pilot for foam-assisted CO2 EOR was performed in the Wilmington
field, located in southern California in 1984, which achieved the primary objectives
(Holm andGarrison 1988). Since then field tests have been performed in RockCreek,
Virginia (Heller et al. 1985), RangleyWeber Sand Unit, Colorado (Jonas et al. 1990),
NorthWard/Estes, Texas (Chou et al. 1992), Slaughter, west Texas andGreaterAreth,
southeast Utah (Hoefner and Evans 1995), East Vacuum Grayburg/San Andres Unit,
NewMexico (Harpole and Hallenbeck 1996), SACROC, Texas (Sanders et al. 2012)
and Salt Creek (Mukherjee et al. 2014, 2016) with success to varying extent. Due to
low oil prices and technical challenges involved in the process, foam has not been
tested since the mid-90s. However, a continued decline in conventional production
and growing concern about climate change associated with emission of greenhouse
gases has renewed interest over recent past in use of foam for mobility control as
part of Carbon Capture, Utilization and Storage (CCUS).
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This research works aims at scaling up CO2 foam EOR from laboratory to field.
In order to accomplish the objective, a heterogeneous carbonate reservoir has been
identified onshore in west Texas, USA. Various stages of the project have been ini-
tiated, and the paper aims at providing an overview of different elements involved
in this multidisciplinary research. Given the fact that there is limited data available
for detailed reservoir characterization, a probabilistic approach has been applied to
understand the impact of individual uncertainty parameter on key performance indi-
cators. This has been used to transition the project through the ‘Concept Select’ and
‘Define’ phases to ‘Execute’ phase. As an outcome, an appropriate data acquisition
strategy has been decided and agreed with the operator, to improve the baseline
model, which will be used as a vehicle to obtain an injection strategy subject to the
reduced level of uncertainties.

2 Methodology

2.1 Field Overview

The Unit-A of the field selected for pilot study, which is located in the Permian
basin, west Texas (Fig. 2), was developed throughout the 1940s and produced 12%

Fig. 2 Field layout and location of selected pilot area
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Fig. 3 Effect of tilting on initial hydrocarbon distribution

of mapped oil initially in place until late 1960s. Waterflood began in the early 1970s
with infill drilling to establish 40-acre peripheral waterflood patterns. TheUnit-Bwas
developed throughout the early 1980s. However, with a low primary plus secondary
recovery of only 22% of OIIP by the late 1980s, the operator realized the need to
reduce pattern size. An infill program was run to develop both the units on a 20-
acre five-spot pattern. The infill drilling yielded excellent results with an increase
in production from 400 to 1200 BOPD. However, a steep decline in production and
high remaining oil saturations after waterflood indicated the potential for tertiary oil
recovery.

It has been well identified from the regional data that the reservoir consists of
two zones (Fig. 3): Main Pay Zone (MPZ), and Residual Oil Zone (ROZ). MPZ
has produced by primary depletion and water flooded for over 50 years. ROZ is
thought to be formed by structural tilting or seal breach events and has been naturally
waterflooded over the geologic time. ROZ has significant immobile oil (20–40% of
OOIP), which cannot be technically drained by primary or secondary mechanisms.

Tertiary CO2 injection for EOR started in south-eastern part of the Unit-B in Oct-
2013 to target remaining oil, both in MPZ and ROZ with commingled production
and injection. This resulted in an increased production rate from 10 to 15 BOPD.
However, the peripheral producers of the pattern have already experienced CO2

breakthrough, with the breakthrough occurring as early as within 4 months from
the start of CO2 injection. The reservoir heterogeneity and unfavourable mobility of
CO2 thus makes the reservoir a good candidate to improve sweep and reduce CO2

recycling by foam injection.
Aligned with the operator’s plans for field development, and to minimize the

amount of time required to gather data, an injector-producer well pair was selected
for the first foam injection trial. The selection of a well pair is advantageous for the
use of CO2 foam as interwell distances are greatly reduced, and reservoir response
to foam can be seen at a much shorter time intervals. After a careful analysis of
possible well pairs in the south-eastern portion of the Unit-B, a well pair consisting
of injector I1 and producer P5 was identified. Some of the criteria governing the
choice of the pilot area included continuity of reservoir flow zones, well injectivity,
gas breakthrough time, well arrangement and well workover requirements.
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3 Laboratory Studies

A range of surfactants including cationic, non-ionic and zwitterionic were evaluated
to identify a formulation that will satisfy the requirements for CO2 foams in car-
bonate reservoirs (Nguyen et al. 2015). Foam generation, texture and stability was
examined as a function of the surfactant structure and formulation variables such as
pressure, temperature, surfactant concentration, water salinity and oil concentration.
The partitioning of surfactants between CO2 and water, as well as oil and water
was evaluated along with adsorption to develop the injection strategy for field-scale
application. A non-ionic water-soluble surfactant fromHuntsman—Surfonic L24-22
was selected for the field pilot based on surfactant screening studies for the reservoir
(Jian et al. 2016). Surfonic L24-22 is a linear alcohol ethoxylate, which is produced
by the addition of ethylene oxide (EO) to linear, primary alcohols. It is a 22-mole
ethoxylate of linear, primary 12–14 carbon number alcohol.

Because of material unavailability from the field (i.e. reservoir core and crude
oil), limestone core from an analogous reservoir was used to obtain parameters for
foammodelling. The cores were 100% saturated with synthetic reservoir brine made
from analytical grade chemicals. A surfactant solution was made by adding 1 wt%
Surfonic L24-22 to the reservoir brine. The core-scale system was made up of two
2” limestone cores stacked vertically providing a total length of ~25 cm. The cores
were pre-flushed with surfactant solution prior to foam injection to reduce adsorption
effects. To investigate the stability and generation of foam, gas and surfactant solution
were co-injected at a total rate of 50 ml/h (~2 ft/day) starting at a foam quality of 0.9
(i.e. CO2 and surfactant solution was simultaneously injected at a ratio of 9:1). The
pressure differential was measured across the cores as foam was generated in situ.
When differential pressure reached steady-state, the foam quality was reduced in
steps of 0.1 to obtain a foam quality scan (Osterloh and Jante 1992; Xu and Rossen
2004; Kim et al. 2005). The process was repeated until a foam quality of 0.1 was
achieved. The experiment was performed at supercritical conditions of 85 bar and
60 °C.

There are two general approaches available to model foam transport. The first,
explicit-texture population-balance model (Falls et al. 1988; Rossen et al. 1999),
allows direct simulation of foam creation, propagation, and coalescence effects that
can be observed in laboratory core experiments (Fernø et al. 2016). The second
approach, an implicit-texture local-equilibrium model (Cheng et al. 2000; Alvarez
et al. 2001), uses an empirical relation to capture the effect of surfactant concentration,
water saturation, oil saturation (Law et al. 1992; Farajzadeh et al. 2012), shear-
thinning due to flow velocity on foammobility. The gas permeability in the presence
of foam (k f

rg) is modified by multiplying the gas relative permeability without foam
(kn frg ) at a specific water saturation with a mobility reduction factor (FM), which is a
function of aforementioned factors. The water permeability in the presence of foam
remains unchanged.

k f
rg = kn frg × FM (1)
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Because of complex foam dynamics and challenges associated with extracting
model parameters from them coreflood experiments for the mechanistic population-
balance approach, the second approachwas foundmore appropriate for foam scoping
studies at field pilot scale. We studied the effect of water saturation, shear rate and
surfactant concentration on mobility reduction factor in numerical modelling, given
by the expression:

FM = 1

1+ fmmmob× Fwater × Fshear × Fsurf
(2)

fmmmob refers to the maximum gas mobility reduction that can be achieved.
Fwater, Fshear and Fsurf with expressions below capture the water saturation, shear
rate and surfactant concentration dependence, with all lying in the range of 0–1. The
capillary number Nca represents the relative effect of viscous and capillary forces.

Fwater = 0.5+ arctan
[
epdry(Sw − fmdry)

]

π
(3)

Fshear =
{(

fmcap
Nca

)epcap
if Nca > fmcap

1 otherwise
(4)

Fsurf =
(
Surfactant concentration

fmsurf

)epsurf

(5)

The apparent foam viscosity was calculated at a steady state based on the data
generated from the laboratory coreflood experiments. Regression was performed to
obtain values for fmmob, fmdry and epdry (Ma et al. 2012), and an acceptable match
to measured data was obtained at values of 180, 0.4 and 10,000 for these parameters
respectively (Fig. 4). The values for fmcap and epcapwere based on previous studies.
The critical saturation at which foam collapses was considered as 0.475 for this study.
fmsurf, which corresponds to reference concentration for transition from weak to

Fig. 4 a CO2-brine relative permeability for analogous limestone. b Foam quality scan data fit to
empirical model
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strong foam was assumed to be ten times the critical micellar concentration (0.01
wt%) measured in the laboratory. epsurf was assumed to be 1.

4 Geologic Model

The field produces from the San Andres reservoir, a heterogeneous carbonate for-
mation consisting of subtidal to supratidal deposits. The formation was deposited
during a regression of Guadalupian seas with minor rises in sea level creating a
cyclical sequence of subtidal and intertidal deposits, interbedded with shaley mud-
stone layers. Mudstone layers act to limit vertical communication throughout the
reservoir and can be thought of as barriers to flow. Subtidal dolostone facies make
up the bulk of the reservoir rock, which are typically located deeper within the over-
all pay section. Reservoir rocks have well-developed intercrystalline porosity, which
has later been enhanced through leaching and subsequent dedolomitization (Wang
et al. 1998).

To assist the pilot design, a sector model for the selected well pair and peripheral
producers was setup. The reservoir heterogeneity makes investigation of the conti-
nuity of reservoir flow zones in interwell region challenging. Identification of rock
units with appreciable reservoir characteristics was based on the analysis of available
petrophysical logs and well core. The information was used to establish a geologic
framework for the pilot area (Alcorn et al. 2016).

Drill core and well log data were correlated in the pilot area. Gamma-ray, neutron,
density, and resistivity logs were used to tie the core analysis to log data and define
flow units. Porosity was calculated from the neutron and density logs; lithology
and saturation was determined from gamma-ray and resistivity logs, respectively.
The porosity for reservoir zones range between 0.12 and 0.15, whereas permeability
varies between 1 and 300 mD with an average of 15 mD. Four and two flow zones
were identified inMPZ and ROZ, respectively, each separated by impermeable units.

A three-dimensional reservoir model was built for the pilot area using the struc-
tural and geocellular modelling capabilities of Petrel (Schlumberger 2015, 1). The
tops of the reservoir flow zones and impermeable zones were mapped, which were
used to build the geologic framework. The grid has dimensions of 63 × 61 × 46
with approximately 120,000 active cells. The grid cells are 50 × 50 ft areally, and
layer thickness varies from 1 to 10 feet depending upon mapped stratigraphic units.
The facies model was prepared based on the hard data (cores and logs) available
from the wells. Porosity, permeability, and water saturation available for each well
provided values for grid cells penetrated by those wells. Since limited information is
available to characterize the reservoir, the modelling workflow began with a frame-
work obtained deterministically, and moved towards a stochastic approach to obtain
interwell property distribution. Static properties were extended to interwell regions
through the calibration of individual petrophysical well data to the modelled facies
distribution. Stochastic simulation of petrophysical properties was used with strati-
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Fig. 5 Permeability distribution in base geologic model

Fig. 6 Cross-section (permeability) across I1 and P5

graphic constraints to populate grid cell properties in interwell regions as shown in
Figs. 5 and 6.

5 Simulation Model

A conventional finite-difference compositional model (ECLIPSE, Schlumberger
2015, 1) was setup using the tuned EoS model (Islam and Farouq-Ali 1990; Rossen
2013; Masoudi et al. 2015). In ECLIPSE, aqueous phase is traditionally modelled
using a single component. We introduced a second component to model the surfac-
tant component for the foam model. Foam adsorption and desorption were modelled
using reversible chemical reaction. A component to model surfactant adsorbed to the
rock was introduced. The effect of solid deposition on pore volume (or permeability)
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reduction was not included in the modelling. Foam decay was also modelled using
a chemical reaction to convert the surfactant component to water. Other foam model
parameters were specified as obtained from laboratory studies. Grid cells with per-
meability less than 5 mD were identified as a region property, and were assigned an
fmmob of 0. All other grid cells were assigned the value obtained from laboratory
study, whichwas varied during uncertainty study as explained in the next section. The
mathematical details of the foam model and chemical reaction model are available
in the ECLIPSE Technical Description, and are not discussed here.

Fluid and rock characterization is important for reservoir performance prediction.
Available data, including well surveys, was analyzed to prepare inputs for an inte-
grated baseline model. The composition for an oil sample from MPZ was measured
in the laboratory (Honarpour et al. 2010). Because oil in ROZ is immobile and sig-
nificant quantity of oil could not be collected, the operator used a recombined sample
of stock tank oil from MPZ and synthetic gas (adjusted for gas composition from
ROZ) for PVT studies (Table 1). Data for routine tests and swelling experiment was
available for oil sample from MPZ, which was used to tune Peng-Robinson (PR)
equation of state (EoS) model.

TheMinimumMiscibility Pressure wasmeasured using Slimtube test as 1500 psi.
An 8-component model, which included 4 C7+ components, was setup. The lighter
components were lumped as CO2, N2 + C1, H2S + C2 + C3, C4 + C5 + C6. The
C7 + fraction from the reported composition was split using Gamma distribution,
followed by Gaussian quadrature based lumping and critical property estimation
using Lee-Kesler. Pc, Tc and volume shift for 4 C7 + components; and binary
interaction coefficients for CO2 and hydrocarbons were tuned to get a match on
routine PVT and swelling test data. The tuned EoS was then used to match the

Table 1 MPZ and ROZ fluid
composition

Component Fluid composition (mol%)

MPZ ROZ

N2 0.51 0.04

CO2 2.47 0.02

H2S 1.96 0

C1 24.65 20.1

C2 9.1 9.07

C3 7.57 6.95

iC4 1.41 0.04

nC4 4.03 3.9

iC5 1.76 0.04

nC5 2.03 2.49

C6 3.54 2.69

C7+ 40.97 54.66
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oil viscosity data using Pedersen model. Previously mentioned parameters were
excluded from the regression while tuning viscosity.

Figures 7 and 8 show the fluid model fit to available experiment data from dif-
ferential liberation, swelling and constant composition expansion tests (test data as
circles and tuned model as line). The cores recovered using pressure-retaining coring
in an infill well for ROZ were used to measure oil and water saturation, mainly using
Dean Stark extraction. Remaining Oil Saturation (ROS) ranged between 10 and 40%
with an average of 31.7%, and did not show any significant correlation with rock
properties like porosity, permeability or square root of the ratio of permeability to
porosity. ROSmeasured on cores recovered using Sponge coring on fourwells ranged
from 10-38% with an average of 29.8%. This was in good agreement with data on
pressure-retained cores. The observed water saturation in the ROZ is much higher
than the Swirr from the primary drainage capillary pressure due to natural water
flooding that occurred during geological times. The water-oil relative permeability
curve (Fig. 9) has been obtained by tuning the parameters for Corey-type model to
available laboratory coreflood data. Straight-line relative permeability function has
been used for miscible oil displacement by CO2 in numerical modelling.

Due to availability of limited production data, information derived from petro-
physical logs and well surveys that were run prior to start of CO2 injection, coupled
with base geology model, forms the basis for reservoir simulation studies. The reser-
voir pressure for I1 was recently measured to be 3714 psia at 5300 ft. This depth is
slightly above the topmost reservoir horizon for the pilot area, and was considered

Fig. 7 Fluid model fit to PVT data: Differential Liberation

Fig. 8 Fluid model fit to PVT data: Swelling and CCE/Viscosity (Oil + CO2)
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Fig. 9 Water-Oil imbibition
relative permeability

reference for simulation studies. The pressure recorded was higher than hydrostatic
(2300 psi at reference depth), which increased during CO2 injection over the past
4 years. The operator is considering depressurizing the reservoir by completing a
disposal well in a separate reservoir zone. Injection profiling was done for the reser-
voir zone in I1 under flowing conditions with CO2 injection at 1.2 MMscfd with
approximately 300 psi pressure drop across perforations, suggesting good injectivity
in MPZ and ROZ. The profile was used to tune the well model. Base CO2 injection
rate of 2 MMscfd and base water injection rate of 1000 BWPD has been used as well
control for I1, in-line with current field observation. The wellhead injection pressure
is constrained to keep bottom-hole pressure 250 psi below the formation fracture
pressure.

Capturing thewell injectivity is critical for designing the injection strategybecause
the injection of a low-mobility fluid-like foamwill increase the operating bottom-hole
pressure to maintain set injection rate, and eventually a reduction in injection rate
when bottom-hole pressure reaches a set upper constraint. The issues that complicate
the prediction of well injectivity is the shear-thinning behaviour of foam, which can
lead to an underestimation of injectivity with the use of Peacemen equation in the
injection well grid block (Leeftink et al. 2015). Specifically during SAG, foam dries
out below a critical water saturation near-wellbore during the gas cycle. The abrupt
collapse increases gas mobility and injectivity significantly in the near well region.
We addressed this issue by grid refinement around the injector at the cost of increased
runtime.

To stay aligned with the operator’s philosophy of reservoir management, SAG
injection was planned for pilot study to avoid any corrosion problems in surface
facilities. We studied a scenario consisting of three alternate slugs of surfactant and
CO2 injection with one-month frequency, each at a similar voidage rate. A pre-flush
slug of water precedes the surfactant-alternating-CO2 injection. The water injected
in this stage will be compatible with subsequent chemical water injection, and will
contain a sacrificial agent to minimize surfactant losses from the surfactant slugs.
The last CO2 cycle is followed by chase water injection for two months, which will
be continued to completion of the pilot during subsequent modelling work and field
operations.
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6 Pilot Simulation Study

It iswell understoodwithin the integrated reservoirmodellingdomain that forecasting
has to take into account the existence of a wide range of uncertainties that are caused
by the complexity and access to limited information about subsurface systems. As a
result, even themost carefully constructedmodels donot exactly represent reality, and
their fundamental equations do not exactly describe the actual physical behaviour.
To recognize the effect of all sources of uncertainty, we implemented a probabilistic
forecasting workflow (Fig. 10). The model-based forecast is accompanied with an
estimate of the uncertainty in the forecast, which can be made using an ensemble of
forecasts.

It is then implicitly assumed that a (tuned) set of values for model parameters
would describe (imprecise) observations of past and future behaviour.With the avail-
ability of well pressure and production data, the workflow typically involves using
post-history match probability distributions for the uncertain parameters (Fernø et al.
2015b). For our study, we found it sufficient to construct a set of equiprobable fore-
casts using the agreed range for uncertainty parameters (UPs). Theworkflow requires
identifying the Key Performance Indicators (KPIs) for the prediction phase during
the uncertainty framing session. For the pilot, these included incremental fluid vol-
ume production at the end of the pilot, injection pressure and breakthrough time for

Fig. 10 Workflow for forecasting under uncertainty
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surfactant. There is limited information available for characterizing reservoir, rock
behaviour and foam model parameters. Therefore, parameters available for ROZ
were used for MPZ, where applicable; and an uncertainty matrix (Table 2) was setup
after discussion with stakeholders.

7 Results

7.1 Sensitivity Analysis

Sensitivity analysis was run to evaluate how uncertainties in the model inputs affect
the model outputs. This involves generating simulations by varying one UP at a time
from base value to low and high values. Tornado diagrams for KPIs were inspected
after performing sensitivity analysis, where x-axis of such a diagram shows the
relative change in the value of the selected KPI from the base case. Each UP in the
model has its own bar, where red and blue bars correspond to low and high values
of that UP, respectively. The width of each bar shows how much impact that UP can
have on a selected KPI when varied through a range. The diagram is essentially a
ranked list of UPs that was considered for designing surface operation plan and data
acquisition program.

Based on the discussion with the operator, the bottom-hole pressure for injector
was found to be an important KPI because of flowing bottom-hole pressure close
to fracture pressure. Foam generation is expected to reduce injectivity, and the rates
will have to be constrained while maintaining injection pressure during the pilot.
Figure 11a shows the tornado diagram for bottom-hole pressure for injector at the
start of surfactant injection. As shown in the figure, the bottom-hole pressure for
injector at the start of surfactant injection is more sensitive to permeability, water
injection rate and initial fluid saturation compared to others. Figure 11b shows that the
bottom-hole pressure for injector during the first CO2 slug injection (post surfactant
slug) is also sensitive to foam model parameters, especially those controlling shear-
thinning.

Various other KPIs were also identified like incremental oil production, amount of
surfactant required, volumes ofwater andCO2 required, drop in gas–oil ratio, etc., out
of which the first two were of more importance to the operator. Figure 12a shows the
tornado diagram for the cumulative oil production for pilot phase, which suggests that
even though foammodel parameters influence the additional recovery, the uncertainty
in oil saturation forMPZ has the highest influence on it. The data acquisition program
should, therefore, aim to reduce the uncertainty range in remaining oil saturation in
the MPZ before the start of the pilot. Figure 12b shows that the amount of surfactant
required depends relatively more on permeability, water injection rate and initial oil
saturation than other uncertain parameters.
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Table 2 Uncertainty matrix for pilot simulation study

Parameter Description Low Base High Unit Distribution

Static model

POROMULT Pore volume
multiplier

0.9 1 1.1 Uniform

PERMMULT Horizontal
permeability
multiplier

0.75 1 1.25 Uniform

KVKH Vertical to
Horizontal
permeability ratio

0.05 1 0.2 Uniform

Foam model

FMMOB Reference foam
mobility reduction
factor

160 180 200 Uniform

FMDRY Water saturation
dependence
parameter

0.397 0.4 0.403 Uniform

EPDRY Water saturation
dependence
parameter

1000 10,000 50,000 Uniform

FMCAP Shear-rate
dependence
parameter

1e-09 1e-08 1e-07 Uniform

EPCAP Shear-rate
dependence
parameter

0.1 0.5 2 Uniform

Initialization

SWIMPZ Water saturation @
Start of
Sim—MPZ

0.5 0.55 0.6 Uniform

SWIROZ Water saturation @
Start of Sim—ROZ

0.62 0.68 0.75 Uniform

Well model

WATINJRATE Injection
rate—Water slug

800 1000 1200 BWPD Uniform

GASINJRATE Injection
rate—Gas slug

1.6 2 2.4 MMscfd Uniform

MAXINJPRES Maximum
injection pressure

4800 5000 5200 psia Uniform

PIMULTWATINJ Injectivity
multiplier—Water
slug

0.8 1 1.2 Uniform

(continued)
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Table 2 (continued)

Parameter Description Low Base High Unit Distribution

PIMULTGASINJ Injectivity
multiplier—Gas
slug

0.8 1 1.2 Uniform

Fig. 11 Sensitivity analysis capturing the key uncertainty parameters influencing bottom-hole
pressure for injector under. a Surfactant injection. b CO2 injection

Fig. 12 Sensitivity analysis capturing the key uncertainty parameters influencing. a Cumulative
oil production. b Cumulative surfactant injection for pilot

7.2 Experimental Design

Sensitivity analysis was followed by experimental design study to evaluate uncer-
tainty in predictions. Some of the UPs could be removed as most of the KPIs did
not show much sensitivity to variation in them, however, we carried all the UPs for
further analysis as simulations could be run within available time. Moreover, there is
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the possibility that some parameters may have an influence on the simulation model
in conjunction with other parameters, which gets captured in this step.

TheUP ranges were sampled again using the Latin Hypercube technique to gener-
ate approximately 10 times the ‘number of UPs’ simulation cases. Latin Hypercube
takes the cumulative distribution function and splits the cumulative probability into
equally large compartments. The number of compartments, and as a result the extent
of detail, is determined by the number of simulations created. Each forecast used
the same unique set of uncertainty parameter values for sampling to ensure that the
entire parameter space is represented in the design matrix. After creating production
profiles, discrete P90, P50 & P10 cases can be selected.

The preliminary study focussed on estimating the volume requirements for injec-
tant fluid (water, CO2) and surfactant. Figure 13 shows the cumulativewater injection
for the pilot duration, including pre-flush and chase period. The mean of all the fore-
casts obtained from simulation, or the ensemble mean, provides good information
on the most likely amount of water required during the pilot, subject to known
unknowns. Similarly, Fig. 14 shows the volume of CO2 required during the pilot
phase. The amount of surfactant required for the pilot subject to various combination
of UPs is shown in Fig. 15, which suggests that 275,000 to 425,000 lb (lbs) of sur-
factant will be required for the pilot. The spread of the ensemble forecast indicates
the confidence we can have in the predictions, where a large spread here indicates
more uncertainty in predictions.

Fig. 13 Uncertainty in
volume of water required for
pilot duration
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Fig. 14 Uncertainty in volume of CO2 required for pilot duration

Fig. 15 Uncertainty in amount of surfactant required for pilot duration

8 Discussion

The results from the pilot simulation study were discussed with the operator, to agree
on field operations’ plan including data acquisition. The operator measured the water
injectivity for the proposed injector for pilot phase, which was a producer until 2013,
and was on continuous CO2 injection since then. The water injectivity was found
to be around 600 bbl/d which is lower than the range (800–1000–1200), including
the injectivity index multiplier (0.8–1–1.2), that was considered for this study. Given
the fact that surfactant cost will be a significant share of the overall pilot cost, it
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was agreed to keep the total amount of surfactant to 200,000 lbs, and optimize the
injection strategy in the next phase of pilot design.

Because of limited margin on increasing injection pressure, the operator will drill
a disposal well in a separate deeper reservoir to facilitate reservoir depressurization
before initiating the pilot. However, because of availability of the core from previous
wells and understanding of vertical communication, no coring and vertical pressure
profiling has been planned for this well. One of the CO2 injectors in a similar pattern,
further south of the pilot area, will be converted form continuous CO2 injector to
Water-alternating- CO2 (WAG) injector, with 2:1water-gas slug size ratio. It has bene
planned to use the change in injectivity during multiple WAG cycles and additional
recovery as a baseline to the proposed SAG pilot.

The data acquisition program has been designed to reduce uncertainty on some of
the heavy-hitters like interwell connectivity andfluid saturation. In addition to surface
monitoring, the plan for data acquisition, based on this study, includes injection
profiling, tracer study and cross-well seismic. An interwell gas tracer study will be
performed to understand the baseline volumetric sweep pattern for each producer
with respect to the proposed injector I1. The petrophysical logs that are available for
the wells will be reprocessed to estimate the remaining oil saturation post waterflood
based on information from similar reservoirs in west Texas. Measuring saturation by
running new petrophysical log or performing partitioning interwell tracer study was
found to be expensive. The numerical model will be initialized using these saturation
and calibrated for historical CO2 injection, before simulating foam injection. The
planned surveys will thus help reduce the uncertainty in performance prediction.

Foam model parameters based either on experiments performed with a limestone
core from an analogous reservoir or on assumptions were also found to impact the
KPIs. It was decided to perform experiments with reservoir core and fluids under
representative conditions to obtain a more reliable foam model.

9 Conclusions

The design and performance prediction for the field pilot relies heavily on the numer-
ical model generated by integrating multidisciplinary inputs. Given the fact that a
limited data is available for reservoir characterization, the uncertainty analysis pro-
duces a basis for pilot performance expectations prior to start of field operations. We
presented the analysis for one specific scenario with three SAG cycles. The results
of this analysis were used to design the data acquisition program, within available
resources, to assist in improved reservoir characterization. Laboratory work is cur-
rently ongoing to investigatemobility control duringCO2 injection and foam stability
using selected surfactant at reservoir pressure and temperature using core material
from the formation. Additional baseline surveys will shed more light on interwell
connectivity and fluid distribution. The reservoir model is thus expected to grow in
complexity over time as more data becomes available, which will be used as a basis
to derive an optimal injection strategy.
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Chapter 7
Integrated Reservoir Characterization
Using Petrophysical and Petrographical
Analysis

Archit Gupta and Gaurav S. Gairola

Abstract A sizeable chunk of spending in an exploration and production activity is
expended to characterize a potential hydrocarbon reservoir. Despite the spectacular
advances in reservoir characterization techniques and in 3D and 4D modelling, the
risks involved in the exploration of new, deeper or diagenetically complex prospects
remain large. However, diversity of reservoir rocks and inherent heterogeneity, meth-
ods for reservoir characterization, oil field-dependent pore structural model and vary-
ing petrophysical flow units pose a great challenge. There is an emerging trend of
integration of petrophysical and petrographical analysis to tackle the challenges in
reservoirs. Research shows that more than 60% of world’s oil and 40% of world’s
gas reserves are held in carbonates. So, the characterization of carbonate reservoirs
becomes a major concern. But producing oil and gas from carbonate reservoir is a
challenging task. Since carbonate reservoirs are often naturally fractured that show
varying wettability characteristics and complex porosities which significantly affects
their multi-phase flow properties, production from such reservoirs pose a challenge.
In carbonate reservoirs with time, rocks containingwater and oil turns initially water-
wet rocks intomixed-wet or even oil-wet rocks which is not the case with a sandstone
reservoirs which are mostly water-wet. Therefore, characterization of wettability and
its effect on fluid flow for a heterogenous reservoir would be crucial in computing
the producible reserves. This paper deals with the analysis of conventional core sam-
ples from the Vindhyan Basin of India for reservoir characterization. It is envisaged
that the work will provide a model which can be sued to determine the reservoir
architecture, establish the fluid flow trend and identify growth potential of a reser-
voir. Here, the work focuses on reservoir characterization using petrophysical and
petrographical analysis. Porosity studies in reservoirs require accurate mineralogical
characterization. This is achieved by a petrophysical analysis which involves X-Ray
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Diffraction (XRD) analysis which will help in determining the properties of reservoir
like porosity, permeability, lithology, water saturation and density. The petrograph-
ical analysis involves the preparation of samples for the thin section that are then
observed under the microscope. These thin sections reveal the detailed description
of rocks that provides information about depositional facies, diagenetic history and
porosity system. The integrated approach and structured methodology developed in
this study will result in developing a good simulation model with adequate resolution
of data that simulate the production history with sufficient realism.

Keywords Reservoir characterization · Heterogeneity ·Wettability ·
Petrophysical · Petrographical · Thin sections · XRD

1 Introduction

In recent years, the demand for oil and gas has surged. Sustaining global oil and gas
demands requires proper advanced techniques for the characterization of potential
reservoirs. Appropriate technology for reservoir characterization should be able to
get adequate information about the reservoir properties, geology and quantify the
uncertainties associated with the reservoir. The characterization of a reservoir is an
integral part of reservoir management that can optimize the decision making and
economics for the hydrocarbon field development.

Reservoirs are fundamentally divided into Carbonate and Sandstone Reservoirs.
Both siliciclastic and carbonate sediments are nearly different in every aspect: origin,
deposition, diagenesis, oil filling and evaluation. Siliciclastic rocks can be evaluated
and characterized by the traditional approach but for carbonate reservoir, it gives
erratic measurements. The global market says that 60% of the world’s oil and 40%
of the world’s gas reserves are held in carbonate reservoirs (Schlumberger 2007).
However, it is found that the carbonate reservoirs are far more complex than the
sandstone reservoirs as deposition of sandstone is allochthonous while carbonates
are autochthonous that makes it more prone to the chemical and physical processes
that alter the fundamental characteristics of the rock such as porosity and perme-
ability. At the time of deposition, carbonate reservoirs have very high porosities but
it gets reduced sharply as the diagenesis proceeds. As a result, carbonate reservoirs
possess heterogeneity that may exist at all scale in the pores of the grains and tex-
tures. The complexities associated with carbonate reservoir challenges the reliability
and production performance of the well. The challenges of these reservoirs require
adapted production strategies to enhance oil and gas production.
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In this paper, the primary focus is on certain efficient techniques like thin section
analysis (Petrographical) and XRD analysis (Petrophysical) for carbonate reservoirs
that provides accurate measurements of the reservoir to co-relate our finding with
the older findings for the efficient characterization of the reservoir. The thin sections
provide the detailed information of rocks that can help us assess the depositional
facies, diagenetic history and porosity system whereas the XRD analysis provides
complete mineralogical characterization that can help us in determining the reservoir
properties like lithology, porosity and permeability. The integration of petrophysi-
cal and petrographical analysis can help maximize the production, identifying the
uncertainties and reduce the risks related to carbonate reservoir.

2 The Study Area

In this study, the conventional core sample is taken from Rohtas formation of Lower
Vindhyan basin which is an intracontinental basin (Biswas et al. 1993) which also
happens to be the largest among all the ‘Purana Basins’ and also the next biggest
among all the Proterozoic basins (Chakraborty 2006). The exact location of thewell is
confidential therefore the coordinates are notmentioned here (Fig. 1). The succession

Fig. 1 Geological map of the Vindhyan Supergroup
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delineates a thick sedimentary pile, about 6000mbelonging toMeso-Neoproterozoic
age.

The Vindhyan succession is formed of various depositional systems which are
marked by: braid delta, fan delta, alluvial fan, braidplain, tidal flat (carbonate as well
as siliciclastic), eolian sand sheet, homoclinal carbonate ramp, storm-dominated
shelf, shoreface (tide and storm-dominated), and epeiric peritidal flat (siliciclas-
tic) and distally steepened carbonate ramp. The Palaeo- to Neoproterozoic Vind-
hyan Supergroup are exposed as repeated transitions between non-marine deposits
and platform-type shallow marine (Bose and Chakraborty 1994; Bose et al. 2001;
Chakraborty 2006). The former is dominated by calcareous and argillaceous with
volcaniclastics which are known as Semri or Lower Vindhyan. The younger cycle
predominated by siliciclastic sediments known as Upper Vindhyan which includes
Kaimur, Rewah and Bhandar subgroups. The report from DGH (2019) about the
paleocurrent directions of the depositional systems in the Son valley shows it to be
northerly which indicates that the source lies towards the south.

The lower Vindhyan or Semri group is the oldest of the Vindhyan supergroup.
In Son Valley, it rests unconformably on various primitive rocks like metamorphics
and granites. In Bundelkhand region, the group blankets the Bundelkhand Granite
gnessis andBijawar group ofmetamorphics (DGH2019). Semri series is sub-divided
into four subgroups as the Basal stage, Porcellanite stage, Kheinjua stage and the
Rohtas stage (Chakraborty et al. 2012; Ray et al. 2002; Rasmussen et al. 2002).

Gas discovery in Nohta-B from Rohtas Limestone has opened up a new spectrum
for the prospectivity of Son Valley sector of Vindhyan Basin (Prasad 1984). So, the
selected region has the potential tight gas resource which contains good quality of
thermogenic gas (methane: 83–92%, calorific value 865–970 BTU/cubic feet) within
Meso-Proterozoic Rohtas Limestone. According to the previous research, these tight
gas formations are found to be thick and regionally extensive, commercial production
of gas is daunting in view of low matrix porosities (2–4%) and permeabilities. So,
the hydrocarbon present in the Vindhyan basin needs an unconventional approach
for its characterization (Mukherjee et al. 2015).

3 Methodology

3.1 Thin Section Analysis

1. Start by cutting 8–10 mm piece from the main sample using a cutter. Grind the
glass slide to make its surface rough to fix the sample onto the slide. Rub the
sample’s flat surface with Silicone carbide + water to make its surface rough.
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2. Fix the sample to the glass slide using Araldite then the samples can be placed
in the heater to assist in bonding the sample to the glass slide under pressure.

3. Then start grinding the sample surface with the grinding machine from 2.0 mm
to 80 μm.

4. The slides are now ready for polishing on the machine.
5. Change the diamond cutter plate to the polishing plate.
6. Remove the samples and clean the plate.
7. The slides are now ready for analysis.
8. Finally, the photograph of the thin sections is taken through a microscope.

4 XRD Analysis

The carbonate-rich samples were selected from the Vindhyan basin core samples.
Samples were powdered and sieved with a 63 μm mesh sieve to ensure a uniform
size and sifted onto a vaseline coated zero background plate to reduce preferred
orientation of grains. Then the prepared samples were sent for XRD.

1. Import the XRD data into the software for manipulation.
2. Set the manual ranges and the background.
3. Use the “search peaks” option and allow the software to display the distinct

peaks.
4. Fit every peak to the profile.
5. Strip the Kα2 peak and replace it.
6. Using the “search match” and allow the software to display the probability of the

minerals present.
7. Compare the peakswith standardXRDmineral chart present andmanually decide

the minerals present in the sample.

5 Results

The thin section analyses for the samples 1–18 obtained from various depths men-
tioned in Table 1 are shown in Figs. 2, 3 and 4.
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Fig. 2 Thin sections for samples 1–6 are shown in (a), (b), (c), (d), (e) and (f), respectively. The
dominant minerals and their relative percentages are shown in Table 1
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Fig. 3 Thin sections for samples 7–12 are shown in (a), (b), (c), (d), (e) and (f), respectively. The
dominant minerals and their relative percentages are shown in Table 1
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Fig. 4 Thin sections for samples 13–18 are shown in (a), (b), (c), (d), (e) and (f), respectively. The
dominant minerals and their relative percentages are shown in Table 1

6 Conclusions

The conclusions mentioned below are only valid for a particular depth of Rohtas
formation as the availability of data is limited. These conclusions can help in further
characterization of this formation on the proper availability of data in future.

(1) In Sample Nos. 1, 3, 4, 6, 7, 9 black spots are clearly visible which possibly
could be organic matter. Due to the presence of organic matter and kaolinite in
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thin section and XRD, we can infer that sequence is punctuated by thin shale
beds.

(2) XRD analysis of the sample indicates the dominance of calcite over dolomite
with quartz.

(3) Overall the calcite is decreasing and dolomite is increasing with depth which
indicates that calcite is converting to secondary dolomite. The increase in
dolomite concentration with depth is indicative of secondary porosity. Some-
times the precipitation of secondary dolomite greatly reduces the fracture and
Vuggy porositywhich indicate tight limestone formation (Al-Awadi et al. 2009).

(4) Microfacies analysis of the limestone through petrographical method shows that
samples are dominantly mudstone and micritic.

(5) From XRD results, it can be inferred that calcite and aragonite are converted to
dolomite so the formation is selectively dolomitized therefore it shows varied
effects of Replacement Neomorphism.

(6) In sample Nos. 2, 12 and 18 some brown alterations can be seen which could
possibly be hematite as confirmed from XRD results. The presence of hematite
is maybe due to either chemical weathering or oxidizing environment.

(7) The abundance of quartz detritus in Rohtas Limestone indicates the initiation of
the siliciclastic input along with the carbonate precipitation at Semri–Kaimur
boundary.
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Chapter 8
Lithology Identification Using Lithology
Impedance in Mumbai Offshore

Amrita Roy and Rima Chatterjee

Abstract The study area belongs to the marine geological setup of Surat depression
of Mumbai Offshore Basin, India. The lithology of three wells in Mumbai offshore
is analyzed using Gamma-Ray (GR) log, Density (ρ) log, Resistivity (Rt) log and
Neutron Porosity (Φ) log. This analysis makes the identification of the lithology
difficult. DSI log is recorded only for wellsW-1 but forW-2,W-3 shear wave velocity
data is not available. Major lithologies found in this area are sandstone, siltstone,
shale, limestone andmixed lithologies of sand, silt, shale. This study aims to construct
a lithology indicator parameterwhich is better in the identification of lithologies. This
lithology indicator parameter is named as Lithology Impedance (LI). This parameter
is calculated using density, P wave (V p) and S wave (V s) velocity. This indicator
shows a better contrast for different lithology and also follows a specific range. To
estimate the LI log value for W-2 and W-2, the Vp-Vs relation from W-1 is used,
as Vs is not available in W-2 and W-3. To prove its validity Regression Method
and Multilayered Feed forward Neural Network (MLFN) methods are used. Using
Regressing method the relation of LI log values are established in relationship with
the GR, V p, Rt, ρ and Φ. Validation of Regression method shows the Regression
model predicted LI shows poor fit R2 = 0.67 with the Estimated LI value while the
MLFN model predicted LI indicates satisfactory to good R2 values 0.95 with the
estimated LI value. This study successfully shows that the adopted method provides
a good understanding of lithofacies distribution and their quality.

Keywords Surat depression · Lithology impedance · Multilayered feed forward
neural network · Well log · Regression

1 Introduction

Estimation of subsurface reservoir quality, continuity and distribution is an important
aspect for the optimization of hydrocarbon production. The range of velocity, density
and resistivity of formation lithology varies greatly, which makes it difficult for inter-
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preters to decide the type of lithology. In this paper, the basin modelling/analyses
based on lithology over a part of the western offshore has been attempted. How-
ever, if we can incorporate several other parameters like velocity, density, formation
resistivity and gamma-ray values, then we can generate such an attribute that can be
helpful in identification of lithology. The study area belongs to the marine geological
setup of Surat depression of Mumbai Offshore Basin. This has remained an active
clastic ‘depocentre’ for amajor period during Tertiary, accommodating a huge pile of
sediments brought byNarmada-Tapti fluvial systems. The approach adopts cross plot
analysis; namelyV p/V s versus acoustic impedance, gamma-ray versus resistivity that
helps us in deciding our input parameters. The lithology impedance is a function of
the log parameters: gamma-ray, resistivity, density, porosity and acoustic impedance.
It is a rock physical attribute that is generated using regression modelling taking con-
ventional log data as independent input variables. Using Multilayered Feed forward
Neural Network (MLFN) the results have been verified. The lithology impedance is
able to identify sand, shale, limestone and basaltic trap from three wells namelyW-1,
W-2, W-3. From drilling report, it is found that these three wells show hydrocarbon
prospects and some show presence of coal in the lithostratigraphic section. In the
well W-1 data set is taken within a depth interval of 1430–2230 m, for W-2 and W-3
data is taken from 1400 to 1750 m and from 1600 to 2000 m. In W-1 gas shows were
observed during drilling at different intervals in the depth range 2140–2150 m.

2 Lithology Impedance

Quakenbush et al. (2006), Zhou and Hilterman (2010), and Sharma and Chopra
(2013) gave an idea about the combinations of Acoustic (AI) and Shear Impedances
(SI). This combination can be used as a successful tool to predict lithofacies and fluid
types in siliciclastic sediments. Such a parameter is named as Lithology Impedance
(LI). Mathematically, lithology impedance is given as

LI = AI − C*SI + Intercept value (1)

= AI(t) − [
(AI/SI)wet

]
avgSI(t) + Intercept (2)

where AI(t) = Acoustic Impedance trace, (ft/s)*(g/cc), SI (t) = Shear Impedance
trace, (ft/s)*(g/cc), C or [(AI/SI)wet]avg = Rotation Optimization Factor.

Intercept value is estimated from cross plot between AI (along the x-axis) and SI
(along the y-axis) which is shown in Fig. 1b. It is found that AI-SI relation from the
cross plot has a good fit over the whole log with an R2 = 0.90 and the relation is
found to be,

SI = 0.56 ∗ AI − 310.15 (3)
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Fig. 1 Plots for Vp versus V s in (a) and AI versus SI for W-1 in (b)

The whole study is based on this Eq. (2). The V p-V s relation, obtained from W-1
well log data is used to estimate V s value (Greenberg and Castagna 1992; Castagna
et al. 1985) of W-2 andW-3 as W-2 and W-3 well data don’t have V s log values. The
relation which is obtained from W-1 well is given by,

Vs = 0.60 ∗ Vp − 252.01 (4)

This equation has a good linear fitting of data with an R2 = 0.83 as shown in
Fig. 1. LI log for W-1, W-2 and W-3 are shown in Figs. 2, 3 and 4.

Figures 2, 3 and 4 show the GR, Rt, Density and LI log responses of W-1, W-2
and W-3 respectively. We can qualitatively identify lithology characterized by low
GR value and high GR values. But lithology cannot be quantitatively identified. This
is the same for electrical resistivity and density logs. But LI log response shows a
specific range of values for sandstone, shale, limestone and basaltic trap with an
identifiable contrast of range.

3 Prediction of Lithology Impedance Through Regression
Model

Geophysical logging has been extensively used to measure physical properties
of rock-like density, transit time of compressional and transverse waves, Natural
radioactivity, Neutron and density porosity, electrical resistivity of the formation
among many other properties (Gelman 2005; Koch and Link 1970; Omudu et al.
2007; Chang et al. 2006). In this study, GR, V p, Rt, (ρ/Φ)2 are used as independent
variables for the computation of Lithology Impedance (LI). In this study, a Multiple
Linear Regression Model is proposed for the study of LI, which makes the use of
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Fig. 2 GR, Rt, Density and LI log responses for W-1

four independent variables (previously mentioned) from two wells: W-1 and W-2
in the Mumbai offshore. An IBM SPSS statistical software is used for establishing
the relationship between four independent variables and the dependent variable LI.
It seems that the ANOVA model is perhaps the most widely used linear statistical
model with independent variables. Table 1 shows the number of samples used for
training and validation processes during regression method. Table 2 shows the good
fit achieved by the said method. Table 3 gives the Regression Model that is used as
the linear relationship between LI, GR, V p, Rt and (ρ/Φ)2.

The linear relationship between LI, GR, V p, Rt and (ρ/Φ)2 form the Multiple
Linear Regression Method is given by,

LI = 0.13 ∗ Vp + 11.14 D2 ∗ GR + 0.37 ∗ Rt + 0.04(ρ/φ)2 − 482.97 (5)

Here, the constant coefficient is a simple mean of group means of independent
variables. Standardized coefficient gives the idea about the influence of each predictor
and the beta and p values are significance (sig.) for each predictor (Table 3). The beta
value measures the influence of each predictor variable on the dependent variable. A
high beta value is indicative of the greater influence of the predictor variable on the
dependent variable.
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Fig. 3 GR, Rt, Density and LI log responses for W-2

Fig. 4 GR, Rt, Density and LI log responses for W-3
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Table 1 Number of samples used for training and validation process during regression method

S. no. Independent variables No. of samples

Training Testing

1 Vp 30 225

2 GR 30 225

3 Rt 30 225

4 (ρ/Φ)2 30 225

Table 2 Error estimation obtained from the use of regression method

Model R R2 Adj. R2 Std. error

1 0.797 0.635 0.615 14.37842

Table 3 Regression model applied to LI, GR, Vp, Rt and (ρ/Φ)2 to seek linear relationship among
the parameters

Model Unconstrained
coefficients

Standardized coefficients t Sig.

B Std. error Beta

(Constant) −482.967 11.7393 −4.114 0.000

Vp 0.128 0.033 0.354 3.896 0.001

GR 11.144 1.273 0.609 8.753 0.000

Rt 0.371 0.243 0.141 1.529 0.141

(ρ/Φ)2 0.040 0.071 0.041 0.555 0.584

4 Prediction of LI Through Multilayered Feedforward
Neural Network (MLFN) Model

In heterogeneous formation estimation of LI from logs becomes difficult to solve
and does not provide good result using the linear regression method. Artificial neu-
ral network tool is now considered to be a very successful tool for estimating the
petrophysical and rock physics model by integrating core and log data through an
effective modelling strategy (Lim et al. 2009; Singha et al. 2014; Chatterjee et al.
2016; Ghosh et al. 2016; Dayoff 1990). A Multilayered Feedforward Neural Net-
work (MLFN) model is derived from input parameters such as V p, GR, Rt, ρ, Φ

obtained from log data and LI as output parameter. The model consists of a single
hidden layer containing 8 hidden nodes with 100 epochs. The training data consists
of 30 data points taken from wells W-1 and W-2 involving input parameters: P wave
velocity, deep resistivity, gamma-ray, density and neutron porosity for sandstone,
shale, limestone, and basaltic trap lithologies. The desired output, LI was taken from
wells W-1, W-2, W-3 for total 275 data points.
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Fig. 5 Selection of optimum Epoch for the MLFN Method

The MLFN model consists of three layers—the input layer, the hidden layer and
the output layer (Paul S et al. 2017;Masters 1994). These operators are chosen in such
a way to ensures minimum sum-squared error (SSE) between the estimated LI from
log data and the predicted LI. One hidden layer is taken for study. The hidden layer
weights are selected for minimum SSE by doing trial models. SSE values for training
and validation are recorded for 10–220 epochs with 2–22 nodes in the hidden layer.
The IBM SPSS software used 70% of the total available data to train the network
while 20% was utilized for validation and the remaining 10% was used for testing.
As shown in Fig. 5 it is found that 100 epoch and 8 nodes are an optimum weight
for the network analysis. During training 4 clusters of 4 known lithologies (namely
sandstone, shale, limestone and basaltic trap) are considered, where the total no. of
training sample data is 30. Network training gives a good fit (R2 = 0.95) between
estimated LI from log data and predicted LI from network training (Fig. 6). Once the
data set is trained for a few known lithologies this network is then used to test 225
testing data points. Figure 6b displays a better fit of R2 = 0.86 between estimated LI
from log data and predicted LI fromMLFN model for total 275 sample data of W-1,
W-2, W-3.

5 Results

Table 4 shows the range of several conventional log values for different lithology
encountered by W-1 and W-2. This also shows the contrast in LI log values is quite
prominent.
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Fig. 6 Result of training for W-1 and W-2 in (a) and of testing for W-1, W-2, W-3 using MLFN
method in (b)

Table 4 Log values for various lithologies observed in W-1 and W-2 wells

Lithology Range of Vp log
value (m/s)

Range of GR
log value
(OAPI)

Range of Rt
log value
(�-m)

Range
of ρ log
value
(g/cc)

Range
of Φ

log
value
(%)

Range of LI log
value (g/cc*m/s)

Sandstone 2500.00–3500.00 20.30–30.76 0.89–3.18 2.15–2.69 25–36 (−210.08)–186.95

Shale 2020.95–2540.23 40.57–68.23 0.53–0.92 1.92–2.47 47–56 323.38–625.16

Limestone 3811.53–4193.36 2.60–13.29 3.50–5.35 2.51–2.66 14–22 211.90–291.21

Basaltic trap 5596.09–5979.40 72.53–95.70 157.29–835.45 2.81–2.89 6–18 1286.67–1436.85

6 Conclusion

Due to a large range of conventional log values, it is difficult to identify lithology
quantitatively in the absence of core data. Lithology Impedance being a combination
of gamma-ray, electrical resistivity, density, porosity and P wave velocity is proven
to be a very good lithology indicator. Linear Regression Method is useful in case
of clean lithology but as in nature we mostly encounter complex or mixed lithology
hence linear relationship will not work properly. In that case, the Artificial Neural
Network tool becomes very useful. It gives a nonlinear relationship among physical
properties of the rock.
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Chapter 9
A Review on Influence of Mineralogy
and Diagenesis on Spectral Induced
Polarization Measurements in Carbonate
Rocks

Neha Panwar and Ravi Sharma

Abstract Due to the heterogeneity of the carbonate reservoirs, it becomes very dif-
ficult to determine the correct mineralogy or lithology of the formation. Before any
petrophysical analysis, it seems imperative to determine the mineralogy. Different
Lithologies and facies vary in different ways and require different methods for fur-
ther interpretation. Spectral-induced polarization is one of the geophysical methods
that is sensitive to the fluid-grain interface and hence very beneficial in delineation
of geological material. Using this method, we measure complex conductivity. The
basic principle is that a sinusoidal current is injected into the rock and the resulting
voltage is calculated. The capacitive nature of the rocks introduces a phase difference
between the injected current and the measured voltage waveform between the poten-
tial electrodes. In this paper, we will discuss previous published data on the impact
of various rock types (Skarn ore, Skarn rock, Carbonate rocks) on the SIP response
by obtaining the chargeability and relaxation time. SIP is a compelling approach to
study and characterize sandstone, shale rocks, volcanic rocks, etc. Although, little
work is done in exploration of carbonate rocks using SIP till now.

Keywords Induced polarization (IP) · Spectral-induced polarization (SIP) · Time
domain induced polarization (TDIP)

1 Introduction

The ohmic and capacitive electrical processes and its frequency dependence of a
rock material can be understood through electrical measurements over the Earth’s
surface or in the laboratory via controlled experiments. The resulting amplitude and
the phase shift for the conductive material can be determined in the low-frequency
range. This technique involves measurements of complex conductivity at a very large
number of frequencies ranging from 1 kHz to 1MHz (Joseph 2016). The relationship
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between the magnitude of complex conductivity |σ*| and phase (�) with real (σ ′)
and imaginary (σ ′′) component of the conductivity is given as (Revil et al. 2011).

σ ∗ = |σ | exp(iΦ) = σ ′ + iσ ′′, (1)

|σ | =
√

σ ′2 + σ ′′2 (2)

tan θ = σ ′′

σ ′ (3)

The in-phase component (real part) refers to pure electro-migration processes.
The Quadrature component (imaginary part) refers to the accumulation of reversible
charges. Revil and Florsch (2010) have shown that the conductivity of water-wet
porous rocks devoid of any conductive minerals are affected by the pore-geometry,
the presence of type of pore fluids and the chemical interaction of porewater and the
matrix minerals. The polarization of rocks is primarily due to the electrochemical
reactions at the boundaries and layers separating the porewater from the grainswhich
forms an electrical double layer known as EDL. An EDL consists of two different
layers: the Stern layer and diffuse layer. The stern layer consists of counter-ions
compared to mineral grain, while the diffuse layer consists of co-ions and counter-
ions.

The complex conductivity of a porousmaterial with disseminated semiconductors
such as pyrite and magnetite is given by a cole–cole model expressed as (Revil et al.
2015)

σ∗ = σ

(
1 − M

1 + (iωτ)c

)
. (4)

Here, c denotes the cole–cole exponent that describes the width of relaxation time
distribution, ω is the excitation frequency in (rad/sec) and i is the pure imaginary
number. The parameter M is the chargeability written as

M = (σinf − σ0)

σinf
(5)

Here,σinf andσ0 denotes the high and lowconductivities, respectively. The content
of metallic or clay minerals defines the chargeability and is indicated by the strength
of the polarization. The main relaxation time is given as

τ = a2

D
(6)

whereD is the diffusion coefficient and a, is the grain radius of the metallic particles.
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Fig. 1 Time domain induced polarization (https://em.geosci.xyz/content/geophysical_surveys/ip/
index.html)

2 Time Domain IP

Induced polarization measurements can be done in both the time and frequency
domains. Each method has its own advantages. In time domain induced polarization
(TDIP), the primary current is applied to the material for some time and then the
current is switched off (Fig. 1). Due to the current storage capacity of the material,
the current does not reach its original state immediately. Hence there is some delay
before the charges are redistributed within the material, and this decay of secondary
current is recorded over time which provides insights to the electrical properties of
the material (Mao et al. 2016).

The chargeability of thematerial is studied in the timedomain inducedpolarization
(TDIP). According to Revil et al. (2015) and Mao et al. (2016), the chargeability of
metallic materials like pyrite and magnetite could be significant. The chargeability
is directly proportional to the volumetric content of the metallic materials and is
defined as

M =
(
9

2

)
∗ ϕm. (7)

Here, M is the chargeability and ϕm is the volume content of metallic materials.
For non-metallic materials, it is best to determine normalized chargeability

because normalized chargeability is directly related to the cation exchange capacity
(CEC). The CEC is the major component related to clay mineralogy.

3 Frequency Domain IP

The Induced polarization study in Frequency Domain is also known as spectral-
induced polarization. Harmonic current is applied to the material and the resulting
voltage difference is measured. Due to the capacitance of the material, a phase dif-

https://em.geosci.xyz/content/geophysical_surveys/ip/index.html
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Fig. 2 Spectral-induced
polarization showing phase
and amplitude with the
passage of current and the
measured voltage

ference occurs between the applied current and the voltage (Joseph 2016) (Fig. 2).
Thus, the study of phase and amplitude provides information of the material.

Here, phase is considered as the major parameters while studying metallic mate-
rials. The phase is directly related to the weight content of the metallic particles (ϕw)
(Revil et al. 2015; Mao et al. 2016).

ϕ =
(
9

4

)
∗ ρ

ρm
∗ ϕw (8)

Here, ρ denotes the mass density of the background porous material without the
metallic grains, and ρm denotes the mass density of the metallic particles.

4 Influence of Mineralogy on IP

As discussed above, both the time domain and frequency domain IP can be beneficial
in the determination of the mineralogy. Relaxation time is also measured which is
directly related to the grain radius.

It is considered that the IP effect is dominant below 100 Hz but with higher
frequencies, Maxwell Wagner polarization or the dielectric effect is more prominent
(Revil et al. 2014). Thus, the presence of metallic particles in the material introduces
the dielectric effect. The phase spectra for three samples each for Skarn rocks, Skarn
ores and carbonate rocks indicates the prominent dielectric effect at high frequencies
(Fig. 3).

Figure 3a, c show the frequency response of Skarn and Carbonate rocks and is
nearly constant up to 100Hz,which indicates that the frequency ismore influenced by
the dielectric effect than the Induced Polarization. However, the frequency response
in Fig. 3b shows amore pronounced variation even below 100Hz. The results suggest
that Skarn ores contain a high abundance of metallic minerals below 100 Hz and are
the strongest candidates for Induced Polarization studies among all rocks and ores
studied here.

As discussed above, the chargeability is directly proportional to the metallic con-
tent in thematerial. It is clear fromFig. 4a, b, c that in the case of Skarn rocks,metallic
minerals like magnetite (Mt) and Pyrite (Py) are present which shows high charge-
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Fig. 3 Phase spectra of a Skarn rocks,bSkarn ores, cCarbonate rocks (reproducedwith permission
from Shin et al. 2016)
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Fig. 4 Chargeability and relaxation time for Skarn rock 1 in (a), Skarn rock 2 in (c) and Skarn rock
3 in (e) while images obtained from Optical microscope are shown for Skarn rock 1 in (b), Skarn
rock 2 in (d) and Skarn rock 3 in (f) (reproduced with permission from Shin et al. 2016)



9 A Review on Influence of Mineralogy and Diagenesis on Spectral … 121

Table 1 Minerals identified from the XRD analyses for Skarn rocks 1, 2 and 3

Mineral content (wt%) Skarn rock 1 Skarn rock 2 Skarn rock 3

Grossular 35.5 52.7 15.6

Hastingsite 36.7 39.2 68.4

Augite 12.0 – –

Chlorite 3.6 – 2.1

Calcite 3.4 5.7 3.8

Quartz 1.1 2.2 7.6

Montmorillonite 2.7 – –

Magnetite 5.0 0.2 2.5

Total 100.0 100.0 100.0

ability. This is also confirmed from the XRD results shown in Table 1. In the case
of all three Skarn ores (Fig. 5a, c, e), the magnetite content is significantly increased
(Table 2) and hence the chargeability value increases proportionally compared to
those measured in Skarn rocks.

The XRD results (Table 2), shows that pyrite is also present in Skarn ore 2 which
also enhances the chargeability of Skarn ore 2.According to Pelton et al. (1978) pyrite
has the highest chargeability followed by magnetite. The non-metallic materials like
carbonate rocks do not add to the chargeability. This is demonstrated in phase spectra
of carbonate rocks shown in Fig. 6a, c, e, and that the chargeability values are small
in Carbonates compared to Skarn rocks and ores.

Relaxation time is directly proportional to the square of the grain radius. Thus,
it does not depend on the presence or absence of metallic minerals. The optical
microscope images shown in Figs. 4b, d, f, 5b, d, f and 6b, d, f indicates the grain
sizes of minerals present in the thin sections. In the case of Skarn ore, the grain
sizes are large compared to the Skarn and Carbonate rocks. Therefore, the relaxation
time should be large in Skarn ore (Figs. 4b, d, f, 5b, d, f, 6b, d, f). Also, in the case
of Carbonate rocks, the relaxation time of Carbonate rock 3 is significantly higher
compared to carbonate samples 1 and 2. It can be verified from the opticalmicroscope
image (Fig. 6f) that carbonate rock 3 has large grain sizes in comparison to carbonate
rocks 1 and 3. The minerals identified from the X-ray diffraction experiments for
carbonate rocks are enlisted in Table 3.

According to Revil et al. (2014), IP effect is influenced by the pore size in non-
mineralized rocks while the pore size, in turn, is affected by the grain size. The
large sizes of grains in carbonate rock 3 may be due to the recrystallization of calcite
(Sharma 2015). Hence, it can be concluded that in the case of non-mineralized rocks,
relaxation time could be a parameter which can be an indicator of hydrothermal
alteration, since recrystallization may occur due to hydrothermal alteration.
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Fig. 5 Chargeability and relaxation time for Skarn ore 1 in (a), Skarn ore 2 in (c) and Skarn ore 3
in (e) while images obtained from Optical microscope are shown for Skarn ore 1 in (b), Skarn ore
2 in (d) and Skarn ore 3 in (f) (reproduced with permission from Shin et al. 2016)

Table 2 Minerals identified from the XRD analyses for Skarn ores 1, 2 and 3

Mineral content (wt%) Skarn ore 1 Skarn ore 2 Skarn ore 3

Biotite 10.3 8.9 13.5

Calcite 2.9 16.0 9.7

Quartz 1.0 2.4 –

Fluorite – 0.6 –

(continued)
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Table 2 (continued)

Mineral content (wt%) Skarn ore 1 Skarn ore 2 Skarn ore 3

Magnetite 85.8 71.0 76.8

Pyrite – 1.2 –

Total 100.0 100.1 100.0

Fig. 6 Chargeability and Relaxation time for Carbonate rock 1 in (a), Carbonate rock 2 in (c) and
Carbonate rock 3 in (e) while images obtained from Optical microscope are shown for Carbonate
rock 1 in (b), Carbonate rock 2 in (d) and Carbonate rock 3 in (f) (reproduced with permission from
Shin et al., 2016)
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Table 3 Minerals identified
from the XRD analyses for
Carbonate rocks 1, 2 and 3

Mineral
content
(wt%)

Carbonate
rock 1

Carbonate
rock 2

Carbonate
rock 3

Calcite 30.4 80.7 76.7

Forsterite 8.4 12.9 –

Biotite 14.1 5.5 –

Chlorite 8.1 – –

Diopside 37.2 – –

Fluorite 1.8 – –

Lizardite – 0.8 4.5

Brucite – – 18.7

Total 100.0 99.9 99.9

5 Conclusion

A review is provided of induced polarization in time domain and in frequency domain
through one of the application of IP in determination of mineralogy, which is impor-
tant before any other petrophysical analysis. Through the examples of different rocks,
it is clear that IP can be a better geophysical method in characterization of the rocks.
A little work is done in characterization of the carbonate rocks using IP. So the
biggest challenge is to explore these complex reservoirs, which can be done using
spectral-induced polarization.
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Chapter 10
Partitioning of Porosity for Carbonate
Reservoirs Using Differential Effective
Medium Models

Kumar Hemant Singh, Anil Kumar, Sanjay Pandit and Ashok Soni

Abstract Carbonate reservoirs are extremely heterogeneous owing to its variation in
primary and secondary porosity types that affect the elastic properties of the reservoir.
The Differential Effective Medium modelling approach is applied to determine the
elastic properties of rocks and porosity partitioning of carbonate reservoir located
in the western offshore region, India. The modelling requires the input from sonic
derived logs and experimental data from the core samples. The Scanning Electron
Microscope images of cores from two different depths are analyzed by watershed
algorithm and binary digitization method to quantify the type of pores into cracks,
interparticle and stiff defined by their aspect-ratios. The sonic velocitieswere inverted
using Sequential Least-Squares Programming (SLSQP) optimization technique for
the entire depth range of the well log fromX110.20m toX611.90m. The partitioning
of porosity derived by the DEM technique provides the relative percentage of the
porosity types with depth and varies between 2 and 28% for the carbonate reservoir.
In the reservoir section, most of porosity is contributed from stiff and interparticle
types while the cracks contribute less than 20% of the total porosity.

Keywords Differential effective medium · SEM · Porosity partition · Carbonate
reservoir

1 Introduction

Carbonates precipitate in shallow, warm oceans to form sediments of variable sizes,
textures and chemical compositions. The post-depositional processes and complex
diagenesis in various environments leads to alteration of the texture and mineralogy
of the original rock matrix. This causes carbonate rocks to display large variations in
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the porosity types such as intercrystal, interparticle, intraparticle, moldic, fenestral,
vuggy, fracture and microcracks which causes heterogeneity in the reservoir (Lucia
1999).

The aim of reservoir characterization is to estimate the economic recoverable
reserves and for that the permeability of the reservoir system must be known. In car-
bonate reservoirs, the permeability is strongly related to the types and connectedness
of the complex pore system. Thus, predicting the pore types and their distribution in
depth from core, log and seismic data becomes extremely important. This, however,
is regarded as a daunting task as a rock physics model derived from the data may not
be valid in another reservoir in the same well due to large inherent heterogeneities
of carbonate reservoirs (Zhao et al. 2013).

The study of rock physics establishes the relationship between the elastic proper-
ties of rock and geophysical observables (Sun et al. 2006; Lian et al. 2012). Xu-Payne
(2009) studied the elastic property (shear wave) and the types of porosity in a car-
bonate reservoir. In general, carbonate rocks exhibit good cementation and grain
contact and is therefore not very useful in determining the elastic properties (Han
2004). Therefore, the scatter that is observed in porosity-velocity relationship for a
given mineralogy and fluid type of carbonate rock is due primarily to types of pores
present in the reservoir (Eberli et al. 2003; Misaghi et al. 2010). Thus, it is important
to quantify the types of pores geometries which may vary from spherical to highly
elliptical in a typical carbonate reservoir. The ellipticity of pores, i.e. the ratio of
short to long axis defines the aspect ratio (α) of the pore. The spherical pores are
resistant to the stress due to their round shape and make rock stronger which make
P-wave travel faster compared to the rocks which have relatively higher number of
elliptical pores (Ghosh et al. 2017). As elliptical pores are prone to be affected by
stress, their shape and volume can be altered and therefore their large numbers in a
rock make them weaker.

The present work evaluates core and log data from a carbonate reservoir located
in the western offshore region of India. The evaluation is done using the follow-
ing steps. First, the aspect ratios of the pores are estimated from Scanning Electron
Microscope (SEM) images of the core. This step is important for porosity segrega-
tion and or partitioning. The watershed algorithm is applied to segregate complex
pores and throats into simple pore types. Second, the image is digitally processed to
fit ellipses to all such simple pore types–microcracks, interparticle and stiff. Third,
the processed images are fed into a DEM-based rock physics model to estimate sonic
velocities and is compared to that measured in the well. The derived logs provided for
the well is used for the purpose. A Sequential Least-Squares Quadratic Programming
(SLSQP) optimization routine is used to perform inversion and thus minimize the
error between the observed and the predicted variables. The routine is fast and cal-
culates asymptotically the global optimum providing the porosity partitioning with
depth. The results are discussed with respect to the average porosities with depth in
the reservoir, their geological history and implications to reservoir properties.
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2 Background

Among the rock physics models, the Effective Medium Theories have been consis-
tently used alongwith theGassmann’s equation to calculate the relationships between
porosity and elastic wave properties. The models take into account the various shape
geometry (aspect ratio) to model complexities in carbonate reservoir. Due to the
heterogeneity of carbonates, the porosity partitioning continues to be an important
area of research in the petroleum industry. The rock physics model developed by
Xu-Payne (Xu and Payne 2009) has now become the standard to address the inher-
ent complexity. The pioneering work by Kuster and Toksöz (1974) computes the
dry-frame moduli following wave-scattering theory and demonstrated that the rock
modulus ratio in dry conditions relates to the pore aspect ratio. The limitations asso-
ciated due to inefficient handling of iterative algorithms of KT theory was simplified
by Xu-White model (1995) by assuming a constant dry rock Poisson’s ratio. How-
ever, the presumption of a constant dry rock and Poisson’s ratio is not valid as they
also show lot of variability in carbonate rocks (Keys andXu 2002) which incidentally
also happens to be the limitation of both Xu-White and Xu-Payne models.

2.1 Differential Effective Medium Theory

The DEM theory is applied to determine effective elastic properties of porous rocks
that are either dry or saturated by fluid (Zimmerman 1985; Berryman et al. 2002).
The expressions for the effective bulk moduli of a rock with N inclusions using
the long-wavelength first-ordering scattering theory is given using Eq. 1 and Eq. 2
(Berryman 1992).

(1 − ∅)
d

d∅
[
K ∗(Ø

)] = (
K2 − K ∗)P∗2(∅) (1)

(1 − ∅)
d

d∅
[
G∗(Ø

)] = (
G2 − G∗)Q∗2(∅) (2)

where K ∗(0) = K1 and G∗(0) = G1 are the bulk and shear moduli of the host rock
material respectively; K2 andG2 are the bulk and shear moduli of the inclusions,
respectively, with K2

∼= 0 and G2 = 0 for a dry rock. The terms P∗2 and Q∗2
are called the geometric factors that depend on the aspect ratios of the inclusions
of phase 1, i.e. fluid inclusions. They describe the effect of the ith inclusion in an
effective medium. For a proper derivation of P∗2 and Q∗2 the authors refer to the
work of (Neto et al. 2014). The DEM theory assumes that a composite material can
be formed by adding infinitesimal changes in an already existing composite (Norris
1985; Berryman et al. 2002; Mavko et al. 1998). This model also assumes isolated
pores which have been embedded in a host rock material which is continuous at all
porosities. Simulation involves addition of small amounts of pores, df to the matrix
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phase until the total porosity f is attained (Berryman 1992). Despite the limitations
and the assumptions of the various rock physics models discussed above it is very
common to use parameter calibration to study the methodologies for predicting the
properties under concern. Idealized ellipsoidal pore inclusion shapes were statisti-
cally estimated from the digital image analysis of the SEM images.

2.2 Sequential Least-Squares Quadratic Programming
Optimization

Sequential Least-Squares Quadratic Programming (SLSQP) (Kraft 1988), in each
step is composed of calculating a descend direction and a step size. In addition to
that its ability to process the equality and inequality constraintsmakes it a good choice
for constrained optimization. For our purposes, we only have inequality constraints
where we want to find x which is a 6 element vector.

min
x∈Rn

f (x)

such that g j (x) = 0, j = 1, . . . ,me, g j (x) ≥ 0, j = me + 1, . . . ,m, xl ≤ x ≤ xu
(3)

where m is the number of equality and inequality constraints and me is the num-
ber of equality constraints. This forms a constrained optimization problem which
can further be reformulated using the Lagrangian method. The descend direction is
obtained by reformulating the minimization problem in terms of a standard quadratic
program. This standard quadratic program can be equivalently expressed as a linear
least-squares problem that can be expressed as,

min
p∈Rn

∣∣∣
∣∣∣D1/2

k LT
k p + D−1/2

k L−1
k ∇ f (xk)

∣∣∣
∣∣∣, (4)

Such that∇g j (xk)d + g j (xk) = 0, j = 1, . . . ,me (5)

∇g j (xk)d + g j (xk) ≥ 0, j = me + 1, . . . ,m (6)

With B = LDLT . In order to avoid calculation of the Hessian, the matrix B is
approximatedwith first derivatives. To summarize, the SLSQPminimizes a quadratic
approximation to theLagrange functionwith a linear approximation of the constraints
at each iteration, by solving an equivalent linear least-squares problem.
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3 Methodology

A Python program was developed to implement the Xu-Payne model (Xu and Payne
2009). Prior to the implementation of the model, SEM images were processed to
estimate the aspect ratios of different pore types which were used as inputs to the
DEM model. The detailed approach to invert for aspect-ratios and their relative
fractions has been outlined below:

Step 1: The Voigt–Reuss–Hill (Hill 1952) average technique was used to prepare the
solid rock matrix. The minerals were detected using the X-Ray Diffraction exper-
iment (XRD). The relative frequency or count from the XRD result was used for
mixing different minerals. Effective elastic moduli were obtained using the DEM
approach. A fourth-order Runge–Kutta integration scheme along with a step size of
0.001 was used for numerical integration. The SEM analysis shows the pore shapes
broadly elliptical to spherical in shape with the lowest aspect ratio of ~0.01 and the
highest to be ~0.99.
Step 2: The different pore types are added in different proportions during the inver-
sion process. Initially, a dry rock frame is created that served as the starting rock
frame to which different porosity fractions were added iteratively. These intermedi-
ate frames are called effective media. Consequently, effective bulk and shear moduli
are calculated numerically by solving the DEM equations.
Step 3: Wood’s suspension model (Wood 1955) has been used to calculate the effec-
tive bulk and shear moduli of various types of pore fluids. Prior to mixing of pore
fluids, the process developed by (Batzle and Wang 1992) was used to calculate the
elastic properties of individual pore fluids. Bulk and shear modulus of the saturated
media was calculated using Gassmann’s equation (Gassmann 1951; Biot 1956). Vol-
umetric mixing law helped in calculating the density of saturated media.
Step 4: The Shear-wave (VS) was calculated using the bulk and shear moduli of
the saturated rock. Inversion proceeded by minimizing the cost function between
the predicted VS and those measured by the Sonic log. Upon minimizing the cost
function, the relative fractions of different pore types were predicted for each depth
along the entire column of the reservoir.

4 Problem Formulation for Optimization

4.1 Input Data

The input to the inversion algorithm is VP from the sonic log and the SEM images.
The resolution of the SEM images is 10 µm. The depth range chosen from the well
log was X110.20 m to X611.90 m. The log used was sonic derived VP log which
acted as the true or measured compressional wave velocities. Initial rock matrix was
derived using an estimate from the XRD data.
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4.2 Procedure

1. It was found from the XRD analysis that the dominating minerals were Ankerite,
Calcite, Gypsum, and Dolomite. Their relative proportions were also estimated
from the XRD data. Table 1 shows the values used for Bulk modulus, Shear
modulus, density and relative fractions for these minerals.

Voigt–Reuss–Hill averaging was used to prepare the dry rock host which are used
as inputs to the DEM model.

2. A fourth-order integration is performed to solve the DEM equations. The aspect-
ratios were estimated by fitting ellipses on individual simple pores to contribute
to P∗2 and Q∗2 in Eqs. 1 and 2. At each depth, an inversion is performed for the
aspect-ratios and their relative volume fractions.

3. In order to partition the porosity into different types, the procedure used is listed
below:

a. Initially, at each depth point, it was considered that only interparticle primary
porosity existed. With this assumption, the DEM equations were solved to
get the VP reference.

b. This VP reference, if found to be less than equal to VP measured than crack
type porosity was included in addition to the interparticle porosity.

c. Conversely, if VP reference is found to be greater than VP measured than stiff
type porosity was included in addition to the interparticle porosity.

d. From these assumptions, at each depth point, only two types of porosities
co-existed at a time along the depth.

4. A simple local optimizer based on SLSQP technique is used for the inversion
purpose. This requires a prior initialization. Because the concept of DEM is
a thought experiment (Mavko et al. 1998), the choice of a local optimizer is
justified. This means that as the integration of new minute porosities is included
the path taken to reach the final porosity is not unique. Moreover, with a proper
choice of step-size SLSQP can be made to find the global optima.

The objective function to be minimized is:

cost = 1

n

n∑

i

√(
V i
Model − V i

True

)2
, (7)

Table 1 Elastic parameter used for the minerals detected from XRD analysis

Mineral Bulk modulus (K) Shear modulus (G) Density (g/cm3) Relative fraction

Ankerite 73 32 3.05 0.56

Calcite 77 32 2.71 0.38

Gypsum 04 1.5 2.36 0.04

Dolomite 95 45 2.71 0.00
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where n is the total number of points, V i
Model is the modelled or predicted compres-

sional velocity at the ith depth point and V i
True is the compressional velocity derived

from the Sonic log at the corresponding ith depth point.
Initialization of the two variables forms the first step (Fig. 1). The aspect ratios,

α’s are initialized by keeping their values constant as described in Table 2. The
volume fractions, v’s are also initialized with the upper and lower bounds of 1 and 0
respectively. The DEM requires these 4 inputs (corresponding to two types of pores
at each depth point) in order to embed infinitesimal fluids into the host ‘dry’ rock.
In particular, the α’s go as inputs to the geometric factors P∗2 and Q∗2.

Fig. 1 Flowchart showing the inversion being performed at each of the 1640 depth points

Table 2 Aspect ratios used to define various pore types seen in core sample

Avg. values of aspect-ratios for different pore types

Pore-types Crack Interparticle Stiff

Range estimated from histogram (0 to 0.03] (0.03 to 0.5] (0.5 to 1]

Used values 0.02 0.3 0.8
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5 Results

5.1 Analysis of SEM Images and Segmentation Using
Watershed Transform

The SEM images were analyzed to accommodate major and minor types of pores.
The raw images and their respective segmentation are shown in Fig. 2. The resolution
of all SEM images is 10 µm. The procedure adopted makes use of the Watershed
algorithm to segment composite pores into pores and throats (Sarkar et al. 2018).

The procedure adopted to evaluate the aspect-ratios is illustrated in Fig. 3. The raw
SEM images are first converted to binary images using the thresholding technique.
The grayscale range is from 0 to 255. The threshold of 40 is used to binarize the
images such that all the values below 40 are assigned to pores and the values higher
than that are assigned to matrix. All the images in Fig. 2a, c used the same parameter
value for the threshold. This binarization step segregates the foreground (pore space)
from the background (matrix space). After binarization, the Watershed algorithm
is applied to separate composite pores into simple pores. The Watershed algorithm
finds the local minimum of each composite pore by first calculating the gradient of
the binary image resulting into the formation of several centres within the composite

Fig. 2 SEM images at 10µm resolution for carbonate samples from western offshore, India (a and
c); images (b and d) show the respective segmentation of images a and c into pores and throats
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Fig. 3 Generalized workflow for Digital Image Analysis; From LEFT to RIGHT: Raw greyscale
image (a), Binarization and Morphological Closing (b), Watershed Transform and Segmentation
(c), Fitting Ellipses to segmented pores (d) and Histograms showing Aspect-ratio estimation (e)

pores. These centres act as the starting point for flooding. The pores are flooded until
they meet the waters of the adjacent pores if any or encounter the background. This
technique effectively separates composite pores into individual simple pores. These
simple pores characterize different types of pore systems of the sample under test.

Upon analyzing different SEM images, it is found that the pores are broadly
spherical to elliptical in shape. Upon plotting the histograms of the types of pores
seen in the SEM images, three ranges were decided for three types of pore systems
(Table 2). Figure 4 shows the histogram representing various proportion of different
aspect-ratios found in the SEM images. The different ellipses derived from fitting
various α’s into different parts of composite pores are shown in Fig. 5. The respective
aspect ratios have also beenmentioned depending on the ellipse that fits the respective
pores.

Fig. 4 Histograms showing aspect-ratios calculated from SEM images in Fig. 2a, c, respectively
shown in (a) and (b)
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Fig. 5 Ellipses fitted on Watershed segmented pores for calculating aspect ratios; α’s denote the
respective aspect ratios of the pores segmented by the Watershed transform

5.2 Comparison of VS Predicted and VS Observed

Availability of shear-wave velocity from logs is not often. But for the current study,
S-velocity was available from the logs helping to verify the developed DEM model.
Moreover, the convergence was numerically verified from error values achieved
during the minimization process. Unlike sandstones the complex nature of pore
types can complicate the VP/VS ratio, therefore the same rock physics model which
was obtained by inverting for the pore types using VP is used to obtain bulk and
shear moduli at the saturated condition at each depth which in turn are used to
predict the shear-wave velocity. Figure 7e shows the VS prediction based on the
pore-type inversion result. Both the, predicted and observed S-wave velocity match
well throughout the depth range. This indicates that the model has captured the
pore-type distributions along the depth.

5.3 Inversion of Aspect-Ratio and Their Relative Fractions

Sequential Least-Squares Quadratic Programming method was used to minimize for
the respective volume fractions of various pore-types. The x, which is a four-element
vector representing the two co-existent pore-types, is optimized. The Lagrangian
method is used to incorporate the equality constraints for both the two variables such
that the volume fractions should sum to 1. Each minimization step required almost
19 iterations. Each iteration included calculation of first-order gradients and number
of function evaluations ranging from 100 to 200. The errors achieved during all the
3293 depth points were excellent with a minimum andmaximum error not exceeding
values 2.55 × 10−10 and 1.50 × 10−2, respectively. Figure 6 shows typical stages
achieved during minimization process of function and gradient evaluations.

Inversionwas performed along the entire depth range of thewell log fromX110.20
m to X611.90 m (Fig. 7). A trend can be observed in the Fig. 7a, that whenever the
difference between the VP_ref and VP_measured is high the addition of crack/stiff
pores is high and vice versa.
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Fig. 6 Typical minimization steps during optimization; Exit mode 9 shows that the stopping crite-
rion for the optimizer was met before 21 gradient evaluations. This was purposefully done because
the error reduction was acceptable and of the order of 10−5 beyond this criteria

5.4 Qualitative Comparison of Inverted Pore-Types
with the Pore-Types in SEM Images

As can be seen in Fig. 8, the majority type of pore-type present is interparticle
shadowed in green. Similarly, in Fig. 9, it is observed that apart from the interparticle
porosity the other dominant porosity present is stiff again demarcated with green
patches. The inversion results at the two depths viz. X273.40 m and X304.80 m
shown in Figs. 8 and 9 match with the type of pores present in the SEM images of
the two depths. This can be visually verified from Figs. 8 and 9.
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Fig. 7 a Relative volume fractions, b Neutron porosity overlaid with core porosities (red *),
c VP_ref and VP_measured (d). VP_Predicted from inversion and VP_measured (e). The predicted
(modelled) shear-wave velocities derived from inversion compared against the observed (measured)
velocities taken from the sonic logs

Fig. 8 Qualitative analysis of pore-types present in sample #1 (X273.40 m). Majority pore-type is
interparticle porosity
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Fig. 9 Qualitative analysis of pore-types present in sample #2 (X304.80 m). Majority pore-type is
stiff porosity

6 Geological Implications of Pore-Type Distribution

The spatial distribution of porosity types is controlled by the geological processes
and reveals the geological history of the deposition and post-depositional changes
that occurred in the reservoir. The reservoir belongs to the Ratnagiri formation which
shows Limestone of Lower to Middle Miocene as the primary formation. The lime-
stone is accompaniedwith occasional shale layers in the upper region of the reservoir.
The section produces water with traces of oil and gas and the porosity range is 2-
28%. The dominant contribution to the porosity comes from the stiff type and the
cracks present in the reservoir sections are small. Stiff porosity due to dissolution
shows dominance at parts along the depth. The limestone shows strong presence of
interparticle porosity throughout the depth of the reservoir but the regions located
at X300 m, X325 m, X354 m, X393 m, X404 m and X434 m till X500 m show
increased values of stiff type pores. At these depths it seems after compaction and
cementation, the pore spaces of the reservoir are reorganized by dissolution hence
both interparticle and stiff porosity dominates while the cracks are sparingly promi-
nent along the entire reservoir depth. This is also verified from the visual inspection
of the inversion.

7 Conclusions

The DEM rock physical modelling was performed on core and log data obtained
from carbonate reservoirs located in the western offshore region, India. SEM images
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from two core samples were used to estimate aspect ratios and they relate to pore
structures ranging from elliptical to spherical sizes. These were used as inputs and
the DEM equations were solved at each depth locations and inverted for relative
fractions of different pore types. Iterative SLSQP optimization method was used
to minimize between predicted and measured VP. An initial estimate of the mineral
composition was done using XRD data and volumes calculated frommineral volume
log. The reservoir belongs to the Ratnagiri formation dominantly Limestone bearing.
The porosity estimated from the analysis shows cracks, stiff and interparticle types
and the range vary from 2 to 28%.

The present work is limited in the sense that ellipses that fit individual simple
pores in SEM images are although automated but often over- and under-estimates
the aspect-ratio. Thus the pore-type distribution in the core sample representation
is not entirely accurate and taking into account the irregular boundaries of the pore
geometry is beyond the scope of the present work. In the future study, it is envisaged
that smart DeepNeural Network based algorithmsmay be able to represent the aspect
ratios more accurately and can be developed with more training data sets from the
core samples.
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Chapter 11
Effective Medium Modeling
of CO2-Sequestered Carbonate Reservoir

Ranjana Ghosh and Mrinal K. Sen

Abstract An appropriate rock physics model to monitor seismic properties of car-
bonate reservoir sequestered with CO2 imposes a grand challenge as carbonate rocks
have complex microstructure and chemically active fluid-rock system. Existing rock
physics theories based onGassmann’s theory are not suitable formodeling a dynamic
system (system inwhich rockmatrix changeswith time due to rock-fluid interaction).
On the other side, self-consistent approximation (SCA), differential effectivemedium
(DEM), etc. theories based onEshelby’s inclusionmodel do not incorporate pressure,
which is very important for gas saturated reservoirs. The DEM theory modified for
pressure (PDEM), which can explain rocks’ heterogeneous microstructure and squirt
flow, has been applied successfully to match the laboratory-measured (ultrasonic)
elastic properties of CO2-rich water-saturated carbonate rocks. The PDEM theory
correlates well with the laboratory experiment that shows reduction in P- and S-wave
velocities of saturated rocks as a result of permeability and porosity enhancement due
to dissolution of carbonates by acidic saturating fluid. This theory can be up-scaled
from laboratory to field measurements demonstrating the predicted elastic properties
in the seismic frequency range decrease significantly. The joint effect of free CO2

gas saturation and chemical dissolution on velocities of rock show that both atten-
uation and dispersion decrease from complete water to gas saturation. This theory
can be applied to identify variations in elastic properties of CO2-saturated carbonate
reservoir and monitor the movement of CO2 gas. These important factors guarantee
that CO2 storage will not destroy subsurface geology and sequestration is safe for
the environment.
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1 Introduction

Carbon-dioxide (CO2) is the major supplier to global warming among all the green-
house gases (Cox et al. 2000). CO2 injection into subsurface is a promising technique
to reduce the net issue of greenhouse gases into the atmosphere (Chen and Zhang
2010) and thus help to decrease global warming. Also, extraction of oil and gas
could be improved by injecting CO2 into an oil and gas reservoir—a method termed
as enhanced oil recovery (EOR). Therefore, CO2 sequestration aids both by reducing
environmental pollution and increasing oil recovery. Generally, bulk emitters of CO2

like power plants are located in the zone of hydrocarbon reservoirs, un-mineable coal
seams, and deep saline aquifer, which have option for CO2 sequestration. However,
an exhaustive study on reservoir characteristics is important for effective subsurface
CO2 storage.

Carbonates constitute almost 60%of the total hydrocarbon reservoirs in theworld.
Even though they have been explored extensively, their reservoir characterizations
pose great challenge due to complex heterogeneous microstructure and fluid-rock
interaction (Hoefiner and Fogler 1988; Vialle and Vanorio 2011). Injection of CO2

in carbonate rocks formulates a physico-chemical reactive fluid-rock system, which
modifies the pore-structure of the rock. This phenomenon alters the microstructure
of the rock and its elastic properties with time. Knowing the seismic responses of
rocks undergoing such mechanisms is crucial both for prediction and monitoring
purposes (Lumley 2010). But limited data are available to interpret seismic response
of gas injected rock quantitatively. First extensive study in laboratory on the effect
of chemical dissolution to elastic properties of carbonate rocks due to CO2 injection
is reported by Vialle and Vanorio (2011). Well known existing rock physics theories
failed to predict such changes in elastic properties with time. Hence, the pressure-
dependent differential effective medium (PDEM) theory is developed to overcome
the limitations of the existing models.

Two types of fluid interactions during wave propagation are created by wave-
induced pressure gradient caused by different sizes, shapes, and orientations of
pores of a rock, namely, (1) Global Flow, created by large pressure gradients at
seismic wavelength scale along the wave propagation direction and (2) Squirt Flow,
created by small pressure gradients at the pore scale and propagate not necessary
along the wave propagation directions. Effective medium theories available in liter-
atures are categorized into two types: inclusion-based theories and phenomenolog-
ical theories (Jakobsen and Chapman 2009). First type of theories (Mavko and Nur
1975; O’Connell and Budiansky 1977; Hudson et al. 1996; Jakobsen et al. 2003a,
b; Jakobsen 2004; Chapman et al. 2002; Chapman 2003; Jakobsen and Chapman
2009) consider Eshelby’s (1957) inclusion model assuming rocks are having ideal
microstructure. Second type of theories (Biot 1956, 1962; Dvorkin and Nur 1993;
Mavko and Jizba 1991;Mukerji andMavko 1994; Dvorkin et al. 1995), use empirical
model parameters, which are not dependent on the true microstructure of the rock.
Global flow is better explained by the phenomenological theories, pioneered by Biot
in 1956, whereas, the squirt flow is explained better by inclusion-based theories.
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The recent inclusion-based squirt flow model includes energy interaction method
(Chapman et al. 2002;Chapman2003),which assumes isotropic backgroundmedium
composed of a single mineral and spherical pores filled with water. But, squirt flow in
shale can’t be explained by this theory as shale itself is intrinsically anisotropic and
comprises of several minerals. Self-consistent approximation (SCA) theory com-
bined with the differential effective medium (DEM) theory (Hornby et al. 1994) has
been applied successfully to model clay-rich reservoirs (Jakobsen et al. 2000; Chand
et al. 2006; Ghosh et al. 2010a, b). But those theories do not contain the pressure term
and hence cannot explain squirt flow that is obvious in rocks having heterogeneous
microstructure. Therefore, an effective medium-modeling algorithm has been devel-
oped bymodifying the differential effective medium (DEM)modeling to incorporate
the effect of pressure to explain the squirt flow mechanism. The pressure-dependent
DEM (PDEM) theory is used here to predict the elastic properties of CO2-saturated
carbonate rocks, which demonstrates the squirt flow effect at pore scale. The effect
of squirt flow due to the presence of meso-scale fractures in the same carbonate
rock are also presented here. The proposed theory is suitable for the crucial statistics
for monitoring CO2 migration and oil production by tracking variations in elastic
responses caused by mechanical and chemical effects of a CO2-saturated carbonate
field and the amount of CO2 migration.

2 Theory

The development of the PDEM theory (Ghosh and Sen 2012; Ghosh et al. 2015) is
based on Eshelby’s inclusion model (Eshelby 1957) that calculated the response of a
single ellipsoidal inclusion establishing the fact that the strain due to a homogeneous
applied stress at infinity inside an inclusion within an infinite, homogeneous matrix
is also homogeneous.

The DEM hypothesizes a matrix known as host material and other components
as inclusions. For a two-phase composite medium, infinitesimal increase in volume
fraction of the inclusion (phase 2) corresponds to infinitesimal replacement of the host
material (phase 1). The process is repeated till the desired volume of each component
has been reached. At every step of addition, the effective medium is updated as the
host medium (Nishizawa 1982; Berryman 1992; Hornby et al. 1994). Similar process
can be followed to increase the number of components.

The present static DEM (without pressure term) theory has been used fruitfully
to describe clastic rocks (Hornby et al. 1994; Jakobsen et al. 2000; Ghosh and Sain
2008; Ghosh et al. 2010a, b), which is described below

dC

dvi
= 1

1 − vi
(Ci − C)KiC (1)

where dc is the change in effective stiffness C due to an increment dvi in volume
concentration vi of the ith component, Ci is stiffness of the ith inclusion. Ki is a
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fourth rank tensor that relates the applied stress σ to the average inclusion strain ei
as (Hudson et al. 1996),

ei = Kiσ, (2)

For fluid-filled pores or cracks, the inclusion stress (σi ) can be replaced with the
pore fluid pressure tensor piδ, δ being the Dirac delta function. The relation between
inclusion strain (ei ) and inclusion stress (σi ) is given below (Zatsepin and Crampin
1997; Chapman et al. 2002),

ei = (I − PC)−1C−1(σ − CPpiδ) (3)

where I and P are rank four identity matrix of and a fourth rank tensor (Mura 1982,
page 119).

The PDEM theory is formed by replacing A2 and A3 in A1 that takes the formula
as (Ghosh and Sen 2012)

dC

dvi
= 1

1 − vi
(Ci − C)(I − PC)−1C−1(σ − CPpi )σ

−1C (4)

Here, dual-porosity model is assumed, specifically spherical and ellipsoidal pores.
Pore pressure is different in different type of pores, which causes squirt flow in the
medium. The pore pressure for a spherical pore (pp) is denoted by (Chapman 2003),

pp = Dpσi i (5)

where

Dp = γ1/γ (6)

γ = (3/8) ∗ (π/((1 − υ) ∗ (1 + kc))) ∗ (1 + kp)

γ1 = γ ∗ ((1 − υ)/(1 + υ)) ∗ (1/(1 + kp))

kp = ((4/3) ∗ μ)/kf
kc = (π ∗ μ ∗ r)/(2 ∗ (1 − υ) ∗ kf) (7)

Pore pressure for an ellipsoidal pore (pc) is denoted by (Chapman 2003)

pc = G1σi + G2σi i (8)

where

G1 = iωτm

(1 + kc)(1 + iωτm)
, (9)
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G2 = 1 + iωγ τm

1 + iωτm
Dc − iωτmγ

′

1 + iωτm
(10)

Dc = ((1 − ι) ∗ γ1) + (ι ∗ ((1 + iωτmγ1)/(1 + iωτm))) (11)

ι = (φc/r)/((φc/r) + φp) (12)

where σi , σi i are normal stress to a crack plane and total normal stresses, respectively,
τm is the squirt flow time for heterogeneous medium at pore-scale, ω is the circular
frequency, φc is crack porosity pv, cv are pore and crack volumes respectively, kf is
bulk modulus of fluid, κ is permeability of fluid, η is viscosity of fluid, ζ is size of
grain, υ and μ are Poisson’s ratio and shear modulus of the matrix respectively, r is
the aspect ratio of non-spherical (ellipsoidal) pore.

A homogeneous medium, comprised of a single set of voids, do not induce local
pressure gradient and hence squirt flowbecause pore-pressure pi is equal for all voids.
Whereas, heterogeneous medium, comprised of thin cracks, spherical pores, large
fractures, etc. induce local pressure gradient and squirt flow because pore-pressure
pi is not equal for various types of voids. The rock then exhibits a visco-elastic
property, i.e., at higher frequencies both rigidity and bulk moduli will be higher if
pressure (gradient) is not released than at lower frequency if pressure (gradient) is
released.

3 Results and Discussion

The applications of the PDEM theory are elaborated here for I. the impact of disso-
lution due to chemical reaction on elastic properties at laboratory (ultrasonic) scale,
II. seismic (field) scale, III. impact of pressure on elastic properties and IV impact
of both dissolution and presence of free gas (CO2) on seismic velocities.

Case I: Impact of dissolution due to chemical reaction on elastic properties:
ultrasonic (laboratory) scale
Vialle and Vanorio (2011) performed laboratory experimentations to monitor how
CO2-rich water, if injected on carbonate rocks affects its microstructure and min-
eralogical compositions. They have described fully how elastic properties of pure
calcite (CaCO3) alters due to chemical dissolution causing primarily enhancement
of permeability and porosity and compression of the sample undergoing confining
pressure.

Sample classification consists of porosity (Helium) and permeability (Klinken-
berg-corrected nitrogen) measured pre and post CO2 injection, within error ±1 and
±2%, respectively. The experimental setup contains a core holder, a hydrostatic pres-
sure container and a fluid injection device. The sample approximately 1-in. of length
is covered with rubber tube and mounted into the pressure container at fixed 1.1MPa
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overburden (confining) pressure. The variation in length as a function of pressure is
measured, which allows to measure the change in porosity due to change in volume
of the sample under mechanical compaction.

Velocities were measured in laboratory on dry sample and after that monitored
with CO2 injection. The error of measured ultrasonic velocities was determined as
±1%. The experiment was conducted under the constant confining pressure 1.1MPa
and the pore-fluid pressure 1 MPa. In both dry and completely saturated conditions,
VP and VS both decrease continuously with injected CO2 volumes (Fig. 1). After
injection of approximately 700 pore-volume (~2600 mL), it is observed that dry VP

and VS reduced by ~24.7% (871 m/s) and ~21.2% (443 m/s) respectively; porosity
increased from 26.5 to 31.5% and permeability increased from 75.3 to 448.9 mD
due to a joint effect of dissolution and compression (Vialle and Vanorio 2011).

Here, the outcomes from the laboratory test has been modeled by assessing P-
and S-wave velocities of CO2-sequestered carbonate rock applying the PDEM theory

Fig. 1 Measured P-wave (VP) and S-wave (VS) velocities of CO2-saturated pure Calcite (carbonate
rock) at ultrasonic frequency (1 MHz) considering matrix of the rock alters because of dissolution,
precipitation, and compaction. Calculated VP and VS for the same rock with similar setup applying
the PDEM theory and Gassman’s theory are also shown
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(Eq. 4) incorporating similar alterations in permeability and porosity, and precipita-
tion under the identical pore and confining pressures. Here, large pores are assumed
as spherical with the aspect ratio 1. The spherical pores are presumed to be linked
by the ellipsoidal pores oriented randomly. In this case, unknown parameters are the
fraction of ellipsoidal and spherical pores, aspect ratio of ellipsoidal pores, which
are estimated by matching the calculated velocities using the PDEM at frequency
1 MHz with the measured velocities of Calcite rock saturated with water. The time
τm for squirt flow can be determined (Chapman 2003) from the grain size (ζ ), crack
volume (cv), number of linked cavities with pores and cracks (c1), permeability (κ),
and viscosity (η). But the parameters cv and c1 cannot be determined easily. Thus, τm
has been taken as a fitting parameter. The unknown parameters spherical pores and
non-spherical (ellipsoidal) pores, aspect ratio of non-spherical pores and characteris-
tic time τ0 are determined as respectively 24.5, 2, 0.03, and 2× 10−7 s for the Calcite
rock saturated with water. τm has been expressed as a function of permeability (κ)
as shown below

τm = τ0/κ(v) (13a)

κ(v) = κ0 ∗ (dκ/dv) ∗ v (13b)

dκ/dv = (κf − κ0)/(vf − v0) (13c)

where τ0 = 2 × 10−7 s, κ0 = 75.3 mD, κf = 448.9 mD, v =injected pore volume,v0
= 0, vf = 700.

Shear modulus of any linearly viscous fluid is expressed as iωη instead of zero
(Walsh 1969), where, i symbolizes the imaginary component, ω is the circular fre-
quency and viscosity η is 1 cP for water (Chapman et al. 2002). The elastic properties
of the components of the carbonate rock are shown in Table 1.

Enhancement of permeability and porosity and precipitation are accustomed fol-
lowing a way that the calculated velocities agree with the velocities measured in
laboratory at each step of CO2 injection. In this modeling, porosity and permeabil-
ity enhancement are simulated by increase of the spherical and ellipsoidal pores by
1–5% and 7–22%, respectively, whereas the precipitation is simulated by substitut-

Table 1 Elastic moduli and
densities of different
constituents of carbonate
rocks used for modeling
(Lumley 2010; Vanorio et al.
2008, 2010). Fluids properties
are taken for 1.1 MPa
pressure

Components Bulk-
modulus
(GPa)

Shear
modulus
(GPa)

Density
(kg/m3)

Calcite 71 32 2170

Pure water 2.2 – 980

CO2-rich
water

2.28 – 1000

Pure CO2 0.05 – 100
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ing CO2-rich fluid from the non-spherical pores with host mineral Calcite. Figure 1
compares the results from the modeling with the laboratory measurements.

Fluid substitution model of Gassmann’s (Gassman 1951) has also been used to
calculate saturated P- and S-wave velocities for comparison. Velocities have been
determined (Fig. 1) fromGassmann’s theory for bothmeasured pre-injection dry elas-
ticmoduli (constant frame) andmeasured post-injection dry elasticmoduli (changing
frame). Visibly, saturated velocities determined taking constant frame are consider-
ably higher than themeasured laboratory velocities.Whereas, taking changing frame
saturated, P-velocity decrease with CO2 injection but S-wave velocity is much less
than the laboratory-measured values.

Case II: Impact of dissolution due to chemical reaction on velocities: seismic
(field) scale
Figure 2 displays the calculated velocities using the PDEMmodeling at 60Hz, which
falls in the seismic frequency range, keeping other parameters unchanged. The sep-
aration between calculated velocities at 60 Hz and 1 MHz reduces as permeability
increases because the characteristic squirt flow time decreases. Evaluating in time
lapse seismic monitoring purpose, the probable decline in VP and VS due to chem-
ical dissolution are respectively 550 m/s (~15%) and 263 m/s (~13%), whereas, in
laboratory, the values are respectively ~21 and ~15%. The decrease of density due
to this chemo-mechanical effect on Calcite rock is ~4%, and decrease in P- and S-
wave acoustic impedances within seismic frequency range are respectively ~18 and
~16%.

Case III: Impact of pressure on elastic properties
In the previous sections, the velocities are predicted at ultrasonic and seismic fre-
quency keeping both overburden and pore fluid pressures unchanged. However, con-
fining and pore pressure in geological reservoir are much higher than the values used
during laboratory experiments. Here, variations of predicted velocities are shown
with overburden and pore fluid pressure for both anisotropic and isotropic rocks.

Isotropic rock

The isotropic rock resembles here with water-saturated Calcite rock having spherical
macro-pores and randomly distributed micro-cracks. Figures 3 and 4 display the
calculated VP and VS, which increase as overburden pressure increases and decrease
as fluid pressure decrease. In this case, dispersion is not observed in seismic frequency
range.

Anisotropic rock

Anisotropic rock resembles with long, thin, parallel aligned fractures in the isotropic
rock. The aspect ratio and length of the fractures are assumed as respectively 0.001
and 0.1 m. The squirt flow time is taken same as the isotropic medium. Velocities cal-
culated for this anisotropic (vertically transversely isotropic) medium are presented
in Fig. 5. In case of P-wave propagates normal to the fractures, velocities disperse
significantly within seismic frequency range. If P-wave propagates parallel to the
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Fig. 2 Calculated VP and VS of the same rock at 60 Hz frequency (seismic range) and at ultrasonic
frequency for similar experimental setup applying PDEM theory

fractures, no dispersion is observed. Figure 6 displays calculated dispersive S-wave
velocity propagating at 45° angle.

Case IV: Impact of both dissolution due to chemical interaction and free gas
(CO2) on elastic properties
Thermal equilibrium of CO2-rich water alters due to upward migration of CO2 gas
causing the modification in the proportion of dissolved and free gases (Lumley 2010;
Vanorio et al. 2008). As a consequence, seismic properties of CO2 are suppressed by
ambiguities aroused due to changes inmicrostructure as a result of chemical reaction.
Figure 7 expresses the calculated velocities at 60 Hz for the joint effect of free CO2
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Fig. 3 Calculated VP and VS for isotropic rock at different overburden pressure and fixed fluid
(pore) pressure (10 MPa)

gas distribution in uniform and patchy form in pores and chemical reaction. The
microstructure assumed here is similar to Case I.

The results show that the calculated S-wave velocity change with CO2 concen-
tration like P-wave velocity. This is because pore-pressure gradient is induced at the
pore scale by a seismic wave while passing through the medium, which impacts both
bulk and shear moduli.
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Fig. 4 Calculated VP and VS for isotropic rock at different fluid (pore) pressure and fixed confining
pressure (10 MPa)
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Fig. 5 CalculatedVP propagating parallelly (dashed) and normal (continuous) to themeso-fracture
at different overburden pressure and fixed (10 MPa) fluid pressure (a); calculated VP at different
fluid pressure and fixed (10 MPa) overburden pressure (b)
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Fig. 6 Calculated pure and quasi shear velocities at 10 MPa fluid pressure and 30 MPa overburden
pressure (continuous, upper panel); at 30 MPa fluid pressure and 10 MPa overburden pressure
(dashed, lower panel)

Fig. 7 Calculated VP and VS for the same rock at similar experimental setup applying PDEM
theory at 60 Hz frequency (seismic range) because of the joint effect of changing matrix due to
dissolution, and uniform (a–b) and patchy (c–d) distribution of free CO2 gas
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Dispersion and attenuation

The results show dispersion decreases because pressure gradient diminishes with
CO2 saturation. Velocity and attenuation are correlated, which decrease with fully
water saturation to fully gas saturation (Figs. 8, 9 and 10).

Fig. 8 Dispersion of VP and VS at various CO2 concentrations distributed uniformly in pores

Fig. 9 Dispersion of VP and VS at various CO2 concentrations distributed as patches in pores

Fig. 10 Attenuation of VP and VS at various CO2 concentration for uniform and patchy type
distribution
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4 Conclusions

The PDEM theory is applied here to model CO2-sequestered carbonate reservoir.
The theory can account for heterogeneous microstructure consisting of micro-cracks
to meso-fractures. The theory is useful to incorporate alteration of microstructure
as a consequence of chemo-mechanical effect induced by CO2 injection in car-
bonate reservoir and can be used for quantitative interpretation of time lapse 4D
seismic data acquired from such reservoirs—a challenging task till date. This fre-
quency-dependent theory can be up-scaled (laboratory to field or ultrasonic to seismic
frequency) to detect changes in the velocities of the rock and can be applied to under-
stand the effect of visible changes in 4D seismic data for monitoring the impact of
sequestration on our geological environment.

The theory predicts no velocity dispersion in seismic frequency range in case of
heterogeneity at pore-scale. But velocity dispersion observed considerably in seismic
frequency range in presence of meso-scale fractures.
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Chapter 12
Computation Methods in Petrophysics
for Addressing Redundancy
and Reservoir Property Prediction

Abhijeet S. Bhardwaj and Ravi Sharma

Abstract The insight provided by well logs for the reservoir properties has been
established beyond doubt. Often only standard logs are obtained to run routine cal-
culations of porosity and saturation. Information about reservoir mineralogy and
therefore effective geomechanical properties are generally missing because the well
logs required (e.g., Shear, PEF, Litho scanner) for successful estimation of these
properties are not acquired on routine basis. Additionally, when available, these
logs are limited in their coverage of subsurface sections. Therefore, core plugs from
the well or empirical correlations from analog settings are used to run the reser-
voir property analysis. However, such estimates and their geological significance is
rarely verified and accounted for. In this work, we propose a method to predict the
missing/discontinuous shear log statistically and testify it by binding the predictions
to lithology. We also tackled the issue of core sample redundancy which is quite a
challenge in selection of core sample for running rock property analysis. The pre-
dicted shear log values combined with other suitable logs are used to find lithofacies
distribution in the reservoir section which constitutes our physical model. A sensi-
tivity check is also made by using different combinations of logs for determining the
statistical and physical models.

Keywords Petrophysics · ANN · Regression analysis · Rock properties

1 Introduction

The better understanding of the reservoir helps in optimizing its lifetime perfor-
mance. It is of vital importance to predict the rock properties to estimate the future
flow behavior of complex geological settings. Rock properties are traditionally esti-
mated from the cuttings obtained during drilling as well as from the cores drilled out.
However, the samples collected from cuttings are lost sometimes and are generally
not large enough to give precise prediction of porosity, permeability and other log
properties (Serra and Abbott 1982). Cores, on the other hand, give excellent measure
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of the rock properties. However, coring is a very expensive process and due to safety
measures extensive coring cannot be done, thus resulting in discontinues cores. Well
log data is continuing and thus can be used to estimate the properties of the forma-
tions crossed by the well with greater accuracy and consistency. However certain
well logs are not measured during wireline logging due to the high cost involved and
often leave us wondering for a particular log type for a detailed analysis. Shear wave
log (DTS) is one such type of log, the importance of which is significant in calculat-
ing the porosity along with various geomechanical parameters. Due to its immense
importance, various empirical relations have already been developed (Castagna et al.
1985). However, these relations tackle site-specific challenges and are rarely bound-
ing to lithology. The prediction of lithology within a well is a complicated task as
there are limited workflows in literature on how to obtain information about lithology
using suitable combinations of logs.

Thus, geo-statistical methods can be used to solve these problems by taking into
consideration an acceptable range of accuracy and no requirement of new measure-
ments (Akhundi et al 2014). The connection between reservoir properties and well
log data is made through “statistical based” and “physics-based” approaches. The
physics-based approaches, also known as physicalmodel, attempt tomap the changes
in log responses due to changes in rock properties. Here the key lies in the unique-
ness and sensitivity of the solution. Statistical approach ties the rock properties to
prediction values obtained by examining the data only. It would be reasonable to
argue that a combination of strengths of both these methods would provide us the
most accurate result (Sandham and Leggett 2003). Thus, we present a research that
tackles the problem of predicting DTS log using predictive analysis techniques (the
statistical model) and bind our predictions independently to lithology (the physi-
cal model) using various geomechanical parameters such as Poisson’s Ratio, Bulk
Modulus and Shear Modulus by avoiding double-dipping to a maximum extent. The
geomechanical parameters are obtained from the volumes of individual minerals by
applying standard literature methods of determining effective moduli. The volumes
of different minerals are computed by solving a convex optimization problem on a
system of linear equation. A sensitivity check for the combination of logs used in
DTS log prediction is also made by using the predicted log to determine the elec-
trofacie based on the hierarchical clustering method (Serra and Abbott 1982). The
electrofacie obtained are then compared to the lithofacie obtained by clustering the
volumes of individual minerals.

2 Theory and/or Method

The study area is a carbonate reservoir consisting of various wells, of which four
wells had DTS log and were used to build the statistical model. The data from three
wells is used to train the supervised learning algorithms while the data from fourth
well is used as validation set. The trained algorithm is used to predict DTS log in the
prediction well which consist of Photoelectric (PEF) log in addition to the routine
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logs like gamma-ray (GR), density (RHOB), neutron porosity (NPHI) and resistivity
log (RT) which are used to build the physical model. While dealing with multivariate
data sets likewell logs it is of great importance to realize the dependencies of variables
on each other. Thus, the correlation coefficient plays a vital role as it quantifies the
relation between any two logs (Lim and Kang 1997). The correlation test (Fig. 1)
carried out showed that the dependency of DTS log lies primarily on compressional
sonic wave log (DTP) and after that on RHOB log and then upon NPHI log. The
correlation coefficient between GR log and DTS log is quiet low that could well be
due to the low-resolution of GR log (Fig. 2). The RT log also has very low correlation
coefficient suggesting non-linear dependency on DTS log (Akhundi et al. 2014).

DTP, RHOB, NPHI and GR logs are considered for further analysis. The depen-
dency of DTS on other logs can be demonstrated as in Eq. (1).

DTS = f (DTP,RHOB,NPHI,GR) (1)

Fig. 1 The correlation coefficients between different logs
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Fig. 2 GR versus NPHI plot
suggesting a low-resolution
GR log (Depth given in feets)

Regression Analysis is carried out having DTS as the dependent variable and
DTP, RHOB, NPHI, and GR as explanatory variables to justify the worthiness of all
the explanatory variables that are to be used to make different sets of three variables.
The significant F score (Table 1) obtained is very low, suggesting that all the four
logs can be used to build the statistical model (Draper and Smith 2014). It is also
observed that the R-square and Adjusted R-square both increases with the number of
explanatory variables (Fig. 3) and as the Significance F score is negligible we could
use all four logs to build the statistical model.

From the given suite of logs, if we use four independent well logs (DTP, RHOB,
NPHI, andGR) to build the statisticalmodelwe are leftwith just one independent PEF
log to build the physical model. This clearly makes for an underdetermined problem.
Since the objective is to make a physical model comprising of 4 components of the
sedimentary reservoir systems (common minerals and fluids: quartz, clay, calcite,
and water), we clearly need more logs. We, therefore, use different sets of three logs

Table 1 Regression analysis

ANOVA

df SS MS F Significance F

Regression 4 21124.84891 5281.212 90.02739 2.62959E−55

Residual 423 24814.14496 58.66228

Total 427 45938.99387

Coefficients Standard error t stat P-value

Intercept −6.048803482 19.99770383 −0.30247 0.762439

DTP 1.086675998 0.061356481 17.71086 6.53E−53

RHOB 30.19542757 7.061514071 4.276056 2.35E−05

NPHI 0.476077673 0.111899736 4.254502 2.58E−05

GR −0.157960258 0.040784437 −3.87305 0.000124
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Fig. 3 R-square and
adjusted R-square versus
number of variables

to predict DTS and use the remaining log (along with computed V sh and PEF) to
build the physical model. But still the problem is underdetermined and thus one log
from the statistical model set is double dipped in the physical model. The sensitivity
of the logs used to build the statistical and physical model is tested along with the
sensitivity of the double-dipping log. The p-value for DTP log is very low (Table 2)
suggesting that the sets would always include DTP log while other logs are rotated
either to predict DTS log or to build the physical model.

The target is to predict the continuous distribution of DTS log, which would
depend functionally on other well logs. The best estimation of the functional form is
given by a Supervised learning algorithmwhich gives the best approximate of depen-
dent variable (DTS) on independent variables (other well logs). We used Gradient
Boosting Regressor and Artificial Neural Network as supervised learning algorithms
to train the data set. Gradient Boosting (Fig. 4) (Zemel and Toniann 2001) is an
ensemble technique (Dietterich 2000) where we add weak models to the ensemble
orderly to create a strong model.

Table 2 Sets of well log data

Combination number Statistical model Physical model

Set 1 DTP RHOB GR* GR* PEF NPHI V sh

Set 2 DTP* RHOB NPHI GR PEF DTP* V sh

Set 3 DTP RHOB NPHI* GR PEF NPHI* V sh

Set 4 DTP RHOB* NPHI GR PEF RHOB* V sh

Set 5 DTP* NPHI GR DTP* PEF RHOB V sh

Set 6 DTP NPHI GR* GR* PEF RHOB V sh

Set 7 DTP NPHI* GR NPHI* PEF RHOB V sh

The (*) marked logs are the logs which are double-dipped for both statistical and physical model
prediction
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Fig. 4 Applying gradient boosting regressor

Fig. 5 Implementing ANN algorithm

Artificial Neural Network (Fig. 5) takes their very basic form from the human
brain. The mathematical equation describing the implementation of Artificial Neural
Network is

y(x) = f (wm+1

m∑

j=0

wj x j ) (2)

where the first coefficient is the bias term, wj are the weights that are multiplied to
the input layer neuron denoted by xj having j features, f is the activation function
which is generally sigmoid function or a hyperbolic tangent function and y(x) is the
output layer for the input neurons (Cranganu et al. 2015). In this work, the neural
net consists of two layers having 300 neurons each. Relu function is used as the
activation function while Steepest Gradient is used for iterating the weights along
with a regularization coefficient to penalize overfitting of variable.

The outputs of both the algorithms are compared thus suggesting a better algorithm
for the statistical model. The output is quantified by calculating Mean Absolute
Percentage error for the (MAPE) calculated on a subset of training data. The trained
algorithms are used to predict DTS log in a prediction well, which is used to compute
Poisson’s ratio by using:
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The development of the physical model is based on the motivation to evaluate
the volumes of minerals for a four-component system. The minerals included are
illite, calcite, quartz, and water suggesting clay, carbonate and siliciclastic lithology
along with porosity. The physical model revolves around the idea that neglecting
environmental errors, the log response at each depth point is a combination of the
log response of each mineral at that depth point. Thus, a system of linear equation is
formed as shown:

VQz + VCal + VClay + φ = 1 (4)

γQzVQz + γCalVCal + γClayVClay + γwφ = Vsh (5)

ρQzVQz + ρCalVCal + ρClayVClay + ρwφ = RHOB (6)

ψQzVQz + ψCalVCal + ψClayVClay + ψwφ = NPHI (7)

ζQzVQz + ζCalVCal + ζClayVClay + ζwφ = PEF (8)

Here Vmineral is the volume of the corresponding mineral, γmineral describes the
shale response log for the corresponding mineral, similarly ρmineral, ψmineral, ζmineral,
gives us the RHOB response, NPHI response, and PEF response, for variousminerals
respectively. Thus, a system of linear equation is established from these six equations
Eqs. (5)–(8) constrained to Eq. (4) to predict the volumes of the minerals in the four-
component system. As volumes of four minerals are to be predicted we select four
combinations of equations alongwith the constrain equation to form a set. As already
stated, while selecting the four equations corresponding to four log responses, for the
physical model the repetition of the logs used in statistical model is avoided to a good
extent to reduce the double-dipping in the error being propagated by the log. Thus,
the different sets of well log data used in statistical and physical model prediction
(Table 2) are.

Using the combinations shown for the physical model a system of linear equations
is created of the form AX = B, where A is the matrix of log responses for minerals
(Table 3), X is the vector of unknown volumes at a given depth point and B is vector
of true response at that depth point.

The system of linear equation along with the constraints forms a Lagrangian
equation of the form

AX − B − λG(x) = 0 (9)

where G(x) includes all the constraints.
Equation for optimization is:
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Table 3 Mineral response to various logs

Calcite Quartz Clay Water

Pef 5.08 1.81 2.6 0.36

GR 11 1 160 9.6

NPHI 0 −0.05 0.4 0.9529

V sh 0.015 0.01 0.7 0

DTP 49 56 85.34 189

RHOB 2.71 2.65 2.52 1.049

minimize norm||AX − B||Subject to
∑

minerals

V = 1 and 0 < Vminerals (10)

The Lagrangian is solved using convex optimization tool (Boyd and Vandenberghe
2010) which implies interior-point polynomial method for convex programming
(Nemirovski 1996).

The volumes obtained were used to calculate Poisson’s ratio by estimating bulk
and shear moduli using two methods of effective medium theory: (1) Hill average of
Voigt upper bound and Reuss Lower bound (Eq. 14). (2) Gassmann’s Relation for
isotropic, saturated rock (Eq. 15). For both the methods the moduli for rock minerals
were calculated by scaling the mineral volumes to sum up to 1.

Voigt upper bound for bulk and shear modulus of minerals is given by:

(11)

The Reuss lower bound for bulk and shear modulus of minerals is given by:

(12)

The average of Voigt upper bound (assuming very hard mineral packing) and Reuss
lower bound (assuming soft mineral packing) is taken to estimate the moduli of
mineral material making up the rock (Ḱmineral, Ḡmineral) which also gives us the upper
bound of the saturated rock framework.

(13)

The lower bound of moduli for saturated rock is given by the Reuss average of the
fluids in the rock. As water is the only fluid assumed to make a 4 component system,
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the Reuss bound/lower bound for saturated Rock is the moduli of water (Ḱwater,
Ḡwater).

The bulk and shear modulus for the rock by Hill average of Voigt and Reuss
Bounds are than given by:

(14)

To calculate the rock moduli using Gassmann’s relation for the saturated rock an
oversimplified assumption was made, where we estimated the dry rock moduli by
subtracting the pore space from the rock framework and multiplying it with the
moduli of mineral material making up the rock.

where φ is the porosity which in this case is the estimated volume of water in a
four-component system. The bulk and shear modulus for the rock by Gassmann’s
relation are than given by:

(15)

Poisson’s Ratio is then calculated using moduli determined by both the methods and
is given by PRvrh and PRGassmann:

(16)

The statistical and physical method were then compared by using the average
percentage error between Poisson’s ratios calculated by predicted DTS (PRANN,
PRGBR) and effective medium theory methods (PRvrh and PRGassmann) for different
combinations of logs (Table 2).

However, to check the accuracy of the physical model and its sensitivity over the
well log data sets (Table 2) lithofacies are generated frommineral volumes (physical
model) which are compared to electrofaice (Serra and Abbott 1982) generated using
the logs which are in high correlation to the calculated porosity (PHIE) log. While
generating electrofaices, the predicted DTS log was also included for all the combi-
nation sets to provide another test for the accuracy of statistical and physical model.
To generate lithofacies we cluster the volumes obtained by solving the Lagrangian.
As the volumes lie between 0 and 1 we directly use Agglomerative Hierarchical
Clustering (Fig. 6) Algorithm (AGNES) introduced by (Kaufman and Rousseeuw
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Fig. 6 Hierarchical clustering

2005) to generate lithofacies. The three lithofacies obtained are represented numeri-
cally by ‘1’, ‘2’, and ‘3’ as also suggested by the geological background of the area.
The concept of electrofacies was introduced by (Serra and Abbott 1982), where elec-
trofacies are defined as “a set of log responses describing the rock.” (Lim and Kang
1997) described a method for multivariate statistical analysis of well log data to
form electrofacies. Using the basics of the method electrofacies are generated using
AGNES.

Prior to clustering the logs, a correlation test with PHIE is carried out suggesting
the logs to be used in clustering (Fig. 7 gives an example for logs used in set 1).

It can be observed that NPHI and RHOB have the maximum correlation with
PHIE logs and hence they are used without standardizing in our clustering algorithm
to give them higher weights than other logs (Kaufman and Rousseeuw 2005). The
predicted DTS and RT log also have considerable correlation coefficients but as their
absolute values are higher (in tens or hundreds) as compared to the absolute values
of RHOB and NPHI (in units or tens) they are standardized before being included in
clustering. The need to standardize can also be understand by observing the fact that
the difference in values of final dissimilarity observed when logs are standardized
and when they are unstandardized is quite large as depicted in Fig. 8.

3 Results and Conclusions

MAPE calculated for both the algorithms predicting DTS log shows that ANNworks
better in predicting DTS log as compared to Gradient Boosting Regressor algorithm.
As already mentioned, the accuracy of the statistical model with respect to the phys-
ical model is tested by computing the average percentage difference in the Poisson’s
Ratio calculated using the Physical model and the Statistical Model (Table 4). Also,
the sensitivity of the models with the log data set (along with the accuracy of the
physicalmodel) is reported using the number ofmismatch obtained in the data points,
where we have classified each data point by clustering the Well logs thus generating
electrofacies and by clustering the mineral volumes thus generating lithofacies out
of 28 data points (Table 4).

Based on the Summary of results shown in Table 4, it can be inferred that the statis-
ticalmodel developedusingArtificialNeuralNetwork technique aremore converging
than that developed using Gradient Boosting Regressor Technique in estimating the
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Fig. 7 Correlation coefficients of various logs with PHIE log

Poisson’s ratio. Two rock physics models, VRH and Gassmann are used to calcu-
late the Poisson’s ratio. However, MAPE of GBR is slightly better than ANN and
tends to capture the high-frequency component (Fig. 9). Thus, it is evident that both
algorithms ANN and GBR have similar performances if we combine all measures
of performance.

It can be seen that the Poisson’s Ratio predicted using Voigt Reuss Hill average
method is penalizing as it increases the error in comparing Poisson’s Ratio for most
sets. However, the Poisson’s Ratio predicted using Gassmann’s relation have a mod-
erate effect on the error. Set 1, 5 and 7 seem to have an outstandingmatch of Poisson’s
Ratio. But set 5 and 7 fail the sensitivity test as there is high number of mismatch in
the lithofacies predicted by using physical model and electrofacies predicted using
the output of statistical model. Set 2, 4 and 6 also have a high number of mismatch
of the data points also the average error in Poisson’s Ratio prediction is relatively
high for them and thus they do not form the optimum combination. We see that Set 3
have a very good sensitivity check as it only has 2 data points mismatching, however,
the difference in agreement with the physical model is very high for Set 3. Thus,



172 A. S. Bhardwaj and R. Sharma

Fig. 8 Banner plot for set 1 (as example) showing the dissimilarity of clustering unstandardized
logs is 21.1 and for standardized logs is 6.35
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Fig. 9 Validation results for
DTS predicted by ANN and
GBR for set 1 (Depth given
in feets)

taking the strengths of both physical and statistical models and summarizing the
observations we can conclude that Set 1 forms the best combination for the physical
and statistical model as it has a very low difference in Poisson’s Ratio prediction
and satisfies the sensitivity test significantly. After Set 1, all the Sets fail either the
sensitivity check or the Poisson’s Ratio comparison test.

Figure 10 shows the Poisson’s Ratio predicted using Statistical Models (ANN and
GBR) and using Physical models (rock physics methods like VRH and Gassmann)
for Set 1. It can be seen that the physical methods have low variance in Poisson’s
Ratio while the statistical prediction does involve a decent amount of variance. The
prediction using ANN is more closely related to the predictions using Physical meth-
ods (VRH and Gassmann) than GBR. This could be related to the higher frequency
components introduced by GBR algorithm than ANN.

Figure 11 shows the comparison of lithofacies and electrofacies predicted for Set
1. Also, NPHI log is plotted against the predicted Lithology to give the verification of
the physical model. As per the NPHI log plot, it could be said that the lighter versions
of blue color (used to represent different lithology) consists higher amount of Clay
component in them as the NPHI value is large for the lighter shades of blue. Core
sample in anywell is a luxury for the petro-physicist however, the emphasis should be
to avoid redundancy in core sample selection using the strengths of electrofacies and
lithofacies outputs, which help us, estimate the lithology. Thus using this approach,
we can arrive at estimating the required coring sections to avoid collecting cores
from similar geological settings.

After looking at the facies comparison between Fig. 11a, b, it can be concluded
that our physical and statistical models are almost converging, except for a mismatch
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Fig. 10 Predicted versus actual DTS for set 1 for ANN

Fig. 11 a Lithofacies from physical model. b Electrofacies from Set_1 and c Electrofacies from
Set_3 (Depth given in feets)
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at few points for Set 1. However, for Poisson’s Ratio estimates developed from
physical models (based on rock physics methods VRH/Gassmann) the sensitivity of
the estimated values of PR, appears to be missing the facie variation in the middle
of the section. At the time we believe that there are possibilities such that of a
different fluid combination or volumes of the softer constituents are probably under-
predicted by our physical model. This point would be further looked at by merging
this work with the available core data. Apart from the central region the PR match
looks consistent with acceptable error limits.
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Chapter 13
Scaling Issues in Estimation of Pore
Space Using Digital Rock Physics

Shruti Malik and Ravi Sharma

Abstract Core samples have always been a luxury for measuring reservoir prop-
erties. However, in most cases, the cores become non-usable after a single experi-
ment. The methods such as Digital Rock Physics (DRP) based on image processing
offer an alternative to model these reservoir properties with better control on subjec-
tive biases of the experimentation and are non-destructive in nature. DRP involves
imaging the formation and simulating the field performance to account for various
non-homogeneities in the reservoir formation. Over some time, now, it has become
a popular method, but in case of complex reservoirs such as carbonates and uncon-
ventional resources, it is still at the feasibility stage only. The reasons are plenty
ranging from availability of calibration libraries and transition space error and its
quantification. In this paper, we used DRP to obtain porosity in carbonate samples
at various scales and compared the results obtained using established laboratory
methods which at the moment serves as ground truth for reservoir characterization
challenges. We found that DRP results mostly align with the results obtained using
methods like QEMSCAN. The analysis mostly points to the resolution limit input to
the respective techniques.

Keywords Digital rock physics · Porosity · Segmentation · Optimization

1 Introduction

Carbonate reservoirs account for most of the world’s oil and gas reserves and thus are
likely to dominate the hydrocarbon production through the next century (Akbar et al.
1995). The extremity of carbonate reservoirs is such that these can be extremely large
while having pores which are microscopic in nature. This makes the characterization
of these heterogeneous reservoirs very complex and important (Akbar et al. 2000;
Sharma 2015).

In DRP, 3D pore volume is a favourite output involving FIBSEM for decon-
struction and COMSOL for meshing and simulation (Brown 2011). As a result of
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flow simulation, absolute permeability is another attribute that can be successfully
obtained from this exercise. But, obtaining a 3D scanned volume of the sample is
a costly method. So, 2D scanned images can be used to obtain a 3D volume of the
sample by conditional reconstruction process (Karimpouli and Tahmasebi 2016) or
empirical relations (Karimpouli et al. 2018). This reconstructed 3D volume is then
used to determine the permeability of the sample. Dvorkin and Nur (2009) attempted
the DRP processes on a heterogeneous Berea Sandstone sample and investigated the
variation of properties on various scales by subdividing the digital volume into eight
small cubes. A similar workwith overlapping volume in carbonates was attempted by
Saenger et al. (2016). Grader et al. (2010) compared the material property in carbon-
ates in different facie types, such as granular and vuggy. DRP techniques have also
been extended for elastic property estimation (Zhang et al. 2011). A Fontainebleau
Sandstone sample was used, wherein the rock compressibility was replaced by the
elastic parameter of the pore-filling material as suggested by Ciz and Shapiro (2007).
DRP workflow on drill cuttings was discussed in detail by Dvorkin et al. (2003). The
work considered three shale cuttings photographed using thin sections and scan-
ning electron microscope (SEM) to resolve the pore space. Kalam (2012) compared
the special core analysis (SCAL) tests with the DRP measurements for the case of
complex carbonates obtained from Middle East reservoirs.

As evident from the literature review, DRP has been successfully attempted in
various forms for physical property estimation, but specific work addressing the
optimization of algorithm to address scaling issue is still missing. The objective of
this work was to highlight the issues of scales and resolution across homogenous
to heterogeneous carbonate facies. We used micro-CT images of the two carbonate
samples that had same mineralogy but were distinctly different in fabric morphol-
ogy. The porosities were determined and compared with the respective values from
conventional methods, and the limitations were deliberated upon.

2 Method

In order to characterize a reservoir and thereby determine the petrophysical param-
eters, various conventional methods are used. Conventionally, there are two ways of
measurement, i.e. laboratorymethod based onArchimedes principle and steady-state
CMS-300 method (core measurement system) based on Boyle’s law. In both these
methods, the porosity of the whole core sample, which was of the size 2–4 in., was
determined. But with the advent of technology, we have been able to look at the rock
at a much higher scale of resolution which helps us to better understand the pore net-
work. This is specially required in the cases where rock structure is heterogeneous,
such as carbonates.

Digital Rock Physics is a non-invasive and non-destructive method, wherein the
core sample is at first scanned and then a binary image of the rock (separating pore
space from the mineral matrix) is constructed through a process called segmenta-
tion. Different procedures are applied on the segmented image/volume to visualize
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its internal structure (Andrae et al. 2013) and simulate the physical properties thereof.
However, the approach of “image and compute” relies largely on the chosen magnifi-
cation of image acquisition. Image processing is then performed to correct the image
for noise if any by applying filters, and then, segmentation is done for segregating
different volumes of energy intensity and identifying them as possible mineral and
pore volumes. Segmentation can be performed using different algorithms depending
upon the problem to be solved. Some of them are:

1. Thresholding method: In this step, a histogram is generated, which shows the
pixel distribution in the image and a threshold value for segmenting the pores
and grains is decided such that the pixel value more than threshold value is given
value 1 (i.e. white indicating grains) and pixel value less than threshold value is
given value 0 (i.e. black indicating pore space) (Kalam 2012). The thresholding
can be global; i.e., a single value is used for the entire image or variable; i.e., the
threshold value varies over the image.

2. Morphological method: In this, the image is segmented on the basis of the shape
of the white patches on black background. This also includes the watershed
segmentationwhich is performed to extract the boundaries in an image (Gonzalez
and Woods 2008).

The segmentation process plays a very important role in determining the petrophys-
ical properties accurately, as the results obtained from this are used as an input to
the simulation step. In the end, physical processes are simulated computationally to
calculate the effective porosity, permeability, elastic properties, etc. (Andrae et al.
2013).

In this paper, in the first step, we have worked on the SEM images of different
resolutions, such as 1 mm, 1, 5, 20, 100 and 500 μm. Also, we have used the sliced
images obtained from micro-CT scan of the same carbonate sample. Then, we have
used MATLAB code to perform segmentation based on thresholding method on
these carbonate data and then determined the porosity of each SEM image, the bulk
porosity of the sliced images, i.e. combining all the slices to give a single porosity
and also the porosity from the sections combining 50 slices each.

In the second step, the porosities obtained in the previous stepwere then compared
with the conventional methods. In doing so, we determined the factors or issues that
could be responsible for or reason behind the difference in the porosity values, if any.

The entire procedure was applied to two carbonate samples (S1 and S2) with
same mineralogy, i.e. comprising of around 98% volume of calcite with distinct
morphology and thus porositymeasured from laboratory. The S1has a lower porosity,
while S2 has a higher porosity.

Workflow Adopted

1. Load the image file and define the number of slices to be segmented.
2. Convert the image to an 8-bit greyscale format (suited for SEM images).
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3. Perform segmentation by manually setting a threshold, decided from the his-
togram of the image (the threshold set should be able to detect all the pores
present in the images).

4. Create an iterative loop such that all the image slices are processed.
5. Using another iterative loop, calculate the total porosity from the equation given

by:

Porosity = (Area of pores) ∗ 100/(total area of the image) (1)

3 Result

Wehad the porosity values of the entire core obtained from the conventionalmethods.

1. Laboratory measurements gave the porosity value of 18% for S1 and 23% for
S2.

2. CMS measurement gave the porosity value of 17% for S1 and 23.5% for S2.
3. QEMSCAN measurement gave the porosity value of 6.27% for S1 and 22.8%

for S2.

The segmentation process performed on these SEM images (shown in Figs. 1, 2, 3,
4, 5 and 6) and sliced micro-CT scanned images [shown in Fig. 7 (i) and (ii)] of
the two carbonate samples (S1 and S2), respectively, using the MATLAB algorithm
resulted in the porosity values, shown in Table 1.

Fig. 1 SEM images for S1 carbonate sample, a at 1-mm resolutions, b segmented image, where
black represents pore spaces and white portion represents solid matrix
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Fig. 2 SEM images of different resolutions: a 5 μm, b 20 μm, with segmented images c and d for
S1 carbonate sample

4 Discussion

In this paper, forS1, itwas found that the bulk porosity obtained from the slicedmicro-
CT images resulted in the porosity of 6.30%, the porosity obtained from sections
containing 50 micro-CT slices each resulted in an average porosity of 6.1%, whereas
individual SEM images of different resolutions resulted in an average porosity of
7.8%. So, the calculated porosity lies in the range 6–8%.

This calculated porosity is comparable to the QEMSCAN porosity because the
micro-CT images are of the order of 25 μm, whereas QEMSCAN is of the order of
2–10 μm. So, QEMSCAN scans the images at a very high resolution and thus helps
in quantifying the porosity which is smaller than the resolution of the traditional
methods, i.e. the microporosity. Since the scales of these two measurements are
almost similar, they resulted in comparable porosities.
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Fig. 3 SEM images of different resolutions for S1 carbonate sample, a 100 μm, b 500 μm, with
segmented images c and d, respectively

For S2, though the laboratory, CMS and QEMSCAN measurements resulted in a
higher porosity, they are almost comparable to the DRP results, i.e. around 20–22%
porous.

It is found that in the cases where porosity is either high or too low, the results
are almost comparable. This is because in case porosity is high, it becomes easier
to identify the darker region and classify it as pore space, while in case of low
porosity, it becomes easier to identify the white region and classify it as grains. On
the contrary, in case of intermediate porosity, the image has both pores and grains in
good proportion, thus making it difficult to identify any one class distinctly.

Apart from the two basic classes, i.e. pores and grains present in an image, there is
another class, termed as pore mineral transition (PMT) zone. It comprises the region
present in between what we call as confidently in pore space (φ) and confidently in
grains. So, the total porosity is given by φ + PMT value.
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Fig. 4 SEM images at a 1-mmand b 5-μmresolutionswith segmented images c and d, respectively,
for S2 carbonate sample, where black represents pore spaces and white portion represents solid
matrix

The CMS and laboratory measurements always result in a higher porosity than
QEMSCAN, indicating that some porosity is being considered in the PMT values
(Jobe 2013).

The laboratory and CMS measurements resulted in porosity higher than the cal-
culated porosity, specifically for S1. This could be due to many reasons as follows:

The laboratorymeasurements consider the entire core and are carried out at a lower
resolution and thus have larger field of view, whereas in DRP the measurements are
done at higher resolution, and it looks at the core at micro- or nanoscale. So, in
DRP, a lot of space is not sampled which the laboratory measurements are able to
do. Another reason could be the pore mineral transition zone not being identified
clearly.

In order to overcome this problem, there is a need to optimize a scale at which
the simulated results can be compared to the field scale values. One way to optimize
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Fig. 5 SEM images at a 20-μm and b 100-μm resolutions with segmented images c and d,
respectively, for S2 carbonate sample

Fig. 6 SEM images a at 500-μm resolutions b segmented images for S2 carbonate sample
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Fig. 7 Slice of scanned micro-CT image a and b along with its segmented view for: c S1 and d S2
carbonate samples

is by capturing enough 2D images of the sample and at different angles, in order to
have the information of the sample on unseen sides also.

Radon transform can also be performed. It is an integral transform that is used
for analysing the image using its projections. So, a 3D sample is transformed into
multiple 2D views at different angles. This helps in analysing how a pore in 3D looks
like in its 2D projection. Its inverse can be used to reconstruct the 3D image of the
sample from the 2D projections obtained from CT scans of the sample (Sobani et al.
2015). So, in order to identify the pore mineral transition zone which could be one
of the reasons responsible for the difference, the Radon transform of the sample can
be done.
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Table 1 Porosity values obtained for both SEM images with different resolutions and micro-CT
images for the two carbonate samples (S1 and S2)

S. no. Image type Resolution Calculated porosity (%)

S1 S2

1 SEM 1 mm 6.97 21.00

5 μm 9.80 19.00

20 μm 7.87 17.00

100 μm 8.30 20.20

500 μm 6.43 20.60

2 Micro-CT (Bulk) 6.30 20.10

3 Micro-CT slices

1–50 6.2 19.00

51–100 7.5 18.50

101–150 5.5 19.80

151–200 5.7 21.50

201–250 5.6 21.60

251–300 5.4 20.50

301–350 5.5

351–400 7.5

5 Conclusion

This paper signifies the efficacy of digital image processing in determining imperative
reservoir property, viz. porosity through various methods of segmentation. In this
paper, we have addressed the scaling issues that one encounters when comparing the
results obtained from Digital Rock Physics method with the conventional methods.
Thus, to overcome the issues, we need to perform optimization of the algorithm
which could be done by capturing enough images and at different angles. Also,
Radon transform could be one of the potential methods in identifying the transition
zone between pores and grains which would be very helpful in determining the
accurate porosity values.

Thus, with the existing DRP resources and further customization of the programs,
an algorithm can be used for pushing the DRP as a standard tool in reservoir exploita-
tion programs.
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Chapter 14
Advanced Seismic Reservoir
Characterization of Carbonate
Reservoirs: A Case Study

K. Vasudevan

Abstract Successful exploration for and effective exploitation of hydrocarbons
from carbonate reservoirs necessitate accurate prediction of porosity pods and fluid
distribution within an intricate maze of porosity permeability corridors. Conven-
tional qualitative interpretation of G&G data to bring out gross depositional models
and facies distribution maps do not provide adequate control in effective appraisal
and exploitation of these discrete reservoirs. Often, such simplistic reservoir mod-
els lead to wrong well placement and inefficient appraisal and development plans.
Quantitative interpretation of the seismic and well data, integrating a myriad of
G&G data for reservoir characterization, is required to mitigate the risk and exploit
the carbonate reservoirs in a cost-effective manner. A robust workflow for seismic-
based reservoir characterization to elucidate the complexities in carbonate reservoirs
involves high-frequency cycles mapping integrating well and seismic data with sed-
iment logical data and image logs. This framework is subsequently calibrated with
seismic attributes and P-impedance data to develop permeability, density and dia-
genetic models to bring out the cyclicity of porosity creation and destruction during
deposition of multiple phases of carbonates corresponding to sea level oscillations.
This improvised reservoir characterization workflow was adopted to evaluate the
Eocene carbonate reservoirs of Bassein Formation in a field in Mumbai offshore
basin, which will be discussed in detail. The study has explicitly established that
Vadose zone diagenesis along the exposed geomorphic highs led to porosity gener-
ation. While the porosity in Upper Bassein has been largely preserved, it has been
completely obliterated in Middle Bassein and is patchy in Lower Bassein. After
integrating heterogeneity from nano- to seismic scale, a static model was developed
which led to identification of upside potential beyond the established reservoir limits
and infill development locations within the field area.

Keywords Seismic reservoir characterization · Bassein formation · Seismic
attributes · Diagenesis
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1 Introduction

Carbonate reservoirs, owing to their depositional and diagenetic diversity, are the
most complex and challenging candidates to quantitatively characterize the spa-
tiotemporal distribution. Successful exploration for and effective exploitation of
hydrocarbons from carbonate reservoirs necessitate accurate prediction of poros-
ity pods and the fluid distribution within an intricate maze of porosity permeability
corridors. Conventional qualitative interpretation of G&G data to bring out gross
depositional models and facies distribution maps do not provide adequate control
in effective appraisal and exploitation of these discrete reservoirs. Often, such sim-
plistic reservoir models lead to wrong well placement and inefficient appraisal and
development plans. Quantitative interpretation of the seismic and well data, integrat-
ing a myriad of G&G data for reservoir characterization, is required to mitigate the
risk and exploit the carbonate reservoirs in a cost-effective manner.

In this paper, the author has presented an advanced reservoir characterization
workflow for carbonate reservoirs through a case study of an oilfield, WO-16, in
Western Offshore Basin, India. The field is located south-east of the giant Mumbai
high oilfield and is bearing hydrocarbon in two distinct layers within the Middle-to-
Late Eocene carbonate reservoirs. The exploitation of these reservoirs posed several
challenges in terms of identifying the spatial extent of sweet zones as well as pre-
dicting their thickness and flow characteristics. In order to optimize the number of
development wells, it was essential to assess these aspects quantitatively since they
contributed to well deliverability. An advanced reservoir characterization approach
was adopted integrating all the available geoscientific data including 3D seismic, 20
exploratory wells, core, FMI logs, bio-stratigraphic and petrographic data.

A high-resolution sequence stratigraphic framework was developed by mapping
high-frequency cycles in logs and integrating them with core data, and these high-
frequency cycles were tied with seismic to map the sequences. This high-frequency
sequence model was used as an input for quantitative reservoir characterization.

Quantitative reservoir characterization is the 3D digital representation of the geol-
ogy through replicating the structural disposition of the reservoir, reservoir architec-
ture/facies distribution and petrophysical properties. It involves the analysis of geo-
logical, petrophysical and seismic data through processes like integration, reduction
and quantification, thereby leading to the understanding of inter-well heterogeneity.
It results in an improved geologic understanding and provides ameans for integrating
G&G and engineering data. This model is prepared primarily to capture the spatio-
temporal facies variation as well as fluid distribution and volumetric estimation.

It involves eight main steps: (1) stratigraphic modelling, (2) structural modelling,
(3) property modelling, (4) porosity modelling, (5) permeability modelling, (6) den-
sity modelling, (7) saturation modelling and (8) volumetric estimation.

The standardized workflow for quantitative reservoir characterization is placed in
Fig. 1.
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Fig. 1 Standardized workflow for carbonate reservoir characterization

2 Structural Modelling

Structural modelling involves defining the structural disposition of reservoir units.
It consists of horizons/surfaces bounding the reservoir intervals, faults and inter-
relationship between surfaces and faults. The aim of fault modelling is to build a
consistent fault model, in which the generated fault surfaces are consistent with hori-
zons and wells and fault lines representing the footwall and hanging wall cut-offs
between the horizons and the fault surfaces. The structural model forms an input
for the grid model. Structural modelling involves processes such as defining model
boundary (area of interest, modelled area around 280 km2), fault modelling and
horizon modelling.

Twenty-two faults and four seismically mapped horizons, i.e. top of Early
Oligocene, top of Late Eocene, top of early Eocene and top of Basement—already
interpreted in CRAM-PSDM scaled back to time volume—have been used to prepare
the structural framework of the area. Grid boundary polygon was selected consider-
ing the area ofMiddle-to-Late Eocene Bassein Formation and the extent of bounding
faults. In this study, pillar-based fault modelling was carried out. Based on the anal-
ysis of pressure-production data and of initial testing data of exploratory wells, the
modelled area has been divided into 16 segments (Fig. 2).

The grid is the cellular framework in which all other geological/property mod-
elling is carried out. For the creation of grid, the final horizon and the fault model is
the input. In order to perform modelling, the volume represented by the stratigraphic
framework is divided into small cells. The cells constitute the 3D grid where each
cell is assigned attributes during property modelling. Structural model is the input
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Fig. 2 16 modelled segments in WO-16 field

for grid construction. Regularized grid is preferred and the cell angles are kept as
orthogonal as possible, because it is ideal for flow simulations.

3 Stratigraphic Modelling

Stratigraphic modelling defines a scheme using well data which forms the basis for
well-to-well correlations. Typically, the data used in this phase of model building
is the well log sets along with the core data. Tying the well data with the seismic
data is necessary to establish the stratigraphic framework.Well-to-well correlation is
done to describe the stratigraphic horizons representing the main boundaries of the
geological sequences within the formations. This step is of immense importance for
the overall correctness of the model as the reservoir’s internal geometry is influenced
by the presence of the fluid flow. Since geologic processes lead to the layering of
geological bodies in 3Dspace and it is the stratigraphic frameworkof themodelwhich
constrains the data in 3D, it is therefore the most vital element for the derivation of an
accurate reservoir model in 3D. Thus, the derived 3D reservoir model is dependent on
the accuracy of the stratigraphic framework used to construct the same. Concepts of
sequence stratigraphy were used to establish the stratigraphic framework of the area.
Middle-to-Late Eocene Bassein Formation is divided into three units: Upper Bassein,
Middle Bassein and Lower Bassein formations (Figs. 3 and 4). Upper Bassein, in
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Fig. 3 Well sections showing third-order sequence stratigraphic surfaces

Fig. 4 Well sections showing higher-order sequence stratigraphic surfaces

turn, is divided into four sections, viz. H3B to Bassein-70, Bassein-70 to Bassein-60,
Bassein-60 to Bassein-50 and Bassein-50 to Mid Bassein; Mid Bassein is divided
into two parts—Mid Bassein to Bassein-40 and Bassein-40 to Lower Bassein. The
Lower Bassein is kept as a single entity.

Horizon modelling was done using six seismically mapped surfaces along with
higher-order surfaces like Bassein-70, Bassein-60, Bassein-50, Mid Bassein and
Lower Bassein, within Bassein Formation using isochores. In the model, 9 strati-
graphic zones have been defined which, in turn, have been divided into 98 propor-
tional geological layers, keeping 50 cm as minimum thickness within the individual
stratigraphic zone. This layering scheme was applied uniformly on all the zones.
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4 Property Modelling

Geometrical Modelling

Geometrical modelling creates number of properties under suitable template. Under
this category, bulk volume was created first to check if there was any negative cell in
the model. The absence of negative cells infers that stratigraphic positioning of each
cell was correct and consistent.

Petrophysical Modelling

For the population of petrophysical properties, porosity, permeability, density and
saturation have been populated throughout the reservoir/model, based on the input
data and knowledge of their trends and distributions, and the same was performed
stochastically.

Porosity Modelling

Porosity model was conditioned to seismic data using collocated co-krigging, since
P-impedance shows linear and inverse relationship with effective porosity (PHIE) in
clean limestone (Fig. 5).

Gaussian Random Function Simulation (GRFS) using collocated co-krigging was
performed taking P-impedance as the secondary variable. For the propagation of
effective porosity, initially the probability density function (PDF) observed in the
well logs (Fig. 6) was given priority. Effective porosity volume generated through
this process yielded somewhat pessimistic scenario. Average effective porosity maps
generated for the upper Bassein reservoir section, which is prolific producer through-
out the field, show abundance of tight patch, and it became difficult to explain the
production behaviour of a few development wells. The reason was the scattered pres-
ence ofwells compared to the overall area of the field and PDF of effective porosity of
logs at well level is more representative of vertical distribution of effective porosity in
the well. In the next stage, the propagation of effective porosity in the model is biased
with the PDF of P-impedance (Fig. 6) since P-impedance represents inter-well space
more aptly than the scattered wells.

Permeability Modelling

A porous media is considered as a bundle of tortuous capillary tubes. The expression
for k, rock permeability can be estimated by combining Darcy’s Law and Poiseuille’s
law for flow in tubes.

k = φe r0
2/8 τ 2 (1)

where r0 is the pore throat radius, τ is tortuosity, and φe is effective porosity. For
straight capillaries, τ = 1 and the equation for permeability becomes

k = φe r0
2/8 (2)
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Fig. 5 Effective porosity versus P-impedance relationship
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Fig. 6 Porosity model building

The above equation is a very simple but an important relationship because it shows
that a major factor influencing permeability is the pore throat radius. Pore throat
radius is a geological-cum-petrophysical character and can be related to depositional
and diagenetic events that the rock has undergone. For realistic cases of a porous
mediumwhere pore geometry is not straight, Kozeny (1927) and later Carman (1937)
introduced the concept of tortuosity,mean pore radius r0mn, surface area per unit grain
volume Sgv and shape factor Fs. They presented a more generalized equation now
named globally as Kozeny–Carman equation:

k = [φe
3/(1 − φe)

2]/Fs τ
2 Sgv

2 (3)

where is Fs shape factor, τ is tortuosity, and Sgv is surface area per unit grain
volume. Mean pore radius r0mn is defined as the ratio of cross-sectional area and
wetted perimeter of the pore throat under consideration and is inversely related to
surface area per unit grain volume. In the above equation, permeability (k) has the unit
ofµm2 and inµm−1. The term Fsτ

2 is termed as Kozeny constant, and it varies from
formation to formation. The variation of Kozeny constant is the main limitation for
universal application of thismodel. Entire term is a functionof depositional condition,
diagenetic alteration and mineralogical changes due to various geological reasons
and varies with pore throat attributes. Hence, this term represents the geological
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aspects of individual HUs. Determination and discrimination of group is the central
theme of HU classification and can be described in field units (i.e. permeability in
md) by altering last equation as

(k/φe)
1/2 = [φe/(1 − φe)]/(τ Sgv

√
Fs) (4)

and introducing a parameter Reservoir Quality Index (RQI) defined as

RQI = 0.0314(k/φe)
1/2 (5)

where 0.0314 is the conversion factor from µm2 to md. From above equation, flow
zone indicator (FZI) and normalized porosity φz are defined as

FZI = 1/(τ Sgv
√
Fs) (6)

and

φz = φe/(1 − φe) (7)

Substituting all equations in the last equation, we get

RQI = 0.0314φz FZI (8)

Taking logarithm on both sides, we get

ln RQI = ln φz + ln FZI (9)

Therefore, a plot of RQI versus FZI on a log–log space will yield straight line
of unit slope and its intercept on RQI axis will be the FZI for the respective flow
units. Permeability of the sample point is then recalculated for the pertinent HU using
median FZI values and corresponding sample porosity.

The calculation of RQI and FZI values leads to the identification of HU which is
based on the FZI values. Theoretically, there should be one single line and one single
FZI value for each HU. However, if there exists a cloud instead of a line, then this
will indicate existence of multiple HU groups. In such a case, the overall FZI dis-
tribution function is calculated by overlaying of the individual distribution function
around their median FZI. This needs decomposition of overall FZI distribution into
its constituting elements which is solved using histogram-based cluster analysis. At
each pay level, RQI values were calculated for each plug data available. Following
this, FZI values for each plug data were calculated. A plot of RQI versus FZI on a
log–log scale has been generated (Fig. 7). The plot showed the presence of a cloud
instead of a single line. In order to identify the optimum number of clusters (HU)
from the cloud, a histogram of FZI values for each pay level has been generated.

The permeability estimation from the uncored intervals/wells forms the next
important aspect of the part of an effective reservoir characterization activity. To
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Fig. 7 Identification of flow zones

complete the analysis, HU units are predicted in the uncored sections/wells from the
log data. Permeability profiles are then generated from the selected log data which
are used as variables in a transform equation. Here, using a multi-attribute nonlinear
regression analysis and a normalmulti-attribute linear regression analysis and using a
novel approach of alternating conditional expectancy (ACE) (Breiman and Friedman
1985), the results from the two have been computed and compared. Spearman’s rho
statistical technique is used on a set of environmentally corrected log tool responses
related to DT, LLD, GR, RHOB, NPHI and were rank-correlated to FZI. Finally,
for each pay level, the core-to-log permeability transform is employed through ACE
algorithm for proliferating permeability in uncored section/wells.
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For the population of permeability in the mode, the permeability data was condi-
tioned to effective porosity model using collocated co-krigging. Gaussian Random
Function Simulation (GRFS) using collocated co-krigging was performed taking
effective porosity volume as the secondary variable. Model slices of logarithm of
permeability for each zone are placed at Fig. 8. The slice corresponding to the Upper
Bassein window shows higher permeability in the northern part of the field, whereas
the slice corresponding to Lower Bassein indicates the permeability is patchy and
sporadic throughout the field.

Density Modelling

Density modelling was carried out during the static model building to understand the
spatio-temporal distribution of dolomitization and to infer the effect of diagenesis
throughout the field. For the propagation of density in the static model, a process
flow similar to effective porosity modelling has been performed. Density also has a
linear relationshipwithP-Impedance. Thiswould allow us to propagate density using
collocated co-krigging taking P-impedance as the secondary variable. To understand
the effect of dolomitization, a series of density simulations were carried out by
changing the percentage volume of calcite–dolomite in the system with predefined
porosity, water and gas saturation (Fig. 9).

Itwas found that in case of porosity of 5%effect of dolomites up to 40%volumetric
proportion would lead to density of 2.68 gm/cc if the pores are completely filled with
water. The same situation was repeated by taking gas-filled pores, and density was
found to be 2.62 gm/cc. This processwas repeated for porosity values 10, 15 and 20%,
and the corresponding density values were noted. This exercise leads to restrict the

Fig. 8 Permeability model slices
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Fig. 9 Density simulation with varying calcite and dolomite percentage

upper density limit of calcite effect up to 2.68 gm/cc and lower limit being 2.4 gm/cc,
considering 15% being the close to average porosity and that will be filled with gas.
Applying this cut-off, calcite–dolomite model had been prepared. 3D perspective
view of the calcite–dolomite distribution modelled through the density simulation
approach at each level is shown in Fig. 10. It is evident that effect of dolomitization
has increased Middle Bassein downward.

Incorporating this observation, a conceptual diagenetic model was prepared
(Fig. 11) to capture the porosity evolution of Bassein Formation in WO-16 field.
Vadose zone diagenesis along the exposed geomorphic highs led to porosity gener-
ation, while porosity destruction is attributed to diagenesis in phreatic zone along
the low axis. During Palaeocene–early Eocene Panna clastics were deposited over
basement making the country rock for the carbonate deposition. Rising sea level,
scarcity of clastic input, and greenhouse climatic condition favoured the carbonate
deposition and Lower Bassein Carbonate Formation was deposited over Panna For-
mation. Towards the Basement high, Lower Bassein Carbonate Formation lies non-
conformably over Basement, ultimately forming wedge-out structure. After Lower
Bassein Carbonate deposition, sea level dropped exposing part of the carbonate over
the basement highs. These carbonates were exposed to weathering and underwent
diagenesis in vadose and meteoric realm leading to karstification at the structural
highs. Due to lowering of sea level, restricted marine environment would prevail
in sags between two adjacent highs. In the restricted marine environment due to
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Fig. 10 Density slices showing modelled calcite and dolomite percentage

Fig. 11 Diagenetic model
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evaporation, hyper-saline environment leads to dolomitization and destruction of
porosity. Following this Middle and Lower Bassein Carbonate Formation deposited
due to cyclic rise of sea level and lowering of sea level leads to karstification at
the structurally higher places. Middle Bassein karstification due to lower exposure
time partially filled up the already karstified pores of Lower Bassein Formation due
to leaching. Pronounced unconformity at the Bassein top leads to very long expo-
sure at the Upper Bassein time resulted in extensive karstification in Upper Bassein,
whereas the percolating calcium-enrichedwater precipitated it below the vadose zone
which completely filled up the pores of Middle Bassein karstified portion leading to
destruction of porosity.

Integrated analysis of porosity, permeability, density and diagenetic models leads
to identification of three exploratory prospects and infill development locations for
the further exploitation of Bassein hydrocarbon.

5 Conclusions

• Successful exploration for and effective exploitation of hydrocarbons from car-
bonate reservoirs necessitate accurate prediction of porosity pods and the fluid
distribution within these intricate maze of porosity permeability corridors.

• Conventional qualitative interpretation ofG&Gdata to bring out gross depositional
models and facies distribution maps do not provide adequate control in effective
appraisal and exploitation of these discrete reservoirs. Quantitative interpretation
of the seismic and well data, integrating a myriad of G&G data for reservoir
characterization, is required tomitigate the risk and exploit the carbonate reservoirs
in a cost-effective manner.

• Advanced reservoir characterization workflow adopted in this study involved
preparation of a high-frequency sequence stratigraphy framework followed by
structural model and property modelling including porosity, permeability and dia-
genetic models culminating in saturation model and volumetric estimation.

• Porosity modelling was carried out using the post-stack P-impedance volume that
gave a very good inverse linear fit, as the secondary input which yielded a stable
porosity volume.

• Permeability model was prepared by first analysing the core data for calculating
Reservoir Quality Index (RQI), Flow Zone Index (FZI) and identifying hydraulic
units (HU).

• Prediction of permeability in uncored intervals/wells employing the alternating
conditional expectancy (ACE) (Breiman and Friedman 1985) algorithm. For each
pay level, the core-to-log permeability transform is employed through ACE algo-
rithm for proliferating permeability in uncored section/wells.

• For the population of permeability in themodel, GaussianRandomFunction Simu-
lation (GRFS) using collocated co-krigging was performed taking effective poros-
ity volume as the secondary variable.
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• Density modelling was carried out using P-impedance as secondary trend, and the
resulting density volume was rendered into calcite–dolomite percentage model.

• A conceptual diagenetic model was prepared to capture the porosity evolution of
Bassein Formation. Vadose zone diagenesis along the exposed geomorphic highs
led to porosity generation, while porosity destruction is attributed to diagenesis in
phreatic zone along the low axis.

• Integrated analysis of porosity, permeability, density and diagenetic models leads
to identification of exploratory prospect and infill development locations for the
further exploitation of Bassein hydrocarbon.

The advanced workflow elucidated in this study can be adopted for reservoir
characterization of complex multi-cyclic carbonate reservoirs to build quantitative
property models.
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Chapter 15
Interpreting Carbonates Generated AVO
Anomaly in Clastic Regime: A Case
Study in Deepwaters of Indian Basin

N. K. Khatri and P. K. Chaudhury

Abstract Since compression-wave velocity V p and shear-wave velocity V s are
affected differently by variation in rock properties and pore fluids, seismic amplitude
variation with offset (AVO) and multicomponent seismic emerges as a key tool for
exploration and reservoir evaluation. Compression-wave and shear-wave velocities
of water-saturated sandstones and shales often closely obey a linear relationship,
mudrock equation. Reflections from the interface of such layers exhibit the well-
defined background trend of decrease in AVO. Layers with V p and V s not honoring
the mudrock equation are elastically anomalous. Hydrocarbon-saturated sands and
the carbonate rocks are twoof the several caseswhich do not honor themudrock equa-
tion, and therefore, their V p/V s (Poisson ratio) is different for the same V p than had
they been honoring the mudrockline relation. Such layers when interfaced with lay-
ers honoring the mudrock equation generate the seismic responses anomalous to the
background AVO response. Low-impedance and low-Poisson ration hydrocarbon-
saturated sands in clastic regime reflect negative amplitudes increasing with offsets
(termed as class III AVO anomaly). First offshore well in deepwater in Mahanadi
Basin was drilled to probe the amplitude anomaly showing increase in amplitudes
with offsets. Well encountered limestone encased in incompacted shale generat-
ing increasing amplitude with offset . AVO response was computed from well logs
to help explaining the observed AVO anomaly of increase in amplitudes with off-
set from limestone. Anomaly could not be explained from approximated Aki and
Richards (Quantitative seismic: theories and methods. W. H. Freeman and Company
& Co. New York 1980) relations of Zoeppritz equation alone. Angle of incidence
approaching critical 40° at about offset of 2000 m at shale-limestonetop interface
depth caused the amplitude to increase with offset. Case study is presented to show
how such expressions can, prior to drilling, be inferred as generated by other than
hydrocarbon sands.

Keywords Seismic gathers · Seismic AVO modeling · Carbonates
characterization · Reflection coefficient · Impedance · Poisson ratio
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1 Introduction

TheMahanadi Basin is located in the north-eastern part of eastern continental margin
of Indian Plate between Bengal Basin towards NE and Krishna Godavari Basin to
the SW (Fig. 1). Data indicate that basin fill consists of sediments of Early Creta-
ceous to recent. Total sedimentary thickness in the study blocks is expected to be
more than 6 km. A basaltic lava flow (Rajmahal trap) is present between Early and
Late Cretaceous sediments. Middle Eocene carbonate is also a well-established litho
marker in shelfal part of the basin.

Organic shales of Cretaceous to Oligocene age serve as the source rocks in the
basin. Cretaceous and Paleocene shale in depth range of 3–4.5 km is reported to be
matured for oil generation and below this range for the gas generation.

Vertical cross sections along dip and strike profiles from seismic volume are
shown (Fig. 2). Reflection marked in magenta color in Mio-Pliocene interval, had
been the prospective target for characterization of hydrocarbon for exploration,
and are mapped. Corresponding CMP gathers showed increase in amplitude with
offset (Fig. 3). Considering regime to be clastic, increasing AVO had been inferred
as class III type (reflected amplitudes which increase with offsets are from the inter-
faces of encased low-impedance, low-Poisson ratio layerswhich commonly is caused
by hydrocarbon saturations in porous sands in clastic regime). Encouraged by this
understanding, first offshore well in deepwaters of Mahanadi Basin was drilled.
However, drilling results showed that increase in amplitude with offset was gener-
ated by limestone layers encased in uncompacted shale. This necessitated post-drill
analysis to explain the increase in amplitude with offsets generated by limestone,
and how such expressions can, prior to drilling, be inferred as generated by other

Fig. 1 Location Map of the study area in Mahanadi Basin, located in the north-eastern region of
Indian continental margin
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Fig. 2 Map of the targeted amplitudes marked by the magenta color on dip and strikelines

Fig. 3 Increase in amplitude with offset has been observed corresponding to the reflections marked
on seismic section by magenta color
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than hydrocarbon sands. The understanding inferred from the study and is presented
below.

– Rock physics studies show thatV p andV s are affected differently by limestone and
the hydrocarbons sands; Poisson ration, V p/V s, of limestone is higher as com-
pared to given by background mud rock equation trends, whereas that is lesser for
the hydrocarbon sands.

– Aki and Richards approximation of Zoeppritz equation here fails to explain the
observed AVO anomaly from limestone encased in uncompacted shale. Exact
computation of Zoeppritz equation explains the observed AVO responses, with
the lead to infer AVO anomaly not only generated by other than hydrocarbon, but
also to analyze its source.

2 Rock Physics Part

Since compression-wave velocity V p and shear-wave velocity V s are affected dif-
ferently by variation in rock properties and pore fluids, seismic amplitude variation
with offset (AVO) and multicomponent seismic emerges as a key tool for explo-
ration and reservoir evaluation. V p and V s of both the brine-saturated sands and
shale honor closely a common linear relationship (Eq. 1) as shown by the laboratory
measurements and form the background trend in clastic sedimentary deposits. It is
also called mudrockline, as is suited the best to shaley samples (Fig. 4)

Vp = 1.16 Vs + 1360 (m/s) or Vs = 0.8621 Vp − 1128 (m/s) (1)

Reflected amplitudes decrease with offset generated from the interfacing layers
obeying the V p and V s linear relation of the mudrock equation irrespective of their
velocities and forms the background seismicAVOresponse.V p andV s of the layer not
honoring the mudrockline equation define the anomalous intervals and the layer
interface generate seismic responses anomalous to the background AVO response,

Fig. 4 Illustration of theVp −V s relationship for sandstone (right) and shales (left) from laboratory
measurements (reproduced with permission from Castagna and Swan 1997)
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which is interpreted on A − B cross-plot (Castagna et al. 1998) and Smith and
Gidlow’s (1992) fluid factor.

Hydrocarbon-saturated sands and carbonate rocks are two of the several cases
which in a different ways do not honor the mudrockline equation (Fig. 5) and
therefore are interpretable from seismic AVO response. The points corresponding to
limestone are below the mudrockline (V p plotted on x-axis) contrary to the gas sands
where points are placed above the line (Fig. 5a, b).

Following Rock physics understanding describes how V p and V s are affected
differently by hydrocarbon-saturated sands and carbonate rocks:

V p and V s of the isotropic and homogeneous rocks are related with their bulk
modulus K and rigidity modulus μ by the following relations.

Vs = (μ/ρ)1/2 (2)

Vp = ((K + 4/3 ∗ μ)/ρ)1/2 (3)

where ρ is the bulk density of the rock.
K and μ of rock composite are governed by individual elastic moduli of the

constituents and their volume fractions besides geometric details of how the various
constituents are arranged. Bulk moduli of sandstone matrix k = 36.5 and water k =
~2.5 and their volume fractions contribute toK of the water-saturated sandstone rock

Fig. 5 Plots show the break in linear mudrock relationship between Vp and V s for the gas sand
and limestone cases. Points are below the background trend corresponding to limestone indicating
higher Poisson ratio contrary to the gas sand points which are above the background trend indicating
lower Poisson ratio (Examples from KG basin and Mahanadi basin respectively). Typical values
of elastic parameters of fluids (Table 1), and elastic constants of quart sandstone and calcite rocks
(Table 2)
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composite. Rigidity moduli of sandstone matrix μ = 45 and water μ = 0 and their
volume fractions contribute to μ of the rock composite. Volume fraction of water
is equal to the porosity of the composite. Since μ of non-viscous liquids is zero, μ
of the rock composite is governed by volume fraction of matrix and therefore is not
affected by the fluid replacement.

Single-phase mixture of liquids is isostress composite, and therefore, its effective
modulus K f is given by the volume weighted harmonic average of moduli of the
constituents as given by Wood’s formula (Eq. 4).

1/Kf = Sw/Kw + So/Ko + Sg/Kg (4)

where Sw, So, and Sg are volume fractions of water, oil, and gas constituents, respec-
tively, forming the single-phase mixture of fluid, and Kw, Ko, and Kg are their bulk
moduli. Typical values ofKw,Ko, andKg are shown in Table 1 which vary with pres-
sure, gas gravity, temperature, gas–oil ratio, and salinity. Kg is many folds smaller
than Ko, and Ko is many fold smaller than Kw. It is clear from Eq. 4 that K f is biased
towards modulus of the constituent of mixture having the lowest value (Fig. 5c).

If water is partly or fully replaced by hydrocarbon in the rock, the K f of mixture
of fluids in the pore space becomes many folds smaller than that bulk modulus of
water, Kw, bringing down the contribution from fluid constituent to K of rock com-
posite substantially, resulting K to be substantially lesser. Lower K of hydrocarbon
substituted rock composite brings the V p down (Eq. 3). μ of the rock composite is
not affected by the fluid replacement. Change in density alone affects V s marginally
(Eq. 3). As the outcome of water replacement by hydrocarbon in the rock, V p comes
down and V s practically not affected. This results water sand points on the V p − V s

mudrock cross-plot shift towards left (V p on x-axis) i.e., hydrocarbon sands having
lesser V p/V s than the corresponding points obeying the mudrockline. Example from
KG offshore shows the hydrocarbon points on the V p − V s cross-plot shifted towards
left (V p on x-axis) with reference to mudrockline (Fig. 5a).

Values ofμ of limestone and sandstone matrix (grain) are 32 and 45 GPA, respec-
tively (Table 2). μ of rock composite consisting of limestone and non-viscous fluid
is solely contributed by volume fraction of limestone matrix of 32 GPA. Similarly, μ
of sandstone rock composite is solely contributed by volume fraction of sandstone
matrix of 45 GPA. Therefore, μ is always lower for the limestone rock composite
than sandstone rock composite for the same porosity considering the contributions
caused by geometric details of arrangement of the various constituents are at par.
Therefore, V s of carbonate rock composite of same porosity is commonly lower than
that of sand stone rock composite (Eq. 2).

Values of K of limestone and sandstone matrix are 77 and 36.5 GPA, respectively
(Table 2); therefore, K is always higher for the limestone composite than that of
sandstone for the same porosity and same fluid mixture considering the contributions
caused by geometric details of arrangement of the various constituents are at par.

K + 4μ/3 in numerator in Eq. (3) computes V p. K of limestone rock compos-
ite of same porosity and fluids is higher than that of quartz sandstone, whereas μ

in limestone composite is lower than that of sandstone rock composite. However,
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k + 4μ/3 for limestone composite is higher than that of sand stone of the same
porosity and fluids which broadly explains the limestone composite having higher
velocity than that of sandstone.

As the outcome of higher V p and lower V s of limestone rock composite results
the points on the V p − V s cross-plot shift towards right and below (V p on x-axis)
with reference to mudrockline, i.e., limestone composite having higher V p/V s than
the corresponding water sand points obeying the mudrockline.

Example from Mahanadi Basin of first offshore well shows the points from lime-
stone composite on the V p − V s cross-plot are placed below (V p on x-axis) the
mudrockline (Fig. 5b).

3 Aki and Richards Approximation and Exact Zoeppritz
Equation

Reflected amplitudes offset generated from the interface of layers obeying the
mudrockline decrease with offsets irrespective of their velocities and forms the back-
ground seismic AVO response. In case V p and V s of the any of the interfacing layers
is not related bymudrockline equation, the seismic responses anomalous to the back-
ground AVO response is generated.

Encased low-impedance layers which reflect amplitudes with increase in offsets
from the interfaces are of lowPoisson ratio (termed as class III AVOanomaly) and are
commonly hydrocarbon-saturated porous sands in clastic regime. Limestone layers
encased in clastic regime are generally of higher impedance and higher Poisson ratio
and therefore also generate the AVO anomalous to the background trend.

Rp(θ ) in Zoeppritz equation has complicated dependence on elastic parameters
of two media across the interface and angle of incidence. To relate coefficients and
elastic parameters at a given incidence angle, approximated expressions as derived
by Aki and Richards are instructive (Eq. 5). It assumes two half spaces have prop-
erties, i.e., the ratios �V p/(V p), �V s/(V s), and �ρ/(ρ) much lesser than unit and all
incidence angles are less than any critical angle and less than 90°. This mathematical
expression greatly simplifies the behavior of reflection coefficients (RCs) with angles
and provides more insight into which changes in elastic parameters affect reflection
coefficients.

Rp(θ ) = A + B sin2 θ + C sin2 θ tan2 θ (5)

where

A = Rp = 0.5 ∗ (�Vp/Vp + �ρ/ρ) (5a)

B = 0.5 ∗ (�Vp/Vp) − 4 ∗ (
Vs/Vp

)2 ∗ �Vs/Vs − 2 ∗ (
Vs/Vp

)2 ∗ �ρ/ρ (5b)
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C = 0.5 ∗ (�Vp/Vp) (5c)

where�V p is the change in compressional velocity across the interface (V p2 − V p1),
V p is the average compression velocity across the interface (V p2 + V p1)/2, �ρ is the
change in density across the interface (ρ1 − ρ2), ρ is the average density across the
interface (�ρ1 + ρ2)/2, �V s is the change in shear velocity across the interface (V s2

− V s1), and V s is the average shear velocity across the interface (V s2 + V s1)/2, with
V p1; V s1; ρ1 and V p2; V s2; ρ2 being the medium properties in the first (overlying)
and second (underlying) media, respectively.

Linearized reflection coefficients (dashed line) are computed from Eq. (5) and
computed from Zoeppritz equation (solid line) for two models (Fig. 6); one model
yields critical angles, and other yields no critical angle. The linear approximation
tracks exact solution computed from Zoeppritz equation quite well before it breaks
downprior to critical angle (Fig. 6a). Zoeppritz equation computes amplitude increase
close to approaching critical angle contrary to Aki–Richards approximation. For
model without critical angle, the linear approximation still breaks down although at
larger angles.

Rp(θ) = A + B sin2 θ (6)

Equation (6) is two-term approximation as sin2 θ tan2 θ in the third term in Eq. (6)
is significantly small up to 35° of angle. It shows that R(θ ) and sin2 θ are linearly
related through A as the intercept and B as gradient. R(θ ) = Rp = A at θ = 0; A is
reflection coefficient (RC) at normal incidence.

Incident Angle (degree)

(a) (b)

Fig. 6 Comparison of exact solution of Zoeppritz equation (solid curve) and linearized solution
(dashed curve) for two half space layers models, viz. Vp2/Vp1 = 2.5, ρ2/ρ1 = 1.22, and σ 1 = σ 2
= 0.25 yields critical angles, and that of Vp2/Vp1 = 0.5, ρ2/ρ1 = 0.8, and σ 1 = σ 2 = 0.25 does
not yield any critical angle. Linear approximation tracks exact solution computed from Zoeppritz
quite well before it breaks down prior to critical angle
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By equating V p/V s = 2, Eq. (6) is simplified for more insight as

B = Rp − 2Rs (7)

where Rs = 0.5 * (�V s/V s + �ρ/ρ); the shear wave reflectivity at normal incidence.
Equation (7) shows howAVOgradientB is relatedwithRp andRs. SinceV p andV s

are affected differently by variation in rock properties and pore fluids, the Rp and Rs

are also affected differently, indicating rock properties and pore fluids interpretability
on seismic AVO, i.e., intercept A and gradients B and multicomponent seismic.

By equating V p/V s = 2, Eq. (6) is also simplified for more insight as

Rp(θ) = Rp cos
2 θ + 2(Rp − Rs) sin

2 θ (8)

where 2(Rp −Rs)=�(V p/V s)/(V p/V s) is the Poisson reflectivity (PR) at the interface.
Following, insight from Eq. (8) has been utilized to explain the AVO anomaly

generated from limestone.

1. First term in Eq. (8), irrespective of Rp being positive or negative, contributes
to decreases in reflection amplitude magnitude Rp(θ ) with increasing angle of
incidence; i.e., gradient is negative in case of positive Rp and positive in case of
Rp negative.

2. Second term shows that negative Poisson reflectivity (high-to-low Poisson ratio
interface) contributes increasingly negative amplitude with increase in angle, i.e.,
towards the negative gradient to Rp(θ ).

3. Positive Poisson reflectivity (low-to-high Poisson ratio interface) contributes to
increasingly positive amplitude with increase in angle, i.e., contributes to the
positive gradient to Rp(θ )

Relationship between Rp and Poisson reflectivity is shown for the layers obeying
mudrockline (Fig. 7a). Mudrock equation obeying layers of higher V p have lesser
V p/V s, and of lower V p values the higher V p/V s. The high- and low-impedance
models are discussed as two possible scenarios. The negative gradient given by first
term is added by negative gradient given by the second term, therefore resulting in
decrease in positive amplitude from top interface of the model and similarly decrease
in negative amplitude generated from base interface of the high-impedance model
(Eq. 8). The positive gradient given by first term is added by positive gradient given
by the second term, therefore resulting in decrease in negative amplitude generated
from top interface of the model. Similarly, decrease in positive amplitude generated
from base interface of the low-impedance model.

Substitution of water by hydrocarbon lowers the positive reflection amplitude
magnitude or increases the negative reflection amplitude and lowers the Poisson ratio.
Signs and magnitudes of Rp and Poisson reflectivity govern the increase or decrease
in amplitudewith angle as dictated by Eq. (8), yielding four possible scenarios known
as four classes of AVO anomalies (Fig. 7b).

Shale–limestone generates positive reflection amplitude as limestone has higher
impedance than the shale, which is generally the case. Therefore, first term in Eq. (8)
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Fig. 7 Three layeredModels and their intercept and gradient expressions on CMP gathers; a Shale-
sand-shale models, Vp and V s of layers are obeying mudrockline, b four possible scenarios after
hydrocarbon substitution of water in sands in models obeying the mudrockline, and c Shale-
limestone-shalemodel, limestonemay haveVp/V s lesser, equal ormore than encasing uncompacted
shale

contributes to positive Rp and negative gradient (decrease in positive amplitude with
angle increase) and second term depending upon the sign and magnitude of Poisson
reflectivity may slow down the decrease caused by the first term or overcome the
decrease to the extent of increases in the amplitudes with incident angle (Fig. 7c) as
compared to the background trends given by the layers obeying the mudrockline.

Poisson ratio computed from the well log data (Table 3 of Fig. 8) for the limestone
layers is higher, but it is still lesser than that of the uncompacted shale encasing it.

Fig. 8 Rp(θ ) computed from two-term Aki–Richards equation for the elastic parameters from the
well log data (Table 3) is plotted against sin2 θ upto incidence angle 35°
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This results negative Poisson reflectivity from shale–limestone interface, thereby
contributing toward decrease in amplitude though lesser than had this been layers
honoring mudrockline. The synthetic gathers generated from these parameters upto
35° using two terms Aki–Richards equation show decrease in amplitudes with angle
(Fig. 8) in alignment with parameters in table. Explaining the increase in amplitude
from shale–limestone–shale interfaces still remains an issue.

Offset domain represents the acquisition geometry in which each trace corre-
sponds to fixed offset in the CMP gathers, but angle of incidence at interfaces varies
(Fig. 9a), whereas the angle domain represents theoretical acquisition geometry in
which each trace corresponds to a constant incidence angle, but offset varies (Fig. 9b).
Synthetic seismic offset gathers at well location are generated from log curves using
Zoeppritz equation. Gathers are hanged with appropriate replacement velocity to
match with field seismic gathers and overlain by iso-incident angle curves in the step
of 10° starting from 5° to show how incident angle at interfaces is related with offsets
(Fig. 9c).

Incidence angle of 35° at limestone top (the brick color) and 50° at the base
at ~2000 m offset indicates angle 35° to be close to critical (Fig. 9c), i.e., break-
ing down the validity of Aki–Richards approximation at these offsets. This necessi-
tates the exact solution of Zoeppritz equation to explain the observation. Angle 40° is
computed as the critical angle from the sonic well log (Table 3 of Fig. 8) which cor-
responds to 2000 m offset at shale-limestone top generating increasing amplitudes.
Exact solution of Zoeppritz equation for this set of logs is rapid amplitude increase
with offset as angles approaching critical angle (Fig. 9). Synthetic seismic gathers
generated from log curves using Zoeppritz equationmatchedwithmuted post-critical
offset field seismic CMP gathers at well location (Fig. 10) which reveals that increase

Fig. 9 Synthetic offset seismic gathers at well location overlain by iso-incident angle curves in the
step of 10° starting from 5°
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Fig. 10 Synthetic gathers generated using Zoeppritz equation match with field PSTM gathers,
showing shale–limestone interface generated increase in amplitude with offsets correspoding to
incidence angle nearing to critical

in amplitudes with offset approaching 2000m is caused by shale–limestone interface
as incidence angle nearing critical.

Understanding that such AVO expressions can, prior to drilling, be inferred gener-
ated by other than hydrocarbon sands. Top and bottom of the layers can be identified
based on the reflections from the seabed which is low-to-high impedance interface.
Positive amplitudes at top increase with offset of layer (shale–limestone interface) as
angle approaches to critical, whereas from base of layer (limestone–shale interface)
there has been a decrease in amplitudes with offsets. This is contrary to the class III
type of AVO anomaly where both the negative amplitudes from the top and positive
reflection from the base interfaces of layer increase with offset. Therefore, study of
sign of reflections and their gradients from top and base of the layer must distinguish
if anomaly is caused by other than hydrocarbon sands.

4 Conclusion

Limestone in clastic regime is anomalous on V p − V s relation, therefore it generates
seismic AVO anomaly when interfaced with shale. Aki and Richards approximation
of Zoeppritz equation does not explain the observed increase in amplitude with
offset from shale–limestone interface.

Critical angle ~40° is commuted to correspond to the offset ~2000 m at
shale–limestone top interface depth. There is no critical angle from limestone base-
shale interface sonic logs. Incident angle approaching critical angle breaks down the
validity of Aki–Richards approximation, necessitating exact solution of Zoeppritz
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equation to explain the increase in amplitude from shale–limestone interface with
offsets.

Refletion from the top of layer increases rapidly with offset (shale–limestone
interface) as angle approaches to critical,whereas frombaseof layer (limestone–shale
interface) the decrease in amplitudes with offsets has been modeled. This is contrary
to the class III type of AVO anomaly where negative reflected amplitude from the top
and positive bottom interfaces of layer increase with offset. Therefore, study of sign
and gradient of reflected amplitudes from top and base of the layer distinguish increse
in amplitudes caused by other than hydrocarbon sands.
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Chapter 16
Application of Hilbert–Huang Transform
in Effective Reservoir Characterization

Vaibhav Jayaswal and Gaurav S. Gairola

Abstract One of the paramount goals in petroleum exploration is the identification
of the reservoir. The foremost objective of reservoir characterization is for prediction
of reservoir precisely.Nowadays, geophysical characterization is used to characterize
a reservoir; mainly, seismic data is being used for understanding the reservoir’s
properties and internal structure. The reservoir can cause anomalies in the frequency
of seismic signals. Over the past few decades, various transforms such as Fourier
transform (FT) and wavelet transform (WT) have been used to extract the concealed
attributes in the data. In the case of the Fourier transform (FT), it is the global
transform that cannot reflect local specialty. This transform is the best applicable
for stationary and linear data, but most of the geophysical data are non-stationary,
nonlinear, and aperiodic in nature. Therefore, FT is good for spectral analysis but
not fit for elucidating the temporal characteristics of the data. Wavelet transform
(WT) overcomes the problem faced by Fourier transform as it is one of the efficient
techniques for both spectral and temporal analysis of the data. The main problem
withWT is that it does not work well with nonlinear data and suitable mother wavelet
is needed to be assumed. This study focuses on highlighting the anomalies using the
Hilbert–Huang Transform, which comprises two techniques, i.e., empirical mode
decomposition (EMD) technique and Hilbert spectral analysis (HSA). EMD will
decompose a signal into mono-components of frequency termed as intrinsic mode
functions (IMFs). In this study, the EMD technique followed by HSA is applied
to the data set which highlights the anomalies in the data set and makes facile to
characterize a reservoir. It is difficult to characterize a reservoir because of varying
properties such as porosity and permeability within small sections of the reservoir.
This method shows its effectiveness in characterizing a reservoir.
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mode functions · Hilbert spectral analysis
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1 Introduction

A remarkable proportion of the world’s oil reserves are found in carbonate reservoirs.
To efficiently characterize a reservoir is the basic need in petroleum exploration. Var-
ious challenges have been faced in characterizing a reservoir due to the changes in
the properties of a reservoir after deposition. After formation of rocks, it undergoes
various physical and chemical changes which will change the fundamental char-
acteristics of the rock. Four types of porosity are present in siliciclastic reservoir:
intergranular, dissolution, microporosity, and fracture. Three types of porosity are
present in a carbonate reservoir: fracture porosity which is due to the stresses; vugs
which are separate pores resulting from dissolution and connected porosity which
exist between grains. Various transforms are used for signal processing such as
Fourier transform (FT) and wavelet transform (WT) which comprises two different
transforms, i.e., continuous wavelet transform (CWT) and discrete wavelet transform
(DWT). Among all the transforms, HHT is proved to be the best for nonlinear and
non-stationary signals.

Hilbert–Huang Transform is a fully adaptive technique which further comprises
two processes, i.e., empirical mode decomposition (EMD) technique and Hilbert
spectral analysis (HSA) (Huang andWu 2008; Huang et al. 1998). EMDwill decom-
pose a signal into mono-components of frequency termed as intrinsic mode functions
(IMFs). Since seismic signals are nonlinear, non-stationary and aperiodic in nature,
HHT is one of the best techniques for determining spatiotemporal features for such
type of signals (Battista et al. 2007). IMF is a function which will fulfill the following
requirements:

• Difference between the number of extrema and the number of zero-crossings must
be equal to zero or at most one.

• At any point, the mean value of the upper envelope and the lower envelope is zero
(Huang et al. 1998).

First IMF is of the highest frequency and last will be of the lowest frequency. The
method of converting the signal into IMFs is called sifting. EMD is widely used in
various domains such as well logging (Gairola and Chandrasekhar 2017), seismics
(Xue et al. 2013), sequence stratigraphy (Zhao and Li 2015), atmospheric sciences
(McDonald et al. 2007), Magnetotellurics (Cai et al. 2009; Cai 2013; Neukirch and
Garcia 2014), and medical science (Li et al. 2011). HSA is applied to the data in
order to determine instantaneous amplitude and instantaneous frequency of IMFs
which can be used to determine the anomaly in the data.

HHT algorithm is applied on seismic data of the F3 block situated in the Dutch
sector of the North Sea provided by OpendTect (dGB Earth Science). Inline range
varies from 100 to 750, crossline range varies from 300 to 1250 and time varies from
0 to 1848 ms. The area in the seismic section which is taken into this study is located
in 425 inline section at 1600 ms.
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2 Methodology

Initially, EMD is applied on inline section 425 and time slice 1600 ms. EMD algo-
rithm is mentioned below:

1. A seismic section is taken out from seismic data. HHT algorithm is applied
separately on all the traces present in that particular seismic section.

2. Each trace has certain local maxima and local minima.
3. All the localminima and localmaxima in a trace s(t) is joined by using interpola-

tion. This will result in two envelopes, i.e., the upper envelope which comprises
all the local maxima and lower envelope which comprises all the local minima.

4. Mean of both the envelopes (m11) are takenwhich is subtracted from the original
signal s(t). The new signal is called as proto IMF (h1 = s(t) − m1).

5. This first sifting process is repeated k times, i.e., h1k = h1(k−1) − m1k .
6. For the second sifting process, h1 is considered as data and m11 is the mean

envelope of the upper and lower envelope of new data, i.e., h1.

h11 = h1 − m11 (1)

7. The number of times the sifting process is repeated depends on the stopping
criterion which is taken as the normalized square difference between two sifting
processes. Eventually, the process will result in IMF1.

8. Now, IMF1 is subtracted from the original signal s(t) which gives x1(t). The
whole process is repeated on x1(t). This will result in IMF2.

9. The process will stop when xn(t) will give a monotonic trend rn. Therefore, we
have (n − 1) IMF and a monotonic trend for each trace in a seismic section.

s(t) = IMF(n−1) + rn (2)

10. IMF1 of all the traces are extracted to form IMF1 for the seismic section.
Similarly, all the IMFs of the seismic data are evaluated.

11. In this study, inline section 425 and time slice 1600 ms is decomposed into five
different frequencies which consist of the highest frequency component (IMF1)
to the lowest frequency component (IMF5).

Hilbert spectral analysis (HSA) is then applied to all the five IMFs. HSA is used to
determine the instantaneous frequency, instantaneous amplitude, and instantaneous
phase. Analytic representation of the signal is given by Hilbert transform which
means it will convert the signal into real and complex parts.

A(s) = a(s) + ib(s) (3)
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Instantaneous amplitude = absolute value of Hilbert transform, i.e., [a(s)2 +
b(s)2]1/2 (Huang and Wu 2008).

Instantaneous phase = tan−1[b(s)/a(s)] (4)

Instantaneous frequency = d(θ(s))/ds. (5)

3 Result

See Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

Fig. 1 Illustration of first monofrequency slice, i.e., first IMF of inline section 425 of 3D Seismic
data of F3 block, North Sea
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Fig. 2 Illustration of second monofrequency slice, i.e., second IMF of inline section 425 of 3D
Seismic data of F3 block, North Sea

4 Conclusions

IMF1 is the highest frequency component, and it mostly consists of noise. In inline
section 425, various features are highlighted with green color as green is having the
highest amplitude (approximately 0.3) which is more than the orange color feature
which is approximately 0.1. As we move on to IMF2 which is having frequency
lower than that of IMF1, it also contains noise and not properly highlights the fea-
tures present in the seismic section. Moving on to IMF3 which is having a frequency
which is lower than IMF1 and IMF2 and feature gets highlighted in this IMF. Geo-
logical feature is predominantly visible in low-frequency data and a layer is clearly
highlighted at 1600 ms. That layer might be a gas reservoir as gas has the property
to appear in low-frequency data.
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Fig. 3 Illustration of third monofrequency slice, i.e., third IMF of inline section 425 of 3D Seismic
data of F3 block, North Sea

Similarly in time slice 1600 ms, IMF1 and IMF2 are mostly consisted of noise
and did not provide accurate information about the features present in the seismic
section. In IMF3 of time slice 1600 ms, at inline 425 and crossline range 500–600
a feature is appeared in green color, i.e., with the highest amplitude among all the
features. This feature gets appeared in lower frequency components such as IMF4
and IMF5, but other features disappear. Therefore, we can say that gas is present at
that location. Moreover, validation with well data is not possible in this study due to
the limited availability of data.

On the basis of results obtained in this study, we can conclude that HHT can be
used to characterize a reservoir efficiently.
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Fig. 4 Illustration of fourth monofrequency slice, i.e., fourth IMF of inline section 425 of 3D
Seismic data of F3 block, North Sea
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Fig. 5 Illustration of fifth monofrequency slice, i.e., fifth IMF of inline section 425 of 3D Seismic
data of F3 block, North Sea

Fig. 6 Illustration of first monofrequency slice, i.e., first IMF of time slice of 1600ms of 3D seismic
data of F3 block, North Sea
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Fig. 7 Illustration of second monofrequency slice, i.e., second IMF of time slice of 1600 ms of 3D
seismic data of F3 block, North Sea

Fig. 8 Illustration of third monofrequency slice, i.e., third IMF of time slice of 1600 ms of 3D
seismic data of F3 block, North Sea
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Fig. 9 Illustration of fourth monofrequency slice, i.e., fourth IMF of time slice of 1600 ms of 3D
seismic data of F3 block, North Sea

Fig. 10 Illustration of fifth monofrequency slice, i.e., fifth IMF of time slice of 1600 ms of 3D
seismic data of F3 block, North Sea
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Chapter 17
Reservoir Characterization of Carbonate
Facies Towards Hydrocarbon
Exploration in Jaisalmer Sub-basin,
India

Raman Chahal and Saurabh Datta Gupta

Abstract The current study has been conducted in Jaisalmer sub-basin which is
a part of Rajasthan Basin. This sub-basin has been contained with clastic and car-
bonate both reservoir facies. The carbonate facies are mostly fractured limestone in
the Jaisalmer formation which is just below of Baisakhi-Bedisar clastic sequence.
Measurements at all scales from pores to sedimentary basin are analysed and inter-
preted to generate the micro and macro-geological models. It integrates all the avail-
able information to understand the reservoir rock and fluid information to delineate
the prospects zone. It helps to simulate the behaviour of fluid and determines the
distribution of properties, viz. lithology, porosity and thickness. Seismic reservoir
description is a model which incorporates the hydrocarbon storage and production.
Few numbers of wells have been drilled in this region, which are dry wells. The
current study has been conducted based upon full-stack and partial-stack seismic
data only with the help of nearby drilled well and analogue data. AVO analysis,
EEI analysis and attribute study over this volume within certain time have shown
some encouraging results of the study towards characterizing the carbonate reservoir
facies for hydrocarbon exploration. One pseudo-well was positioned as blind well
for testing the evaluated result with prospecting location position. The final result has
proved that the location was placed at a sweet spot. The more prominent response
from AVO analysis may be developed from the better high-resolution data set. In
view of volumetric and available data set with this kind of challenging geological
reservoir condition, the study has given a satisfactory outcome.
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1 Introduction

Jaisalmer sub-basin is the part of Rajasthan Basin with a geographical extent of
42,000 km2. It is a pericratonic shelf basin situated on the north-western slope of the
Indian Peninsular Shield (Pandey et al. 2009). It is lying in the eastern shelf part of
Indus Basin and to the west of Aravalli. While traversing from north to south, we
come across four sub-basins, namely Kishangarh sub-basin, Jaisalmer–Mari high,
Shahgarh and Miajlar sub-basin. An alternate sequence of clastic and carbonate
rocks is present in the sedimentary column of thickness 10,000 m (Singh 2006).
Bikaner–Nagaur basin is separated from Jaisalmer sub-basin by Pokhran–Nachna
high in the northwest, and Banner basin is separated from Jaisalmer sub-basin by
Banner–Birmama–Nagarpaikar high in the south. From Jaisalmer to Mari, there is
an NW-SE trending regional step-faulted high zone traversing the central path of
the basin (Awasthi 2002). Marine Jurassic succession of Jaisalmer basin from older
to younger are Bedesir, Baisakhi and Jaisalmer. Extension of Yellow Limestone is
mainly restricted to Jaisalmer formation. In the western side of Jaisalmer basin, a
prominentNNW-SSE trending fault acts as the separator between the limestone of the
Jaisalmer formation and the younger shale bed of the Baisakhi formation (Srivastava
and Ranawat 2015). In the formations of Jaisalmer basin namely Lower Goru and
Pariwar, petroleum has been explored (www.dghindia.org).

Carbonate is the major reservoir of the oil and gas fields throughout the world. It is
generally formed in shallow Warm Ocean either by the direct precipitation or by the
calcium carbonate extraction out of seawater to form skeletal materials. Carbonate
sediments may be confined together by the covered organisms or remain as the loose
sediments transported by the ocean water (SPE 2015). Carbonate sediments are
poorly sorted having a wide range of size and shapes leading to the variable primary
intergranular porosity. Dunham classification for the carbonate divides it into two
categories, namely organic bound and loose sediments. Pore sizes in carbonates vary
considerably from micron scale to cave system, and pore spaces are classified into
inter-particle and vuggy porosity. Inter-particle includes inter-grain and inter-crystal
created by the porosity between the particles, and the vuggy porosity is created by
the pore spaces within the grains (Shepherd 2009).

Carbonate facies are the output of the processes that are active in the depositional
setting. The depositional processes like water depth, wind, current and temperature
all effect the carbonate deposited (SEPM 2013). Depositional environment of the
carbonate sediments ranges from tidal flats to the deepwater basin. Most of them
originated in the shallow water shelf and are transported towards land or basin.

Reservoir quality modifies and often decreases after the diagenesis process. Mod-
ern carbonate sediments have enough porosity and permeability in comparison with
the antique carbonate sediments (SPE 2015). As carbonate has the tendency ofmixed
wettability, there is greater uncertainty and difficulty in the calculation of the petro-
physical parameters in case of carbonate than in case of sandstone (Shepherd 2009).
The study area is situated in the highly tectonically affected zone with fault and arch.

http://www.dghindia.org
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The study area has been placed in between Shahgarh and Kishangarh sub-basins near
Shahgarh area (Fig. 1).

Highly varying petrophysical properties like porosity, permeability and flow
mechanismpose a great problem for characterizing the carbonate reservoir. An elabo-
rate study of the permeability, pore size, fluid saturation, fracture systemand reservoir
rock type needs to be done. Fracture passage of the carbonate reservoir lies in the
range of tens of metres to hundreds of kilometres (Slb information).

In this study, reservoir characterization of carbonate facies has been done by tak-
ing into account of three basic steps, namely reservoir architecture, geological model
and geophysicalmodel study of the area (Beucher andRenard 2005). Reservoir archi-
tecture includes the geometry of the reservoir and gives the information about the
size and structure of the subsurface geological sedimentary rock type. The geological
model includes the integrated study of geology, seismic reservoir characterization
and petrophysical model development including analogue data. Geological model
development can be done from the correlation between rock physics and petrophysi-
cal properties guided by the various quantitative interpretation and attribute analysis,
whereas the attribute analysis for qualitative and quantitative interpretation and for
capturing the distribution of reservoir lithofacies comes under geophysical study as
one of the major milestones. Cross-plots of the rock physics properties with petro-
physical properties were emphasized for the reservoir characterization at a finer

Fig. 1 Tectonic map of the Jaisalmer basin (modified after Pandey et al. 2009)
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level. AVO (amplitude versus offset) analysis was performed to get a good response
from high-resolution data as the reservoir fluid is gas. The study has been performed
based on full-stack and partial-stack seismic data analysis, and one pseudo-well was
planned for a tentative location to capture the gas bearing sand in the study area. The
pseudo-well was planned based upon structural and stratigraphical analysis of the
area. AVO analysis has been performed based upon partial-stack data mostly near
and far angle stack data was used for this purpose. Intercept and gradient was out-
put product after analysis of the AVO; another elastic property of the area has been
analysed as extended elastic impedance (EEI). The surface attribute was analysed
based on volume-based AVO and EEI operator evaluation, and extension of reser-
voir gas bearing limestone has been evaluated. The surface attribute was generated
in the certain time window from Jaisalmer formation, i.e. 30 ms below of Jaisalmer
formation.

2 Methodology

The 3D seismic coverage of the study area sector comprises of 160-km2 full-fold
seismic zero offset and partial-stack data. In general, the quality of the 3D seismic
data is fair for full-stack seismic data, whereas the partial-stack seismic data quality
is moderate with the presence of acquisition footprints (Fig. 2). Seismic reflectors
correspond to different sequence boundaries.

Fig. 2 Seismic section of zero, far and near offset, respectively
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2.1 Well-to-Seismic Tie

Relevant log curves (compression sonic and density log) of drilled well are used to
generate well-to-seismic tie. The product of sonic and density values from the respec-
tive plots generates the acoustic impedance (AI) curve. An increase in AI, therefore,
corresponds to a corresponding increase in either the density or/and velocity of the
respective lithology at the well location (Fig. 3). The AI curve was used to extract
the reflection coefficient (Rc) which was then convolved with a selected zero phase
wavelet derived from seismic data to calculate synthetic seismogram. The accuracy
of synthetic seismogram will depend on the quality of well log and seismic data,
the rigour of processing methodology and the efficiency in extracting a represen-
tative wavelet from seismic data (http://www.slb.com/services/software/geo/petrel/
seismic/seismic_multitrace_attributes.aspx).

The derived synthetic seismograms are then used to study the discrepancies with
the seismic data measured at the few selected well locations. The wavelet was esti-
mated based upon a deterministic approach through frequency domain. The synthetic
seismogram was reasonably matched with seismic data. However, the minor limi-
tation was encountered during the creation of the synthetic as the sonic log was
not available for the full length. However, horizons under the scope of work, i.e.
Baisakhi-Bedisar, Jaisalmer and Lathi, are captured properly. Deeper intervals are
generally less reliable on seismic section due to attenuation of signals with depth.

Fig. 3 Well-to-seismic tie for dry drilled well for initialization surface interpretation

http://www.slb.com/services/software/geo/petrel/seismic/seismic_multitrace_attributes.aspx
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Fig. 4 Two-way structural contour map of Jaisalmer formation of the study area

Correlation is improved by the ability to observe the features of seismic data near
synthetic seismogram (Willingham et al. 2013).

2.2 Time Structure Maps

The time structure map has been prepared based on well-to-seismic tie match of dry
drilled well data which is away from the study area sector. Three major markers
have been chosen to cover the Jaisalmer limestone lithology which is the study zone
of the stratigraphic succession. The three major interpreted surfaces area Baisakhi-
Bedisar, Jaisalmer and Lathi formation. The Jaisalmer formation mostly consists of
Jaisalmer limestone and claystone. Figure 4 shows two-way travel time structural
contour map with study well which has been placed as pseudo-well based on seismic
data interpretation for Jaisalmer formation.

2.3 Velocity Modelling

A comprehensive methodology was followed in developing a best-fit velocity model
by integrating all available seismic and well velocity data taken from sonic logs. The
presence of velocity volume and reasonably adequatewell data produce a satisfactory
depth model.
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2.4 Fault Interpretation

Existing reports and analogue studies show that there were at least twomajor tectonic
events occurred in this part of the basin in Palaeocene which controlled faulting
system in the area. The dense fault block has been generated with a trend of NNW-
SSE which is known as Jaisalmer–Mari fault zone (Mitra et al. 1993). Initially, these
fault zone is extensional in the age of early Tertiary, but latter period it has been
converted to transgressional in the age of Plio-Pleistocene and reactivation evidence
has been observed in the area of Jaisalmer–Mari fault zone (Mitra et al. 1993). Faults
have been interpreted frommapping variance attribute as a useful edge enhancement
method. This approach facilitated a clearer image of fault, thus improving confidence
in their correlation.

2.5 Amplitude Versus Offset (AVO) Analysis

The current study has been focused mainly on Jaisalmer formation which is mostly
limestone and claystone. As per the petroleum system analysis, the formation has the
potential for production of natural gas which is also analysed by the analogue well
data (Luthi 2001). Drilledwell in the study area is not encouraging, and eventually, all
wells have been converted as dry well. The current study has been performed over
seismic data including partial stack. Since drilled well result is not encouraging,
one pseudo-well has been placed tentatively based on structural and stratigraphical
interpretation result. Few post-stack seismic attribute analysis also performed before
positioning the pseudo-well. The objective was to characterize the reservoir based on
AVO analysis and to demark the areal extension of gas bearing limestone reservoir.
The AVO analysis has been performed in the Ikon Science RokDoC application.
Intercept and gradient volume has been generated during the AVO operation.

The amplitude distribution for both the volumes (Figs. 5 and 6) has shown sub-
tle amplitude development towards high impedance side from low impedance with
respect to full- and partial-stack seismic volume (Fig. 2) which is turned to be an
encouraging outcome for deciding sweet spot further possible location for drilling.

The relation between the reflection/transmission coefficients with incident angle
was investigated by Zoeppritz equation. With the simplified form of this equation,
AVO inversion can be computed to estimate elastic parameter using amplitude varia-
tion with incident angle. Simplified form as the first order of Zoeppritz equation was
given by the Aki and Richards (1980) for the P-P (incident and reflected P-wave).

Rpp(θ) ≈ 1

2

[
1 − 4

(
β

α

)2

sin2 θ

]
�ρ

ρ
+ 1

2

(
1 + tan2 θ

)�α

α
− 4

(
β

α

)2

sin2 θ

(
�β

β

)
(1)

α is the average of two P-wave velocities on both sides of the reflector



240 R. Chahal and S. Datta Gupta

Fig. 5 Intercept volume generated from AVO analysis from near and far angle stack data

Fig. 6 Gradient volume generated from AVO analysis from near and far angle stack data
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β is the average of two S-wave velocities on both sides of the reflector
ρ is the average of two density on both sides of the reflector
θ is the average of the incident and transmitted P-wave angle

�α = α2 − α1, �β = β2 − β1, �ρ = ρ2 − ρ1

An alternate simplification by Shuey (1985) where β is written in terms of σ

RPP(θ) ≈ RPO +
[
AO RO + �σ

(1 − σ)2

]
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RPO is the reflection coefficient at normal incidence
RPP(θ) is the reflection coefficient at an intermediate angle
AO is the amplitude at normal incidence
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Equation (3) can be simplified to

RPP(θ) = RPO + G sin2(θ) (4)

RPO is the intercept, and G is the AVO gradient (Almutlaq and Margrave 2010).
The estimation of intercept and gradient has been made based on conditioned

near and far angle stack data as in the mid angle stack data there is no such kind of
variation with respect to near and far angle stack data. The near angle stack data is
restricted in 15°, whereas for far it is 45°. It has been observed that far angle stack
seismic data has better seismic resolution than near angle stack although few features
have developed in near angle stack data.

2.6 AVO Attribute

Attribute analysis is one of the important and powerful tools for capturing the fluid
(natural gas) presence and extension of reservoir limestone in the study area. Pri-
marily two AVO attributes have adopted for capturing the fluid presence in the study
area. First, AVO analysis (Schlumberger 2019) and second, the AVO fluid strength
which is given by
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AVO strength = [X ∗ (A1) + Y ∗ (A2)] (5)

where A1 is the intercept and A2 is the gradient. Here, X = Y = 1.
Equation 5 has been adopted for AVO analysis for intercept and gradient. The X

and Y have been quantified as a scalar entity, whereas A1 and A2 are the intercept
volume and gradient volume. Figure 7 shows the AVO analysis volume.

The surface attribute has been analysed based on volume-based operator for AVO
analysis product. The volume shown in Fig. 7 was used for surface attribute analysis.
The controlled surface has been chosen Jaisalmer formation. A certain time window
of 30 ms was selected based on seismic and nearby well log signature of the study
area. The 30 ms investigation window has been proportionally classified into 15
layers with 2 ms interval. All layers have been analysed with AVO analysis volume
operator, and 28mswindow has shown some encouraging result where the amplitude
has been distributedwith geological significancemanner. Thewindowhas been fallen
under Jaisalmer formation.

To get those sweet spot “extract value” surface attribute has been implemented
towards capturing reservoir limestone extension. Figure 8 is showing the areal exten-
sion of limestone reservoir facies.

The second attribute adopted for AVO analysis is fluid strength. The attribute
is one of the major attributes for detecting the presence of hydrocarbon. The AVO
resolution and fluid deviation are captured during analysis of this attribute. The
attribute basically controlled by background trend which is deflected by fluid angle
from zero to certain value of angle and increment of fluid angle has made some
anomaly from normal trend (Fig. 9).

Fig. 7 AVO analysis product after generation of intercept and gradient from partial stack
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Fig. 8 Extract value attribute on AVO analysis product operator (as shown in Fig. 7)

Fig. 9 Fluid strength attribute has been developed based upon fluid angle, AVO fluid strength
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2.7 Extended Elastic Impedance (EEI) Attribute

EEI is one kind of strong volume-based attribute analysis which has been evaluated
based upon rotation angle χ , intercept and gradient. The reservoir limestone is sen-
sitive to subtle change of amplitude with facies, and it is sensitive with fluid angle
like fluid strength attribute. So EEI has also captured reservoir limestone. Equation 6
(www.wiki.seg.org) (Whitcombe et al. 2002) has been used for calculation of EEI.

R(χ) = A cos(χ) + B sin(χ) (6)

In the above equation, A and B are showing the intercept and gradient.
The EEI has been calculated in two rotation angles 21° and 36° based upon

synthetic correlation and resolving capability of Jaisalmer reservoir limestone. The
36° rotation angle evaluation ofEEI has producedmore detectable image for reservoir
(Fig. 10).

The surface attribute has been generated based on EEI operator with same search
window analogy, i.e. 30mswith 2ms proportionate layer classification. The reservoir
limestone has been captured nicely at 28mswith proper correlation. Figure 11 shows
the limestone reservoir facies captured in EEI operator. The EEI has been generated
from intercept and gradient. Better data quality from near stack data may produce
high-resolution image.

Fig. 10 EEI volume has been generated based upon 36° rotation angle

http://www.wiki.seg.org
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Fig. 11 Extract value attribute on EEI operator

3 Results and Discussions

The full study has been conducted based on seismic data analysis with support of
nearby dry drilled well and analogue data. Primarily, the seismic interpretation has
been carried out based on full-stack seismic data and later on partial-stack seis-
mic data. Both structural and stratigraphical study was conducted based on above-
mentioned data and post-stack seismic attribute analysis. The study was capable to
find out one tentative location in the study area which is considered as pseudo-well
for the current study. Petroleum system has shown the presence of natural gas in the
study area. But current seismic data quality, earlier drilled well results and presence
of local reservoir lithofacies are not enough supportive for further encouraging result.

In the second instance finer level study with partial-stack seismic data with subtle
changes of amplitude has been captured through AVO analysis and EEI analysis. The
surface-based attribute analysis from Jaisalmer with fine layering has captured the
tentative presence of gas bearing limestone of Jaisalmer formation.Near and far angle
stack data was used for AVO analysis where during EEI volume estimation, intercept
and gradient along with 21° and 36° chi angle were used. Apart from intercept and
gradient, AVO fluid angle and AVO fluid strength were also evaluated for surface
attribute analysis.

The study has shown that increase in impedance, i.e. the high amplitude, has been
reduced with offset. The scenario has made chances of Class 1 AVO response in the
study under Jaisalmer reservoir limestone (Fig. 12). The classes have been estimated
based on Aki–Richards two-term and Zoeppritz compressional wave evaluation. The
classes was evaluated based on P-wave and S-wave velocity and density values. P-
wave velocity has been estimated from seismic velocity estimation model, and from
P-wave value, S-wave velocity was estimated.
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Fig. 12 AVO classes evaluated from Vp, V s and density value of pseudo-well position

Figure 12 shows the AVO classes which have been estimated between Baisakhi-
Bedisar formation and Lathi formation. Sandstone and conglomerate lithology is
primarily dominating inBaisakhi formation, Jaisalmer formation has been dominated
by limestone and claystone rock type, whereas sandstone and shale are in dominating
position in Lathi formation. Red colour line is showing Baisakhi-Bedisar as upper
lithology and Jaisalmer as lower lithology, whereas blue colour line is showing
Jaisalmer as upper lithology and Lathi as lower lithology.

Monte Carlo iteration (Kroese et al. 2014; Macary et al. 1999) has run over V p, V s

and density value-based intercept and gradient output with 1000 number of iteration
through weighted stack for capturing gradient positioning of data point towards
evaluating of AVO classes (Fig. 13).

The estimated weighted stack relation may be defined as,

Ws = 0.0527 ∗ I − 0.084 − G (7)

W s is weighted stack value, and I and G are intercept and gradient.

Fig. 13 Monte Carlo (Wikipedia information) simulation with 1000 iteration for weighted stack
estimation towards AVO class findings
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4 Conclusions

The study has been conducted in such kind of area where success ratio is very less
towards hydrocarbon exploration from Jaisalmer formation. The current study has
been performed using only seismic data (full and partial). One pseudo-well was
proposed as blind well to test the final output result for location proposal area. This
has been proved that location was positioned in right place. AVO and EEI operator-
based attribute analysis and window extracted value surface attribute analysis have
shown the nice distribution of Jaisalmer limestone reservoir facies distribution. The
carbonate reservoir facies is carrying Class 1 AVO response. Good-quality high-
resolution seismic data with special well log data such as FMI and NMR/CMR will
take this quantitative analysis in advance stage, and through detailed advance study,
chances will be high of Jaisalmer formation from hydrocarbon production point of
view.
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Chapter 18
Petrophysical Characterization
of Sandstone Reservoir from Well Log
Data: A Case Study from South Tapti
Formation, India

N. P. Singh, S. P. Maurya and Kumar Hemant Singh

Abstract The present study is aimed at evaluating the reservoir potentials of South
Tapti Basin of India with limitation to the available data. A number of petrophysical
parameters, i.e., effective porosity (�), water saturation (Sw), formation water resis-
tivity (Rw), hydrocarbon saturation (So), and true resistivity (Rt), are evaluated using
the well log data, and the reservoir characterization is performed. The analysis shows
a hydrocarbon-bearing zone in between 1866 and 1874 m, which contains gamma
ray (GR) value of 34.4 API, resistivity of 117.3 �m, and average porosity of 35.7%.
To know the fluid type in the reservoir zone, neutron porosity and density porosity
are plotted together and a crossover has been noticed at 1866–1874 m depth which
indicates that the reservoir is filled with gas. The analysis of petrophysical parame-
ters and cross-plots shows that the reservoir is filled with sandstone with some clay
content separated by shale markers, which act as seal rock for the reservoir.

Keywords Petrophysical characterization · South Tapti Basin · Sandstone
reservoir · Cross-plots · Hydrocarbon saturation

1 Introduction

Well logs have been successfully used in exploration and development wells and
are routinely used to quantify depth and thickness of productive zones (Adeoti et al.
2009; Maurya and Singh 2015). Schlumberger brothers in Alsace, France, first intro-
duced geophysical well logging technique in 1927. Logging is carried out by physical
measurements (sonde) made by instruments lowered into the hole (geophysical logs)
and supported by laboratory experiments on core samples (Ofwona 2014). Imme-
diately after the well is drilled, the formations are exposed to well-bore and this is
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the best time to determine the properties of rocks in the vicinity of borehole using
open-hole logging tools. In wells with complex trajectories, logging tools are used
as part of drilling tool assembly. This approach is termed as logging while drilling
(LWD) (Economides and Nolte 1989). Important logs include temperature, pressure,
gamma, neutron, caliper log, and resistivity. Themain objective of petrophysical well
log analysis is to transform well log measurements into reservoir properties like per-
meability, porosity, oil saturation, water saturation, mineralogy, etc. The proposed
study aims at interpretation of well log data and quantitative evaluation of petrophys-
ical properties such as water saturation in parts of South Tapti Basin.

The South Tapti field covers an approximately area of 570 square miles and lies
approximately 100 miles north-northwest of Mumbai City, India. In this paper, well
log analysis is performed on the logs obtained from wells comprising the clastic
sediments of late Oligocene Daman formation in South Tapti Field (Wandrey 2004;
Saha et al. 2009). The quality of reservoir in terms of parameters like shale volume,
effective porosity, water and hydrocarbon saturation, and permeability are evaluated,
and the results are discussed.

2 Methodology

The well log data from the South Tapti Field is made available for research and
development by BG, India. An essential step in formation evaluation process is the
determination of amount of shale present in the formation (Opuwari 2010; Adaeze
et al. 2012). This helps to calculate the correct formation porosity and fluid content
within the pay zone. Volume of shale is calculated following the integrated approach
by utilizing the gamma ray log, SP log, neutron–density log, and resistivity log data
(Adeoti et al. 2009). Porosity is also calculated from density log. From the qualitative
observation of log plots, the crossover in neutron–density log, low intensity value of
natural gamma ray log, separation in shallow and deep resistivity log values, suppres-
sion in SP log and higher value in sonic log suggested the presence of hydrocarbons
between 1866 and 1874 m depth in the study area.

The analysis is performed in the depth range of 1830–1930 m as the reservoir
zone is expected within this interval. Water saturation is calculated using Archie’s
equation. The other important petrophysical parameters, i.e., permeability, are cal-
culated using the Timur equation in which irreducible water saturation is calculated
from the bulk volume water (BVW). The bulk volume water is calculated at several
depths within the reservoir zones. A constant or near constant values indicate a single
rock-type bearing zone at irreducible water saturation. When a zone is at irreducible
water saturation, water in the uninvaded zone (Sw) does not move as it is held on
grains by capillary pressure.
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3 Petrophysical Evaluation

The log data from South Tapti Formation is evaluated, and the derived petrophys-
ical parameters along with other logs are shown in Fig. 1. The figure shows the
natural gamma ray (GR), resistivity (Rt/Rxo), porosity (PhiD/Nphi), shale volume
(VshND/VshGR), and effective porosity (PhiE) log calculated from the well log
data. The analyses of log data show interesting features between depth interval
1866–1874 m. The natural gamma ray values are very low, the flushed zone and
the invaded zone resistivity is very high, and there is marked crossover when the
density and the neutron porosity logs are plotted together. Within the same inter-
val, the shale volume calculated from gamma ray log and neutron log shows a low
value, while the estimated effective porosity is very high. This analysis suggests that
this could be a prospective hydrocarbon-bearing zone which needs further detailed
analysis for its characterization.

Cross-plots are charts based on the slope and intercept of two porosity log
responses (depending on matrix lithology, and pore fluid). The cross-plots of bulk
density against P-impedance and lambda-rho against Poisson’s ratio are generated
for the depth interval 1830–1930m (Fig. 2a). The cross-plot in Fig. 2a shows concen-
tration of low bulk density and P-impedance values indicating prospective reservoir
zone between 1866 and 1874m.This lowvalue indicates the presence of hydrocarbon

Fig. 1 Gamma ray, resistivity log, porosity log, shale volume, and effective porosity log calculated
from well log data
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Fig. 2 Cross-plot between a the bulk density and the P-impedance and Poisson’s ratio and b the
Lambda-rho cross-plot. The color bar indicates depth

in this zone. The cross-plot between Lambda-rho and Poisson’s ratio shows a similar
concentration of low values within the zone between 1866 and 1874 m (Fig. 2b). The
cross-plots in Fig. 2a, b suggest that this zone is possibly hydrocarbon bearing and
reiterates the qualitative analysis of gamma ray, neutron and density porosity, and
resistivity logs.

4 Lithology Identification

An interpretation of lithology is performed through a systematic approach. The
gross lithology is collaborated and compared at the same depth, horizontally, to
the gamma ray log. Cross-plots are prepared for classification of sandstone, lime-
stone, and dolomite lithologies. When data points from lithology are plotted, they
fall on the charts lithology lines.

When combinations of those lithologies are present, the pointsmostly fall between
the lines. The porosity is determined by joining the data points and constructing a
porosity scale between major lithologies (Rider 2000).

4.1 Neutron–Density Cross-Plot

One of the methods available for porosity log analysis involves the density–neutron
cross-plot. A cross-plot method, called the shaly sand model, is widely used. How-
ever, this model is considered to be a poor model for any sandstone that contains
other minerals in addition to quartz. The complex lithology model works well in
quartz sands and is a preferred model for analysis (Adaeze et al. 2012).

Neutron–density cross-plot shows scattered data distributed on the entire line
(dolomite, limestone, and sandstone) suggesting the presence of these three minerals
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Fig. 3 Bulk-density versus neutron–density cross-plot a for depth 1830–1930 m, b for reservoir
zone (1866–1974 m)

between 1830 and 1930 m (Fig. 3a). The neutron and density porosity cross-plot
for reservoir zone (depth 1866–1874 m) is shown in Fig. 3b. The figure shows that
almost all plots lie on or below the sandstone line shows the rock type dominated by
sandstone in the reservoir zone with some level of limestone.

4.2 Sonic–Neutron Cross-Plot

The sonic–neutron cross-plot method involves the simultaneous solution of the sonic
and neutron response equations for porosity. Complex lithology is best suited to this
method. Since both logs respond to shale, the formulae do not work in shaly sands
with same accuracy (Crain 2002).

The sonic–neutron cross-plot shows the scatter of points spreading across all three
rock types (sandstone, limestone, and dolomite) but mostly lies between sandstone
and limestone (Fig. 4a). The figure suggests that a mixture of sandstone, limestone,
and dolomite in small quantity is present between depth intervals 1830 and 1930 m.
Figure 4b shows the cross-plot in the depth range of reservoir (1866–1877 m) which
shows data lying along the sandstone line or above it. This figure indicates that the
reservoir zone is dominated by sandstone rock types.

4.3 Sonic–Density Cross-Plot

The sonic–density cross-plot method involves a simultaneous solution of the sonic
and density response equations for porosity. The sonic–density cross-plot works
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Fig. 4 Sonic time versus neutron porosity cross-plot a for depth 1830–1930 m, b for reservoir zone
(1866–1877 m)

ideally in shaly sands with no gas. The resolution is poor in carbonates, and the
presence of gas makes the result too high (Rider 2000).

The sonic–density cross-plot in Fig. 5a shows the scatter of plotted points inclined
toward dolomite line indicating the presence of dolomite in the formation. The son-
ic–density cross-plot for reservoir depth also shows a similar response suggesting the
dominance of dolomite in the reservoir zone (Fig. 5b). The cross-plot does not appear
to be accurately predicting the lithology compared to other cross-plots (Figs. 3 and
4) because the distance between the sandstone, limestone, and dolomite line is too
small to reliably predict the lithology. Thus, the cross-plot in Fig. 5 is not reliable
and not considered for our analysis.

Fig. 5 Sonic time versus density porosity cross-plot a for depth 1830–1930 m, b for reservoir zone
(1866–1877 m)
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Fig. 6 Bulk-volume-water
cross-plot (Swa vs. PhiND)
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4.4 Bulk Volume Water

The product of a formation’s water saturation (Sw) and its porosity is the bulk volume
water (BVW) , BVW = Sw ∗∅. If values for bulk volume water calculated at several
depths in a formation are constant or very close to constant, they indicate that the
zone is of a single rock type with irreducible water saturation (Swirr). When a zone
has irreducible water saturation, water in the uninvaded zone (Sw) does not move
because it is held on grains by capillary pressure. Therefore, hydrocarbon production
from a zone at irreducible water saturation should be water-free (Morris and Biggs
1967).

The Buckles plot (Asquith et al. 2004) is a graph of porosity (ϕ) versus Sw.
Points of equal BVW form hyperbolic curves across this plot. If BVW is plotted
using data from a formation at irreducible water saturation, the points fall along a
single hyperbolic curve. If the data come from reservoirs with higher percentages of
produced water, the points are more scattered. For the reservoir zone (1865–1875m),
the Buckles plot shows saturation value of 0.045. So, it is irreducible water. Figure 6
shows the plot of bulk volume water.

4.5 Residual Oil Saturation (ROS)

ROS is the saturation value of the oil that remains after a displacing process of
crude oil system by water or gas injection. Residual oil saturation is oil saturation
that cannot be produced from an oil reservoir from gas or water displacement. It
is usually considered the immobile oil saturation after conventional (gas or water
displacement) (Crain 2002).

ROS is given by:
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ROS = 1 − Sxo (1)

where Sxo is water saturation in flushed zone.

4.5.1 Movable Oil Saturation (MOS)

It is important to recognize that only a fraction of oil in place is ultimately produced in
most reservoirs. This poses a challenge to attain better recovery, requiring a thorough
understanding of reservoir behavior (Waldschmidt et al. 1956). This necessitates the
estimation of movable oil saturation, which represents the maximum volume of oil
that can be moved or produced. Hence, the movable oil saturation is defined as:

Movable oil saturation = initial oil saturation − residual oil saturation

MOS = Sxo − Sw (2)

where Sw is water saturation and Sxo is saturation in flushed zone (Asquith et al.
2004).

4.6 Movable Hydrocarbon Index (MHI)

The movable hydrocarbon index is given by

MHI = Sw
Sxo

(3)

Water saturation of the flushed zone (Sxo) can be used as an indicator of hydro-
carbon moveability. If the value of Sxo is much larger than Sw, then hydrocarbons in
the flushed zone have probably been moved or flushed out of the zone nearest the
borehole by the invading drilling fluids (Rmf). If the ratio Sw/Sxo is equal to or greater
than 1.0, then hydrocarbons were not moved during invasion. This is true regardless
of whether or not a formation contains hydrocarbons. Whenever the ratio Sw/Sxo is
less than 0.7 for sandstones or less than 0.6 for carbonates, moveable hydrocarbons
are indicated (Schlumberger 1991).

The computed bulk volume water, residual oil saturation, moveable oil saturation,
and moveable hydrocarbon index are given in Table 1 along with the depth, porosity
estimated from neutron (NPHI) and density (PHID) log and water saturation for
reservoir zone only. Table 2 contains the estimated lithology from cross-plots with
PEF-derived lithology, volume of shale, and porosity estimated from density log
(PhiD) for a depth range of 1854–1874 m.
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Table 1 Reservoir properties estimated for depth from 1866 to 1874 m (reservoir zone)

DEPTH NPHI PHID SW BVW ROS MOS MHI

1866.0 0.24 0.25 0.24 0.06 −0.14 0.89 0.21

1866.5 0.23 0.28 0.18 0.05 0.06 0.77 0.19

1867.0 0.22 0.27 0.20 0.05 0.09 0.71 0.22

1867.5 0.20 0.24 0.21 0.05 0.12 0.67 0.24

1868.0 0.12 0.20 0.12 0.02 0.23 0.65 0.15

1868.5 0.09 0.35 0.05 0.02 0.62 0.33 0.14

1869.0 0.06 0.44 0.05 0.02 0.64 0.30 0.15

1869.5 0.06 0.46 0.07 0.03 0.60 0.33 0.17

1870.0 0.06 0.48 0.04 0.02 0.71 0.25 0.13

1870.5 0.07 0.46 0.03 0.02 0.81 0.15 0.17

1871.0 0.12 0.39 0.05 0.02 0.51 0.43 0.11

1871.5 0.11 0.36 0.07 0.02 0.48 0.45 0.13

1872.0 0.07 0.39 0.05 0.02 0.57 0.37 0.13

1872.5 0.08 0.39 0.07 0.03 0.57 0.35 0.17

1873.0 0.12 0.38 0.12 0.05 0.50 0.38 0.25

1873.5 0.16 0.37 0.10 0.04 0.54 0.36 0.21

1874.0 0.35 0.28 0.17 0.05 0.37 0.46 0.28

5 Determination of Cutoff and Net Pay

The final aim of any petrophysical analysis is to find net pay thickness with proper
petrophysical cutoffs. Net pay determination usually involves defining threshold val-
ues (or cutoffs) of the characteristics of interest. These limiting values are designed to
define those rock volumes that are not likely to contribute significantly to the hydro-
carbon production. The starting point in determining cutoff is to identify reference
parameter that allows us to distinguish between intervals that have reservoir potential
and intervals that do not. There is no single applicable approach to the identification
of cutoff (Worthington and Cosentino 2005).

There are several techniques or criteria to define cutoffs; clean rocks with low
volume of shales Vsh usually have few problems and have capability to store hydro-
carbons (Hamada 1996). As a rock becomes shalier, it becomes a poor reservoir rock.
There is a point of Vsh beyond which there are no more significant contribution to
store hydrocarbons. That point could be taken as Vsh cutoff for pay rocks. The same
concept applies for total porosity φt.
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5.1 Determination of Petrophysical Cutoff

Net pay is defined as the thickness of rock that contributes to economically viable
production with today’s technology, today’s prices, and today’s costs. Net pay is
obviously a moving target since technology, prices, and costs vary almost daily.

Tight reservoirs or shaly zones that were bypassed in the past are now prospec-
tive pay zones due to new technology and continued demand for hydrocarbons. We
determine net pay by applying appropriate cutoffs to reservoir properties so that
unproductive or uneconomic layers are not counted. This can be done with both log
and core data (if available).

Cumulative reservoir properties, after appropriate cutoffs are applied, provide
information about the pore volume (PV), hydrocarbon pore volume (HPV), and flow
capacity (KH) of a potential pay zone. These values are used to calculate hydrocarbon
in place, recoverable reserves, and productivity of wells. The following algorithm is
a highly simplified one-pass approach, which would need considerable adjustment
to run on a real computer. However, it is suitable for discussion purposes (Guo 2004).

It is normal to apply cutoffs to each calculated result to eliminate poor quality
or unproductive zones. Cutoffs are usually applied to shale volume, porosity, water
saturation, and permeability. The layer is not counted as “pay” if it fails any one of
the four cutoffs. Typical cutoffs are:

IF(VSHmax ≤ SHmax) ∗ (PHIe ≥ PHImin) ∗ (Sw ≤ SWmax) = 1 (5)

THEN PAYFLAG = 1

ELSE PAYFLAG = 0

Hnet = SUM(PAYFLAG ∗ INCR) (6)

where:

Hnet = net pay
INCR = digitizing increment
PHImin = porosity cutoff (fractional)
PHIe = effective porosity (fractional)
Sw = water saturation (fractional)
SWmax = saturation cutoff (fractional)
VSH = volume of shale (fractional)
VSHmax = shale volume cutoff (fractional).

Typically:

VSHmax = 0.25–0.45
PHImin = 0.03–0.16
SWmax = 0.30–0.70.
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These values must be appropriate for the rock sequence. Values in unconventional
reservoirs may be more extreme. In reservoir simulation work, the net reservoir is
also needed. In this case, set SWmax = 1.00 (Guo 2004). The effective porosity,
water saturation, reservoir, and net pay zone are shown in Fig. 7. Table 3 describes
the numerical values of the net pay estimation. The pay thickness is estimated to be
10.8 m, whereas residual and non-residual thicknesses are estimated to be 12 m and
1 m, respectively.

Fig. 7 Porosity, water saturation, reservoir, and net pay zone (left to right) of the area

Table 3 Net pay estimation of the South Tapti basin

Top (m) Bottom (m) Interval (m) Pay (m) Res Non-res Total thickness
(m)

1864 1877 13 10.8 12 1 13
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6 Conclusions

1. The volume of shale is calculated using gamma ray and neutron–density log
which shows a trend without much variation till 1865m before it shows a marked
decrease in volume until a depth of 1876 m. The volume of shale decreases again
between 1914 and 1930 m depth.

2. The depth interval between 1866 and 1874 m witnesses the neutron and the
density porosity crossover indicating the presence of a gas zone. The gamma ray
count is also low in this zone. The average porosity however is high (30–45)%.
This suggests along with the cross-plot results that the reservoir is sandstone with
high porosity between 1866 and 1874 m.

3. The water saturation is very low in the reservoir zone, and resistivity curve in
deep region (Rt) is high concurring with our inference for the presence of a gas
zone.

4. The lithology is predicted using different cross-plots like neutron–density, son-
ic–neutron, and sonic–density which also indicates the presence of sandstone
reservoir at (1866–1874)m and limestone at (1841–1845)m and (1900–1915)m.

5. The flushed zone water saturation is found using resistivity of mud filtrate and
resistivity of flushed zone. Residual oil saturation(ROS) , movable oil saturation
(MOS), and movable hydrocarbon index (MHI) are found, and it is observed that
hydrocarbons are movable as MHI < 0.7.

6. Reservoir and pay zone analysis is performed, and it is found that the reservoir
is 12 m thick and pay zone is 10.8 m thick which makes it a good reservoir.
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Tapti Basin for research and development work.
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Chapter 19
Sensitivity Analysis of Petrophysical
Parameters Due to Fluid Substitution
in a Sandstone Reservoir

S. P. Maurya, N. P. Singh and Kumar Hemant Singh

Abstract In the present study, the CO2 storage potential of a subsurface sandstone
layer of the Blackfoot field, Alberta, Canada, is evaluated. In this study, seismic
reservoir monitoring has been performed to monitor fluid flow effects in seismic
amplitudes. In order to monitor CO2 fluid viability, the Gassmann fluid substitution
analysis is also performed to analyze the seismic amplitude response along with the
seismic forward modeling which is used to generate seismic data from the geolog-
ical model. From the seismic forward modeling, a significant variation in seismic
amplitude is recognized due to fluid substitution. From the Gassmann approach,
considerable changes in P-wave and S-wave velocities, densities, and impedances
are observed with increasing CO2 saturation. From the results, it is observed that the
sudden drop in acoustic impedance occurs between 0 and 20% CO2 saturation and
that leads to the detectable time shift at the top of the CO2 plume. Further, amplitude
versus offset (AVO) and Lambda-mu-rho (LMR) analyses have been performed to
demonstrate the detectability capacity of these parameters due to the change in fluid
saturation in the porous media. In addition, time delays at the injected reflector are
also measured. The changes caused by the CO2 plume in the seismic section are also
identified by subtracting the monitor model (CO2 saturated model) from the baseline
model (0% CO2 saturated model) in time domain as well as in impedance domain.
The proposed amount of CO2 injection is considered as 105 tonnes for one year of
injection. The study demonstrates that the CO2 plume can be detected in a more
detailed way with very high resolution by working in impedance domain rather than
working in time domain.
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1 Introduction

Global warming is a major concern of the society in recent time which is increas-
ing day by day due to an increase in the concentration of greenhouse gasses in the
atmosphere, particularly carbon dioxide (CO2) (Fanchi 2001; Chadwick et al. 2010).
Many researchers from the globe are working on the principle to reduce safely the
concentration of CO2 from the atmosphere. CO2 sequestration in geological forma-
tion is one solution to reduce the amount of CO2 from the atmosphere (Nordbotten
et al. 2005). The goal of this technique is to capture waste CO2 from power plants
and factories before releasing it in the atmosphere, transport it to the storage site,
and inject into the porous formation sealed by non-porous formation.

The CO2 sequestration to reduce its concentration from the atmosphere came into
the existence in 1970 and got popular in 1980 (Ivanova et al. 2012). There are four
major steps involved in CO2 sequestration project and those are as follows: (1) CO2

capture from large point sources, (2) compression of CO2, (3) transport of CO2, and
(4) injection of CO2 into the geological formation (Pevzner et al. 2011). This study
is related to the fourth step especially prior to injection, modeling, and assessment.

The aim of the present study is to demonstrate that what would be the effect
on time-lapse seismic response due to fluid replacement in the porous geological
formation.The target is tofind themost sensitive petrophysical parameters due toCO2

plume simulation in the geological formation. For analysis, post-stack seismic data
and 13well logs are used from theBlackfoot field, Canada.Our target zone lies near to
1550mdepth that is sandstone layer. It is also noticed that the sandstone layer is sealed
by non-porous shale formation. For this purpose, the Gassmann fluid substitution is
performed and the variations in rock properties parameters like velocity, density
and impedance, Lame parameters and AVO parameters (A and B) are calculated
with increasing CO2 saturation. The most sensitive parameters found here are Lame
parameters (λρ and μρ) which show maximum change due to fluid substitution.
Further, seismic forward modeling has been performed and the change in seismic
pattern is examined due to fluid substitution. The P-wave velocity is found to be most
sensitive parameter which shows the largest change in seismic amplitude.

2 Petrophysical Analysis Due to Fluid Substitution

One of the principle objectives of this study is to evaluate the changes in petrophysical
parameters caused by the fluid substitution in geological formation. These petrophys-
ical changes are expected to be reflected in seismic response (Gassmann 1951). The
Gassmann equations are used for fluid replacement modeling, and changes in veloc-
ity, density, impedance, Lame parameters and AVO parameters are calculated with
increasing CO2 saturation (Chadwick et al. 2009). The well log data fromwell 08-08
is used as reference log. Velocity, density, gamma ray, etc., are plotted together, and
the entire region is divided into 6 layers. Layer 5 is identified as porous formation
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(sandstone) and hence is chosen to perform the fluid substitution. The above and
below layers of layer 5 (sandstone) are identified as non-porous formation which
acts as a sealed rock and prevents fluid leakage from porous formation. The target
formation is at 1552–1576 m depth with the thickness of 24 m. Table 1 summarizes
velocity and density values for each layer, and Fig. 1 shows velocity and density
from well log data along with identified layers.

3 Gassmann Fluid Substitutions

Fluid substitution modeling is an important tool in time-lapse seismic modeling
(Chadwick et al. 2009). In this study, Gassmann fluid substitution equation is used
to evaluate CO2 injection in geological formation. Velocities and densities are ini-
tial input used in Gassmann fluid substitution equation along with frame rock bulk
modulus (K ∗), matrix bulk modulus (K0), rock shear modulus (G), and porosity (ϕ).
If the fluid saturation will be modified, the bulk density (ρb) and fluid bulk modulus
(Kfl) will be also changed (Xue et al. 2006). Gassmann established a relation among
the saturated bulk modulus (K sat), rock bulk modulus (K ∗), porosity (ϕ), rock shear
modulus (G), bulk density (ρb), and fluid bulk modulus (Kfl) (Gassmann 1951). The
relationship is as follows:

Ksat = K ∗ +
(
1 − K ∗

K0

)2

ϕ

Kfl
+ 1−ϕ

K0
− K ∗

K 2
0

(1)

This K sat is related to the P-wave and S-wave velocities using the following
formula,

VP =
√

Ksat + 4G
3

ρb
(2)

VS =
√

G

ρb
(3)

Gassmann equations are developed in MATLAB, and fluid substitution is per-
formed. The important calculated results are P-wave velocity, the S-wave velocity,
VP/VS change, the λρ changes, and the μρ changes with increasing CO2 saturation.
Table 1 shows the variation of these petrophysical parameters due to fluid substi-
tution, and Table 2 shows corresponding changes in petrophysical parameters with
respect to 100% water saturation. The result shows that the P-wave velocity drops
abruptly between 0 and 20% saturation and then increases slowly with increasing
CO2 saturation (Fig. 2a).
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Fig. 1 Representation of layers (red line) which is defined on the basis of well log data (black line).
a Velocity in m/s and b density in g/cc with varying depth in m

S-wave velocity increases with CO2 saturation which can be seen from Fig. 2b.
The density decreases inverselywith increasingCO2 saturationwhich is evident from
Fig. 2c. The VP/VS decreases with the increase in CO2 saturation due to the increase
in S-wave velocities and decrease in P-wave velocities (Table 1 and Fig. 2d).

Figure 3a depicts the variation of λρ with CO2 saturation. The λρ drops abruptly
between 0 and 20%CO2 saturation, and after that, it becomes approximately constant
for higher value of CO2 (Fig. 3b). The average decrease in λρ is 21.4% which is
much greater thanVP,VS and ρ changes. Theμρ decreases inversely with increasing
CO2 saturation. The average decrease in μρ with respect to 100% water saturation
is 4.7%. The Lame parameters show more rapid change due to fluid substitution
compared to the other petrophysical parameters.
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Fig. 2 Variation of a P-wave velocity, b S-wave velocity, c density, and d VP/VS with CO2
saturation

Fig. 3 Variation of a λρ, bμρ, cAVOA (zero offset), and dAVOB (intercept) with CO2 saturation
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4 Amplitude Verses Offset (AVO) Analysis

Seismic amplitude versus offset (AVO) analysis is a powerful geophysical tool for
direct detection of gas from the seismic records. AVO combines P-wave velocity,
S-wave velocity, density, and angle of incidence to calculate the changes in seismic
amplitude; therefore, it should be more sensitive for discrimination of CO2 fluid
(Bachu et al. 1994). This technique uses Shuey’s (1985) approximation equation
which is very simple, involves less parameters, and is easy for calculation as compared
to the Zoeppritz equation (Shuey 1985; Mathieson et al. 2010).

The AVO analysis is applicable for two-layer earth models; layer 1 is considered
as the layer above the injection zone, and layer 2 is considered as the injection
zone. The velocities and density of layer 1 is VP1= 3497 m/s, VS1= 1665 m/s, and
ρ1= 2390 kg/m3. The values of layer 2 will depend on the CO2 saturation and are
summarized in Table 1. There are two main equations which deal with the AVO
analysis. The first equation relates to the reflection coefficient (R0) with velocity and
density.

R0 = V2ρ2 − V1ρ1

V2ρ2 + V1ρ1
(4)

where V 1 and ρ1 are the velocity and density of the first layer, respectively, whereas
V2 and ρ2 are the velocity and density of the second layer, respectively (Ghaderi and
Landrø 2009). The second equation which relates to the angle of incidence and RPP

is as follows:

RPP = A + B sin2 θi + C
(
tan2 θi − sin2 θi

)
(5)

where A is the reflection coefficient at zero offset, B is called the gradient and
describes the small angle behavior, and C describes the large angle (Nordbotten
et al. 2005). For small offset, Eq. 5 can be written as follows:

RPP = A + B sin2 θi (6)

Table 1 summarizes the results of AVO analysis and shows decrease in both
the parameters A and B. The analysis shows that the AVO parameters A decreases
maximum up to 22% and B decreases up to 10% with CO2 saturation. Comparing
these results with the one obtained from the Gassmann fluid substitution of VP

(change 2.8%) and VS (change 2.5%), it is possible to see that the change in the
AVO parameters A and B is considerably high due to fluid substitution. Figure 3c
shows the variation of AVO parameter A, whereas Fig. 3d depicts the variation of
AVO parameter B with CO2 saturation.
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5 Time-Lapse Seismic Response Evaluation

Time-lapse seismic response evaluation is traditionalmethod formonitoring reservoir
behavior due to fluid substitution. In many cases, the effect of the change in reservoir
pressure and/or the fluid saturation are used tomap the pattern change of the reservoir
properties by obtaining seismic data repeatedly during the production phase (Moradi
and Lawton 2015; Vadapalli and Vedanti 2016). Using this concept, the sensitivity
analysis of petrophysical parameters has been carried out and changes in seismic
pattern have been monitored. A well 08-08 is chosen for analysis. Fluids in the
sandstone layer (layer 5) are systematically replaced by CO2 in steps of 10% increase
in saturation. The top of the sandstone reservoir is 1552m, and the bottom is 1576 m;
the thickness of the reservoir is 24 m. To carry out forward modeling, the velocity
and density structure of the reservoir at initial saturation conditions is available from
sonic and density logs. Synthetic sonic and density logs are generated for each CO2

saturation level. To monitor the seismic response of sandstone with changes in fluid
saturation, a ricker wavelet of 30 Hz frequency is convolved with the reflectivity
series and zero offset synthetic seismic traces are generated (Landrø 2002). The
synthetic seismic traces are also generated without CO2 injection in the reservoir
and are considered as baseline data (Fig. 4a). Synthetic seismograms generated for
varying saturation of CO2 in the reservoir represent monitored data (Fig. 4b).

The amplitude of seismic trace is increasing with increasing CO2 saturation
(Fig. 4b). Steep drop in P-wave velocity and λρ is observed until CO2 satura-
tion reaches 20%. After that, stage variation in these quantities is subtle (Fig. 4c).
Figure 4d shows the variation of seismic amplitude due to changes in S-wave velocity
caused by the fluid substitution. Figure 4e shows variation in density with varying
CO2 saturation along with seismic amplitude. From Fig. 4e, it can be noticed that
the density decreases as CO2 saturation increases. Figure 4f shows λρ variation with
CO2 saturation. Up to 20% CO2 saturation, the λρ shows significant difference, and
after that, it looks approximately constant. Figure 4g shows variation of μρ with
CO2 saturation which shows a continuous decrease in values with increase in CO2

saturation, but it decreases with very low value and hence is difficult to detect from
seismic patterns.

6 2D Seismic Modeling

Seismic modeling has been performed for assessing the ability of seismic methods
to detect the CO2 plume accurately. In this regards, a 2D geological model of the
site is generated to represent the structure and stratigraphy of the area. In addition,
the CO2 plume is designed and inserted as second body in the geological model to
represent the post-injection scenario. A 2D seismic simulation has been performed
on the geological models representing the pre-injection and post-injection scenarios.
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Fig. 4 a Baseline seismic data without CO2 injected, b monitor seismic data generated with CO2
saturation, c modeled P-wave velocity after CO2 injection, d modeled S-wave velocity after CO2
injection, e modeled density, f modeled λρ, and g modeled μρ, for varying saturation of CO2
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Fig. 4 (continued)

The final aim is to evaluate the time-lapse difference to demonstrate whether seismic
data can be used to monitor the CO2 plume in the sandstone target or not.

The geological model represents the subsurface structure in the zone of interest
of 4 km long cross section and 2 km deep. The horizons are filled with constant
VP, VS and ρ between the inter faces. Figure 5 shows geological model filled with
P-wave velocity, and target zone is highlighted by the rectangle. Further, CO2 plume
shape and size is designed on the basis of amount that will be injected in geological
formation.

The amount of CO2 for the injection is considered 100,000 tonnes for one year.
The thickness of the porous formation is 24 m, and the porosity in this zone is found

Fig. 5 Geological model inserted P-wave velocity used for modeling
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to be 12%. The efficiency E is considered as the saturation of CO2. The CO2 plume
size is calculated by considering 20% CO2 (E = 0.20) saturation, and the reason
behind is that at this saturation the maximum changes occur in the petrophysical
parameters.

The radius of the disk is estimated approximately 297 m, and accordingly, the
diameter would be 594 m. This represents the base and top of the rectangular plume
in a 2D model configuration.

Thereafter, seismic NMO-corrected PP gather is generated for 2D geological
model without CO2 injected. This seismic section is termed as baseline. Further, CO2

plume is inserted in the geological formation and the change in physical properties
such as velocity, reflectivity, and time shift caused by the injection of CO2 in a
sandstone reservoir is evaluated using Gassmann and Shuey’s equation. Again, a
synthetic seismogram is generated and termed as monitor data. Figure 6a shows
the difference between the baseline CDP (0% CO2) and the monitor CDP (20%
CO2) seismic sections. As expected, the rest of traces outside the area of interest

Fig. 6 a Difference between baseline and monitor amplitude section and b difference between
baseline and monitor impedance section. The inserted plume zone is highlighted
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are canceled, whereas the CO2 injection zone and the reflectors underneath it are
highlighted due to the amplitude differences and travel time. It is noticed that the
exact shape and size of the plume cannot be predicted by the seismic amplitude.

Thereafter, model-based seismic inversion is performed on baseline as well as on
monitor CDP section and inverted for acoustic impedance, with the hope that the
inverted impedance section could depict the actual shape and size of the CO2 plume
and the effect of plume will be highlighted more accurately compared to the baseline
seismic data. Figure 6b shows the difference between the baseline impedance section
and the monitor impedance section. The larger amplitude contrast has been noticed
from the impedance section as compared to the seismic amplitude section. From this
study, it is concluded that the analysis in impedance domain is better as compared to
time domain.

7 Conclusion

The analyses of petrophysical parameters have been performed, and the changes in
these parameters due to fluid substitution have been studied by the seismic response
evaluation. A series of petrophysical parameters, viz. VP, VS, ρ, ZP, ZS, λρ, μρ,
and the AVO parameters A(intercept) and B(gradient) changes caused by the CO2

injection is examined by theGassmann fluid substitution. It is noticed that the P-wave
velocity decreases by 10%, whereas S-wave velocity increases by 2% and density
of the subsurface decreases by 3% with CO2 saturation. The other petrophysical
parameters like Lame parameters λρ drop by 27%, and μρ increases by 17% due
to CO2 saturation compared to the 100% water saturation. The AVO parameters
(A and B) decrease with a value of 13% and 7%, respectively. The analysis shows
that the Lame parameters are the most sensitive properties for detection of CO2

saturation. Thereafter, seismic forward modeling is performed to see the changes
in seismic amplitude caused by the injection of CO2 fluid. The analysis shows that
the maximum seismic amplitude change is noticed by analyzing P-wave velocity
compared to other parameters discussed here. These are the fruitful outcome of this
studywhich can be used formonitoring actual CO2 sequestration in geological strata.
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Chapter 20
Friction-Induced Wellbore Instability
Due to Drill String

Arun K. Singh, Nitish Sinha and T. N. Singh

Abstract In this chapter, we study numerically friction-induced wellbore instability
due to frictional interaction between drill string and rock materials using torsional
pendulum system. The classical Amontons–Coulomb (AC) friction laws are widely
used for explaining the variety of sliding- and rotation-related phenomena, yet theAC
laws fail to explain stiffness dependence of stick-slip motion. In recent times, the rate
and state friction (RSF) model has found widespread applications for understanding
the phenomena related to sliding of rock surfaces. The RSFmodel, which is basically
modified form of the aforementioned AC laws, has not yet got any attention for
studying the friction-induced wellbore instability. The RSF laws state that friction
of hard surfaces such as rocks and metals at high (~MPa) normal stress depends on
current slip velocity as well as nature of the sliding surfaces. The literature review
reveals that rotation of drill string causes stick-slip vibration, thus potential initiation
of the failure process in surrounding medium. We use linear and nonlinear stability
results to discuss a critical stiffness above stick-slip behaviour of the rotating system
disappears. It is also demonstrated in the numerical simulations that stick-slipmotion
could also be eliminated by increasing rotational velocity of the drill string.

Keywords Rate and state friction · Stick-slip vibration · Wellbore instability

1 Introduction

Drilling of wellbores is a common activity in petroleum exploration industry
(Besaisow and Payne 1988; Dareing and Livesay 1968; Ghasemloonia et al. 2015;
Katsui et al. 2017). However, this mechanical operation is often encountered with
variety of engineering issues, for instance, appearance and propagation of cracks in
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the surrounding materials due to friction-induced vibration of drill string (Ghasem-
loonia et al. 2015; Katsui et al. 2017; Liao 2011; Zoback 2007). The classical Amon-
tons–Coulomb (AC) laws are frequently used to elucidate the frictional phenomena
such as stick-slip, static and dynamic strengths (Ibrahim 1994a, b; Persson 2000;
Ruina 1983). However, one of the limitations of the AC laws is that it does not take
into account the effect of slip velocity and nature of the contacting surfaces or even
temperature and pore pressure. In order to overcome the limitations of the classi-
cal laws, the rate and state friction (RSF) were proposed by Dieterich and Ruina
(Dieterich 1978; Marone 1998; Persson 2000). This modification is based on the
experimental observations that friction of hard and rough solid surfaces like rocks,
metals, hard polymers, etc., depends on time of contact as well as current slip rate of
the sliding surfaces (Dieterich 1978; Gu et al. 1984; Marone 1998; Persson 2000).
Stick-slip (SS) instability is basically a manifestation of the interaction between
elasticity and friction force (Gu et al. 1984; Persson 2000; Scholz 1990; Marone
1998). A necessary condition of stick-slip is that friction should reduce with velocity
or displacement known as velocity-weakening effect (Ruina 1983). In other words,
the sliding surfaces must lose its strength with slip velocity or displacement (Ruina
1983). Contact strengthening must also occur at the interface to restore its frictional
strength (Dieterich 1978; Ruina 1983). In other words, friction is basically the out-
come of the competition between adhesion and rupture of the sliding surfaces which
give rise stable or unstable motion. In addition, friction also increases with sliding
velocity known as velocity strengthening effect, thus diminishing the possibility of
SS motion (Ruina 1983). Numerical simulations of the RSF laws have shown that
stiffness is important in low sliding velocity for controlling the dynamics of the slid-
ing yet that could also be eliminated by increasing the sliding velocity (Dieterich
1978; Gu et al. 1984; Marone 1998; Persson 2000; Ruina 1983; Ranjith and Rice
1999).

In the literature, there has been extensive theoretical studies on SSmotion because
of drill string in wellbore operation (Ghasemloonia et al. 2015; Katsui et al. 2017;
Lin and Wang 1991; Plácido et al. 2002; Pasic et al. 2007; Tian et al. 2016; Xue
et al. 2014). Dareing and Livesay (1968) analysed mathematically the longitudinal
and drill string vibration in the presence of damping (Dareing and Livesay 1968).
Lin and Wang (1991) studied the stick-slip vibration of a drill string in the light of
viscous damping, rotary speed and natural frequency on stick-slip (Lin and Wang
1991). Plácido et al. (2002) have also investigated the wellbore instability owing to
vibration of drill string (Plácido et al. 2002). Xue et al. (2014) have investigated the
chaotic vibration of the bottom rotating drill string (Xue et al. 2014). Tian et al. (2016)
have modelled and analysed longitudinal vibration of the drill string in the presence
of lateral inertial effect (Tian et al. 2016). Recently, Ghasemloonia et al. (2015)
have reviewed the vibration of drill string including its modelling and suppression
methods (Ghasemloonia et al. 2015). Pasic has also reviewed cause and effect of
wellbore instability (Pasic et al. 2007). Katsui et al. (2017) have discussed different
numerical techniques for SS analysis of drill string (Katsui et al. 2017). Despite
detailed numerical and theoretical investigations on the vibration of drill string, to
the best of our knowledge, this problem has not been studied in the light of RSF.
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Motivated by this observation, in the present numerical study, SSvibration of a typical
drill string is investigated with the RSF law. It is important to note that interfacial
temperature and pore pressure may be also important factors during the drilling
operation, but we have not considered in the present study to avoid the complexity in
the governing differential equations (Sinha et al. 2018). Nevertheless, these effects
could be accommodated indirectly in the RSF model (Marone 1998).

Aiming to model the wellbore instability owing to drill string, the mathematical
expressions derived for sliding motion may be replaced with V = rω where r and ω

are radius and angular rotation of the drill string, respectively. The analogous RSF
model in terms of frictional stress τ , angular velocity ω, state variable θ and viscous
damping C given as

τ = τ∗ + A ln
(
rω

/
Rω∗

) + B ln
(
Rω∗θ

/
L
) + C

(
rω

/
Rω∗

)
(1)

where τ∗ and ω∗ are reference frictional shear stress and reference angular velocity,
respectively. Further,A and B are the frictional constants and are generally consid-
ered to be proportional to normal stress (Ranjith and Rice 1999). As mentioned, θ

represents the “state” of the contacting surfaces and L is a critical slip distance over
which evolution of microcontacts occurs (Marone 1998, 17; Ranjith and Rice 1999).
At the same time, L is generally the order of the size of microcontacts but that also
depends on size of the sliding surfaces (Marone 1998; Ruina 1983; Ranjith and Rice
1999).

Two basic empirical laws for θ have been proposed (Marone 1998; Ruina 1983;
Ranjith and Rice 1999). Dieterich–Ruina ageing law is used in the present study
since this particular law characterizes the true ageing of the contacting surfaces
during stationary state (Marone 1998; Ruina 1983; Ranjith and Rice 1999). The
ageing law, expressed in terms of radius R and angular velocity ω of the drill string,
is generally given by the following expression

dθ

dt
= 1 − rωθ

/
L (2)

It may be easily concluded fromEq. 2 is that during the stationary state (ω = 0), θ
becomes true time of contact (Marone 1998; Ruina 1983; Ranjith and Rice 1999). It
is also obvious from Eq. (2) that θ reduces to the steady-state value θss, under steady
sliding, i.e. θss = L

/
Vss where Vss = Rωss (Marone 1998; Ruina 1983; Ranjith

and Rice 1999). Thus, θss signifies average time to renew the contacts during steady
sliding (Ruina 1983; Ranjith and Rice 1999). Notably, the conditions for steady-state
sliding are dθ

/
dt = 0 and dτ

/
dt = 0 (Gu et al. 1984; Persson 2000; Ranjith and

Rice 1999). The expression for steady dynamic stress τss is given by (Gu et al. 1984;
Ranjith and Rice 1999)

τss = τ∗ − (B − A) ln
(
rωss

/
Rω∗

) + Crωss
/
Rω∗ (3)
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Fig. 1 A schematic sketch
of the drill bit in the form of
a solid disc is in contact with
the rock surface

However, if steady frictional stress τss decreases with steady velocity Vss, it is
known as the velocity-weakening (VW) process. On the other hand, if τss increases
with sliding velocity, this is called the velocity strengthening (VS) process (Gu et al.
1984; Ruina 1983; Ranjith and Rice 1999; Singh and Singh 2012).

Figure 1 presents a schematic sketch of a typical drill stringmodelled as a torsional
pendulum having radius R and rotational stiffness Kθ (per unit area of contact sur-
face). The free end of the spring is being rotated with a constant angular velocity ω0,
while the other end of the spring attached with the disc rotating with angular velocity
ω. The drill bit is, in turn, in contact with the rock solid which causes frictional torque
M per unit area of contact.

Further, frictional moment M in terms of frictional stress τ(r) is given by the
following expression

M = 2

R∫

0

(
r
/
R
)2

τ(r)dr (4)

Upon considering inertia Iz of the disc, the governing differential equation in view
of Fig. 1 is given

Iz
d2ω

dt2
= Kθ (ω0 − ω) − π

R∫

0

(
r
/
R
)2

τ̇ (r)dr (5)

Using Eqs. (1, 2, 4 and 5), the final form of system of governing differential
equations of the drill system in Fig. 1 is derived in dimensionless form as

dθ̂

dT
= e−θ̂ − ρeφ

dψ(ρ)

dT
= (

1 + γ̂ ρeφ
) dφ
dT

+ β
[
e{φ+ln(ρ)+γ̂ ρeφ+ψ∗−ψ(ρ)}/ β − ρeφ

]
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dμ

dT
=

1∫

0

dψ(ρ)

dT
ρ2dρ

d2φ

dT 2
= e−φ

r2

{
kθ

(
ϕ0 − eφ

) − dμ

dT

}
−

(
dφ

dT

)2

(6)

where dimensionless terms are defined as μ = M
/
2π AR, ψ∗ = τ∗

/
A, T =

tV∗
/
L , ϕ0 = ω0

/
ω∗, V∗ = Rω∗, ρ = r

/
R, φ = ln

(
ω0

/
ω∗

)
, θ̂ = ln

(
Rω∗θ

/
L
)
,

β = B
/
A, kθ = Kθ L

/
AR2, r2 = IZω2∗

/
AL . After further manipulating Eq. (6),

one can get the following form of the solvable differential equation numerically as

dψ(ρ)

dT
= (

1 + γρeφ
) dφ
dT

+ β
[
e{φ+ln(ρ)+γρeφ+ψ∗−ψ(ρ)}/ β − ρeφ

]

d2φ

dT 2
= e−φ

r2

⎧
⎨

⎩
kθ

(
ϕ0 − eφ

) −
1∫

0

{
(
1 + γρeφ

) dφ
dT

+β
[
e{φ+ln(ρ)+γρeφ+ψ∗−ψ(ρ)}/ β − ρeφ

]}
ρ2dρ

}
−

(
dφ

dT

)2

(7)

The linear stability about steady sliding (φss, ψss) at ρ = 1 that is (r = R) has
shown that the critical stiffness kθcr = (β − 1)

(
1 + r2

)−γ eφ where γ = C
/
A. The

expression for steady frictional stressψss = ψ∗−(β − 1)φss−(β − 1) ln(ρ)+γρeφss .
On the other hand, under the quasi-static conditions, upon neglecting inertial term
r , kθcr now results in kθcr = (β − 1) − γ eφ . This expression also predicts a critical
angular velocity φcr = ln

[
(β − 1 − kθ )

/
γ
]
corresponding to that stick-slip motion

disappears. These results are also confirmed with corresponding nonlinear solutions
of Eq. (7) in the next section. The corresponding nonlinear solutions are discussed
in the following sections.

2 Results and Discussion

2.1 Effect of Stiffness on Stick-Slip Vibration

Figure 2 presents the results concerning the effect of velocity-weakening parameter
β on the stability of the drill string. It is seen that amplitudes of stick-slip vibration
of the drill string increases with β. The drill string now experiences more vibration
due to weakening of the interacting surfaces.

Note that β should decrease in the presence of slippery medium such as water or
mud, which basically stabilizes the rotating system. Moreover, a decrease in β also
results in strengthening of the rotating interface, thus the suppression of SS instability
(Gu et al. 1984; Ruina 1983; Ranjith and Rice 1999).
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Fig. 2 Effect of stiffness of rotating system on stick-slip instability at a fixed value γ = 0.001,
ψ∗ = 50, r = 0.1, ϕ0 = 1.0 and kθ = 0.185 and initial condition (0.001, 0.001, 49.8)

2.2 Effect of Rotational Speed on Stick-Slip Vibration

Figure 3 shows the effect of rotational speed of the drill on the stability of drill string.
The drill string stabilizes with increase in rotational speed of the drill at a constant
distance between the centre of drill and its outer perimeter. Initially, increase in
rotational speed of the system goes to increase in amplitudes of the SS motion.

Further, if rotational speed exceeds a threshold value, then the drill string results
in decrease of amplitudes of oscillation until at a constant amplitude.

2.3 Effect of Viscous Damping on Stick-Slip Vibration

Figure 4 indicates that viscous damping γ of the system such as lubricating fluid and
drillingmud at the drilling interface on the stability. This always results in suppressing
of SS with increase in γ .

This results again in prediction with the reported result in the literature (Gondane
et al. 2017; Persson 2000; Sinha et al. 2018). The chaotic motion is intermediated
stage at which system will be stable/unstable depending upon the condition.
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Fig. 3 Effect of rotational speed on stick-slip instability at a fixed value of γ = 0.001, ψ∗ = 50,
r = 0.1, β = 1.2 and kθ = 0.185 and initial condition (0.001, 0.001, 49.8)

Fig. 4 Effect of viscous damping of system on stick-slip instability at a fixed value of ψ∗ = 50,
r = 0.1, β = 1.2, ϕ0 = 1, kθ = 0.185
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Fig. 5 Effect of inertia on stick-slip instability at a fixed value of friction parameters: γ = 0.001,
ψ∗ = 50, β = 1.2, ϕ0 = 1 and kθ = 0.185

2.4 Effect of Inertia on Stick-Slip Vibration

Figure 5 shows the effect of inertia r on amplitudes of SS motion of the drill string.
The system results in increased amplitudes of stick-slip vibration r .

As a result, the drill bit is now more prone to unstable motion. This is again con-
sistent with the linear stability of the RSF model which predicts that critical stiffness
increases with addition of inertia in the sliding system. The present numerical simu-
lations will be more interesting if the present results are validated with experiments.
It is also believed that the present study could also be useful for designing the control
system of drill string in the light of stick-slip vibration.

3 Conclusions

The present numerical simulations show stick-slip vibration of a typical drill string
due to drill bit in a wellbore. It is established that like linear motion, in rotation
also, stiffness and rotational velocity are critical in controlling the rotational stick-
slip. Inertia also enhances the tendency of stick-slip motion of the drill string. The
presence of water or mud also affects the velocity-weakening parameter and thereby
stick-slip motion as well.
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