

ПИРОКЛАСТИЧЕСКИЕ ОТЛОЖЕНИЯ СОВРЕМЕННЫХ ИЗВЕРЖЕНИЙ АНДЕЗИТОВЫХ ВУЛКАНОВ КАМЧАТКИ И ИХ ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ОСОБЕННОСТИ Институт вулканической геологии и геохимии ДВО РАН

Гирина Ольга Алексеевна Пирокластические отложения современных извержений андезитовых вулканов Камчатки и их инженерногеологические особенности

Владивосток: Дальнаука, 1998

Institute of Volcanic Geology and Geochemistry FEB RAS

Olga A. Girina

Pyroclastic deposits from recent andesitic volcano eruptions in Kamchatka and their engineeringgeological features

Vladivostok: Dalnauka, 1998

УДК 551.21 + 624.131

Гирина О.А. Пирокластические отложення современных извержений андезитовых вулканов Камчатки и их инженерногеологические особенности / Институт вулканической геологии и геохимии ДВО РАН. Владивосток: Дальнаука, 1998. 174 с. ISBN-5-7442-1106-3.

В работе представлены результаты комплексного изучения пирокластических отложений вулканов Безымянный и Шивелуч. Дана сравнительная характеристика инженерно-геологических особенностей пирокластических отложений различных генетических типов андезитовых и в целом андезитовых и базальтовых вулканов. Обоснованы критерии выделения генетических типов пирокластических образований андезитовых вулканов. Для вулканологов, палеовулканологов, геологов, инженеров-геологов.

Ил. 37, табл. 16, библ. 148 назв.

© О.А. Гирина, 1998 г. © Дальнаука, 1998 г. ISBN-5-7442-1106-3 Girina **0.A**. Pyroclastic deposits from recent andesitic volcano eruptions in Kamchatka and their engineering-geological features / Institute of Volcanic Geology and Geochemistry. Vladivostok: Dalnauka, 1998. 174 p. ISBN-5-7442-1106-3.

Results of complex study of pyroclastic deposits from Bezymianny and Schiveluch volcances are present in this work. Comparative characteristics of engineeringgeological features are given for various genetic types of pyroclastic deposits from andesitic volcances, as well as for pyroclastic deposits from andesitic and basatic volcances on the whole.

Criteria for distinguishing genetic types of pyroclastic deposits from andesitic volcanoes have been substantiated.

Ill. 37, tabl. 16, bibl. 148.

Ответственный редактор И.В. Мелекесцев Рецензент Г.Е. Богоявленская

Утверждено к печати Ученым советом ИВГиГ ДВО РАН

ОГЛАВЛЕНИЕ

Введение

Глава 1. Состав и инженерногеологические особенности пирокластических образований извержений андезитовых вулканов Северной группы Камчатки

1.1. Общая характеристика вулканов Безымянный и Шивелуч

1.2. Отложения тефры

1.3. Отложения пирокластических потоков

1.4. Отложения пирокластических волн

CONTENTS

Introduction

Chapter 1. Composition and engineering-geological features of pyroclastic deposits from andesitic volcano eruptions of the Northern Group of Kamchatka

1.1. General characteristics of Bezymianny and Sheveluch volcanoes

- 1.2. Tephra deposits
- 1.3. Pyroclastic flow deposits
- 1.4. Pyroclastic surges deposits

1.5. Отложения пепловых облаков пирокластических потоков 1.6. Отложения направленного взрыва Глава 2. Сравнительная характеристика инженерногеологических особенностей генетических типов пирокластических отложений андезитовых вулканов Камчатки Глава 3. Сравнительная характеристика инженерногеологических особенностей пирокластических образований андезитовых и базальтовых вулканов Камчатки Глава 4. Конвективная гравитационная дифференциация пирокластики андезитовых вулканов

Глава 5. Критерии выделения генетических типов пирокластических отложений андезитовых вулканов

Глава 6. Вулканогенные образования Земли как аналоги грунтов других планет Земной группы

Литература

Приложение. Диаграммы гранулометрического состава заполнителей пирокластических отложений андезитовых вулканов Камчатки 1.5. Ash cloud of pyroclastic flow deposits

1.6. Directed blast deposits

Chapter 2. Comparative characteristics of the engineeringgeological features for genetic types of pyroclastic deposits from andesitic volcanoes of Kamchatka

Chapter 3. Comparative characteristics of the engineeringgeological features for pyroclastic deposits from andesitic and basaltic volcanoes of Kamchatka

Chapter 4. Convective gravitational differentiation of the pyroclastic from andesitic volcanoes

Chapter 5. Criteria for distinguishing genetic types of pyroclastic deposits from andesitic volcanoes

Chapter 6. Volcanogenic deposits of the Earth as grounds – analogues of different planets of the Earth's Group

References

Supplement. Diagrams of particlesize distribution in matrix of pyroclastic deposits from andesitic volcanoes of Kamchatka

© Институт вулканологии и сейсмологии ДВО РАН, 2004-2007

введение

особое Андезитовым вулканам уделяется внимание В связи С внезапностью и катастрофическими масштабами их эксплозивных извержений, при которых в короткое время - в несколько дней, а иногда и часов - на поверхность земли поступают огромные массы ювенильного и резургентного материала. Например, при извержении вулкана Безымянный в 1956 г. было выброшено около 3 км³. пирокластического материала, на Шивелуче в 1964 г. -1.5 км³, на Катмаи в 1912 г. - 21 км³ и т.д. Хотя андезитовых вулканов на планете меньше, чем базальтовых, в 20-м веке продуктивность андезитового вулканизма в 3 раза превысила таковую базальтового. На Камчатке из 29 действующих вулканов 13 - андезитовые. Хорошо известны мощные толщи пирокластических отложений в районах вулканов Шивелуч, Безымянный, Кизимен и др.

Наблюдать катастрофические эксплозивные извержения андезитовых вулканов вулканологам удается чрезвычайно редко, если же это случается, то ученые получают достоверную информацию 0 последовательности формирования пирокластических отложений вулкана. Чаше всего исследователи имеют дело лишь с многометровыми толщами пирокластики, тем более, когда изучаются голоценовые или более древние образования. Сопоставление наблюдений хода извержения вулкана и полевых исследований пирокластических отложений, сформированных в ходе этого извержения, помогает разобраться в толщах пирокластики, выделить в них различные типы.

B настоящее результате многочисленных визуальных, время В теоретических экспериментальных работ генетические И появились классификации пирокластических образований, в которых все многообразие пирокластики сводится в целом к следующим главным типам отложений: 1направленных взрывов, 2- пирокластических потоков, 3- пирокластических волн, 4- пепловых облаков пирокластических потоков, 5-тефры.

Автору посчастливилось наблюдать извержение вулкана Безымянный в 1984 г. и изучать его пирокластические отложения спустя 2 дня после окончания этого извержения, в дальнейшем - продукты еще 3-х извержений этого вулкана (в 1985, 1986, 1989 гг.) спустя менее 12 дней после окончания кульминационных фаз этих извержений. Так как исследования отложений проводились фактически сразу пирокластических после их формирования (структурный облик образований не успел измениться и стереться под действием экзогенных факторов), диагностика различных типов пирокластики имела и имеет высокую степень достоверности.

Качественные характеристики (распространение, условия залегания, структурно-текстурные особенности пирокластики) большинства типов отложений в основном были известны [2, 4, 8, 9, 10, 13, 14, 15, 28-34, 36-40, 43-

45, 47,61, 62, 64, 65, 72, 73, 76, 82, 102, 106, 113-148], требовалось лишь упорядочить их для катастрофических и некатастрофических извержений камчатских вулканов. Количественные показатели (данные химического, гранулометрического составов, физических физикоминерального, И механических свойств) отложений отдельных типов пирокластики были определены впервые. Кроме изучения пирокластических образований в массиве, в лабораторных условиях наибольшее внимание автора было обращено на "заполнитель отложений" разных типов пирокластики (частицы размером менее 2 мм), так как он составляет "весьма значительную массу породы любого из генетических типов пород" [64, стр. 17]. Также на сканирующем электронном микроскопе Кафедры инженерной геологии и охраны геологической среды Геологического факультета МГУ впервые было микростроение образцов ненарушенного сложения изучено некоторых генетических типов пирокластики.

процессе комплексного изучения пирокластических B отложений новейших извержений вулкана Безымянный были выявлены характерные особенности каждого из генетических типов пирокластики этого вулкана. Такими же методами были проанализированы пирокластические образования катастрофических извержений вулканов Безымянный (1956 г.) и Шивелуч (1964 г.). древнейших извержений последнего (предоставленных также В.В.Пономаревой - ИВГиГ ДВО РАН).

В целом, были изучены и описаны сотни точек опробований пирокластики; отобрано более тысячи образцов пирокластических отложений различных генетических типов. Материалы количественного исследования примерно 600 образцов пирокластики, многие из которых подверглись комплексному анализу, представлены в этой работе. Кроме этого, были использованы также опубликованные материалы по отложениям этих вулканов.

В результате выполненного исследования наряду с обоснованием подразделения пирокластических образований андезитовых вулканов Камчатки на пять генетических типов (в соответствии с современной генетической классификацией, принятой в мировой вулканологии), дано детальное описание инженерно-геологических особенностей каждого из этих типов пирокластики. Найдены не только качественные, но и количественные характеристики, четко отличающие один генетический тип пирокластики от других. Выяснено, что применение полученных данных в совокупности с методом актуализма, позволяет с определенной степенью вероятности расшифровывать генезис пирокластических отложений любого возраста, восстанавливать эруптивный механизм их формирования, масштабы эксплозивных извержений вулканов, а также определять вулканоопасность территорий, т.к. известно, например, что наиболее опасными являются такие извержения вулканов, при которых возникают пирокластические волны пепловых облаков ("палящие тучи").

Данные по инженерно-геологической характеристике генетических типов пирокластики вулканов Камчатки могут быть использованы изыскательскими организациями при составлении проектов детальных исследований территорий, примыкающих к вулканам; научными учреждениями, рассматривающими вулканогенные отложения в качестве грунтов-аналогов других планет земной группы и т.д. Полученные численные характеристики пирокластических отложений применимы для интерпретации данных дистанционных наблюдений как земных поверхностей, так и лунных, марсианских и других.

Автор благодарит за помощь в исследованиях пирокластических образований Камчатки сотрудников Кафедры Инженерной геологии и охраны геологической среды Геологического факультета МГУ В.М. Ладыгина - впервые познакомившего меня с Камчаткой и всегда безотказно помогавшего в решении разного рода проблем, В.Т. Трофимова - за внимание, помощь и поддержку, оказанные мне при написании этой работы; а также, В.Н. Соколова, Н.А. Румянцеву, П.Э. Роота, В.Н. Широкова, Н. Большакову, О. Дементьеву, В.А. Королева, А.П. Резниченко и других; коллег-вулканологов из Института вулканологии и Института вулканической геологии и геохимии ДВО РАН: в первую очередь Г.Е. Богоявленскую, И.Т. Кирсанова, О.А. Брайцеву и И.В. Мелекесцева, которые познакомили меня с пирокластическими отложениями андезитовых вулканов Камчатки и помогли появиться этой работе на свет; а также Т.П. Кирсанову, В.В. Пономареву, П.П. Фирстова, И.М. Романову, Н.М. Кравченко, А.А. Разину, А.В. Сокоренко и других.

Глава 1

Состав и инженерно-геологические особенности современных пирокластических образований извержений вулканов Северной группы Камчатки

Наиболее распространенным типом вулканической активности является эксплозивная деятельность. "Эксплозия" - в узком смысле слова, означает "внезапный, очень непродолжительный сильный взрыв" [23,72]. Эксплозивная деятельность разных вулканов может выражаться отдельными слабыми или сильными взрывами, а также непрерывными сериями взрывов.

Рыхлый обломочный материал, поступающий на поверхность земли в результате эксплозивных извержений вулканов, носит название "пирокластика" [23] (от греческого "пир"- огонь и "кластикос"- раздробленный [98]). Доля пирокластических продуктов при извержениях вулканов различна. Например, при извержениях гавайского типа она мала, при плинианских - преобладает, а порой является единственным продуктом извержения. Количество (в %) пирокластического материала от общей массы продуктов извержения выражает коэффициент эксплозивности.

Особенности пирокластики определяются свойствами исходной магмы, ее газонасыщенностью, вязкостью и т.д., а также динамикой эксплозивной деятельности.

В литературе существует множество описаний извержений вулканов и связанных с ними отложений, представлений о механизмах образования пирокластических пород, попыток систематизации пирокластики [2, 8-10, 29-39, 47, 58-60, 64, 65, 72-76, 82-84, 93, 94, 102, 106, 111-148].

Раньше классификации пирокластических отложений строились В основном на качественных различиях этих отложений. С увеличением степени детальности исследования пирокластики, отвечающей требованиям физического моделирования извержений вулканов, в классификационные принципы больше закладываются все генезис И количественные характеристики типов отложений.

Наиболее приемлемой в настоящее время является генетическая классификация пирокластических отложений вулканов, представленная в работе Р.Фишера и Г.Шминке [120]. Для автора эта систематизация пирокластики служит главным ориентиром при изучении пирокластических отложений андезитовых вулканов Камчатки.

В то время автор классификации же не может не отметить пирокластических пород Е.Малеева [74,75], Л.Ботвинкиной [13] и особенно работу [64] Т.Краевой, где впервые детально показаны диагностические макропризнаки генетических типов грубообломочных пирокластических отложений подножий стратовулканов Камчатки, определяемые в полевых условиях.

В целом, пирокластические образования вулканов в настоящее время разделяются на следующие генетические типы: 1- тефра, отложения 2-пирокластических потоков, 3- пирокластических волн, 4- пепловых облаков пирокластических потоков, 5-направленных взрывов. Причем, 2-ой, 3-ий и 4-ый типы пирокластики взаимосвязаны.

1.1. Общая характеристика вулканов Безымянный и Шивелуч

Вулкан Безымянный (рис. 1) является уникальным объектом для исследования, так как после пробуждения в октябре 1955 г. деятельность этого типично андезитового вулкана непрерывно продолжается до настоящего времени.

Рис. 1. Вулкан Безымянный: на переднем плане - пирокластический поток извержения вулкана 13-14 октября 1984 г.

Первые исследователи вулканов Ключевской группы уделяли мало внимания этому вулкану, считая его потухшим (потому, вероятно, и получил он такое имя). Б.И.Пийп [91] назвал его и Ключевской самыми молодыми вулканами Ключевской группы, отметив свежесть склонов (отсутствие глубоких барранкосов) и лавовых образований вулкана Безымянный и высказал предположение, что этот вулкан является или недавно потухшим, или не совсем потухшим.

Безымянный находится в самом центре Ключевской группы вулканов. Возникновение его относится к концу позднего плейстоцена (10,5 - 11 тыс. лет

назад) [15,45]. Считается, что первоначально он развивался как экструзивный купол, а со времени около 5500 лет назад - как стратовулкан. Детальные тефрохронологические исследования вулкана выявили в последние 2500 лет пульсационный характер его деятельности - чередование периодов покоя и активизации [14]. Данные показывают, что длительность предшествующего периода покоя вулкана сопоставима с продолжительностью его активизации например, за периодом покоя в 1100 лет шла активизация в 700 лет, следующие периоды одинаковы - по 350 лет покоя и активизации [15]. Пробуждение вулкана после "сна" происходило в форме сильных эксплозивных извержений, а со времени 1400 лет назад, как указывают авторы работы [15], для него катастрофические становятся характерными извержения. Интенсивность выноса вещества вулканом со времени 5500 л назад до 1956 г. оценивается в среднем 4-5х10 т/год, а с 1956 г.- на порядок больше [15].

Породы вулкана представлены, преимущественно, андезитами, но встречаются также базальты, андезито-базальты и дациты [37]. В целом, по петрохимическим особенностям все продукты извержений вулкана относятся к породам нормального по щелочности ряда известково-щелочной серии.

Отмечается, что для периодов активности вулкана в изученный отрезок времени характерно изменение состава пород от кислых разностей (в начале активизации) через более основные к более кислым (в ее конце) [15, 45].

22 октября 1955 г. впервые в историческое время началось извержение вулкана Безымянный, а 30 марта 1956 г. произошел его катастрофический взрыв, в результате которого мгновенно были значительно преобразованы морфология постройки вулкана и рельеф прилегающих окрестностей. Обстоятельное описание извержения 1955-1956 гг. и его последствий даны в работах [36, 37]. В дальнейшем это извержение неоднократно рассматривалось в разных аспектах во многих работах [8, 9, 11, 45 и др.].

Детальное изучение и описание процесса извержения типа направленного взрыва на вулкане Безымянный в 1955-1956 гг., а также предшествовавших ему событий, имело и продолжает иметь огромное значение для науки.

В результате направленного взрыва были уничтожены вершина вулкана и его восточный склон, образовался кратер размером 1.3x2.8 км и глубиной 700 м. Область, охваченная взрывом, оценивается в 500 км². Большая часть материала взорванной постройки отложилась на площади 60 км². Общий объем пирокластических пород, выброшенных при взрыве, составил около 3 км³ [11], кинетическая энергия взрыва по [37, 45] оценена в 1,2x10 Дж, скорость выброса обломочного материала - примерно в 360-500 м/с [37,45].

Развитие активности вулкана после катастрофического взрыва 1956 г. описано в многочисленных работах [2, 10, 11, 29, 30, 33, 37, 47, 53, 58-60, 73, 76 и др.].

В целом, в современном эруптивном цикле вулкана (с 1956 г.) выделяются экструзивно-эксплозивная, а с конца 1970-х годов экструзивноэксплозивно-эффузивная стадии деятельности [2, 11, 45].

30 июня - 1 июля 1985 г. произошло наиболее сильное извержение вулкана после извержения 1956 г. [2]. Характер его деятельности в 1985 г. был похож на извержение 30 марта 1956 г.- после экструзивно-эксплозивной стадии активности произошел направленный взрыв, вслед за которым на склоне и у подножия вулкана сформировался пирокластический поток длиной 12.5 км. Заключительным аккордом извержения явилось излияние небольшого вязкого лавового потока на склон купола Новый, продолжавшееся до конца сентября. В результате этого извержения отложился пирокластический материал объемом примерно 0.05 км³ [2,29]. Хотя в результате направленного взрыва были уничтожены два домика вулканологов в 3.5 км от кратера вулкана, это катастрофическим. извержение не относится к По существующим классификациям к катастрофическим причисляют извержения, в результате которых на поверхность поступает 1 км³ и более извергаемых продуктов [53].

Рис. 2. Долина потоков на склоне вулк. Безымянный (а), разрезы пирокластических отложений в Долине потоков на разных расстояниях от вулкана (б): 1- пеплы облаков пирокластических потоков; 2-4- отложения пирокластических волн: пески мелкозернистые (2), среднезернистые (3), крупнозернистые (4); 5- образования пирокластических потоков; 6- аллювий. Цифрами обозначены номера разрезов пирокластики.

При извержении 1985 г. впервые после 1956 г. проявился весь известный комплекс разновидностей пирокластических пород, которые удалось исследовать сразу после отложения, что немало способствовало более точной их диагностике.

Основное внимание автора было обращено на генетические типы пирокластических образований извержений 1984-1989 гг., а также на пирокластику катастрофического извержения 1956 г.- для сравнения ее с материалом некатастрофических извержений вулкана. В пирокластических продуктах вышеуказанных извержений Безымянного в соответствии с существующими классификациями выделяются отложения тефры, пирокластических потоков и волн, пепловых облаков пирокластических потоков, направленного взрыва. Некоторые точки изучения и разрезы отложений в Долине потоков на разных расстояниях от вулкана показаны на рис. 2.

Вулкан Шивелуч (рис. 3) - самый северный действующий вулкан Камчатки - по объему, массе изверженных продуктов, скорости выноса вещества и частоте сильных катастрофических извержений также является одним из самых интересных вулканов Курило-Камчатского региона. Он расположен на северной оконечности Курило-Камчатской дуги в месте пересечения ее с Алеутской и представляет собой крупный изолированный массив высотой 3283 м и площадью основания - более 1600 км².

Рис. 3. Вулкан Шивелуч: общий вид южной части вулкана, покрытой отложениями катастрофического извержения 1964 г.

Возраст Старого Шивелуча оценивается приблизительно в 60-70 тыс.лет [45]. Вначале он развивался как андезитовый стратовулкан, с ростом экструзивных куполов и выносом большого количества пирокластики. В дальнейшем его активность изменилась - преобладала эффузивная деятельность с излиянием кроме андезитов также лав андезито-базальтов м базальтов. Примерно 23-24 тыс.лет назад произошло грандиозное катастрофическое извержение вулкана, в результате которого образовалась кальдера диаметром 9 км, разрушившая центральную часть вулкана и его южный сектор. Предполагают, что это извержение было похоже на катастрофу Кракатау, а объем выброшенных продуктов достигал 50-60 км³ [45].

Современная постройка Молодого Шивелуча размером 6х7 км сформировалась в голоцене. Извержения этого этапа представляли собой, с одной стороны - катастрофические направленные взрывы с выбросом пирокластического материала объемом до 4-5 км, с другой - рост экструзивных куполов в кратере вулкана. Наиболее древнее из точно датируемых извержений вулкана в голоцене имеет возраст 8700 лет, молодое - 260 лет [45]. В голоцене произошло не менее 60-ти крупных извержений вулкана. В результате наиболее мощных из них образовались горизонты тефры, прослеживающиеся на многие сотни километров от центра извержения и ставшие маркирующими.

Голоценовые вулканические образования Шивелуча занимают площадь около 300 км². Сильные, катастрофические извержения вулкана за этот период происходили примерно через 100-300 лет. По оценкам Е.Мархинина, вероятность извержений, связанных с ростом экструзивных куполов - одно в 10-50 лет [79].

В целом, в продуктах вулкана Шивелуч преобладают андезиты, но существуют также, как указывалось выше, базальты и андезито-базальты. Отличительная черта пород вулкана - значительное содержание амфибола, а также наличие магнезиального оливина.

Породы Шивелуча в основном относятся к умеренно-калиевой известково-щелочной серии, но отличаются от других пород Камчатки этой серии повышенным содержанием оксида магния, никеля, хрома, а также повышенными значениями отношений никеля к кобальту и хрома к ванадию. Также отмечается высокая степень окисленности железа [95].

По данным изучения включений в вулканитах вулкана, его магматический очаг располагается примерно на глубинах 25-30 км [45].

Внимание автора было обращено на пирокластические образования извержения 1964 г., а также на более древние, образцы которых и данные об их возрасте предоставлены сотрудником ИВГиГ были ДВО PAH В.В.Пономаревой. В пирокластике выделяются отложения тефры, пирокластических потоков и волн, пепловых облаков пирокластических потоков, направленного взрыва.

1.2. Отложения тефры

Тефра - наиболее типичный продукт эксплозий всех вулканов. С.Тораринсон предложил этот термин для обозначения всех обломочных образований, имеющих признаки воздушной транспортировки из кратера [143].

Сегодня, в связи с накоплением информации по извержениям вулканов, назрела необходимость уточнить этот термин. По мнению автора, тефрой следует называть отложения, формирование которых происходит из нижних частей поднимающейся над кратером вулкана вертикальной эруптивной колонны и из пепловой тучи, трансформированной из этой колонны.

По размерам частиц тефра подразделяется на бомбы (глыбы), лапилли и вулканический пепел [74, 75, 120 и др.].

Бомбами (глыбами) (размером 50 мм и более) называют: 1) фрагменты пластичной лавы, которая до падения на землю приобрела в полете определенную форму и твердую корку с поверхности [72,74]; 2) обломки, выброшенные в твердом состоянии - крупные блоки более древних пород, сорванные эруптивной колонной со стенок выводного канала; продукты разрушения лавовой пробки, перекрывавшей жерло перед извержением вулкана и прочее, даже если они и были повторно нагреты магмой или газом. В зависимости от массы "обрывка" лавы и первоначального импульса движения, форма бомб разнообразна: от округлых, уплощенных до совершенных веретенообразных (длиной в первые десятки см), лепешек с характерной поверхностью типа "хлебной корки", слегка вытянутых шаров (размером более 100 см) и т.д.

Небольшие обломки размером 2-50 мм носят название *лапилли*. Встречаются лапилли с четкой формой и "закалкой" поверхности, мелкие бесформенные, угловатые обломки свежих и захваченных чуждых пород [74].

Особым видом лапиллей являются аккреционные лапилли шарообразные тела слабосцементированного пепла размером порядка 0,5 см, хотя встречаются похожие образования размером до 5-10 см, как, например, на захороненном отложениями вулкана Безымянный извержения 1985 г. снежнике. Центрами аккреции для лапиллей могут быть дождевые капли, мелкие обломки пород и т.д. Например, лапилли первой разновидности отмечались при извержении вулкана Безымянный в 1985 г., второй - на вулкане Шивелуч в отложениях пирокластики (рис. 4). Многообразие древних видов аккреционных лапиллей и причины их возникновения рассмотрены в работах [120, 121, 133, 134 и др.].

Рис. 4. Аккреционные лапилли в отложениях вулк. Шивелуч.

К *вулканическим пеплам* относятся частицы пирокластики размером менее 2 мм [72,120]. Частицы пеплов состоят из кристаллов минералов, их сростков, вулканического стекла, мелких обломков пород, сорванных с канала и купола вулкана. В зависимости от состава пород вулкана и типа его извержения, пеплы могут состоять в основном или нацело из обрывков раскаленной магмы (ювенильный пепел), из смеси ювенильного и старого (резургентного) материала, только из резургентных обломков [23, 72, 79, 98, 120 и др.].

Образование тефры, в общих чертах, состоит в следующем. В результате эксплозий над кратером вулкана формируется эруптивная колонна, которая в верхней своей части превращается в эруптивную тучу. Высота, диаметр эруптивной колонны зависят от первоначального импульса движения, от состава поступающего вещества, его расхода, т.е. связаны с эндогенными процессами; распространение эруптивной тучи целиком подвластно атмосфере - зависит от ее стратификации, направления и силы ветра, влажности и т.д., т.е. - от экзогенных факторов.

Вблизи вулкана выпадает грубая тефра, на далеких от него расстояниях (до сотен и тысяч километров) тефра постепенно становится тонкозернистой. По мере удаления от вулкана кроме гранулометрического, изменяется также минеральный состав пеплов, что объясняется эоловой гравитационной дифференциацией материала [43, 47].

При сильных извержениях вулканов, особенно андезито-дацитовых, на сотни и тысячи километров от вулкана происходит отложение больших по

мощности слоев пеплов, которые впоследствии становятся маркирующими горизонтами, служащими стратиграфическими реперами при изучении осадочных толщ, так как образование их на всей площади происходит почти одновременно и в короткие сроки (от часов до нескольких месяцев). С помощью тефрохронологии, например, восстановлена история развития примерно 10 вулканов Камчатки [14-17 и др.].

Наиболее тонкие (размером в десятки микрон и менее) фракции пеплов при сильных плинианских извержениях вулканов достигают верхних слоев атмосферы и переносятся в стратосфере на большие расстояния [72]. Например, считается, что пепел вулкана Кракатау извержения 1883 г. три раза обогнул на поверхность земли. Атмосферные Землю, прежде чем выпал явления, вызванные извержением вулкана Кракатау, сохранялись в течение более чем 5 лет, вулкана Агунг - три года [72]. Тонкие пеплы обладают высокой адсорбционной способностью [5,6,20,44], и в стратосферу попадают уже, по сути, аэрозоли - твердые частицы с адсорбированными ионами газов и паров воды в воздушной среде. Вынос большого количества тонких пеплов В стратосферу уменьшает солнечную радиацию, и в прошлом, по мнению некоторых ученых, стал причиной похолоданий климата и оледенений Земли [5, 20, 82, 114 и др.]. По данным исследований вулканических аэрозолей (например, извержения вулкана Эль-Чичон [136]) был сделан прогноз развития "ядерной зимы" на Земле, так как пылевой аэрозоль, возникающий при ядерных взрывах, сходен с аэрозолями вулканов [5,20].

По дальности распространения от центра извержения и высоте выбросов тефры, даются оценки силы и энергии эксплозивного извержения [44]. Выяснено, что вещественный состав тефры обусловливает приуроченность ее определенным энергетическим классам эксплозивных извержений вулканов. Например, эксплозивные извержения, дающие пеплы базальтового состава, не отмечены выше 12-го энергетического класса, андезитового состава - встречены в пределах 3-го - 14-го классов, дацитового - в пределах 5-го - 16-го классов. Глобальный разнос тефры, попадающей в слои тропопаузы, отмечен от 11,5 и выше энергетического класса [44].

О тефре андезитовых вулканов Камчатки опубликованы многочисленные работы, в которых даны ее морфологические описания, приведены составы (химический, изотопный, минеральный, гранулометрический и др.), содержания в ней редких элементов и т.д. [8, 14-17, 34, 43, 44, 61, 62 и др.].

Ниже приведены некоторые особенности состава и свойств тефры вулканов Безымянный и Шивелуч.

Химический и минеральный состав отложений

Химический состав тефры на удалении от вулкана Безымянный приведен в табл. 1. Как легко заметить, содержание кремнекислоты в ней значительно большее, чем в андезитовых лавах или заполнителях других типов пирокластических отложений. Химические анализы тефры, взятой вблизи вулкана, наилучшим образом отражают состав первичных продуктов извержения. По мере удаления от вулкана состав пеплов существенно изменяется [62], что объясняется эоловой гравитационной дифференциацией материала [43, 47, 61].

Частицы пеплов представляют собой обломки кристаллов минералов плагиоклаза, пироксена, роговой обманки, их сростков, вулканического стекла, андезитовых лав.

Таблица 1

Компонент	Лава (36)	Заполнители потоков (16)	Заполнител волн (12)	Пеплы облаков	Тефра (9)
				потоков (10)	
SiO ₂	56,60	56,68	57,43	60,60	61,63
TiO ₂	0,76	0,80	0,78	0,56	0,55
Al_2O_3	18,28	18,40	18,25	17,87	17,81
Fe ₂ O ₃	3,01	3,53	3,67	3,48	3,32
FeO	4,43	3,89	3,55	2,27	2,12
MnO	0,10	0,14	0,13	0,11	0,11
MgO	3,96	4,01	4,16	2,88	2,41
CaO	7,62	7,68	7,03	6,36	6,41
Na ₂ O	3,27	3,31	3,17	3,56	3,47
K ₂ O	1,24	1,24	1,28	1,64	1,64
H_2O^-	0,25	0,16	0,18	0,17	0,21
H_2O^+	0,18	0,11	0,21	0,06	0,33
P_2O_5	0,22	0,13	0,16	0,16	0,20
Сумма	99,92	100,08	100,00	99,72	100,21

ХИМИЧЕСКИЙ СОСТАВ ПРОДУКТОВ ВУЛК. БЕЗЫМЯННЫЙ ИЗВЕРЖЕНИЙ 1984-1989 гг.

Примечание. Анализы пород выполнены в ЦХЛ ИВ ДВО РАН, Камчатка. В скобках - количество образцов.

Минеральный состав пеплов показывает значительное содержание плагиоклаза и вулканического стекла. Например, в тефре кульминационных стадий катастрофических извержений вулканов Безымянный в 1956 г. и Шивелуч в 1964 г. доля плагиоклаза достигала 42 и 30 %, а вулканического стекла - 15 и 48 %, соответственно [9]. Различия в минеральном составе тефры этих вулканов достаточно детально показаны в работах [9,14 и др.]. Там же отмечены особенности пеплов двух вулканов, позволяющие различать их в разрезах: "1) для всех пеплов Шивелуча характерно резкое преобладание вулканического стекла над плагиоклазами, в то время как в пеплах Безымянного они содержатся примерно в равных количествах, 2) в пеплах вулкана Шивелуч количество обломков пород обычно не превышает 8 %, в пеплах Безымянного - 16-40 %" [14, стр.48].

Структурно-текстурные особенности тефры

Как указывалось выше, тефра при отложении из эруптивной тучи образует сплошной покров, мощность которого максимальна по оси распространения пепловой тучи, а по краям эллипса отложений она постепенно выклинивается. Тефра одного извержения вулкана может быть однородна, но может состоять из нескольких прослоев различной крупности (например, пеплы вулкана Шивелуч извержений 1000 и 1500 лет тому назад [16] или тефра вулкана Безымянный извержения 1984 г., отложившаяся на сейсмостанции (с/с)"Апахончич") (рис. 5).

Рис. 5. Кумулятивные кривые гранулометрического состава тефры вулк. Безымянный, отложившейся на сейсмостанции Апахончич 13 окт. 1984 г. Слои отложений: 1- средний, 2- нижний, 3верхний.

В прослоях пеплов наблюдаются структуры погружения обломков с изгибами облегающих их слоев, что свидетельствует о весьма малой плотности выпавших пеплов.

Как было указано выше, частицы пеплов состоят из вулканического стекла, обломков кристаллов минералов, их сростков, обломков андезитовых лав.

Фотографии некоторых из частиц тефры вулкана Безымянный извержения 1984 г., отложившейся на с/с Апахончич и в г. Ключи показаны на рис. 6.

Рис. 6. Частицы тефры вулк. Безымянный: плагиоклаз при увеличении 50 (а); плагиоклаз с примазками вулканического стекла при увеличениях 50 (б), 300 (в), 1000 (г); сросток плагиоклаза и пироксена в "рубашке" вулканического стекла при увеличениях 50 (д) и 300 (е); плагиоклаз при увеличениях 50 (ж), 300 (з), 1000 (и); сростки плагиоклаза, пироксена, вулканического стекла при увеличениях 200 (к) и 1000 (л).

e

Продолжение рис. 6

Продолжение рис. 6

Встречаются частицы слабоэродированные (например, обломок плагиоклаза, рис. 6 а); среднеэродированные (например, обломок плагиоклаза, покрытый вулканическим стеклом, на котором образовались многочисленные ячейки, заполненные тонкими частицами пеплов; или сростки плагиоклаза и пироксена в "рубашках" стекла, рис. 6 б-е). Наиболее интересны пемзовидные частицы плагиоклаза (рис. 6 ж-и). Их поверхность глубокоэродирована - наряду с отдельными ячейками, ямками,тонкими перегородками и т.д. частица в целом имеет флюидальную текстуру. Эродированность связана, вероятно, со сталкиванием частиц и воздействием их друг на друга в эруптивной колонне и туче, с автоэксплозивностью частиц и другими процессами.

Встречаются также сростки минералов (например, пироксена, плагиоклаза и стекла), участки поверхности которых локально "изъедены": возможно, примазки вулканического стекла подверглись химической эрозии (рис.6 к-л).

Для изучения микростроения образцов тефры вулканов в их естественном залегании были отобраны и запарафинированы монолиты ненарушенного строения пеплов из опорного разреза г. Ключи и из разреза в береговом обрыве р. Камчатка у п. Козыревск.

Микростроение образцов ненарушенного строения тефры вулкана Шивелуч изучалось на сканирующем электронном микроскопе Кафедры Инженерной геологии и охраны геологической среды Геологического факультета МГУ. Были просмотрены поверхности свежих сколов образцов пеплов и отсняты с них 27 фотографий при увеличениях 100 - 10 000.

Когда автор исследовал опорный разрез в г. Ключи, большая часть серых и светло-серых пеплов разреза считалась принадлежащей вулкану Шивелуч. Была изучена тонкая часть двуслойных пеплов Ш₂, Ш₃ и пепел Ш₆ извержений 1000, 1400-1500 и 7500 лет назад (обозначения были приняты по работам [16, 61].

В наблюдались агрегаты сфероидальной формы. пеплах частиц Агрегированности пеплов есть несколько объяснений. Пепловые частицы кристаллы минералов, их сростки, тонкие частицы вулканического стекла - в пирокластической колонне и затем в эруптивной туче в кульминационные стадии извержений вулканов электризуются и вследствие этого слипаются, образуя агрегаты пепловых частиц [120]. К тому же, частицы стекла насыщены тонкорассеянными рудными минералами, в основном, магнетитом, благодаря чему пеплы приобретают магнитные свойства, что так же способствует агрегированности пепловых частиц. При повышенной влажности атмосферы капли или ионы воды могут служить центрами аккреции и уже в эруптивной туче могут формироваться агрегаты, аккреционные лапилли пеплов [122]. Вследствие этого тефра имеет достаточно рыхлое сложение в ненарушенном состоянии - 0.89 - 1.06 г/см³ и повышенную пористость отложений (табл. 2).

ХАРАКТЕРИСТИКА ПОРОВОГО ПРОСТРАНСТВА ОБРАЗЦОВ НЕНАРУШЕННОГО СТРОЕНИЯ ТЕФРЫ ВУЛКАНОВ ШИВЕЛУЧ И ХАНГАР

Названия	Шивелуч	Хангар	Шивелуч	Хангар
характеристик	y:	величение (элеме	нт дискретизации)	
	200 (3,34)		1000 (0,68)	
Пористость, % общая внутриагрегат- ная межагрегатная	32,9	42,3 22,5 19.8	36,5	36,9
Общая площадь пор, мкм ²	3889578,65	5004897,59	172534,97	174749,66
Общий периметр пор, мкм	142133,44	120892,55	15571,99	15937,33
Количество пор, единица Из них	231	194	66	86
связанных, %	24,2	18,5	30,3	24,4
Средний диаметр пор, мкм внутриагрегат- ных межагрегатных	15,35	9,26 63,74	5,45	4,67
Средняя площадь пор, мкм ² внутриагрегат- ных межагрегатны	185,22	67,39 3191,90	23,35	17,17
Средний периметр поры, мкм внутриагрегат- ных межагрегатных	62,47	36,79 253,20	23,08	19,02

Рис. 7. Микрофотографии поверхности сколов образцов ненарушенного строения тефры вулканов Шивелуч и Хангар из опорного разреза в г. Ключи: Ш₂ при увеличениях 200 (а) и 1000 (б); Ш₃ при увеличениях 1000 (в) и 3000 (г); ХГ при увеличениях 200 (д) и 1000 (е). Описание в тексте.

Продолжение рис. 7

Впоследствии выяснилось [15, стр. 8], что пепел Ш₆ является тонкой тефрой вулкана Хангар (ХГ).

Так как пеплы III_2 , III_3 и ХГ между собой имеют много общего, в отличие, например, от пеплов вулкана Безымянный, от которых резко отличаются, автор счел возможным показать в этой работе сходство и различия микростроения пеплов III_2 и ХГ.

Для образцов Ш₂ и ХГ были определены количественные характеристики порового пространства при увеличениях 200 и 1000 (рис. 7, табл. 2).

Одной ИЗ важных характеристик дисперсных пород являются структурные связи, существующие между их структурными элементами [42, частицами пеплов и их агрегатами действуют, в основном, 85]. Между физической структурные связи И физико-химической природы: электростатические, ионно-электростатические, молекулярные, магнитные, капиллярные [34].

Микроскопическое изучение тефры выявило ряд ее особенностей. При увеличении в 200 раз видно, что тефра III_2 состоит из сравнительно однородных чешуйчатых частиц (cuspate shards [120]) (рис. 7 а). Тефра III_3 и ХГ наряду с мелкочешуйчатыми, содержит также крупные зерна (например, 15х30 мкм) минералов, пористые и высокопористые частицы (pumice shards [120]), остатки разрушенных крупных пузырей диаметром до 15 мкм и другие (рис. 7 в-е). При

этом увеличении отмечаются также небольшие прослои более тонкого материала в образцах пеплов мощностью до 40 мкм, в которых частицы лежат более плотно, чем выше- и нижележащие. В тефре ХГ при этом увеличении хорошо видна агрегированность материала, что также подтверждается количественным анализом порового пространства этого участка (рис. 7 д, табл. 2).

При более крупных увеличениях в тефре вулканов отчетливо выделяются изометричные микроагрегаты частиц, например, размером 55х55 мкм, наряду с монолитными обломками изометричной и удлиненной формы размером 4х2, 9х5, 8х3, 60х42, 75х60 мкм и др., встречаются вогнуто- выпуклые частицы длиной до 50 мкм, частицы, имеющие на поверхности удлиненные бороздки шириной 2 мкм или строение и вид гребешка или оперения хвоста птицы и т.д. (рис. 7 а-е).

Наибольший интерес представляет обнаружение в пеплах Ш₂ в разрезе берегового откоса р. Камчатка у п. Козыревск полых шариков вулканического стекла размером 3 мкм с толщиной стенок шарика 0.3 мкм (рис. 8) [34].

Для изученных пеплов характерна скелетная микроструктура, отличающаяся неравномерным распределением сравнимых по размерам частиц породы.

Контакты между структурными элементами пеплов в основном, вероятно, переходного типа.

Пористость является одной из важнейших структурно-текстурных характеристик отложений [42, 70, 85]. При увеличении 200 тефра III_2 представляет собой в целом однородный по размерам частиц массив, в отличие от ХГ, где четко выражены агрегаты пепловых частиц и крупные поры между ними (рис. 8 а,д). В тефре III_2 преобладают поры размером 13.75 -55.0 мкм (56%), в ХГ - поры размером от 55.0 до 110.0 мкм (30%) и от 6.87 до 13.75 мкм (21%), (рис. 9). Общая площадь и периметр пор образцов тефры Шивелуча и Хангара одного порядка.

При увеличении 1000 различия в микростроении образцов тефры сглаживаются. В пеплах III_2 и ХГ резко преобладают поры размером от 11.0 до 22.0 мкм (42 и 31 %, соответственно). В целом, общие площадь и периметр пор, а также общая пористость образцов тефры Шивелуча и Хангара практически одинаковы (табл. 2).

Коэффициент формы пор показывает степень их изометричности, то есть степень приближения к идеальной круглой поре, коэффициент формы которой равен единице [42]. Поры пеплов Шивелуча и Хангара далеки от идеала, то есть только часть их имеет круглую, вернее шарообразную форму, большее же количество пор - удлиненные или бесформенные.

Рис. 8. Микрофотографии поверхности скола образцов ненарушенного строения тефры вулкана Шивелуч (Ш₂) из разреза в береговом обрыве р. Камчатка у п.Козыревск: агрегат пепловых частиц и шарик вулканического стекла в нем при увеличениях 1000 (а) и 5000 (б); пепловые частицы и среди них - полый шарик вулканического стекла, разрушенный при механическом воздействии, при увеличениях 1000 (в) и 10 000 (г).

Рис. 9. Кривые распределения пор разного диаметра в образцах ненарушенного строения тефры вулканов Шивелуч (Ш₂) и Хангар (ХГ) при увеличениях 200 (а) и 1000 (б).

Гранулометрический состав тефры

Гранулометрический состав является одной из важнейших характеристик обломочных горных пород. Многие авторы писали о целях выполнения этого анализа и сферах его использования [42, 48, 49, 61, 69, 70, 85, 88, 92, 96, 100, 101, 107, 109 и др.]. Однако сегодня гранулометрический состав, оставаясь важной характеристикой породы, начинает использоваться как одна из составных частей комплексного ее изучения.

Итогом исследования состава породы является нахождение ее места в классификации [85]. Если в литологии классификации рыхлых пород строятся на метрической основе, то инженерно-геологические - на учете физико-

механических особенностей отложений, рассматриваемых как функция гранулометрического состава [69]. Для сравнения вулканогенных грунтов между собой автор использовал классификацию крупнообломочных и песчаных грунтов (СНиП II-15-74) [42].

Тефра вулкана Безымянный относится к грубым пеплам вблизи вулкана и тонким - вдали от него. В составе ее преобладают тонкие частицы (фракции менее 0.056 мм), доли частиц других размеров (менее 0.125 мм) могут достигать 25-30 % [61, 62].

Физические свойства отложений

Физические свойства пирокластических отложений определялись по стандартным методикам [42, 109].

Влажность пеплов вулкана Шивелуч небольшая - до 7 %.

Плотность твердой фазы тефры вулкана Безымянный изменяется от 2.70-2.72 г/см³ возле купола до 2.62 г/см³ в 30 км от вулкана [30]. Известно, что плотность твердой компоненты породы зависит только от ее минерального состава и с возрастанием количества тяжелых минералов увеличивается [42]. Уменьшение плотности тефры по мере удаления ее от вулкана связано с обогащением ее вулканическим стеклом в процессе эоловой гравитационной дифференциации пеплов, что неоднократно было показано в работах [43, 44, 47, 61, 62 и др.].

Плотность твердой фазы тефры вулкана Шивелуч равна 2.70- 2.75 г/см³.

Плотность тефры вулкана Шивелуч в ее естественном сложении - 0.89-1.06 г/см³. Плотность тефры вулкана Безымянный (извержений 1984-1989) в рыхлом сложении варьирует в пределах 0.87-1.10) г/см³, в среднем - 0.98 г/см³ (20), в плотном - 1.24 - 1.51 г/см³, составляя в среднем - 1.40 г/см³ (20) [30]. Коэффициент уплотняемости равен, в среднем, 1.11 (по двум образцам).

Пористость тефры вулкана Безымянный в рыхлом состоянии изменяется от 59 до 68 %, составляя в среднем 64 % (20), в плотном - от 44 до 54 %, в среднем - 48 % (20)[30].

Физико-механические свойства тефры

Среди физико-механических свойств дисперсных пород главное место занимают их прочностные и деформационные характеристики [42, 85, 107].

В целом, определение деформационных свойств пирокластики вулканов Камчатки проводилось на компрессионном приборе с диаметром кольца 8.72 и высотой 2.9 см. Испытывался грунт нарушенного строения с исключением частиц диаметром более 2 мм с плотностью породы, близкой к естественной. Испытания образцов проводились при пяти нагрузках. Давление на образец с каждой ступенью возрастало на 1 кг/см². По результатам испытаний рассчитывался коэффициент сжимаемости и модуль общей деформации отложений.

Прочностные свойства пирокластики определялись двумя способами: на сдвиговом приборе конструкции ЦНИИ МПС и на стабилометре "Geonor" конструкции Норвежского геотехнического института, к которому подключена микропроцессорная система автоматизации опытов по трехосному сжатию грунтов [103]. Испытывался грунт нарушенного строения приблизительно естественной плотности без частиц диаметром более 2 мм. Каждая проба испытывалась на сдвиг при трех давлениях.

Модуль общей деформации пеплов вулкана Шивелуч изменяется от 2.70 до 4.4 МПа. Небольшие величины модуля обусловлены, в основном, структурой частиц и плотностью тефры в нарушенном ее сложении.

Прочностные характеристики маловлажных пеплов похожи на таковые песков: сцепление имеет значения 0 - 0.02 МПа, угол внутреннего трения - 33-38 град.

Несмотря на отсутствие глинистых минералов в составе пеплов, они обладают *пластичностью*. Нижний предел пластичности пеплов вулкана Шивелуч в районе Козыревска равен 13 %, верхний - 20 %. По числу пластичности - 7 - пеплы относятся к супесям. По консистенции - к супесям твердым. Пластические свойства пеплов вызваны, вероятно, скелетной структурой грунта, наличием большого количества тонкого вулканического стекла.

выводы

1. Вблизи вулкана состав тефры наилучшим образом отражает состав первичных продуктов извержений. По мере удаления от центра извержения состав тефры существенно изменяется в связи с процессами эоловой гравитационной дифференциации.

2. Частицы пеплов вулкана Безымянный изометричной формы, количество обломков пород в них достигает 40 % [9]. Частицы тефры вулкана Шивелуч удлиненной формы; содержание вулканического стекла в них превалирует - до 48 %, доля обломков не превышает 8 % [9].

3. Сравнение микростроения разных образцов тефры ненарушенного строения лучше проводить при небольших (-100 - 300) увеличениях. При больших увеличениях (1000 и более) различия в микростроении образцов тефры сглаживаются.

4. На микроуровне количественно подтверждена агрегированность частиц тефры, с которой связано уменьшение плотности и повышение пористости ее отложений в естественном залегании.

1.3. Отложения пирокластических потоков

Для обозначения всех видов потоков, сложенных раскаленными обломками, С.Арамаки предложил в 1957 г. общее название - пирокластические потоки [4].

Пирокластические потоки представляют собой газонасыщенную смесь разноразмерного пирокластического материала, имеющую в основном ламинарное течение, доля обломков в которой значительно превышает газовую составляющую [139, 8].

Главными *механизмами образования* пирокластических потоков считаются: 1. коллапс эруптивной колонны; 2. коллапс экструзивного купола или фронта лавового потока на его склоне (рис. 10) [120, 147, 148 и др.].

В первом случае образование потоков происходит в результате обрушения части вертикальной колонны, в которой скорость подъема и несущая способность газопепловой струи достигают минимума (рис. 10 а) [118, 120, 141]. Такой механизм образования потоков называется "суфриерским" [72], по вулкану Суфриер, где он четко проявляется. Движущая сила потоков в основном определяется количеством движения, гравитацией, но велика роль также газонасыщенности и автоэксплозивности материала [117].

Второй тип механизма образования потоков получил название "тип мерапи", по вулкану Мерапи, о. Ява [72] (рис. 10 б). По мере роста экструзивного купола вулкана его отдельные секторы постепенно становятся неустойчивыми и обрушиваются, в результате чего по склону вулкана скатываются пирокластические массы, похожие на лавины. Такие же лавины формируются в результате обрушения крутых фронтальных частей лавовых потоков на куполе вулкана.

Рис. 10. Механизм образования пирокластических потоков: а) коллапс эруптивной колонны (суфриерский тип); б) коллапс экструзивного купола или фронта лавового потока на его склоне (тип мерапи). Из работы [72], с уточнениями.

Пирокластические потоки распространяются с высокой скоростью - до 100 км/ч [72, 120], двигаясь в основном по отрицательным формам рельефа желобам, каньонам, и т.д. (рис. 11 б). Их высокая мобильность объясняется выделением растворенного газа из ювенильных стекловатых частиц и при разрушении литоидных обломков, обусловливающих явление автоэксплозивности; нагреванием и расширением воздуха, захваченного фронтом и боковыми частями потока [117, 119, 131, 138, 144, 145]. Кроме этого, при формировании эруптивной колонны происходит засасывание в нее воздуха, способствует мобильности пирокластических который затем потоков, образующихся при коллапсе колонны [113]. Пирокластические потоки могут преодолевать высокие препятствия, что связано, по мнению Т.Миллера и Р.Смита расширением [127], не с газов, а количеством с лвижения.

Рис. 11. Схематические представления о механизмах образования пирокластических отложений: а: *пеплы облаков пирокластических потоков* отлагаются слоем равной мощности на потоках и вокруг них; б: *отложения пирокластических потоков* залегают согласно рельефу - в долинах; в: *отложения пирокластических волн* имеют разные мощности на возвышенностях и в долинах - формируются из приземного пирокластического облака, испытывающего гравитационное воздействие.

Отложения пирокластических потоков состоят из обломков разного размера и формы, преимущественно хаотически распределенных в пепловом заполнителе. Обломки представлены полуокатанными ювенильными пемзовидными породами и резургентными, состав которых многообразен: магматические "корки" с границ очага, породы выводного канала вулкана, обломки с подошвы и боковых частей долины, по которой следует поток и т.д. [120]. "Резургентными" считают также породы разрушающегося растущего экструзивного купола.

Для вулканов Безымянный и Шивелуч характерны пирокластические потоки двух типов - ювенильных пористых андезитов ("суфриерский тип") и пеплово-глыбовые ("мерапийский тип") [2, 8, 9, 29, 30, 31, 33, 120 и др.].

Отложения *пирокластических потоков пористых андезитов* (рис. 12) несортированы, содержание обломков (частиц размером более 2 мм) в них

Рис. 12. Отложения пирокластических потоков ювенильных пористых андезитов: поверхность потоков катастрофического извержения вулк. Шивелуч в 1964 г.(а); разрез отложений потока некатастрофического извержения вулк. Безымянный в 1985 г. (б).

составляет не более 40-30 %, заполнителя, соответственно - 60-70 %; глыбы достигают размера 1-1,5 м. Потоки залегают согласно рельефу, протяженность их от кратера в зависимости от масштаба извержения может достигать 10-20 км. Содержание ювенильного вещества в них бывает до 80 % [9]. Поверхность отложений - ровная.

Отложения *пеплово-глыбовых пирокластических потоков* (рис. 13) также несортированы и залегают согласуясь с рельефом, но количество обломков в их составе повышено до 40-50 %, размер глыб может достигать 7-10 м. Длина потоков небольшая - до 10 км, содержание собственно ювенильного вещества в них - до первых десятков процентов. На поверхности потоков четко выражены бортовые и фронтальные валы высотой до 10-15 м.

Исследования отложений пирокластических потоков преследуют одну из важнейших целей - восстановление эруптивного механизма образования пирокластики. Детальное изучение морфологии, структурно-текстурных особенностей отложений; соотношения количества обломков и заполнителя, а также содержания ювенильных И резургентных обломков В потоках; вещественного состава, физических и физико-механических свойств ИХ позволяет решать эту задачу относительно уверенно.

Рис. 13. Поверхность отложений пеплово-глыбовых пирокластических потоков извержения вулк. Безымянный в 1986 г.

Химический и минеральный состав отложений

В составе пирокластических потоков содержится различное количество ювенильного и резургентного вещества. Если в пеплово-глыбовых потоках собственно ювенильные породы могут составлять 20-30 %, то в потоках пористых андезитов - 80 % [9].

Состав ювенильных обломков потоков наилучшим образом отражает состав магматического вещества, поступившего на поверхность при извержении вулкана.

Материал заполнителя пирокластического потока при движении по склону вулкана перемешивается, и его состав очень хорошо отражает средний состав продуктов конкретного извержения вулкана [29]. В таблице 1 показаны средние химические составы обломков и заполнителей обеих разновидностей пирокластических потоков извержений вулкана Безымянный в 1984-1989 гг., так как по своему составу пеплово-глыбовые и ювенильные потоки этих извержений были достаточно близки.

Заполнитель пирокластических потоков вулкана Безымянный состоит из обломков кристаллов (в основном, плагиоклаза, пироксена, амфибола, магнетита), их сростков, вулканического стекла, обломков пород (рис. 14). Минеральный состав заполнителя пирокластического потока ювенильных пористых андезитов извержения вулкана в 1985 г., (фракция 0,1-0.063 мм), по данным В.Ю.Кирьянова, следующий: вулканическое стекло - 34, плагиоклаз - 46, темноцветные минералы - 8, обломки пород - 4, пироксен - 8 %. Состав заполнителя потока этого вулкана извержения 1956 г., таковой: вулканическое стекло - 16, плагиоклаз - 36, темноцветные минералы - 5, обломки пород - 27, зеленая роговая обманка - 15, пироксен - 1 % [9].

Частицы заполнителя пирокластических потоков вулкана Шивелуч представляют собой отпрепарированные обломки кристаллов минералов (в основном, плагиоклаза, пироксена, роговой обманки), их сростков, вулканического стекла, обломки пород. Состав заполнителя потока извержения вулкана в 1964 г., следующий: вулканическое стекло - 24, плагиоклаз - 39, темноцветные минералы - 6, обломки пород- 9, зеленая роговая обманка -20, пироксен - 2 % [9].

Структурно-текстурные особенности пород

Для всех пирокластических потоков вулканов Безымянный и Шивелуч характерно хаотическое распределение разноразмерных обломков в заполнителе, хотя в разрезах отложений (например, в р.Сухая Хапица или рр.Байдарная, Кабеку и др.) наблюдается также концентрация обломков полосами в средних или верхних частях потоков. Поверхность же потоков катастрофических извержений вулканов сложена обломками пемзовидных андезитов размером преимущественно до 30-40 см (рис. 12 а).

Рис. 14. Частицы заполнителей пирокластических потоков вулк. Безымянный: кристаллы плагиоклаза (а); клинопироксена (б); сростки плагиоклаза, пироксена, вулканического стекла (в); сростки плагиоклаза, клинопироксена в "рубашке" стекла (г) при увеличениях 80, 100, 70 и 100, соответственно; эродированная поверхность частицы при увеличениях 60 (д) и 300 (е).

Продолжение рис. 14

Некоторые частицы заполнителей потоков представлены на рис. 14. Видно, что поверхность как отдельных кристаллов минералов, так и их сростков значительно эродирована. Наблюдаются как бы высверленные округлые углубления, заполненные мелкими частицами стекла, неровно-ступенчатые сколы минералов, трещиноватость их участков и т.д. Кроме этого, встречаются пористые сростки минералов (например, плагиоклаза и клинопироксена) в облекающей их "рубашке" стекла (рис. 14). В зоне перехода минерала к стеклу отмечается хорошее перемешивание их микролитов, стекло местами вспенено (данные изучения частиц на микрозонде Катеbax, ИВ ДВО РАН).

Гранулометрический состав отложений

Крупные обломки на поверхности пеплово-глыбовых пирокластических потоков вулкана Безымянный составляют, по данным автора, в целом, 45-55 %: размером 0,5-5.0 м - 8-10 %, размером 0.05-0.49 м - 35-45 %, остальное приходится на долю заполнителей потока. Наряду с преобладанием обломков размером 0,3-0,5 м (20 %), отмечается большая доля крупных глыб диаметром более 1 м (10-12 %).

На поверхности ювенильного потока вулкана Безымянный извержения 1985 г. содержание глыб разного размера распределяется примерно следующим образом: обломки размером 0.5-5.0 м составляют 5-7 %, 0.05-0.49 м - 25-30 %, при общем преобладании обломков диаметром 0.3-0.5 м. На долю

Рис. 16. Графики соотношения гранулометрических характеристик заполнителей отложений вулк. Безымянный извержений 1984-1989 гг. Отложения: І- пирокластических потоков, ІІ- пирокластических волн, 4- тефры и пепловых облаков пирокластических потоков. Извержения вулкана: 1-1984 г., 2- 1985 г., 3- 1986 г., 5- 1989 г.

пиро-
заполнителя потока приходится примерно 60-70 %.

Большая часть заполнителей пирокластических потоков вулкана Безымянный извержений 1984-1989 гг. относится к пескам средней крупности и небольшая - к пескам мелким (рис. 15).

Заполнители пеплово-глыбовых потоков отличаются от ювенильных главным образом количеством тонких пеплов. По весовому содержанию разных фракций и по их соотношению эти типы потоков очень близки. Поля значений гранулометрических характеристик заполнителей обеих разновидностей потоков извержений разных лет перекрываются, средние их значения почти одинаковы (рис. 16, табл. 3).

Таблица 3

Генетический тип пирокластических отложений	Медиана, мм	Средний размер, мм	Коэффициент сортировки, мм
Поток пеплово- глыбовый (28)	0,26 0,21-0,37	0,38 0,32-0,50	0,33 0,24-0,41
Поток ювенильных пористых андезитов (24)	0,25 0,19-0,32	0,38 0,30-0,47	0,35 0,28-0,42
Приземная волна (ground surge) (26)	0,17 0,12-0,21	0,22 0,13-0,27	0,16 0,07-0,23
Волна пеплового облака (ash cloud surge) (9)	0,12 0,09-0,15	0,16 0,12-0,23	0,14 0,09-0,22
Пеплы облака пирокластического потока (9)	0,05 0,01-0,07	0,07 0,05-0,10	0,05 0,01-0,08

ГРАНУЛОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПИРОКЛАСТИЧЕСКИХ ОТЛОЖЕНИЙ ВУЛК. БЕЗЫМЯННЫЙ ИЗВЕРЖЕНИЙ 1984-1989 ГГ.

Примечание. В числителе - среднее значение, в знаменателе - максимальное и минимальное. В скобках - количество образцов.

Среди пирокластических потоков вулкана Безымянный извержения 1956 г. выделяются две разновидности. Кумулятивные кривые гранулометрического заполнителей этих потоков почти совпадают с состава таковыми извержений вулкана 1984-1989 пирокластических потоков ΓГ., но гранулометрические характеристики имеют несколько большие значения (рис. 17, 18, 19, табл. 4). У заполнителей потоков извержений вулкана в 1984-1988 гг. преобладающими фракциями являются 0,125 - 0,25 мм, у заполнителей потоков 1956 г. - кроме них также и 0,25-0,5 мм (см. Приложение, стр. 88, 90). Медианные диаметры заполнителей этих потоков варьируют от 0.18 до 0.34 мм, составляя в среднем - 0.28 мм (17 определений).

Среди пирокластических потоков вулкана Шивелуч по гранулометрическому составу их заполнителей выделяются три разновидности, различающиеся по распределению фракций И гранулометрическим 20, табл. 5). Преобладающими (рис. характеристикам фракциями ИХ заполнителей являются 0.125 - 0.25 мм и 0.125 - 0.5 мм (см. Приложение, стр. 93). Медианные диаметры имеют значения от 0.19 до 0.34 мм, составляя в среднем 0.25 мм (15 определений).

Известно, что медианные диаметры являются в некоторой степени показателями силы извержения, что неоднократно рассматривалось для тефры [62]. Для пирокластических потоков, как видно из таблиц 4-6, это не характерно. Хотя масштабы извержений разные, значения медианных диаметров гранулометрических характеристик других заполнителей И пирокластических потоков вулканов Безымянный и Шивелуч сходны.

Рис. 17. Кумулятивные кривые (а и б) гранулометрического состава заполнителей пирокластических отложений вулкана Безымянный извержения 1956 г.

а: 1- приземная пирокластическая волна, 2- пепел облака пирокластического потока, 3пирокластический поток № 1, 4- пирокластический поток № 2, 5- агломерат направленного взрыва; б: 1- пирокластическая волна пеплового облака, 2- песок направленного взрыва № 1, 3- песок направленного взрыва № 2, 4- пепел облака пирокластического потока.

Рис. 18. Кумулятивные кривые гранулометрического состава заполнителей пирокластических отложений вулк. Безымянный извержений 1984-1989 гг. и 1956 г. Отложения 1984-1989 гг.: 1-пепловых облаков пирокластических потоков, 2- волн пепловых облаков, 3- приземных волн, 6-пеплово-глыбовых пирокластических потоков, 7- потоков ювенильных пористых андезитов; 1956 г.: 4- приземных волн, 5- песка направленного взрыва, 8- потока ювенильных пористых андезитов, 9- агломерата направленного взрыва.

0 3

 Δ_2

X 4

+ 5

Рис. 19. Гистограммы распределения частиц разного диаметра заполнителей пирокластического потока вулк. Безымянный извержения 1956 г.

Рис. 20. Кумулятивные кривые гранулометрического состава заполнителей пирокластических отложений вулк. Шивелуч извержений 1964 г. и более древних. 1- приземная пирокластическая волна, 2- пирокластическая волна, 3агломерата направленного взрыва, 4пирокластический поток № 1, 5пирокластический поток № 2.

13

Генетический тип пирокластических отложений	Медиана, мм	Средний размер, мм	Коэффициент сортировки, мм
Поток N 1 (9)	0,24 0,18-0,29	0,38 0,31-0,44	0,37 0,33-0,44
Поток N 2 (8)	0,32 0,29-0,34	0,45 0,42-0,47	0,40 0,37-0,45
Приземная волна (ground surge) (2)	0,24 0,24-0,25	0,35 0,34-0,36	0,30 0,29-0,32
Волна пеплового облака (ash cloud surge) N 1 (5)	0,12	0,13	0,12
Волна пеплового облака (ash cloud surge) N2 (3)	0,22	0,32	0,37
Песок направленного взрыва N 1 (2)	0,77 0,70-0,85	0,82 0,75-0,89	0,49 0,48-0,49
Песок направленного взрыва N 2 (19)	0,42 0,37-0,60	0,56 0,50-0,66	0,50 0,40-0,54
Агломерат направленного взрыва (7)	0,24	0,39	0,41

ГРАНУЛОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПИРОКЛАСТИЧЕСКИХ ОТЛОЖЕНИЙ ВУЛК. БЕЗЫМЯННЫЙ ИЗВЕРЖЕНИЯ 1956 Г.

Примечание. В числителе - среднее значение, в знаменателе - минимальное и максимальное. В скобках - количество образцов.

ГРАНУЛОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПИРОКЛАСТИЧЕСКИ	X
ОТЛОЖЕНИЙ ВУЛКАНА ШИВЕЛУЧ	

Генетический тип пирокластических отложений	Медиана, мм	Средний размер, мм	Коэффициент сортировки, мм
Поток N1 (6)	0,31	0,40	0,32
	0,28-0,34	0,39-0,41	0,30-0,34
Поток N 2 (5)	0,25	0,34	0,32
	0,24-0,27	0,32-0,38	0,30-0,36
Поток N 3 (4)	0,19	0,32	0,33
	0,19-0,20	0,31-0,32	0,32-0,35
Приземная волна	0,36	0,41	0,26
(ground surge) (2)	0,35-0,38	0,41-0,42	0,24-0,28
волна (surge) (2)	0,30	0,58	0,38-0,41
Агломерат направленного взрыва (4)	0,24 0,24-0,26	0,38 0,38-0,41	0,39 0,39-0,42

Примечание. В числителе - среднее значение, в знаменателе - минимальное и максимальное значения. В скобках - количество образцов.

Физические свойства отложений

Естественная *влажность* заполнителей потоков, как правило, небольшая - изменяется от 2 до 32 % и в среднем составляет 6 % (120 определений) (табл. 6).

Плотность твердой фазы заполнителей пирокластических потоков вулкана Безымянный варьирует от 2,64 до 2.74 г/см³, составляя в среднем 2,69 г/см³ (20 определений). Для вулкана Шивелуч значение плотности твердой компоненты равняется 2.74 г/см³ (2), (табл. 6).

Плотность отложений потоков вулкана Безымянный в их естественном сложении изменяется, в целом, от 1.27 до 1.88 г/см³, составляя в среднем 1,54 г/см³ (200). Для отложений потоков извержения 1986 г. плотность изменяется от 1.40 до 1.76 г/см³, в среднем - 1,59 г/см³ (9), для пород извержения 1989 г., соответственно, 1,50-1,59 г/см³, в среднем - 1,55 г/см³ (5).

Для потоков вулкана Шивелуч значения плотности находятся в пределах 1,19-1,50 г/см³, составляя в среднем 1.33 г/см³ (5), (табл. 6).

Пористость отложений потоков вулкана Безымянный находится в пределах 30-49 %, составляя в среднем 42 % (200). Для вулкана Шивелуч эти значения несколько большие; 45-56 и 51 % (5), соответственно, (табл. 6).

Таблица 6

	Вулк. Безымя	Вулк.		
				Шивелуч,
Названия	Потоки	Потоки	Общее по двум	извержение
характеристик	ювенильных	пеплово-	типам	1964 г. Потоки
	пористых	глыбовые		ювенильных
	андезитов			пористых
				андезитов
Плотность,	1,55(8)	1,56(127)	1,54(200)	1,33(5)
г/см ³	1,41-1,72	1,27-1,88	1,27-1,88	1,19-1,50
_			/- 0.	
Плотность	2,68(6)	2,69(14)	2,69(20)	2,74(2)
твердой фазы,	2,64-2,70	2,64-2,74	2,64-2,74	
г/см ³				
DHONGLOOTI 0/		6(120)	6(120)	10.6
Блажность , %		0(120)	0(120)	10,0
		2-32	2-32	
Коэффициент	0.74(8)	0.74(127)	0.75(200)	1.07(5)
пористости.	0.53-0.90	0.50-0.91	0.43-0.96	0.83-1.30
единица	- , ,	- , ,-	- , ,	- , ,
Пористость, %	42(8)	42(127)	42(200)	51(5)
-	35-47	33-47	30-49	45-56
Сцепление,	0,02(3)	0,02(4)	0,02(7)	0,02(2)
МПа	0-0,04	0-0,05	0-0,05	0-0,04
Угол	51(3)	34(13)	42(7)	
внутреннего	50-53	22-51	22-53	25(2)
трения, градус				
Мощиц общой	10.8(3)	5.0(4)	7.0(7)	
подуль общей	76166	3,0(+)	(,,)()	
деформации, МПа	7,0-10,0	2,2-7,0	2,2-10,0	

ФИЗИЧЕСКИЕ И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ОТЛОЖЕНИЙ ПИРОКЛАСТИЧЕСКИХ ПОТОКОВ ВУЛК. БЕЗЫМЯННЫЙ И ШИВЕЛУЧ

Примечание. В числителе - среднее значение, в знаменателе - минимальное и максимальное. В скобках - количество образцов.

Физико-механические свойства отложений

На *деформационные свойства* пород наибольшее влияние оказывают структурно-текстурные особенности их частиц. Модуль общей деформации заполнителей потоков вулкана Безымянный изменяется от 2,2 до 16,6 МПа, составляя в среднем 7, 9 МПа (7), (табл. 6).

Прочностные характеристики пирокластических отложений близки со стандартными их значениями для обыкновенных песков, но в некоторых случаях значительно от них отличаются. Так, например, прочностные характеристики заполнителей потоков вулкана Безымянный, определенные на норвежском стабилометре, дали следующие результаты; сцепление - 0.005 и 0.06 МПа, угол внутреннего трения - 30 и 22 град. Повышение сцепления для второй пробы до 0.06 МПа связано, вероятно, с содержанием в ней частиц диаметром менее 0.056 мм в 2,5 раза большим, чем в первой. Тонкий материал явился своеобразным "цементом", повысившим прочностные характеристики заполнителя потока.

В целом, значения сцепления для вулканов Безымянный и Шивелуч варьируют в пределах 0-0.05 МПа, составляя в среднем 0,02 Мпа(9). Угол внутреннего трения пород вулкана Безымянный лежит в пределах 22 - 53, в среднем - 42 (7) град., вулкана Шивелуч равен 25 (2) град. (табл. 6).

выводы

1. Вулканам Безымянный и Шивелуч присущи две разновидности пирокластических потоков - потоки ювенильных пористых андезитов и пеплово-глыбовые.

2. Гранулометрический состав ювенильных и пеплово-глыбовых потоков извержений 1984-1989 гг. вулкана Безымянный отличается в основном содержанием тонких фракций, значения их гранулометрических характеристик практически одинаковы.

3. Состав заполнителей ювенильных потоков вулкана Безымянный 1956 г. и 1984-1989 гг. очень похож, но значения гранулометрических характеристик потока 1956 г. более высокие (табл. 3-4).

4. Несмотря на разные масштабы извержений вулкана Безымянный в 1956 и 1984-1989 гг., превалирующая фракция заполнителей их пирокластических потоков - одна и та же - 0.125- 0.25 мм (Приложение, стр. 88, 90).

5. Гранулометрические составы и значения их характеристик разновидностей ювенильных потоков вулкана Шивелуч (1964 г. и более древних) похожи на ювенильные потоки вулкана Безымянный 1956 и 1984-1986 гг., но превалирующими фракциями для заполнителей потоков вулкана Шивелуч являются 0.125 - 0.5 мм (Приложение, стр. 93).

6. Несмотря на то, что масштабы извержений вулканов разные, значения медианных диаметров и другие гранулометрические характеристики

заполнителей пирокластических потоков вулканов Безымянный и Шивелуч сходны.

7. Частицы вулкана Безымянный представлены в основном изометричными монолитного облика обломками кристаллов плагиоклаза и пород, удлиненные частицы вулкана Шивелуч большей частью представлены вулканическим стеклом, плагиоклазом и роговой обманкой.

8. Плотность твердой фазы заполнителей потоков вулкана Безымянный ниже, чем вулкана Шивелуч, что обусловлено различиями их минерального состава. Плотность твердой фазы, структурный облик частиц заполнителей потоков обусловливают более высокую плотность и меньшую пористость отложений в естественном залегании вулкана Безымянный по сравнению с породами вулкана Шивелуч. Прочностные характеристики заполнителей пирокластических потоков вулканов Безымянный и Шивелуч практически одинаковы.

1.4. Отложения пирокластических волн

Пирокластические волны представляют собой слабонасышенные обломочным материалом турбулентные потоки с низким соотношением компонентов: твердая составляющая - газ [118,137,139]. Движущей силой пирокластических волн, как и потоков, является количество движения магмы, автоэксплозивность, а также высокие газонасыщенность и температура материала. Скорость распространения таких волн достигает 100-150 км/ч [72,120]. дальность зависит ОТ мощности извержения, состава. газонасыщенности, температуры пирокластики, присутствия на их пути значительных по высоте препятствий и т.д. Волнам присуще стремительное, "ураганное" распространение от центра извержения; отмечались случаи преодоления ими препятствий высотой более 600 м [120]. В то же время волны не поднимаются высоко над землей (рис. 11 в).

В настоящее время выделяются две основные разновидности пирокластических волн: 1. приземная, 2. волна пеплового облака. Известна также "базисная волна", возникающая при фреатических и фреатомагматических извержениях вулканов, но здесь мы ее не обсуждаем.

Приземная пирокластическая волна (ground surge), выделенная Р.Спарксом и Г.Уолкером [137], образуется при обрушении краевых частей эруптивной колонны и по времени опережает пирокластический поток, формирующийся при коллапсе центральной части этой колонны. Некоторые ученые считают также, что такие волны возникают и в процессе движения пирокластического потока: благодаря подсосу воздуха во фронтальных и боковых частях потока происходит сепарация частиц его заполнителя и отложение их в виде песчаного прослоя в основании пирокластического потока [147,148]. Эти механизмы образования отложений в какой-то мере объясняют то, что породы приземной пирокластической волны подстилают и обрамляют отложения пирокластических потоков (рис. 21).

Формирование пирокластической волны пеплового облака (ash cloud surge, понятие ввел Р.Фишер [118]) происходит в результате конвективной гравитационной дифференциации пирокластики при движении ее по склону вулкана [29,31,120]. При движении пирокластического потока над ним на несколько километров В высоту поднимаются пепловые облака потока. Внутри этих облаков, пирокластического непосредственно над турбулентный потоком. формируется низкоплотностный высокогазонасыщенный И высокотемпературный "слой", который распространяется прямолинейно и с высокой скоростью, отрывается от тела двигается независимо него. Этот "слой" И называется потока и ОТ "пирокластической волной пеплового облака".

Отложения пирокластических волн вулкана Безымянный извержений 1984-89 гг. подстилали и обрамляли пирокластические потоки в виде хорошо отсортированных песчаных прослоев, в форме отдельных дюн и дюнного рельефа, небольших холмиков и т.д., лежали на поверхности пирокластических потоков или рядом с ними. Наиболее четко диагностированы типы

a

Рис. 21. Разрез пирокластических отложений вулк. Безымянный извержения 1985 г. в ручье Тундровый в 8 км от вулкана. Отложения: а- аллювия ручья, 1- приземной пирокластической волны, генетически связанной с потоком А; 2- пеплово-глыбового пирокластического потока А; 3пирокластической волны пеплового облака, генетически связанной с первыми порциями пирокластического потока Б; 4, 6 пеплового облака пирокластического потока; 5- пирокластического потока ювенильных пористых андезитов Б. Фото А.И. Малышева.

б

пирокластических волн при изучении продуктов извержений 1985, но также они выделены в отложениях извержений вулкана в 1986, 1984 и 1956 гг.[2, 8, 30, 73].

Химический и минеральный состав пород

Химический состав заполнителей пирокластических волн извержений разных лет показан в табл. 1. На рис. 22 ясно видно, что заполнители волн изученных извержений вулкана Безымянный хотя и не на много, но кислее, чем лавы и заполнители потоков. Такая же тенденция - большее содержание кремнекислоты в породах волн, чем в заполнителе потоков, - показана в работе [126] на примере извержения вулкана Сент-Хеленс в 1980 г.

Частицы заполнителей отложений пирокластических волн, как и заполнителей отложений пирокластических потоков, представляют собой обломки кристаллов минералов, их сростков, вулканического стекла и пород. Минеральный состав заполнителя отложений волн, по данным В.Ю. Кирьянова (1985 г.), следующий; вулканическое стекло - 16, плагиоклаз - 51, темноцветные минералы -10, обломки пород -13, пироксен - 10 (рис. 23).

Рис. 22. Вариации содержания SiO₂ в продуктах вулк. Безымянный извержений 1984-1989 гг.: 1андезиты лавовых и пирокластических потоков; 2,3- заполнители пирокластических потоков (2) и волн (3); 4- пеплы облаков потоков; 5- тефра.

Рис. 23. Минеральный состав пород вулк. Безымянный извержений 1984-1989 гг.: І- андезиты пирокластических и лавового (1986) потоков; ІІ, ІІІ - заполнители пирокластических потоков (ІІ) и волн (ІІІ); фракции 0.1-0.063 мм: 1- основная масса, 2- вулканическое стекло, 3- плагиоклаз, 4- рудные минералы, 5- обломки пород, 6- пироксен.

Структурно-текстурные особенности отложений

Отложения приземной волны (ground surge) представляют собой хорошо отсортированные средне-крупнозернистые пески С небольшим количеством обломков размером от 2 до 20-30 MM. Они залегают преимущественно в основании пирокластических потоков, но иногда обрамляют их. Мощность их при извержении вулкана Безымянный в 1985 г. достигала 10 см, при извержении 1956 г. - 2-3 м [8].

Характерными особенностями этих образований является пологоволнистая слоистость и постепенный, без резкой границы, переход в отложения пирокластических потоков.

Отложения волн пеплового облака (ash cloud surge), грубослоистые или монолитного облика, залегают в виде пятен на отложениях пирокластических потоков и заплесков на бортах долины, по которой двигалась пирокластическая масса, встречаются в форме дюн и дюнного рельефа, небольших отдельных потоков и протяженных покровов (рис. 24).

Отложения волн пепловых облаков могут быть обнаружены также в потоков. На рис. 21 б показан разрез основании пирокластических пирокластических отложений вулкана Безымянный извержения 1985 г. Снизу 1- на аллювии залегают средне-крупнозернистые пески вверх обнажаются: зеленоватого оттенка мощностью до 10 см с содержанием 3-4 % частиц размером от 2 до 25 мм (ground surge), постепенно переходящий в 2отложения пеплово-глыбового пирокластического потока (А) зеленоватого оттенка мощностью до 1,2 м; 3- мелкозернистые коричневатые пески мощностью 7-10 см с включениями частиц не превышающих размеров лапиллей до 20 % (ash cloud surge); 4- тонкозернистый коричневатый пепел мощностью 1 мм (ash cloud of flow); 5- отложения пирокластического потока ювенильных пористых андезитов (Б) коричневатого оттенка мощностью 3-5 м; 6- однородный тонкозернистый коричневатый пепел мощностью 2 см (ash cloud of flow).

Puc. 24. Отложения пирокластической волны пеплового облака на склоне вулк. Безымянный при извержении в 1985 г.: дюнный рельеф (а), отдельный небольшой поток (б).

пирокластических образований извержения вулкана При изучении Безымянный в 1985 г. предполагалось, что слой 3 разреза на рис. 21 б. представлен отложениями приземной пирокластической волны, связанными с Детальные пирокластическим потоком Б [2]. исследования состава пирокластики, слагающей вышеуказанный разрез, позволили автору придти к выводу, что в слое 3 обнажаются отложения волн пеплового облака, парагенетически связанные с отложениями первых порций пирокластического потока Б. Процесс формирования вышеуказанных отложений представляется следующим: одновременно с формированием пирокластического потока А в 7 км от вулкана, с его его купола начали низвергаться первые порции потока Б, остановившиеся в 3-5 км от вулкана. Материал отложений волн пепловых облаков, парагенетически связанный с этими порциями потока Б, в силу своей высокой мобильности, распространился дальше И отложился на пирокластическом потоке А. Отсутствие отложений пепловых облаков потока

на отложениях пирокластического потока А можно объяснить очень коротким перерывом между формированием отложений пирокластического потока А и отложениями волн пеплового облака. Перерыв между отложением первых и последних порций пирокластического потока Б, сформировавших верхнюю часть вышеуказанного разреза (рис. 21), был более продолжительным, поэтому на кровле отложений волн пеплового облака наблюдаются пеплы облаков потоков (слой 4). Заключительным аккордом извержения явилось отложение тонких пеплов (ash cloud of flow, слой 6, рис. 21 а), плащом перекрывших ранее сформированные пирокластические потоки.

В отложениях извержения 1985 г. в 5,5 км от вулкана Безымянный А. Малышевым, И. Кондрашовым и автором был обнаружен уникальный объект дюнный рельеф, сформированный отложениями волн пеплового облака (рис. 24). На образование дюнного рельефа в процессе извержения вулкана указывал тот факт, что он сформирован свежим пирокластическим материалом, которого не было при извержении вулкана в 1984 г. и который спустя несколько недель после кульминационной фазы извержения 1985 г. оставался теплым. На правом борту небольшого вала, обращенного к вулкану, как бы "спадая" в ручей, лежит массив дюн высотой до 0.8 м, шириной до 10 м и длиной 38 м. Дюны вогнуты противоположной движению материала. Простирание цепочки со стороны, в сторону от вулкана ограничено глыбой размером 2x1 м. люн За ней находится небольшой пеплово-песчаный поток, длиной 15 м того же материала, что и дюны, но слабо выраженный в рельефе, как бы растекшийся по склону (рис. 24). Такие же дюны, менее выраженные в рельефе, наблюдались на правом борту каньона в 3 км от вулкана после извержения 1986 г. [73].

Мощность отложений волн пепловых облаков достигала 1-2 м при извержениях вулкана Безымянный в 1984-1986 гг. и 3-5 м при извержении в 1956 г. [2, 8, 28, 29].

На кровле отложений волн пепловых облаков обычно залегает тонкий материал пепловых облаков пирокластических потоков мощностью от первых миллиметров (если он формируется после остановки порций пирокластических потоков) до первых или десятков сантиметров (если фиксирует окончание кульминационной фазы извержения вулкана).

Микростроение пирокластики вулкана Безымянный изучалось на сканирующем электронном микроскопе Геологического факультета МГУ Кафедры Инженерной геологии и охраны геологической среды.

Заполнители отложений волн состоят из таких же частиц, что и заполнители потоков (рис. 25). Наряду с преобладанием угловатых встречаются "полуокатанные" частицы - сростки кристаллов минералов в своеобразных "рубашках" стекла, поверхность которых в разной степени эродирована (рис. 25 в). На поверхности частиц наблюдаются также выбоины, трещины, сколы, штриховка, ячейки с тонкими перегородками; "кратеры", заполненные мелкими частицами и т.д. Почти все частицы "загрязнены" тонкими фрагментами плагиоклаза и вулканического стекла.

Для изучения ненарушенного строения отложений пирокластических волн в поле были отобраны и запарафинированы монолиты отложений двух

Рис. 25. Частицы заполнителя отложений пирокластических волн вулкана Безымянный: кристалл пироксена (а) и эрозионный кратер на нем (б) при увеличении 120 и 2500, соответственно; сростки плагиоклаза, пироксена, вулканического стекла при увеличениях 200 (в) и 150 (г).

разновидностей волн из опорного разреза в руч. Тундровый в 8 км и из дюн в 5.5 км от вулкана (рис. 2, т.67). На электронном микроскопе были изучены свежие сколы этих образцов и получены с них фотографии (рис. 26). При малых увеличениях была исследована общая картина распределения структурных элементов, при больших - тонкие детали микростроения - размер и форма частиц и пор и т.д. Для вышеуказанных образцов пирокластики были определены также количественные характеристики порового пространства при увеличении 200.

В

Рис. 26. Микроструктура образцов ненарушенного строения отложений вулкана Безымянный извержения 1985 г. при увеличении 200: а - приземных пирокластических волн (обр. 1); б, в - пирокластических волн пепловых облаков, соответственно (обр. 2, 3).

Образец 1 был взят из слоя 1 (ground surge) разреза пирокластических отложений вулкана Безымянный извержения 1985 г. (рис. 21)

Образец 2 - из слоя 3 (ash cloud surge) вышеуказанного разреза;

Образец 3 - среднемелкозернистые пески коричневатые мощностью 42 см с мелкими обломками андезита порядка 20-25 % (рис. 24 a, ash cloud surge).

Химический состав отложений почти одинаков, гранулометрический состав заполнителей отложений различен для образцов 1 и 2,3. Состав заполнителей образцов 2 и 3 очень похож (рис. 27 а).

Рис. 27. Кривые распределения частиц (а) и пор (б) разного диаметра в отложениях пирокластических волн вулк. Безымянный: 1- приземных волн, 2,3 - волн пепловых облаков. Описание в тексте.

Микростороение образцов ненарушенного сложения отложений приземной волны и волны пеплового облака различается. Хотя всем образцам присуща скелетная микроструктура, у отложений приземных волн она более выражена (рис. 26).

Частицы материала пирокластических волн изометричны, реже удлинены, монолитного облика и, в целом, сравнимы по размерам. В образце 2 наблюдается обилие тонких частиц, которые местами почти полностью покрывают крупные зерна. Размер частиц от долей мкм до 25х45, 85х95, 125х206, 130х380 мкм и т.д.

Между отложений частицами пирокластических действуют волн физической физико-химической структурные связи И природы электростатические, ионно-электростатические, молекулярные, магнитные, капиллярные, а в образце 2, вероятно, также и силы механической природы -Контакты зацепления. между структурными элементами, вероятно, переходного типа. Они сохраняются в сухом состоянии пеплов (о чем также говорит возможность изучения микростроения их образцов в ненарушенном состоянии), но разрушаются при увлажнении отложений.

Результаты количественного изучения порового пространства при увеличении 200 вышеуказанных образцов ненарушенного строения вулкана Безымянный представлены на рис. 27 б и табл. 7.

Таблица 7

ХАРАКТЕРИСТИКА ПОРОВОГО ПРОСТРАНСТВА ОБРАЗЦОВ НЕНАРУШЕННОГО СТРОЕНИЯ ОТЛОЖЕНИЙ ПИРОКЛАСТИЧЕСКИХ ВОЛН ВУЛК. БЕЗЫМЯННЫЙ ПРИ УВЕЛИЧЕНИИ 200

Названия	N 1	N 2	N 3
характеристик	приземная волна	волна пеплового	волна пеплового
		облака	облака
Пористость, % общая, внутриагрегатная,	40,8	33,4	37,1 16,8 20,3
межагрегатная			
Общая площадь пор мкм ²	p, 4828926,60	3953654,05	4387339,07
Общий периметр пор, мкм	62994,66	36068,47	87089,20
Количество пор.	60	226	104
единица	25	21,6	19,2
Из них связанных,	%	,	,
Средний диаметр	24,06	14,03	
пор,мкм			9,10
внутриагрегатных межагрегатных			70,71
Средняя плошаль	454.74	154 62	
пор, мкм	10 1,7 1	10 1,02	65,17
внутриагрегатных			3927,39
межагрегатных			
Сранций норимотр	06 85	56 12	
средний периметр	90,03	50,45	37 02
внутриагрегатных			287.38
межагрегатных			201,00

Изучение микростроения образцов ненарушенного строения отложений приземных волн и волн пепловых облаков показало, что отложения приземных волн обладают большей общей пористостью, чем волн пепловых облаков (40.8 и 33.4-37.1 %, соответственно), но меньшим количеством пор (60 и 104-226, соответственно). Это обусловлено тем, что, с одной стороны, породы волн пепловых облаков более тонкозернисты (содержание тонких фракций в их составе может достигать 35 %), с другой - при формировании этих отложений материал агрегируется и наряду с общей, появляется также внутриагрегатная и межагрегатная пористости. Хотя отложения приземных волн обладают значительно меньшим количеством пор, средние диаметр, площадь и периметр их пор имеют большие значения по сравнению с образованиями волн пепловых облаков.

Таким образом выяснено, что материал пирокластических волн пепловых облаков агрегирован, в отличие от приземных волн, что связано, вероятно, с различиями в механизме их отложения.

Сопоставление результатов количественного анализа порового пространства образцов пирокластики и их гранулометрического состава показывает, что более дисперсные отложения обладают большим числом пор, грубодисперсные - меньшим. С увеличением размеров пор отложений количество их уменьшается, а общая пористость увеличивается. Известный тезис о том, что агрегированность материала увеличивает его общую пористость, количественно подтвердился на микроуровне.

Гранулометрический состав пирокластики

Заполнитель отложений приземных волн извержений вулкана Безымянный 1984-1989 гг. относится к пескам мелким. Обломков крупнее 2 мм в образованиях этого типа волн содержится не более 10 % [31]. Яркой особенностью их состава является модальное распределение фракций - резкое преобладание частиц диаметром 0.125 - 0.25 мм (до 30-42 %) (рис. 28 a, фракция стр. 89). Характерно, что же Приложение. эта является преобладающей у заполнителей пирокластических потоков (Приложение, стр. 88). Медианные диаметры варьируют в пределах 0.12 - 0.21 мм, составляя в среднем 0.17 мм (26 определений), средний размер частиц, соответственно -0.13 - 0.27 мм и 0.22 мм (26) и т.д. (рис. 16, табл. 3).

Заполнители отложений волн пепловых облаков относятся к пескам пылеватым. Содержание лапиллей в таких образованиях составляет до 25-30 % [31]. Для этих образований характерно бимодальное распределение фракций - наблюдается преобладание частиц диаметром менее 0.056 мм и 0.071-0.25 мм (рис. 28 б, Приложение, стр. 89), то есть таких же фракций, как и в заполнителях потоков, а также наиболее тонких, преобладающих в отложениях пепловых облаков пирокластических потоков (рис. 15,18,19). Медианные диаметры изменяются от 0.09 до 0.15 мм, составляя в среднем 0.12 мм (9). Средний размер, соответственно, 0.12 - 0.23 мм, в среднем - 0.16 мм (рис. 16, табл. 3).

В отложениях извержения 1956 г. по гранулометрическому составу также выделяются отложения приземных волн и волн пепловых облаков. Преобладающая фракция заполнителей приземных волн совпадает с таковой фракцией заполнителей пирокластических потоков этого извержения вулкана (рис. 17-19, 28), (Приложение, стр. 90, 91). Медианный диаметр заполнителя

Диаметр частиц, мм

Рис. 28. Гистограммы распределения частиц разного диаметра некоторых отложений пирокластических волн (вулк. Безымянный, извержения 1984-1989 гг. - а,б и 1956 г. - в): а,в приземных (ground surge); б - волн пепловых облаков (ash cloud surge) приземной волны равняется 0.24 мм, средний размер - 0.35. Медианные диаметры заполнителей волн пепловых облаков варьируют от 0.12 мм до 0.22 мм, средние размеры - от 0.13 до 0.32 мм (табл. 4).

В образованиях вулкана Шивелуч по гранулометрическому составу выделяются отложения приземных волн, преобладающая фракция которых также одинакова с таковой заполнителей пирокластических потоков (Приложение, стр. 93, 94). Медианный диаметр заполнителей отложений равен 0.36 мм, средний размер - 0.41 мм и т.д. (рис. 20, табл. 5).

Физические свойства отложений

Естественная *влажность* заполнителей отложений волн небольшая - достигает 15 %, составляя в среднем - 6 % (48).

Плотность твердой фазы заполнителей пирокластических волн вулкана Безымянный извержений 1984-1986 гг. варьирует от 2.56 до 2.75 г/см³; для приземных волн она составляет в среднем 2.69 г/см³ (16), для волн пепловых облаков - 2.70 г/см³ (6), (табл. 8). Для отложений вулкана Шивелуч эти значения не определялись.

Плотность образований пирокластических волн в их естественном залегании изменялась от 1.30 до 1.67 г/см³; для приземных волн средние ее значения составляли 1.53 г/см³ (55), для волн пепловых облаков - 1.41 г/см³ (10), (табл. 8).

Пористость отложений волн варьирует от 36 до 52 %; для приземных волн она составляет в среднем 43 % (55), для волн пепловых облаков - 49 % (10), (табл. 8).

Физико-механические свойства заполнителей образований волн

Модуль общей деформации заполнителей отложений пирокластических волн изменяется от 2.5 до 15.6 МПа; для приземных волн его значения в среднем равны 6.0 МПа (8), для волн пепловых облаков - 5.3 МПа (3), (табл. 8).

Прочностные характеристики заполнителя волн пепловых облаков извержения 1984 г. вулкана Безымянный, определенные на норвежском стабилометре, равняются: Сцепление - 0.004 МПа и угол внутреннего трения - 30 град. В целом же, сцепление заполнителей отложений приземных волн вулкана Безымянный в среднем равно нулю (7), волн пепловых облаков - 0.04 МПа (2), (табл. 8). Угол внутреннего трения изменяется от 24 до 58 град.; составляя в среднем для приземных волн - 42 (7), для волн перловых облаков – 41 (2) град.

ФИЗИЧЕСКИЕ И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ОТЛОЖЕНИЙ ПИРОКЛАСТИЧЕСКИХ ВОЛН В. БЕЗЫМЯННЫЙ ИЗВЕРЖЕНИЙ 1984-1986 гг.

	Отло:			
Названия характеристик	приземной волны (ground surge)	волны пеплового облака (ash cloud surge)	Общее по двум типам	
Плотность, г/см ³	1,53(55)	1,41(10)	1,48(90)	
	1,30-1,64	1,30-1,67	1,30-1,67	
Плотность твердой	2,69(16)	2,70(6)	2,70(22)	
фазы, г/см ³	2,56-2,75	2,69-2,71	2,56-2,75	
Влажность, %	6(48) 0-15		6(48) 0-15	
Коэффициент пористости, единица	0,76(55) 0,56-0,92	0,92(10) 0,62-1,08	0,83(90) 0,56-1,08	
Пористость, %	43(55)	49(10)	45(90)	
	36-52	38-52	36-52	
Сцепление, МПа	0(7)	0,04(2) 0-0,08	0,01(9) 0-0,08	
Угол внутреннего	42(7)	41(2)	42(9)	
трения, градус	24-58	30-50	24-58	
Модуль общей	6,0(8)	5,3(3)	5,6(11)	
деформации, МПа	2,5-15,6	3,8-8,1	2,5-15,6	

Примечание. В числителе - среднее значение, в знаменателе - минимальное и максимальное. В скобках - количество образцов.

выводы

1. Яркой особенностью заполнителей отложений приземных пирокластических волн является одномодальное распределение фракций - резкое преобладание частиц диаметром 0.125 - 0.25 мм (до 30-42 %, вулкан Безымянный) или 0.25 - 0.5 мм (до 37-45 %, вулкан Шивелуч). Обломков крупнее 2 мм содержится в них не более 10 %. Характерно, что преобладающие фракции заполнителей приземных волн и пирокластических потоков - одинаковы.

2. Заполнители отложений волн пепловых облаков имеют бимодальное распределение фракций - преобладание частиц размером 0.125 - 0.5 мм и менее 0.056 мм. Содержание обломков в них достигает 20-25 %

Преобладающая крупнозернистая фракция заполнителей отложений как правило совпадает с таковой пирокластических потоков.

3. Отличительной чертой отложений волн пепловых облаков является залегание на их кровле тонких пеплов облаков пирокластических потоков, мощность которых меняется от первых миллиметров (если они формируются после остановки порций пирокластических потоков) до первых или десятков сантиметров (если фиксируют окончание кульминационной фазы извержения вулкана).

4. Отложения приземных волн и вышележащих пирокластических потоков не имеют резкой границы, переходят друг в друга постепенно.

5. Материал пирокластических волн пепловых облаков агрегирован, в отличие от приземных волн, что связано, вероятно, с различиями в механизме их формирования.

6. Число пор образца пирокластики находится в прямой зависимости от его гранулометрического состава - более дисперсная порода обладает большим числом пор, грубозернистая - меньшим. С увеличением размера пор отложений количество их уменьшается, а общая пористость увеличивается.

7. Плотность твердой фазы разновидностей пирокластических волн практически одинакова, хотя имеет разные пределы вариаций. Плотность сложения отложений приземных волн выше, чем волн пепловых облаков, что связано с различным их гранулометрическим составом и тем, что образования приземных правило перекрываются многометровой волн как толшей пирокластических потоков, а породы волн пепловых облаков лежат на поверхности. Пористость отложений волн пепловых облаков несколько выше, чем приземных, что обусловлено различным их гранулометрическим составом, агрегированностью пород волн пепловых облаков, меньшей их плотностью сложения (табл. 8). Деформационные характеристики отложений разновидностей пирокластических волн одного порядка, хотя модуль общей деформации отложений приземных волн имеет большие пределы вариаций. Прочностные характеристики заполнителей отложений волн почти одинаковы, но вариации значений угла внутреннего трения заполнителей отложений приземных волн - несколько шире, чем волн пепловых облаков.

1.5. Отложения пепловых облаков пирокластических потоков

Отложения пепловых облаков пирокластических потоков или пеплы облаков потоков (ash cloud of pyroclastic flow или ash cloud of flow) образуются в процессе движения пирокластического потока по склону вулкана и представляют собой пеплы, отделившиеся от заполнителя потока в результате конвективной гравитационной дифференциации пирокластической массы [31]. Пока поток (или его порции) движется, над ним клубится пеплово-паро-газовое облако (рис. 29 а), из которого впоследсвтвии, спустя некоторое время после остановки пирокластического потока, откладываются "пеплы облаков пирокластического потока" (рис. 29 б).

Не выделяя эти отложения в отдельный тип, но подчеркивая различия их с образованиями "палящих туч", Г.С.Горшков писал: "Тучи, поднимающиеся над раскаленными лавинами, сколь они ни эффектны, имеют низкую температуру, не могут ничего опалить..." И далее: "Туча .,поднимающаяся над раскаленной лавиной, генерируется в лавине, поднимается вертикально вверх, не распространяясь в стороны, и не имеет разрушительной силы" [39, стр. 60].

В отличие от тефры, выбрасываемой из кратера вулкана на высоты 5-20 и более километров, пепловые облака потоков поднимаются на высоту первых километров от поверхности. При извержении разных типов потоков пепловые облака этих потоков достигают разных высот. Потоки ювенильных пористых андезитов содержат до 60-70 % заполнителя, обладают высоким содержанием ювенильного материала, более газонасыщенны, поэтому пепловые облака таких потоков при одинаковых масштабах извержений с пеплово-глыбовыми потоками, поднимаются на большую высоту и их отложения имеют больший ареал распространения. Замечено также, что максимальная ширина облака примерно равна его сформированного пеплового высоте ОТ поверхности потока, а эта величина, в свою очередь, в 8-10 раз превышает ширину фронта пирокластического потока (оценки автора по извержениям вулкана Безымянный).

При небольшом ветре отложения в плане имеют эллипсообразную форму. Пирокластический поток и его окрестности они перекрывают слоем примерно одинаковой мощности, на удалении этот слой постепенно истончается. распространения 1,5-2 Границы отложений находятся В КМ ОТ оси пирокластического потока (при ширине потока в несколько сот метров) и несколько дальше от его фронта. При сильном ветре форма "эллипса" отложений может быть изменена. В зависимости от масштаба извержения, стратификации атмосферы в момент извержения вулкана, а также силы ветра, пепловые облака потоков могут перемешиваться с нижними слоями эруптивной а их материал переноситься на далекие расстояния. В целом, тучи, распространение отложений пепловых облаков пирокластических потоков зависит ОТ масштаба извержения, состава пород вулкана. типа пирокластического потока, стратификации атмосферы, силы и направления ветра.

Рис. 29. Формирование пеплового облака пирокластического потока при извержении вулк. Безымянный в 1979 г. (а); поверхность отложений пепловых облаков потоков (б), образованных при извержении этого вулкана в 1986 г. (о вертикальном выпадении пеплов из облака свидетельствует отсутствие их под навесами крупных обломков).

В этой работе впервые представляются данные по изучению пеплов облаков пирокластических потоков извержений вулкана Безымянный.

Химический и минеральный состав пеплов

Отложения состоят из таких же частиц, что и заполнители пирокластических потоков и волн. Так как в их составе содержится большое количество плагиоклаза, вулканического стекла, их химический состав более кислый по сравнению с другими типами пирокластики (рис. 22, табл. 1).

Структурно-текстурные особенности отложений

Пеплы облаков пирокластических потоков (ash cloud of flow) наблюдаются почти повсеместно на поверхности пирокластических потоков, волн и других образований вулкана Безымянный, на отрогах окрестных вулканов (Камень, Зимины), в разрезах свежего пирокластического материала, фиксируя перерывы в формировании порций потоков. Мощность пеплов составляет в основном 1-2 см, но при сильных извержениях вулканов может достигать 5 и более сантиметров. На глубине 0.5-1.0 см в их слоях часто встречаются аккреционные лапилли размером в среднем 0.5 см.

Вышеуказанные факторы позволяют утверждать, что отложения пепловых облаков потоков с некоторыми оговорками можно использовать в качестве маркирующих горизонтов, разделяющих пирокластические продукты разных извержений вулкана, а также уточняющих диагностику разновидностей отложений пирокластических волн (см. раздел "Отложения пирокластических волн" этой Главы).

Гранулометрический состав отложений

Отложения пепловых облаков пирокластических потоков представляют собой вулканический пепел, который может быть отнесен к пескам тонким, пылеватым и изредка - к пескам мелким. Преобладают частицы диаметром менее 0.056 мм (до 55 % состава) (рис. 15, Приложение, стр. 89). Медианные диаметры варьируют в пределах 0.01 - 0.07 мм, составляя в среднем 0.05 мм, средний размер частиц - 0.05 - 0.1 мм и 0.07 мм и т.д. (табл. 3).

Физические свойства отложений

Плотность твердой компоненты пеплов изменяется от 2.46 до 2.66 г/см³, составляя в среднем 2,58 г/см³ (10 определений) (табл. 9).

Плотность пеплов в естественном залегании находится в пределах 0.87 - 1.20 г/см^3 , в среднем - 1.09 г/см^3 (3) (табл. 3). Плотность пеплов в рыхлом состоянии варьирует в пределах 0.84-0.88 г/см³, в среднем - 0.86 (10) г/см³, в плотном - 1.27-1.34 г/см³, в среднем - 1.31 (10) г/см³ [30].

Таблица 9

	Отлож	песок		
Характеристика	заполнитель	заполнитель	пеплы облаков	направленного
	потока	ВОЛН	потоков	взрыва 1956 г.
Плотность,	1,54(200)	1,48(90)	1,09(3)	1,60(4)
г/см ³	1,27-1,88	1,30-1,67	0,87-1,20	1,50-1,77
Плотность	2,69(20)	2,70(22)	2,58(10)	2,73(4)
твердой фазы,	2,64-2,74	2,56-2,75	2,46-2,66	
г/см ³				
D 0/	c (1 0 0)			7 (1)
Влажность, %	6(120)	6(48)		5(4)
	2-32	0-15		3-7
Коэффициент	0.75(200)	0.83(90)	1 50(3)	0.71(4)
пористости	0,43-0.96	0,55(50)	1 22-2 06	0 54-0 81
елиница	0,15 0,70	0,50 1,00	1,22 2,00	0,510,01
•				
Пористость, %	42(200)	45(90)	59(3)	41(2)
•	30-49	36-52	55-67	35-45
Сцепление,	0,02(7)	0,01(9)	0,03-0,05	0(4)
МПа	0-0,05	0-0,08		
Угол	42(7)	42(9)	55-56	47(3)
внутреннего	22-53	24-58		33-55
трения, град				
Молици общей	7.9(7)	5 6(11)	5 1	5 0(3)
подуль общей	7,3(7)	25-156	\mathcal{J}, \mathbf{I}	3, 3(3)
мПа	2,2-10,0	2,5-15,0		2,9-9,0

ФИЗИЧЕСКИЕ И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПИРОКЛАСТИЧЕСКИХ ОТЛОЖЕНИЙ ВУЛК. БЕЗЫМЯННЫЙ

Примечание. В числителе - среднее значение, в знаменателе - минимальное и максимальное. В скобках - количество образцов.

Пористость отложений в естественном залегании равна в среднем 59 % (3)(табл. 9), в рыхлом состоянии - 65 %(10), в плотном - 47 % (10).

Коэффициент уплотняемости пеплов облаков потоков самый высокий - 1.32 [30].

Физико-механические свойства пород

Модуль общей деформации пеплов равен 5.1 МПа (1), то есть сходен с деформационными показателями других типов пирокластики.

Прочностные характеристики : сцепление - 0.03-0.05 МПа и угол внутреннего трения - 55-56 град.(табл. 9), несколько большие по величине, чем других типов пирокластических отложений, что связано с преобладанием в составе отложений тонких пеплов.

выводы

облаков 1. Отложения формируются пепловых потоков В любыми кульминационные фазы извержений вулканов над типами пирокластических потоков. Они поднимаются на высоту первых километров от поверхности земли, в отличие от тефры, которая выбрасывается из кратера вулкана на 5-20 и более километров. Отложения слоем равной мощности перекрывают порции пирокластических потоков и их окрестности. В составе материала пепловых облаков потоков преобладают тонкие частицы диаметром менее 0.056 мм (до 55-60 %), в основании слоя часто встречаются прослои аккреционных лапиллей.

2. Так как отложения пепловых облаков потоков формируются в результате "конвективной гравитационной дифференциации пирокластики" (см.Гл. 4), они обогащены легкими компонентами (плагиоклазом и вулканическим стеклом), в связи с чем содержание кремнезема в них повышено по сравнению с другими типами пирокластики (кроме тефры дальнего разноса).

3. Минеральный состав отложений обусловливает небольшие значения их плотности твердой фазы; гранулометрический состав, агрегированность материала - наименьшую по сравнению с другими типами пирокластики плотность. Деформационные показатели отложений сходны с таковыми других типов пирокластики. Их прочностные характеристики несколько выше других в связи с преобладанием в отложениях тонких фракций пеплов.

1.6. Отложения направленного взрыва

Впервые отложения направленного взрыва были детально описаны на вулкане Безымянный после катастрофического извержения 30 марта 1956 г. Тогда же, в результате изучения характера и продуктов этого извержения, Г.С.Горшков ввел понятие "извержение типа направленного взрыва"[36]. Впоследствии, по аналогии с этим вулканом, им было предположено развитие событий такого же рода на вулканах Шивелуч, Мон-Пеле, Катмаи, Бандайсан, Асама и др. [36-40].

Отложения направленного взрыва состоят из двух разновидностей: агломерата и песка направленного взрыва.

Отложения агломерата направленного взрыва [39] представляют собой несортированный грубообломочный материал с размерами глыб до 10-15 м, который образует хаотические нагромождения в виде островерхих холмов высотой до 20 м и их гряд в пределах узкого сектора (или площади эллипсообразной формы) склона и подножия вулкана. Основная масса отложений находится на некотором удалении от постройки вулкана, но отдельные "холмы" наблюдаются на всей площади сектора независимо от рельефа - и в долинах, и на их бортах, что позволяет предполагать механизм их образования в результате взрыва постройки [9, 36-40, 64, 65] (рис. 30).

На периферии площади распространения отложения "агломерата" могут иметь некоторые следы перемещения - ориентировка гряд холмов с радиальной по отношению к вулкану может изменяться почти на 90 градусов, на фронте отложений может наблюдаться крутой уступ высотой до 10-20 м, рядом с которым находится скопление поваленных деревьев [36, 64, 65](рис. 30 а). В этом отражается вполне обычное явление - при падении на землю рыхлых масс краевые их части продолжают движение по инерции. По мнению автора, в зависимости от объема выброшенной массы и содержания в ней тонкого материала, она может перемещаться на различные расстояния, двигаясь в отдельных своих частях почти как поток.

Облик отложений агломерата направленного взрыва похож на образования обвальной обломочной лавины извержения вулкана Сент-Хеленс в 1980 г.- беспорядочно холмистый рельеф с высотой холмов до 30 м (хотя гряды холмов, как на вулканах Безымянный и Шивелуч не наблюдались).

Следует отметить, что впервые в истории вулканологам удалось наблюдать и задокументировать на фото и кинопленку все этапы развития извержения вулкана Сент-Хеленс, поэтому нет сомнений в диагностике отложений обвальной обломочной лавины [142].

Хотя внешне отложения агломерата направленного взрыва и обвальной обломочной лавины похожи, автор считает, что на вулканах Безымянный и Шивелуч превалировал направленный взрыв при катастрофических извержениях 1956 и 1964 гг., и хотя обвальные массы, возможно, и существовали, они имели резко подчиненное взрывным значение.

Рис. 30. Отложения направленного взрыва вулк. Шивелуч в 1964 г.: фронт образований (а); отдельный конус отложений в долине р. Кабеку (б).

В работе [1] показаны барограммы воздушных волн вулканов Мон-Пеле, Безымянный, Шивелуч и Сент-Хеленс при их катастрофических извержениях (рис. 31). При явном сходстве барограмм воздушных волн вулканов Мон-Пеле и Безымянный и не столь явном, но сходстве с ними волн вулкана Шивелуч, барограмма воздушных волн вулкана Сент-Хеленс имеет совершенно иной облик. Это указывает на разные механизмы извержений вулкана Сент-Хеленс и вулканов Безымянный, Шивелуч и Мон-Пеле, и, вероятно, на различный генезис грубообломочных образований.

Отложения песка направленного взрыва. После выброса взрывных или обрушения обвальных масс, открывающих магматическую камеру вулкана, появляется высокотемпературная эмульсия твердого материала в смеси водяного пара и газа, несколько которая через секунд после извержения занимает объем в несколько больший, чем тысяч вначале (По раз А.Лакруа, [124]). Энергия таких "эмульсий" не затрачивается на подъем в эруптивной колонне и обрушение из нее, а целиком состоит из "первичной" кинетической, и мощные пирокластические волны ураганом, стремительно, сметая все на своем пути, распространяются на 25-30 км от центра извержения. Г.С.Горшковым И Г.Е.Богоявленской специфические отложения "эмульсий" катастрофического таких извержения вулкана Безымянный 1956 г. "песком были названы направленного взрыва" [36, 37].

Такие же отложения, связанные с направленным взрывом, были выделены на вулканах Мон-Пеле, Сент-Хеленс, Ундзен и др.

Образования направленного взрыва вулкана Безымянный состояли из двух фаций - агломерата и песка направленного взрыва, на вулкане Шивелуч до недавнего времени признавалось существование только агломерата направленного взрыва.

Среди вулканологов устоялось мнение, что главным отличием событий катастрофических извержений Безымянного (1956) и Шивелуча (1964) было отсутствие на последнем вулкане песка направленного взрыва. Более детальные исследования пирокластики вулкана Шивелуч, вероятно, изменят это мнение. Вполне возможно, что "песок направленного взрыва" на Шивелуче есть, хотя пока достоверно и не обнаружен.

Отложения агломерата направленного взрыва двух вулканов внешне похожи и по морфологии, и по количеству глыб и крупных обломков. Отличаются они разным набором обломков и большей долей заполнителя в отложениях вулкана Шивелуч. Образования песка направленного взрыва хорошо изучены на вулкане Безымянный.

Химический и минеральный состав пород

По химическому составу образования направленного взрыва двух вулканов отвечают андезитам. Агломерат направленного взрыва состоит преимущественно из резургентного материала - пород постройки вулкана на Безымянном и куполов на Шивелуче. Доля ювенильного материала в агломерате вулкана Безымянный составляет примерно 10-15 %, на вулкане Шивелуч - около 2 % [9]. Содержание ювенильного вещества в песке направленного взрыва достигает 80% [8].

Минеральный состав обеих фаций отложений вулкана Безымянный показал большое сходство [9] и, по данным В.Ю.Кирьянова, составляет: вулканическое стекло - 21, плагиоклаз - 33, магнетит - 5, обломки пород - 36, зеленая роговая обманка - 6, пироксен -2 % [9]. Состав заполнителя агломерата направленного взрыва вулкана Шивелуч таковой: вулканическое стекло - 23, плагиоклаз - 44, магнетит - 5, обломки пород - 10, зеленая роговая обманка - 3, бурая роговая обманка - 15 % [9].

Рис. 32. Разрез пирокластических отложений вулк. Безымянный в р. Сухая Хапица: отложения пирокластического потока (ПП), направленного взрыва песка (НВП), почвеннопирокластического чехла (ППЧ), амбонской свиты (Аб).

Структурно-текстурные особенности отложений

Образования агломерата направленного слагают взрыва обширные площади преимущественно у подножия вулканов (на расстоянии 5-10 км от центра извержения). На их поверхности отмечаются одиночные островерхие холмы и их гряды высотой до 20 м. Подошва отложений неровная, перепады ee высот вулкане на Безымянный достигают 100-150 м. На периферийных частях агломерата наблюдаются фронтальные валы высотой до 10-20 м. Ближе к границам распространения отложений на ИХ поверхности могут наблюдаться следы материала течения огибание переориентировка гряд препятствий, что отражает холмов т.д., И закономерный процесс - после падения взрывных масс вулкана на землю они некоторое время продолжали движение по инерции - то есть как бы "текли" по поверхности земли.

Отложения песка направленного взрыва не согласуются с топографией подстилающего рельефа - их мощность (до 2 м у кратера вулкана и до 1-2 см на расстоянии 30 км) примерно одинакова и в долинах и на водоразделах.

Залегают они чаще на почвенно-пирокластическом чехле, но также встречаются и в разрезах - под породами агломерата взрыва и пирокластического потока [9] (рис. 32).

Отложения песка направленного взрыва слоисты - например, в 6,5 км от кратера Безымянного на отроге вулкана Камень находится дюна, состоящая из 17 слоев разнозернистого песка и алевропелита (рис. 33). Вдали от вулкана "песок" постепенно приобретает двучленное строение - нижний слой обогащается обломками.

Рис. 33. Отложения песка направленного взрыва вулк. Безымянный извержения 1956 г.: а: разрез отложений: 1- алевропелит, 2,3- пески мелкозернистые (2), среднекрупнозернистые (3); б: 2-17 - гистограммы распределения частиц разного диаметра в каждом из слоев разреза отложений.

Гранулометрический состав отложений

Характерной особенностью агломерата взрыва является неравномерное, гнездовое расположение остроугольных обломков, размер которых достигает 10-15 м, а содержание меняется от 30 до 70-80 % [64, 65].

Отложения песка направленного взрыва представляют собой вулканический песок с примесью обломков пород до 10-20 %. Преобладают обломки диаметром 1-2 см, но встречаются и размером до 10-20 см.

Кумулятивные кривые гранулометрического состава заполнителей отложений агломерата направленного взрыва вулканов Безымянный и Шивелуч очень похожи по наклону и тем, что резко пересекают все кумулятивные кривые других типов отложений (рис. 17, 18, 20). Преобладающими фракциями заполнителей агломерата взрыва являются 0.125 - 0.25, 0.25 - 0.5, 0.5 - 1.0 и менее 0.056 мм, то есть все те фракции, которые преобладают у заполнителей других генетических типов пирокластических отложений, проявляющихся при некатастрофических и катастрофических извержениях
вулкана. Гранулометрические характеристики отложений вулканов почти одинаковы (табл. 4, 5).

Исследования гранулометрического состава заполнителей песка направленного взрыва вулкана Безымянный (1956 г.) позволили выделить в них две разновидности, различающиеся распределением фракций. Одна разновидность похожа на отложения приземных пирокластических волн, вторая - на агломерат направленного взрыва, хотя доля тонких частиц (менее 0.056 мм диаметром) в ней значительно меньшая (Приложение, стр. 92).

Обращает на себя внимание тот факт, что превалирующая фракция в составах агломерата и песка взрыва вулкана Безымянный одна и та же - 0.5 - 1.0 мм (Приложение, стр. 92).

Гранулометрические характеристики разновидностей песка направленного взрыва имеют наибольшие численные значения для пирокластики (табл. 4).

В Шивелуч отложениях вулкана образца, выделено два состав которых гранулометрический похож на материал приземных пирокластических волн. Однако, значения медиан, средних размеров частиц, коэффициентов сортировки отложений достаточно высоки, преобладающая фракция - (0.5-1.0 мм) - такая же, как у агломерата направленного взрыва вулкана Шивелуч и у песка направленного взрыва вулкана Безымянный (1956 г.) (Приложение, стр. 92, 94).

Автор полагает, что эти образцы, возможно, являются отложениями "песка направленного взрыва" вулкана Шивелуч. Однако, существование "песка" могут подтвердить лишь масштабные полевые исследования.

Физические свойства отложений

Влажность отложений агломерата выше, чем песка взрыва, так как через сравнительно однородные пески вода легко фильтруется, а обилие тонкого пепла и хаотическое распределение обломков в агломерате лучше сохраняет влагу (табл. 10).

Плотность твердой фазы отложений агломерата вулкана Шивелуч изменяется от 2.72 до 2.80 г/см³, составляя в среднем 2.76 (4) г/см³. Плотность твердой фазы песка направленного взрыва вулкана Безымянный (1956) - от 2.72-2.74 г/см³, в среднем - 2.73 (4) г/см³, то есть плотность двух разновидностей отложений направленного взрыва этих вулканов достаточно похожа (табл. 10).

Плотность песка направленного взрыва в естественном залегании немного выше, чем агломерата (в среднем 1.60 (4) г/см³ и 1.47 (10) г/см³, соответственно), что объясняется значительной однородностью песка по сравнению с агломератом взрыва. Плотность отложений древнего агломерата направленного взрыва вулкана Шивелуч высокая, так как они в какой-то мере подверглись литификации.

Таблица 10

ФИЗИЧЕСКИЕ И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ОТЛОЖЕНИЙ НАПРАВЛЕННОГО ВЗРЫВА ВУЛК. БЕЗЫМЯННЫЙ И ШИВЕЛУЧ

		Заполнители с	отложений
Характеристика	песка	агломерата	агломерата
	направленного	направленного	направленного
	взрыва вулк.	взрыва вулкана	взрыва вулк.
	Безымянный	Шивелуч 1964 г.	Шивелуч древнего
	1956 г.		
2			
Плотность, г/см3	1,60(4)	1,47(10)	1,90
	1,50-1,77	1,09-1,75	
Плотность твердой	2,73(4)	2,76(4)	2,71(2)
фазы, г/см [°]	2,72-2,74	2,72-2,76	
_			
Влажность, %	5(4)	11(3)	16
	3-7	7-15	
Vachhuuu	0.71(4)	0.01/10)	
коэффициент	0,71(4)	0,91(10)	0.42
пористости, единица	0,54-0,81	0,00-1,50	0,43
Пористость, %	41(4)	47(10)	30
	35-45	38-60	
Сцепление, МПа	0(4)	0,01(4)	0
		0-0,02	
Угол внутреннего	47(3)	35(4)	36
трения, град	33-55	29-50	
· · · · ·			
Модуль общей	5,9(3)	2,7	6,5
деформации, МПа	2,9-9,0		

Примечание. В числителе - среднее значение, в знаменателе - минимальное и максимальное. В скобках - количество образцов.

Пористость отложений агломерата взрыва, в связи с его неоднородностью строения, - выше, чем песка - в среднем 47 % (10) и 41 % (4), соответственно (табл. 10).

Физико-механические свойства отложений

Модуль общей деформации заполнителей обеих разновидностей отложений направленного взрыва невысокий, в среднем сравним с деформационными характеристиками заполнителей других генетических типов

пирокластики изучаемых вулканов - 2.7 МПа - агломерата и 5.9 МПа - песка направленного взрыва.

Сцепление обеих разновидностей отложений направленного взрыва достигает 0.02 МПа, угол внутреннего трения песка взрыва выше - в среднем 47 град., чем агломерата взрыва - в среднем 35 град. Это можно объяснить наличием большего количества тонких фракций в отложениях агломерата по сравнению с песком взрыва (табл. 10).

выводы

1. Кумулятивные кривые гранулометрического состава заполнителей агломерата направленного взрыва резко пересекают на графике кривые состава других генетических типов пирокластики (рис. 18, 20). Преобладающими фракциями заполнителей агломерата взрыва являются 0.125 - 0.25, 0.25 - 0.5, 0.5 - 1.0 и менее 0.056 мм, то есть все те фракции, которые преобладают у заполнителей других генетических типов пирокластических отложений, проявляющихся при некатастрофических и катастрофических извержениях вулкана.

2. Распределение фракций заполнителя образований песка направленного взрыва очень похоже на таковое приземных пирокластических волн, но преобладающей является крупнозернистая фракция 0.5-1.0 мм. Гранулометрические характеристики (медиана, средний размер, коэффициент сортировки и др.) отложений имеют самые высокие по сравнению с другими типами пирокластики численные значения (табл. 4, 5).

3. Плотность твердой фазы отложений агломерата и песка направленного взрыва вулканов Безымянный и Шивелуч достаточно похожа. Деформационные и прочностные характеристики сравнимы с таковыми отложений других типов пирокластики.

Глава 2

Сравнительная характеристика инженерно-геологических особенностей генетических типов пирокластических отложений андезитовых вулканов Камчатки

В пирокластических продуктах извержений андезитовых вулканов выделяются пять генетических типов пирокластики: тефра, отложения 2) пирокластических потоков, 3) пирокластических волн, 4) пепловых облаков пирокластических потоков и 5) направленного взрыва.

Химический и минеральный состав отложений

Заполнители отложений пирокластических потоков имеют примерно такую же кислотность, что и обломки лав пирокластических потоков, заполнители пирокластических волн - меньшую, чем отложения пепловых облаков потоков и большую, чем отложений пирокластических потоков (табл. 1). Следует отметить, что такая же тенденция постепенного уменьшения содержания компонента от заполнителей отложений пирокластических потоков к заполнителям отложений пирокластических волн и к пеплам облаков потоков наблюдается в отношении оксида железа и менее выраженная - в отношении оксидов магния и кальция (табл. 1).

Наибольшее содержание SiO₂ присуще тефре дальнего разноса (отобранной в 20-50 км от вулкана и далее) (табл. 1, рис. 22). Это обусловлено эоловой гравитационной дифференциацией пирокластики, выражающейся в том, что в ближней зоне от вулкана из эруптивной тучи выпадают не только наиболее крупные частицы тефры, но и минералы, наиболее тяжелые по плотности твердой фазы. По мере удаления вулкана тефра постепенно ОТ обогащается легкими компонентами **(B** основном, плагиоклазом И вулканическим стеклом).

Несколько меньшее содержание оксида кремния присуще отложениям пепловых облаков пирокластических потоков, так как в процессе конвективной гравитационной дифференциации пирокластики (см. Главу 4) пепловые облака пирокластических потоков (ash cloud of flow) насыщаются самыми легкими частицами - плагиоклазом и вулканическим стеклом.

Минеральный состав отложений генетических типов пирокластики практически катастрофических одинаков, 3a исключением отложений извержений вулканов, которых с "обычными" В составе наряду ("стандартными" - для заполнителей типов отложений андезитовых вулканов) минеральными компонентами встречаются минералы зеленой и бурой роговой обманки (содержание которых в заполнителях отложений может достигать 20 %). В целом, для всех генетических типов отложений характерно высокое содержание в их заполнителях плагиоклаза (от 30 до 50 %), вулканического стекла (от 15 до 35 %), пироксена (от 1 до 10 %), магнетита (от 4 до 10 %), (данные В.Ю.Кирьянова - ИВГиГ ДВО РАН).

В составе заполнителей всех типов отложений пирокластики наблюдается также высокое содержание обломков пород - от 5 до 35 %.

При рассмотрении минерального состава каждого из заполнителей отложений генетических типов можно проследить следующую тенденцию (в порядке убывания); содержание *плагиоклаза* = отложения пирокластических волн (до 50 %) - пирокластических потоков (до 46 %) - направленного взрыва (до 44 %), вулканического стекла = отложения пирокластических потоков (до 35 %) - направленного взрыва (до 25 %) - пирокластических волн (до 15 %), *пироксена* = отложения пирокластических волн (до 10 %) - пирокластических потоков (до 7 %) - направленного взрыва (до 2 %); *магнетита* = отложения пирокластических волн (до 10 %) - пирокластических потоков (до 8 %)направленного взрыва (до 5 %), обломков пород = отложения направленного взрыва (до 35 %) - пирокластических потоков (до 25 %) - пирокластических волн (до 15 %); зеленой роговой обманки = отложения пирокластических потоков (до 20 %) - направленного взрыва (до 5 %); бурой роговой обманки = отложения направленного взрыва (до 15 %), (по данным В.Ю. Кирьянова, ИВГиГ ДВО РАН, Камчатка).

Структурно-текстурные особенности отложений

Для каждого из генетических типов пирокластики андезитовых вулканов характерна своя, отличающаяся от других форма залегания отложений (табл. 11).

Отложения пирокластических потоков залегают локально, согласуясь с рельефом и заполняя каньоны на склоне и долины у подножия вулкана. Для пеплово-глыбовых пирокластических потоков характерна протяженность до 10 км, для ювенильных потоков пористых андезитов - до 20-25 км, при мощности первых до 10 м и вторых - до 3-5 м при некатастрофических и до 20 м - при катастрофических извержениях вулкана.

Локальное распространение отложений характерно также для агломерата направленного взрыва. Отличие залегания агломерата взрыва от отложений пирокластических потоков состоит в том, что его образования в плане занимают некий сектор (около 60-70 град.) поверхности окрестностей вулкана, а основная масса агломерата находится в интерва ле от 2-5 до 15 км от кратера вулкана. Некоторые холмы отложений агломерата взрыва встречаются между центром извержения и основной массой образований, но в пределах вышеуказанного сектора. Дальность распространения отложений - около 15 км, на этих расстояниях достигает 15-20 м. мощность ИХ Отмечается гнездообразный характер скоплений крупных обломков и примерно одинаковая мощность отложений на склонах и вершинах возвышенностей и на днищах отрицательных форм рельефа; перепад высот подошвы отложений может достигать 100-150 м.

Распространение всех остальных отложений генетических типов пирокластики - площадное, в форме эллипса.

Для отложений обеих разновидностей пирокластических волн типично залегание как в основании, так и на поверхности образований пирокластических потоков, а также вне связи с ними. "Эллипс" отложений пирокластических волн в зависимости от масштаба извержений вулкана на десятки или сотни метров шире "тела" пирокластического потока.

Отличительной чертой приземных пирокластических волн является нечеткий, постепенный переход их отложений в образования пирокластических потоков и небольшая их мощность - до 10-15 см при некатастрофических и до 2-3 м при катастрофических извержениях вулканов.

Характерной чертой отложений пирокластических волн пепловых облаков является то, что они перекрываются образованиями пепловых облаков пирокластических потоков. Мощность этой разновидности пирокластических волн достигает 1-2 м при некатастрофических и 3-5 м при катастрофических извержениях вулканов. Слоистость отложений пирокластических волн четкая, иногда неясновыраженная.

Отложения песка направленного взрыва формируются при катастрофических или крупномасштабных извержениях андезитовых вулканов. Форму их распространения можно описать широким сектором (более 100 град.) или эллипсом, начала которых находятся в привершинной части вулкана; дальность иногда превышает 30-35 км.

Отличительной чертой распространения песка направленного взрыва является несогласованность их отложений с рельефом - они имеют одинаковую мощность как в долинах, так и на возвышенностях окрестностей вулкана.

Мощность песка направленного взрыва вблизи вулкана равна 1-2 м, вдали от него породы песка постепенно выклиниваются. Отложениям присуща четкая слоистость (рис. 32).

Залегание и его форма отложений тефры и отложений пепловых облаков потоков одинаковы, однако ось распространения эллипса образований тефры совпадает с направлением ветра, пеплов облаков потоков - с протяженностью пирокластического потока (при сильном ветре распространение пеплов облаков потоков смещается в его направлении). Протяженность эллипса образований пеплов облаков потоков оценивается в десятки, тефры - в сотни километров. Мощность отложений зависит от масштаба извержений: пеплов облаков потоков - до 2-5 см при некатастрофических и до 10 см при катастрофических извержениях вулканов; тефры - от нескольких десятков сантиметров до первых метров вблизи вулкана до 2-5 см на расстояниях 50-70 км от центра извержения.

В связи с тем, что формирование пород пепловых облаков пирокластических потоков происходит одноактно, их отложения неслоисты, везде одинакового монолитного облика, в подошве их могут встречаться прослои аккреционных лапиллей. Отложения тефры, напротив, в любой из точек изучения стратифицированы, что связано с эоловой гравитационной дифференциацией пород.

Изучение микростроения частиц заполнителей отложений генетических типов пирокластики андезитовых вулканов (параллельно с исследованием их на микрозонде Института вулканологии ДВО РАН, Камчатка), а также микростроения образцов ненарушенного сложения тефры вулкана Шивелуч и отложений обеих разновидностей пирокластических волн вулкана Безымянный показало, что для Безымянного более характерны изометричные монолитного облика частицы, представленные обломками плагиоклаза, сростков других минералов, вулканического стекла и пород. Вулкану Шивелуч в большей мере присущи удлиненные частицы, представленные вулканическим стеклом, обломками плагиоклаза и роговой обманки. Это связано, вероятно, с разными глубинами зарождения и составами магм этих вулканов.

Также было показано, что различие микростроения образцов двух разновидностей пирокластических волн состоит, в частности, в том, что отложения пирокластических волн пепловых облаков агрегированы, а приземных - нет. С другой стороны, образования тефры и волн пепловых облаков похожи тем, что материал обоих типов пирокластики агрегирован, так как формировался из "пепловых облаков" (тефра из эруптивной тучи, облака"отложения волны пеплового облака - из "волны пеплового промежуточного "слоя" между пирокластическим потоком и пепловыми облаками пирокластического потока, которые формируются в результате конвективной гравитационной дифференциации пирокластической массы при низвержении ее на склон вулкана в кульминационные стадии извержения) (см. Гл.4). Различные условия формирования отложений (высота пепловых облаков, влажность слоев атмосферы, скорость отложения частиц на поверхность и т.д.) обусловили разную крупность их агрегатов, на что указывает большая внутриагрегатная, по сравнению с межагрегатной, пористость тефры, то есть агрегаты тефры крупнее, чем агрегаты отложений волн пепловых облаков.

Следовательно, использование электронного сканирующего микроскопа позволяет уточнять диагностику как современных, так, вероятно, и древних отложений генетических типов пирокластики.

Гранулометрический состав пород

Различия в содержании обломков и их максимальных размерах в разных типах пирокластики показаны в табл. 11. Повторим, что наибольшее количество обломков (до 80 %) при их максимальном размере (до 10 м) присуще несортированным продуктам агломерата направленного взрыва, в хорошоотсортированных отложениях пепловых облаков потоков обломки отсутствуют.

Помимо содержания ювенильного вещества (см. Гл. 1), разновидности пирокластических потоков различаются размером обломков пород и их

количеством: потокам ювенильных пористых андезитов присущи обломки размером до 1 м, пеплово-глыбовым - до 5-7 м (содержание обломков в них оценивается как 30-40 и 40-50 %, соответственно). Также они различаются содержанием тонких частиц - размером менее 0.056 мм (до 5 и до 10-15 %, соответственно). Материал обеих разновидностей потоков несортирован.

Разновидности отложений пирокластических волн хорошо различаются: количество обломков в материале приземных волн не превышает 10 %, при том, что максимальный их размер при некатастрофических извержениях равен 1 см, при катастрофических - 10 см; в материале волн пепловых облаков содержится не более 20-25 % обломков, размер их не превышает 3-5 см. Отложения приземных волн однородны, хорошо сортированы, волн пепловых облаков - отсортированы в каждом из слоев.

По содержанию обломков отсортированные "песка породы направленного взрыва" занимают промежуточное положение между пирокластических волн (10-20)%. табл. разновидностями 11), однако максимальный размер их обломков - 10-20 см - отличает их от отложений пирокластических волн.

Гранулометрический состав заполнителей (частиц диаметром менее 2 мм) генетических типов пирокластических отложений различен. Это обстоятельство можно использовать для диагностики генетических типов голоценовых или более древних толщ пирокластики.

В Главе 1 показано, что всем вулканам андезитового состава присуще распределение фракций заполнителей их пирокластических одинаковое то же время каждому вулкану характерна определенная, потоков, В отличающаяся от других, превалирующая фракция заполнителей потоков. Например, для заполнителей потоков разных извержений вулкана Безымянный типична фракция 0.125-0.25 мм (рис. 22, Приложение, стр. 88, 90), для вулкана Шивелуч - 0.125-0.5 мм (Приложение, стр. 93). Численные значения гранулометрических характеристик (медианы, среднего размера, коэффициента сортировки и др.) заполнителей пирокластических потоков обоих вулканов сходны, разновидностей этих потоков ("ювенильных" и пеплово-глыбовых) практически одинаковы (табл. 11).

Численные значения гранулометрических характеристик заполнителей пирокластических потоков почти одинаковы с таковыми заполнителей агломерата направленного взрыва (табл. 11), однако распределение фракций заполнителей агломерата, а также содержание в них тонких фракций, не говоря структурно-текстурных особенностях, различных vже 0 С таковыми пирокластических потоков, позволяют перепутать не ЭТИ два типа пирокластики.

Яркой особенностью заполнителей отложений приземных пирокластических волн является одномодальное распределение фракций - резкое преобладание частиц диаметром 0.125-0.25 мм (до 30-42 %, вулкана Безымянный) или 0.25 - 0.5 мм (до 37-45 %, вулкана Шивелуч). То есть, в заполнителях отложений приземных волн преобладают такие же фракции, как

и у заполнителей пирокластических потоков, с которыми отложения пирокластических волн взаимосвязаны.

Отличительной чертой отложений волн пепловых облаков является бимодальное распределение фракций их заполнителей, одна из которых совпадает с превалирующей фракцией заполнителей материала пирокластических потоков, а другая - самая тонкая (частицы диаметром менее 0.056 мм), содержание которой может достигать 35 % (табл. 11).

Похожее на отложения приземных волн распределение фракций заполнителя имеют образования "песка направленного взрыва", однако их превалирующая фракция - 0.5 - 1.0 мм, а содержание тонкой фракции не превышает 5 % (Приложение, стр. 92).

Численные значения гранулометрических характеристик (медианы, среднего размера, коэффициента сортировки и др.) заполнителей пород пирокластических волн меньшие, чем пирокластических потоков и образований направленного взрыва, но большие, чем материала пепловых облаков пирокластических потоков (табл. 11). Так как отложения приземных волн более крупнозернисты (содержание тонких фракций в их отложениях составляет 5, реже 10 %, в отложениях волн пепловых облаков - до 35 %), численные значения их гранулометрических характеристик несколько большие по величине, чем волн пепловых облаков.

Величины медианы, среднего размера и других характеристик заполнителей песка направленного взрыва - наибольшие среди генетических типов пирокластики (табл. 11). Это является отличительной чертой отложений песка направленного взрыва.

Наименьшими величинами вышеуказанных гранулометрических характеристик обладают отложения пепловых облаков потоков (табл. 15) и тефры дальнего разноса [30], содержание тонких фракций в породах пепловых облаков потоков достигает 55-65 %, тефры на расстояниях сотен километров от вулкана - до 90-100 %.

Преобладающими фракциями заполнителей отложений агломерата направленного взрыва являются 0.125 -0.25, 0.25 - 0.5, 0.5 - 1.0 и менее 0.056 мм, то есть все те фракции, которые преобладают у заполнителей других генетических типов пирокластики андезитовых вулканов. Возможно, такое количество преобладающих фракций в заполнителях отложений агломерата является следствием недифференцированности его массы, которая включает в себя породы всех генетических типов пирокластики. Это связано, вероятно, с тем, что отложения агломерата направленного взрыва сформировались быстро (в результате мощной или мощных эксплозий), не успели разделиться в процессе перемещения на типы пирокластики. Отложения других генетических типов обладают одной или двумя преобладающими фракциями.

Кумулятивные кривые гранулометрического состава заполнителей пирокластических отложений различных генетических типов имеют разный наклон и занимают определенное место на графиках (рис. 18). Графики гранулометрического состава заполнителей отложений, формирование которых

происходило при движении по земле (пирокластические потоки) имеют вид тангенциальных кривых; тех, которые формировались из высоких пепловых облаков (отложения тефры, пепловых облаков пирокластических потоков) пологих парабол или дуг. Кумулятивные кривые состава отложений, сформированных из массы, находящейся в воздухе, но тяготеющей к земле (приземных пирокластических волн и волн пепловых облаков) - имеют вид одной ветви параболы иногда с элементами "тангенциальности".

Судя по виду кумулятивных кривых гранулометрического состава заполнителей агломерата направленного взрыва, его отложения формировались из воздуха (рис. 18). Это, вероятно, может служить указанием на эксплозивное происхождение этих отложений, а также на то, что название типа пирокластики "агломерат направленного взрыва" - генетически верное.

Физические свойства отложений

Плотность твердой компоненты заполнителей генетических типов пирокластики андезитовых вулканов в целом почти одинакова (табл. 11). Различия в ее значениях для разных генетических типов пирокластических отложений хорошо проявляются при рассмотрении типов отложений отдельных некатастрофических, но достаточно крупных извержений вулканов [30].

В целом, средние значения плотности твердой фазы заполнителей агломерата направленного взрыва (2.76 г/см³, 4 определения) несколько выше, а отложений пепловых облаков потоков (2.58 г/см³, 10) - ниже других типов пирокластики (в среднем, значения их варьируют от 2.69 до 2.73 г/см³). Плотности твердой фазы пород косвенно подтверждают то, что отложения агломерата направленного взрыва содержат больше тяжелых минералов, а пеплы облаков потоков - легких.

Плотность естественного сложения отложений пирокластики в среднем варьирует в пределах 0.89 - 1.60 г/см³. Самые высокие ее значения характерны для пород песка направленного взрыва (от 1.50 до 1.77 г/см³), самые низкие - для тефры дальнего разноса и пеплов облаков потоков (0.89-1.06 и 1.09 г/см³, соответственно). Плотность отложений пеплово-глыбовых потоков, в связи с большим сожержанием в них мелких обломков пород и заполнителя, несколько выше, чем "ювенильных" (в среднем, 1.56 (127) и 1.44 (13) г/см³, соответственно).

Отложения волн пепловых облаков агрегированы, и, хотя они и содержат большее количество обломков, плотность их пород меньшая по сравнению с отложениями приземных волн (вероятно, в связи с большей газонасыщенностью продуктов волн пепловых облаков), (в среднем 1.41 (10) и 1.53 (55) г/см³, соответственно).

Плотность отложений агломерата направленного взрыва (в среднем, 1.47 г/см³ (10)) занимает промежуточное положение между разновидностями

образований и потоков, и пирокластических волн, вероятно, благодаря большому содержанию в них тонких фракций.

Пористость пирокластики в естественном залегании наибольшая у отложений пепловых облаков потоков (в среднем, 59 % (3)) - благодаря высокой агрегированности материала, наименьшая - у "песка направленного взрыва" (в среднем, 41 % (2)), в связи с крупнозернистостью и высокой плотностью пород.

Плотность сложения, количество обломков и тонких фракций в заполнителе, агрегированность материала повлияли на то, что пористость отложений пеплово-глыбовых потоков ниже, чем "ювенильных" (в среднем, 42 (127) и 47 (13) %, соответственно), а пористость пород волн пепловых облаков выше, чем отложений приземных волн (в среднем, 49 (10) и 43 (55) %, соответственно).

Пористость отложений агломерата сравнима с таковой продуктов пирокластических потоков ювенильных пористых андезитов и волн пепловых облаков, пористость тефры - с пеплами облаков потоков (табл. 11).

Физико-механические свойства отложений

Модули общей деформации заполнителей отложений генетических типов пирокластики в среднем имеют примерно одинаковые величины - около 4-6 МПа, хотя вариации их значений значительны - от 2.2 до 16.6 МПа (табл. 11).

Наименьшие значения модуля общей деформации принадлежат тефре и заполнителям отложений агломерата направленного взрыва (в среднем, 2.7-4.4 и 2.7 МПа, соответственно), наибольшие - заполнителям пирокластических потоков и волн (до 16.6 и 15.6 МПа, соответственно).

Прочностные характеристики заполнителей типов пирокластических отложений варьируют в узких пределах; сцепление - в среднем, от 0 до 0.04 МПа, угол внутреннего трения - в среднем от 34 до 55 град. (табл. 11).

Таким образом, комплексное изучение пирокластики андезитовых вулканов показало, что при некотором сходстве физических и физикосвойств заполнителей отложений, механических генетические типы обладают определенными инженерно-геологическими пирокластики отличающими каждый из них от других. Этот фактор играет особенностями, генетических типов не только существенную роль при диагностике современных, но голоценовых и более древних пирокластических образований.

9

ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ПИРОКЛАСТИЧЕСКИХ ОТЛОЖЕНИЙ РАЗЛИЧНЫХ ГЕНЕТИЧЕСКИХ ТИПОВ АНДЕЗИТОВЫХ ВУЛКАНОВ КАМЧАТКИ

	Пирокласти	ческие потоки	Пирокластические волны						
Названия характеристик	пеплово- глыбовые	ювенильных пористых андезитов	приземные	пеплового облака	Пеплы облаков потоков	Тефра	Агломерат направленно- го взрыва	Песок направленно- го взрыва	
Залегание отложений	Согласуются с	рельефом	Площадное, в основании потоков, вне связи с ними.В разрезе - постепенный переход к	Площадное; на поверхности, за пределами, в основании потоков. На верхней грани- це - пеплы	Площадное, эллипсообраз- ной формы, ось эллипса совпадает с протяженнос- тью потока	Площадное, эллипсообраз- ной формы, ось эллипса совпадает с направлением ветра	Локальное, узким сектором у подножия вулкана	Площадное, широким сектором, не согласуясь с рельефом	
Протяженность отложений	до 10 км	до 20- 25 км	потоку Соизмеримы с длиной потоков и превышают ее	оолака потока Соизмеримы с длиной потоков и превышают ее	десятки км	сотни км	до 15 км	до 30-35 км	
Мощность отложений	до 10 м	до 3-5 м - некатастроф. до 20 м - катастрофич.	до 10-15 см до 2-3 м	до 1-2 м некатастроф. до 3-5 м - катастрофич.	до 2-5 см - некатастроф. до 10 см - катастрофич.	до 2-5 см на расстоянии 50- 70 км от вулкана	до 15-20 м в 10- 15 км от вулкана	до 1-2 м вблизи, 1-2 см вдали от вулкана	
Слоистость отложений	Неслоисты	Неслоисты, иногда локальные линзы крупных обломков	Слоистость неясновыра- женная	Слоистость четкая, иногда монолитный облик отложений	Неслоисты, в подошве может быть слой аккреционных лапиллей	Стратифици- рованы в каждом из слоев	Неслоисты, хаотическое распределение материала	Слоистость четкая	
Количество обломков, (> 2 мм) %	до 40-50	до 30-40	до 10	до 20-25	нет	вблизи вулкана - до 70-90	до 80	до 10-20	
Максималь- ный размер обломков	до 5-7 м	до 0,8-1 м	до 1 см - некатастроф. до 10 см - катастрофичес.	до 3-5 см - некатастроф.	нет	вблизи вулкана - бомбы, лапилли	до 10 м	до 10-20 см	
Отсортирован- ность отложений	Несортирова- ны	Несортирова- ны	Хорошо сортированы, однородны	Сортирован- ность каждого слоя	Хорошо сортированы, однородны	Сортированы	Несортирова- ны	Сортированы	
Плотность сложения отложений, г/см ³	1,56(127) 1,27-1,88	1,44(13) 1,19-1,72	1,53(55) 1,30-1,64	1,41(10) 1,30-1,67	1,09(3) 0,87-1,20	0.89-1,06	1,47(10) 1,09-1,75	1,60(4) 1,50-1,77	
Пористость, %	42(127)	47(13)	43(55)	49(10)	59(3)	56(2)	47(10)	41(2)	

Преобладаю- щая фракция заполнителя, мм	некатастрофич 0,125-0,25 катастрофичес	еские изверж. 0,125-0,25 кие извержен. 0,125-0,25 0,25-0,50	Такая как потока 0,125-0,25 или 0,25-0,50	Некатастрофи- ческие изверж. 0,125-0,25 катастрофичес- кие извержения 0,125-0,25 или 0,25-0,50	Менее 0,056	По мере удаления от вулкана - меняется	0,125-0,25 0,25-0,50 0,50-1,00 менее 0,056	0,50-1,00
Содержание частиц менее 0,056 мм	некатастрофич до 10-15 % катастрофичес	еские изверж. до 5 % кие извержения до 15 %	до 5-10 %	до 35 %	до 55-65 %	На расстояниях до сотен км - 90-100 %	до 20 %	до 5 %
Медиана, мм	некатастрофич 0,26(28) 0,21-0,37 катастрофичес	еские изверж. 0,25(24) 0,19-0,32 кие извержен. 0,26(15) 0,19-0,34	некатастрофич 0,17(26) 0,12-0,21 катастрофичес 0,24(2)	еские изверж. 0,12(9) 0,09-0,15 кие извержен. 0,17(8)	0,05(9) 0,01-0,07 некатастроф. извержения		0,24(11) 0,24-0,26	0,42(19) 0,37-0,60
Средний размер, мм	некатастрофич 0,38(28) 0,32-0,50 катастрофичес	еские изверж. 0,38(24) 0,30-0,47 кие извержен. 0,36(15) 0,31-0,41	некатастрофич 0,22(26) 0,13-0,27 катастрофичес 0,35(2)	еские изверж. 0,16(9) 0,12-0,23 кие извержения 0,22(8)	0,07(9) 0,05-0,10 некатастроф. извержения вулканов		0,38(11) 0,38-0,41	0,56(19) 0,47-0,62
Коэффициент сортировки, мм	некатастрофич 0,33(28) 0,24-0,41 катастрофичес	еские изверж. 0,35(24) 0,28-0,42 кие извержен. 0,32(15) 0,30-0,36	некатастрофич 0,16(26) 0,07-0,23 катастрофичес 0,30(2)	еские изверж. 0,14(9) 0.09-0,22 кие извержен. 0,25(8)	0,05(9) 0,01-0,08 некатастроф. извержения вулканов		0,40(11) 0,39-0,42	0,50(19) 0,40-0,54
Плотность твердой фазы, г/см ³ .	2,69(14) 2,64-2,74	2,71(10) 2,64-2,74	2,69(16) 2,56-2,75	2,70(6) 2,69-2,71	2,58(10) 2,46-2,66		2,76(4) 2,72-2,76	2,73(4) 2,72-2,74
Сцепление, МПа	0,02(4)	0,02(5)	0(7)	0,04(2)	0,04(2)	0-0,02	0,01(4)	0(4)
Угол внутреннего трения, градус	34(13) 22-55	38(5) 25-53	42(7) 24-58	41(2) 30-52	55(2) 54-56	33-38	35(4) 29-50	47(3) 33-55
Модуль общей деформации, МПа	5,0(4) 2,2-7,8	10,8(3) 7,6-16,6	6,0(8) 2,5-15,6	5,3(3) 3,8-8,1	5,0(1)	2,7-4,4	2,7(1)	5,9(3) 2,9-9,0

Примечание. В числителе - среднее значение, в знаменателе - минимальное и максимальное значения. В скобках - количество образцов.

10

Глава 3

Сравнительная характеристика инженерно-геологических особенностей пирокластических образований андезитовых и базальтовых вулканов

Пирокластические отложения базальтовых и андезитовых вулканов рассматривались на примере продуктов вулканов Камчатки. Была изучена тефра исторических и доисторических извержений региональной зоны шлаковых конусов вулкана Толбачик [16, 17, 31, 94 и др.], а также тефра, отложения пирокластических потоков и волн, направленного взрыва, пепловых облаков пирокластических потоков современных катастрофических и некатастрофических извержений вулканов Безымянный и Шивелуч.

Химический и минеральный состав отложений

Породы вулкана Толбачик относятся к типичным базальтам [18, 19, 25, 27, 45, 50, 94 и др.], Безымянного - к типичным андезитам (см. Гл. 1).

Тефра базальтовых вулканов состоит преимущественно из вулканического стекла базальтового состава с содержанием вкрапленников породообразующих минералов (плагиоклаза, пироксена, оливина, магнетита) не превышающим 20-30 % объема породы.

Минеральный состав генетических типов пирокластики андезитовых вулканов одинаков по компонентному содержанию (отложения состоят в основном из кристаллов плагиоклаза, пироксена, магнетита, роговой обманки и их сростков, вулканического стекла андезитового состава и обломков пород), но различен по их количественным соотношениям (рис. 23). Характерной чертой минерального состава всех типов пирокластики андезитовых вулканов является преобладание плагиоклаза над вулканическим стеклом. Для вулкана Безымянный также характерно присутствие в отложениях большого количества обломков пород - большего, чем на вулкане Шивелуч, в пирокластике которого преобладает вулканическое стекло андезито-дацитового состава и кристаллы роговой обманки.

Структурно-текстурные особенности пирокластики

Базальтовые и андезитовые магмы имеют различные составы, температуры, газонасыщенность, вязкость и т.д., что обусловливает различный генезис пирокластических образований (см. Гл. 1) и габитус частиц пирокластики разных вулканов.

Для базальтовых вулканов характерны частицы тефры изометричной и удлиненной формы. Они угловатые, имеют колющие выступы, обладают высокой пористостью, в том числе и открытой [27]. Состоят они в основном из стекла базальтового состава.

Для андезитовых вулканов также присущи частицы изометричной и удлиненной формы. Но если на базальтовых вулканах разная форма частиц, обусловленная вариациями состава базальтов, может наблюдаться на одном вулкане - например, на вулкане Толбачик (изометричные частицы стекла на Северном прорыве и удлиненные - на Южном Большого трещинного Толбачинского извержения (БТТИ) 1975-1976 гг.), то на андезитовых - для каждого из вулканов существует характерная лишь ему форма и структура частиц пирокластики. Например, для отложений вулкана Безымянный присущи изометричные частицы монолитного облика, хотя иногда встречаются и пемзовидные, как бы вспененные, количество которых значительно меньшее, чем частиц монолитного облика. Для вулкана Шивелуч характерны тонкие, несколько удлиненные частицы. Их структура говорит о том, что они являются продуктом разрушения высокопористой, с шарообразными порами лавы, а, возможно, и разного размера полых шариков вулканического стекла андезитового состава (остывавших лавовых пузырей, лопавшихся в воздухе, как мыльные пузыри). Примером таких полых шариков вулканического стекла может служить находка, описанная в работе [34]. Есть в отложениях вулкана Шивелуч и высокопористые частицы, и изометричные монолитного облика с мелкой пористостью отпрепарированные кристаллы минералов, но все же преобладают тонкие удлиненные обломки вулканического стекла.

В результате многочисленных эксплозивных извержений в окрестностях базальтового вулкана формируется мощный слоистый пирокластический чехол. В ближней зоне вулкана преобладают слои лапиллей (шлаков), на удалении от него все большее распространение получают пеплы. Мощности отложений от 20-30 м у вулкана быстро (на протяжении нескольких километров) уменьшаются до первых метров и далее - на протяжении 100-200 км - до сантиметров и миллиметров. Отложения слоисты.

Пирокластические отложения андезитовых вулканов распространяются на различные расстояния от центра извержения. Тефра может откладываться на удалении первых сотен километров от вулкана, остальные генетические типы пирокластики - в радиусе первых десятков километров (до 40-50 км). Характерной чертой отложений андезитовых вулканов (кроме тефры и песка направленного взрыва) является неравномерность их распространения по агломерат направленного взрыва залегает локально у подножия площади; пирокластических потоков тяготеют вулкана, продукты к долинам. пирокластических волн - откладываются на потоках и вокруг них, пеплы облаков потоков - при безветренной погоде в форме эллипса, осью которого является поток, залегают на отложениях этого потока, пирокластических волн, направленного взрыва. При сильном ветре отложения пепловых облаков потока и тефры перекрываются. Отложения всех генетических типов пирокластики (кроме агломерата взрыва, пирокластических потоков, пеплов облаков потоков) могут обладать четкой или неясновыраженной слоистостью.

В ближней зоне андезитового вулкана разделение толщ пирокластики на продукты разных его извержений можно проводить по отложениям пепловых

пирокластических потоков, которые всегда присутствуют облаков при сплошным чехлом извержениях таких вулканов. Пеплы облаков потоков перекрывают другие типы отложений извержения и могут служить, поэтому, своеобразными маркирующими горизонтами ближней зоны вулкана, разделяющими отложения разных его извержений. Габитус частиц андезитовых вулканов в перерывах между извержениями изменяется незначительно, так как перерывы эти на таких вулканах продолжаются от нескольких лет до нескольких месяцев, в отличие от базальтовых вулканов, где они имеют продолжительность от первых десятков до первых сотен лет.

Гранулометрический состав отложений

Изученные отложения тефры базальтового состава относятся к пескам крупным и средней крупности и гравийным и дресвяным грунтам [27,31]. Заполнители отложений разных генетических типов пирокластики андезитовых вулканов относятся к пескам широкого спектра зернистости - от крупнозернистых до пылеватых.

Состав, облик частиц, их структурные особенности, генезис пирокластических образований обусловливают их физические и физикомеханические свойства (табл. 12).

Физические свойства пирокластики

Стекла базальтового состава обладают большей плотностью твердой фазы, чем андезитового (2.70 - 2,85 г/см³ и 2.40 - 2.57 г/см³, соответственно). Плотность породообразующих минералов выше, чем стекла базальтового состава. Частицы пеплов состоят, как правило, из стекла с включениями минералов, поэтому и плотность твердой фазы отложений, ими сложенных, выше плотности как андезитовых, так и базальтовых стекол (табл. 12).

Средняя плотность твердой компоненты тефры базальтового состава Γ/cM^3 (2.93)2.56 для магнезиальных и глиноземистых И базальтов. соответственно) почти одинакова с плотностью лав вулкана Толбачик - 2.91 -2.98, в среднем - 2.96 (7 образцов) г/см³ и 2.85 - 2.88, в среднем - 2.86 (9) г/см³ (лавы Северного и Южного прорывов БТТИ, соответственно, данные В.М.Лалыгина. Геологический факультет МГУ). Средняя плотность заполнителей пирокластических отложений андезитовых вулканов (в среднем 2.72 (64) г/см³) почти равна плотностям лав андезита. Например, плотность роговообманковых андезитов купола вулкана Шивелуч 1980-1981 гг. имеет значения 2.69 - 2.72 г/см³, плотность лав вулкана Безымянный (извержение 1979 г.) - 2.69 -2.80, в среднем - 2.75 (11) г/см³ (данные В.М. Ладыгина, МГУ).

Плотности пирокластики в ее естественном залегании варьируют в широких пределах - 0.55 - 1.72 г/см³ тефры базальтовых вулканов и 0.87 - 1.90 г/см³ отложений андезитовых вулканов - (табл. 12). Замечательно то, что в отложениях андезитовых вулканов наименьшей плотностью обладают пеплы

облаков потоков, то есть самые тонкие пирокластические отложения (0.87 - 1.20 г/см³), в тефре базальтовых - шлаки (0.62 - 1.16 г/см³).

Таблица 12

ФИЗИЧЕСКИЕ И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПИРОКЛАСТИЧЕСКИХ ОТЛОЖЕНИЙ БАЗАЛЬТОВЫХ И АНДЕЗИТОВЫХ ВУЛКАНОВ СЕВЕРНОЙ ГРУППЫ КАМЧАТКИ

Названия характеристик	Базальтовые вулканы	Андезитовые вулканы
Плотность, г/см ³	1,05(80) 0,55-1,72	1,77(310) 0,87-1,90
Плотность твердой фазы, г/см ³	2,97(20) 2,54-3,01	2,72(64) 2,46-2,76
Влажность, %	13(30) 0,25-22,7	6(170) 0-32
Коэффициент пористости, единица	2,37(30) 0,71-3,77	0,77(310) 0,43-2,06
Пористость, %	66(30) 41-80	42(310) 30-67
Сцепление, МПа	0,03(30) 0-0,11	0,01(27) 0-0,08
Угол внутреннего трения, градус	30(30) 19-55	39(27) 22-58
Модуль общей деформации, МПа	7,4(30) 1,5-11	5,2(23) 2,2-16,6

Примечание. В числителе - среднее значение, в знаменателе - минимальное и максимальное. В скобках - количество образцов.

Аналогичная картина наблюдается с *пористостью*. Пористость отложений шлаков базальтового состава обусловлена структурой и высокой пористостью частиц, рыхлым сложением пород. Высокая пористость тефры андезитовых вулканов, вероятно, обусловлена более сильным дроблением андезитовой магмы, нежели базальтовой, и образованием более тонких частиц, на поверхности которых адсорбируются газы и пары воды, способствующие агрегации пепловых частиц и препятствующие их плотной упаковке.

В целом, пирокластика базальтовых вулканов, по сравнению с андезитовыми, имеет меньшую плотность в естественном залегании (в среднем

1.05 и 1.77 г/см³, соответственно) и несколько большую пористость (в среднем 66 % и 42 %, соответственно).

Физико-механические свойства отложений

Деформационные характеристики заполнителей пирокластических отложений базальтовых и андезитовых вулканов варьируют в разных пределах (1.5 -11 и 2.2 - 16.6 МПа, соответственно), но средние их значения выше у тефры базальтового состава (7.4 и 5.2 МПа, соответственно) (табл. 12). В связи с своеобразными структурой частиц и гранулометрическим составом тефра базальтового состава более подвержена деформационным воздействиям, чем заполнители отложений разных генетических типов пирокластики андезитовых вулканов.

Прочностные показатели пирокластики базальтовых и андезитовых вулканов практически одинаковы. Сцепление тефры базальтового состава равно в среднем 0.03 МПа, заполнителей пирокластики андезитового состава - 0.01 МПа (табл. 12). Углы внутреннего трения составляют в среднем 30 и 39 град., соответственно. Вероятно, на прочностные показатели тефры базальтового состава большее влияние оказывает сцепление частиц механической природы, а пирокластики андезитового состава - большая плотность сложения отложений и наличие значительного количества тонких частиц.

В целом, физические и физико-механические свойства пирокластических отложений базальтовых и андезитовых вулканов различны. Это обусловлено, в первую очередь, составом и характеристиками (газонасыщенностью, температурой, вязкостью и т.д.) магм этих вулканов. Состав магм и генезис пирокластики предопределяют структурно-текстурные особенности ее частиц и отложений. Габитус частиц, гранулометрический состав отложений в основном и определяют различия физических и физико-механических свойств пирокластики базальтовых и андезитовых вулканов.

Глава 4

Конвективная гравитационная дифференциация пирокластики андезитовых вулканов

Известно, что при движении пирокластического потока по склону вулкана над ним поднимаются пепловые облака (рис. 29 а). В работе [118] Р. Фишер описывает коллапс плинианской эруптивной колонны, в результате которого формируется идеализированный разрез эруптивной единицы, понятие о которой было введено Р. Спарксом и Г. Уолкером [140].

Если попытаться сделать схематический "разрез" движущейся пирокластической массы на некотором удаленнии ее от центра извержения, вероятно, по мнению автора, можно получить следующую картину (рис. 34).

Рис. 34. Низвержение пирокластической массы на склон вулкана Безымянный при извержении 13 октября 1984 г. Фото В.Н. Нечаева. Описание в тексте.

По поверхности земли движется тяжелое "тело" пирокластического потока, нагруженное глыбами и крупными обломками (слой I). Над ним образуется слой пеплово-песчаной массы с мелкими обломками (лапиллями), из которого, вероятно, формируются породы волны пеплового облака (II), еще выше - пеплы облака потока (слой III).

Такое разделение пирокластики на "слои" при движении по склону автор в работе [30] назвал "дифференциацией расслоения". вулкана Впоследствии термин был уточнен и сегодня вышеуказанный процесс называется "конвективная гравитационная дифференциация пирокластики", т.к. на "слои" пирокластической массы происходит благодаря разделение преимущественно конвективным процессам, а затем уже под действием "слоев" формируются пирокластические отложения гравитации из этих различных типов. Конвективная гравитационная дифференциация общего процесса пирокластики является неотъемлимой частью дифференциации пирокластической массы в процессе кульминационных фаз извержений вулканов. Если эоловая гравитационная дифференциация характеризует "горизонтальную" составляющую этого общего процесса (отражает изменение состава тефры по мере удаления ее от центра извержения), то конвективная - "вертикальную" (отражает процесс разделения пирокластической массы на "слои", из которых затем формируются несколько типов пирокластики).

Наибольшая масса твердых частиц на единицу площади принадлежит потоку (слой I), в котором глыбы и мелкие обломки составляют помимо заполнителя (частиц размером < 2 мм) 50-70 %; наименьшая - пепловым облакам потока (слой III). Слой II занимает промежуточное место в разрезе (рис. 34)- содержание лапиллей в нем может достигать 20-25 %.

По оценкам автора (по фотографиям кульминаций извержений вулкана Безымянный и по изучению мощностей отложений этого вулкана извержений 1956 г., 1984-1989 гг.), соотношение мощностей трех "слоев" движущейся пирокластической массы, возможно, будет близко следующему: I:II:III как 1 : 1-2 : 50-100 (в единицах). Мощности сформировавшихся отложений на поверхности земли соотносятся примерно так: I:II:III как 500 : 100 : 1 (в единицах).

Возникновение пепловых облаков над пирокластическим потоком обусловлено, вероятно, теми же явлениями, что и подъем эруптивной пепловой тучи над кратером вулкана. Но если высота подъема тефры обусловлена в первую очередь силой эксплозии магмы, а затем уже - характеристиками атмосферы в данный час; то для пепловых облаков потоков главную роль играет атмосфера - ее температура, влажность, стратификация и т.д. С поверхности потока частицы поднимаются в турбулентном режиме и некоторый промежуток времени - до начала отложения на землю - находятся во взвешенном состоянии. Картина образования типов пирокластики чем-то похожа на сегрегацию песка в волноприбойной части водоема [56]. Также песчаные частицы сначала "подбрасываются" вверх, а затем выпадают на дно, разделяясь при этом по удельному весу минералов.

Процесс отложения пирокластики более сложен, но, по сути, сегрегация материала является определяющим фактором образования трех типов пирокластических отложений - потоков, волн пеплового облака и пеплов облаков потоков.

Существование конвективной гравитационной дифференциации пирокластики можно подтвердить количественно некоторыми данными изучения отложений вулкана Безымянный извержений 1984-1989 гг.

На рис. 22 показаны вариации средних значений содержания кремнезема каждого из типов пирокластики изученных извержений вулкана. ДЛЯ Наибольшее количество образцов было изучено по извержению 1985 г.(лава -19, поток -7, волны -5) и распределение кислотности типов пирокластики здесь Таким же образом это распределение выглядит и в более достоверно. обобщенной колонке. В ряду пирокластики наиболее основными являются обломки из пирокластических потоков, к ним близки составы заполнителей пирокластических потоков (56.72 вес. % SiO - 33 образца и 56,68 вес. % (16), соответственно), далее - заполнители пирокластических волн - 57.18 вес. % (10). Наиболее кислыми являются пеплы облаков потоков (60.61 вес.% (8) и тефра (61.72 вес. % (7), что отмечалось и ранее [2, 8, 9 и т.д.]. Характерно, что в продуктах всех изученных извержений вулкана заполнители отложений пирокластических волн хотя и не на много, но более кислые, чем лавы и заполнители потоков (рис. 22). Такая же тенденция в отношении заполнителей потоков и волн - большее содержание кремнекислоты в породах волн, чем в заполнителе потоков извержения 1980 г. вулкана Сент-Хеленс показана. например, в работе П. Липмана, Д. Нортона и др. [126].

Наибольшая кислотность присуща тефре, так как ее тучи поднимаются над кратером вулкана на большую высоту, чем пепловые облака потоков, а затем тефра подвергается также эоловой дифференциации. В связи с небольшими масштабами извержений вулкана Безымянный 1984-1989 гг. эоловая дифференциация тефры происходила быстро и в 20-50 км от вулкана она выступала уже как тефра дальнего разноса.

Заполнители пирокластических потоков и волн, пеплы облаков потоков, тефра состоят из обломков кристаллов минералов, их сростков, вулканического стекла и обломков андезита. В целом, состав свежих лав извержений 1984-1986 гг. достаточно одинаков (рис. 23). Обобщенный минеральный состав лав сопоставим с составом заполнителей пирокластических потоков, состав отложений пирокластических волн отличается от них большей долей плагиоклаза и обломков пород.

Плотность твердой фазы пород, как известно, зависит только от их минерального состава и с возрастанием количества тяжелых минералов также увеличивается [42]. Плотности твердой компоненты заполнителей отложений пирокластических потоков, волн и пеплов облаков потоков, например, извержения вулкана Безымянный в 1984 г., имеют значения 2.69 (4), 2.56 (4) и 2.47 (4) г/см³, соответственно (рис. 35). В целом же, график показывает тенденцию уменьшения значений плотности твердой компоненты пород от заполнителей пирокластических потоков к тефре дальнего разноса.

Волна пеплового облака

Рис. 36. Диаграммы гранулометрического состава заполнителей пирокластических отложений вулкана Безымянный извержений 1984-1989 гг.

Ha рис. 36 показаны диаграммы гранулометрического состава пирокластических отложений вулкана Безымянный. Ясно наблюдается одна и та же преобладающая фракция y заполнителей пирокластических потоков и приземных волн. У волн пепловых облаков - две фракции - такая же как и у потока и наименьшая, являющаяся преобладающей у отложений пепловых облаков потоков. Четко прослеживается постепенный переход (снизу вверх - от заполнителей потоков к пеплам облаков потоков) к преобладанию наиболее тонкой фракции в отложениях.

В целом. распределение фракций заполнителей трех типов пирокластики, расположение их кумулятивных кривых на графиках, а также их гранулометрические статистические коэффициенты неодинаковы. Например, Медианные диаметры заполнителей пирокластических потоков, волн и пеплов вулкана облаков потоков Безымянный извержений 1984-1989 гг. имеют значения 0.26 (28), 0.12 (9) и 0.05 (9) мм, Средний размер -0.38 (28), 0.16 (9) и 0.07 (9) мм, соответственно (см. табл. 3, 11).

Конвективная гравитационная дифференциация пирокластического материала находится в прямой связи с масштабом извержения вулкана. Чем больше масштаб извержения, тем лучше она проявляется, и диагностика генетических типов пирокластики в полевых условиях проводится без затруднений, а значения характеристик их составов и физических свойств достаточно хорошо различаются.

При небольших извержениях вулканов конвективная дифференциация пирокластической массы происходит слабо - химический, минеральный, гранулометрический составы типов пирокластики очень похожи, плотности твердой фазы их почти одинаковы.

Примером хорошей дифференциации пирокластики могут служить данные по извержениям вулкана Безымянный в 1984 и 1985 гг., плохой данные по извержению 1986 г.

Таким образом, различия в составах, плотностях твердой фазы отложений разных генетических типов подтверждают существование процесса конвективной гравитационной дифференциации пирокластики андезитовых вулканов.

Глава 5

Критерии выделения генетических типов пирокластических отложений андезитовых вулканов

Различия инженерно-геологических особенностей генетических типов пирокластики андезитовых вулканов описаны в Главе 2. Здесь показано, как на практике - в полевых условиях различать типы пирокластических отложений, а также с помощью каких характеристик уточнять приведенную диагностику. Другими словами, определены главные критерии, по которым выделение генетических типов пирокластики андезитовых вулканов является наиболее достоверным.

Напомним, что тефра образуется в результате преимущественно вертикальных эксплозий из кратера вулкана, образования направленного взрыва - более мощных направленных под углом к горизонту эксплозий из привершинных частей вулканов, породы пирокластических потоков, волн и пеплов облаков потоков, находясь в парагенетической связи между собой, формируются из пирокластической массы, низвергающейся на склон вулкана в результате коллапса эруптивной колонны (вертикальной или наклоненной к горизонту) (см. Гл. 1).

В таблице 11 показаны основные характеристики генетических типов пирокластики андезитовых вулканов. Для сравнения особенностей разновидностей типов отложений (потоков, волн, направленного взрыва), они помещены рядом. Также рядом расположены похожие типы отложений - тефра и пеплы облаков пирокластических потоков.

Итак, остановимся перед незнакомым разрезом пирокластических отложений в 5-7 км от центра извержения. На таких расстояниях от кратера вулкана проявляются почти все генетические типы пирокластики его извержений и некатастрофических и катастрофических масштабов, влияние экзогенных факторов - невелико.

Что мы можем увидеть в разрезе, по каким критериям выделим в нем типы отложений ?

В разрезе сразу обращают на себя внимание крупные "слои" мощностью до 3-5 м, в которых хаотически распределены разноразмерные обломки (рис. 21). Снизу и сверху этого крупного "слоя" лежат слои песчаного и алевропелитового материала, количество обломков в которых незначительно.

Визуально выделенный "крупный слой", по всей вероятности, будет отложениями пирокластического потока. Качественные характеристики потоков (большие мощности, высокое содержание хаотически распределенных крупных обломков и глыб, размеры которых не превышают первых метров, плохая сортированность материала и т.д.) сходны лишь с агломератом направленного взрыва (табл. 11). Но если отложения потоков имеют светлые, в целом равномерные окраски обломков и заполнителя, то образования агломерата - пестрые. Обломки в агломерате представляют собой породы разрушенных взрывом куполов или постройки вулкана, долгие годы (периоды покоя между активизациями вулкана - до сотен лет) подвергавшиеся постмагматическому преобразованию. Их размер достигает 10 и более метров, а содержание - 80 %.

Отложения пирокластических потоков всегда окаймляются образованиями пирокластических волн, отложениями пепловых облаков пирокластических потоков, но нередко также и тефрой. При катастрофических извержениях вулканов с пирокластическими потоками часто соседствуют образования песка направленного взрыва.

Песчаные отложения с небольшим содержанием обломков размером до 10 см, лежащие ниже и выше пирокластического потока, будут, вероятно, соответствовать отложениям пирокластических волн или песка направленного взрыва.

Отложения приземной пирокластической волны отличаются от других вышеназванных типов отложений небольшой мощностью (часто раз в 10 меньшей, чем мощность вышележащего пирокластического потока), хорошей отсортированностью материала, неясновыраженной слоистостью. Мощности отложений волны пеплового облака и песка взрыва сопоставимы, для них характерна слоистость, сортированность материала в каждом из слоев (табл. 11).

Характерным отличительным признаком отложений приземной волны, залегающих в основании потока, является постепенный переход ИХ отложений в породы потока. В случае залегания под потоком материала волн отдифференцировавшихся от первых порций потока, пепловых облаков, чем 5-7 км имевших меньшую, протяженность (напомним, что ΜЫ рассматриваем разрез пирокластических отложений в 5-7 КМ ОТ кратера вулкана), граница между отложениями волны пеплового облака и потока будет четко зафиксирована слоем алевропелита пепловых облаков потоков, отложившимся на кровле слоя материала волны пеплового облака.

Наиболее тонкозернистыми, однородными, хорошоотсортированными будут отложения пепловых облаков пирокластических потоков. Они слоем равной мощности перекрывают поток и его окрестности, а на расстоянии 1-5 км от боковых частей потока постепенно выклиниваются. По направлению ветра их отложения могут распространяться на десятки километров.

Отложения тефры охватывают большую площадь, чем пеплов облаков потоков, так как эруптивные облака, из которых происходит выпадение частиц тефры, поднимаются на большую высоту, чем пепловые облака потоков (см. Гл.1), и распространение их целиком подвластно ветру.

Мощность тефры у кратера вулкана - небольшая (тефра как бы перебрасывается эксплозиями на некоторое от него удаление), что отмечено в работах [30,47 и др.], на некотором расстоянии от вулкана - максимальная, затем на протяжении сотен километров постепенно уменьшается и выклинивается. В каждой из точек рассмотрения отложения тефры имеют различный гранулометрический состав [61,62], но везде стратифицированы, что обусловлено эоловой гравитационной дифференциацией. Отложения пепловых облаков пирокластических потоков одного извержения везде (в ближней и дальней зонах вулкана) однородны и одинаковы по гранулометрическому составу - процесс отложения пеплов - одноактный, завершающий кульминационную фазу извержения вулкана.

Итак, в полевых условиях благодаря стратиграфическим и структурнотекстурным особенностям отложений можно четко различать образования агломерата направленного взрыва и пирокластических потоков, но отложения облаков пепловых потоков можно перепутать с тефрой, а породы разновидностей пирокластических волн между собой И С песком направленного взрыва.

Для достоверной диагностики генетических типов пирокластики необходимо воспользоваться лабораторными методами изучения отложений, и, в первую очередь, рассмотреть гранулометрический состав этих образований и их заполнителей (в Гл. 2 было показано, что гранулометрический состав является наиболее информативной количественной характеристикой пирокластики, а в некоторых случаях - единственной, с помощью которой можно различать генетические типы пирокластических отложений).

Содержание обломков, а также их максимальный размер в породах каждого из генетических типов пирокластики своеобразно, что позволяет, например, различать разновидности типов пирокластических потоков (пеплово-глыбовых и "ювенильных") и пирокластических волн (приземных и волн пепловых облаков) (табл.11).

Как видно из диаграмм гранулометрического состава заполнителей пирокластических отложений (см. Приложение), каждый из генетических типов пирокластики обладает определенным распределением фракций. И, следовательно, определенной формой и местоположением на графике кумулятивных кривых состава, также гранулометрическими a И статистическими коэффициентами (медианой, средним размером частиц и т.д.), отличающими один тип от других.

Заполнители потоков и других типов пирокластических отложений очень хорошо различаются по гранулометрическому составу. Своего рода эталонным в этом отношении может служить рис. 18, на котором показаны обобщенные кумулятивные кривые гранулометрического состава заполнителей пирокластики вулкана Безымянный извержений 1984-1989 гг. и 1956 г. Заполнители потоков наиболее крупнозернисты, поэтому их кривые занимают нижнее положение на графике, на гистограммах, отражающих распределение фракций заполнителя, видно, ЧТО частицы крупных размеров разных преобладают (см. Приложение, стр. 88, 90).

Кумулятивные кривые гранулометрического состава заполнителей агломерата направленного взрыва резко отличаются от других типов пирокластики (рис. 17, 18, 20). У заполнителей каждого из типов отложений преобладают или одна или две фракции, у заполнителей агломерата

преобладающими являются четыре фракции (примерно одинакового содержания) (табл. 11, Приложение, стр. 91, 92).

Заполнители отложений приземных пирокластических волн имеют одну преобладающую фракцию - такую же, как и заполнители потоков, но содержание этой фракции у отложений приземных волн достигает 40-45 %, а у заполнителей потоков - до 25 %. Для отложений волн пепловых облаков характерны две превалирующие фракции: такая же, как у потоков и частицы размером менее 0.056 мм (до 35 %). Преобладающая фракция отложений пепловых облаков - менее 0.056 мм (до 55-60 %), доля каждой из других не превышает 15 %, обломков нет.

У заполнителей песка направленного взрыва преобладающей является одна, но крупнозернистая фракция - 0.5-1.0 мм (до 35 %), совпадающая с наибольшей фракцией заполнителя агломерата направленного взрыва (табл. 11).

Средние медианные диаметры и средний размер частиц заполнителей пирокластических потоков и агломерата направленного взрыва одинаковы, хотя у потоков большие вариации этих значений (табл. 11). Коэффициенты сортировки заполнителей отложений показывают худшую отсортированность материала агломерата направленного взрыва.

Гранулометрические характеристики заполнителей отложений пирокластических волн по величине занимают промежуточное положение между таковыми характеристиками заполнителей потоков и тефры дальнего разноса и отложений пепловых облаков потоков. Таковые величины песков направленного взрыва - самые высокие среди пирокластики андезитовых вулканов (табл. 11), что является хорошим отличительным признаком этих отложений от других.

Учитывая вышесказанное, можно утверждать, что гранулометрический состав заполнителей потоков (распределение фракций, наклон и местоположение кумулятивных кривых состава на графике, величины гранулометрических характеристик) может являться достоверным критерием выделения типов пирокластических отложений.

Изучение микростроения образцов ненарушенного сложения пирокластики показало, что отложения тефры и волн пепловых облаков агрегированы, а приземных - нет. Кроме этого, выяснилось, что агрегаты тефры более крупные по размерам, чем агрегаты волн пепловых облаков (см.Гл. 2,3,5). Это еще раз доказывает факт, что материал тефры и волн пепловых облаков формируется из "пепловых облаков" (тефра из эруптивных туч, отложения пирокластических волн пепловых облаков - из "волны пеплового облака" (промежуточного "слоя" между пирокластическим потоком И пепловыми облаками пирокластического потока, которые формируются в результате конвективной гравитационной дифференциации пирокластической массы при низвержении ее на склон вулкана в кульминационные фазы извержения)). Таким образом, изучение микростроения образцов пирокластических отложений может существенно уточнять диагностику их генетических типов.

Критерием выделения генетических типов пирокластики может служить также вещественный состав (химический и минеральный) заполнителей отложений. Например, если содержание ювенильного вещества в заполнителе потоков может достигать 60-80 %, то в заполнителе агломерата взрыва оно очень мало - часто первые проценты или до 10-15 % (табл. 11). Различия в химическом и минеральном составах генетических типов пирокластики показаны в Гл. 1,2, 4. Повторим, что наибольшим содержанием оксида кремния обладают породы тефры дальнего разноса, несколько меньшим - пеплы облаков потоков, состав других типов отложений (за исключением агломерата взрыва), в разной мере похож на состав обломков пород извержения вулкана (см. Гл. 4, рис. 22).

Таким образом, с помощью изучения вещественного состава пород можно уточнять диагностику некоторых генетических типов пирокластических отложений вулканов.

Содержание "тяжелых" по плотности твердой фазы и "легких" минералов в заполнителях типов пирокластики различно (см. Гл. 1, 2, 4). Это находит отражение в том, что плотности твердой фазы заполнителей типов отложений одного масштаба извержений вулкана хорошо различаются, хотя в среднем, за исключением пеплов облаков потоков, они похожи (см. Гл. 4, табл. 11).

Плотность естественного сложения недавно сформировавшейся пирокластики(в зависимости от масштаба извержения вулкана это время измеряется от нескольких дней до нескольких месяцев) различна для каждого из ее типов. Наименьшей плотностью сложения обладают отложения пепловых потоков (0.87 - 1.20 г/см³), наибольшей облаков пирокластических образования песка направленного взрыва (1.50-1.77 г/см³) (табл. 11). Сразу после окончания кульминационной фазы извержения наиболее рыхлое сложение имеют породы волн пепловых облаков (до 1.43 г/см³) - благодаря облака. формированию ИХ пеплового они обладают высокой ИЗ газонасыщенностью, газ сохраняется в составе этих отложений продолжительное время (до нескольких месяцев - оценки по отложениям вулкана Безымянный).

Пористость отложений зависит, в основном, от их гранулометрического состава и плотности сложения в естественном залегании. Наибольшей пористостью обладают отложения пепловых облаков потоков, наименьшей - породы пеплово-глыбовых пирокластических потоков, хотя в среднем, пористость типов отложений, за исключением пеплов облаков потоков и тефры, достаточно похожа.

Таким образом, комплексные - качественные и количественные - методы исследования пирокластических отложений андезитовых вулканов позволяют с достаточной степенью достоверности проводить диагностику их генетических типов.

Основными критериями выделения генетических типов пирокластики являются: *стратиграфический* (залегание, протяженность, мощность отложений, границы с ниже- и вышележащими), *структурно-текстурный* (слоистость, количество и распределение обломков в заполнителе отложений).

Подтвердить и уточнить диагностику генетических типов пирокластики помогут критерии: *гранулометрический состав заполнителей отложений* (распределение фракций, наклон и местоположение кумулятивных кривых состава на графике, численные значения гранулометрических статистических коэффициентов), *химический и минеральный составы пород* (содержание кремнезема и других элементов, ювенильного вещества), *физические свойства отложений* (плотность твердой фазы, плотность естественного сложения, пористость).

Глава 6

Вулканогенные образования Камчатки как аналоги грунтов других планет Земной группы

Еще на заре космической эры ученые поняли необходимость поисков и применения земных грунтов, которые служили бы аналогами грунтов других планет для испытания и отработки на них посадочных устройств космических аппаратов, опробования снаряжения космонавтов и т.д. [112]. Чем больше появлялось информации о планетах Солнечной системы - доставка и всестороннее изучение лунного грунта, подробные фотографии поверхностей Марса, Венеры и других планет и их спутников и т.д. - тем более похожие по физическим и химическим характеристикам отложения Земли подбирались в качестве инопланетных аналогов. В целом, благодаря близкому внутреннему и, с некоторыми оговорками, внешнему строению, сходным процессам и происходящим на планетах и небесных телах земной группы, явлениям, наиболее подходящими грунтами-аналогами этих планет на Земле являются вулканогенные подвергшиеся породы, не глубоким экзогенным преобразованиям [110-112].

Лунные породы и их земные аналоги. Луна - ближайшее к Земле космическое тело, в изучении которого сделаны немалые успехи. На Луну были осуществлены посадки космических автоматических и пилотируемых людьми аппаратов, карты ее по точности не уступают земным; лунные грунты, доставленные на Землю, изучены в лабораториях СССР и США.

Главными геологическими структурами на Луне являются материки и Материки - относительно светлые гористые области, испещренные моря. кратерами диаметром до десятков и сотен километров; моря - темные равнинные области. Над морями материки возвышаются обычно на 1-2 км. Средняя высота поверхности Луны, вычисленная по гипсографической кривой, составляет 0.0 км [99]. Материки с поверхности и до глубин в несколько километров сложены, в основном, брекчиями - литифицированными выбросами из крупных кратеров. Моря приурочены к понижениям в рельефе материков, к днищам крупнейших кратерных структур, например, моря Дождей, Ясности, Кризисов. Равнинообразующим материалом лунных морей являются богатые железом базальтовые лавы, которые в момент излияния обладали низкой вязкостью. На поверхности морей наблюдаются протяженные уступы фронтальных частей крупных лавовых потоков, куполовидные возвышения, напоминающие уменьшенные аналоги земных щитовых вулканов, и шлаковые конусы. Породы материков представлены существенно полевошпатовыми разностями (анортозитами и неморскими базальтами), морей - железистыми базальтами.

Лунные магматические породы имеют структуры, свойственные земным изверженным породам, образовавшимся из расплава. Среди них обнаруживаются аналоги земных пород вулканических и плутонических разностей. Химический состав лунных образований более мафический, чем у соответствующих земных аналогов, что связано, возможно, с формированием их в обстановке вакуума. В целом, на Земле наиболее близкими к лунным анортозитам являются анортозиты ранних этапов развития Земли - все продукты высокоглиноземистых магм раннего архея [3], морским базальтам - земные толеитовые базальты [63].

Широкое распространение на Луне получил реголит - чехол рыхлого обломочного материала, покрывающего морские и материковые образования. Сформирован он, в основном, под действием метеоритной бомбардировки поверхности спутника широким спектром частиц от субмикронных до метеоритов поперечником в десятки метров. Первые оставляют микрократеры вторые - образуют кратеры, на обломках пород, проникающие через уже имеющийся реголит, в результате чего на поверхность выбрасывается раздробленный материал подстилающих скальных пород, представленный материковыми брекчиями и морскими базальтами. Чем древнее поверхность Луны, тем больше мощность реголита и тем сильнее он переработан.

Реголит имеет локальнослоистое строение. Слои распределены случайно и существуют различное время. Разнообразные данные косвенного определения мощности реголита на поверхности Луны показывают, что ее средняя величина в морях близка к 4-5 м, на материках - к 10-20 м.

Реголит представлен разнозернистым темно-серым и черным порошком, который легко слипается в отдельные рыхлые комки. В нем выделялись две основные разности частиц: а/ угловатые частицы магматических пород типа базальтов; б/ частицы с явными следами оплавления и спекшиеся частицы сложной формы, похожие на стеклянные и металлические капли, капелькишарики [66].

В целом, реголит состоит из обломков монолитных пород, брекчий, зерен различных минералов, продуктов оплавления частиц поверхностного слоя реголита при микрометеоритных ударах, частиц стекла - продуктов полного плавления реголитового материала.

Медианный размер частиц реголита фракции менее 1 мм варьирует от более 100 мкм для свежего и до 60-70 мкм для зрелого реголита [66].

Обширный материал по данным изучения физико-механических свойств реголита Луны опубликован в статьях, монографиях, фундаментальных трудах в СССР и США. Остановимся лишь на некоторых характеристиках свойств реголита.

По классификации крупнообломочных и песчаных грунтов (СНиП 11-15-74) реголит, в основном, относится к пылеватым и мелким пескам, хотя встречаются и их крупнозернистые разности. Некоторые физикомеханические свойства реголита приведены в табл. 13,14.

Несмотря на большие расстояния между районами работ разных станций, верхний слой реголита везде обладает сравнительно одинаковыми свойствами. Рыхлый пылеватый песок с примесью обломков и комков,

отличается малым сцеплением и довольно высоким внутренним трением, малой несущей способностью и высокой сжимаемостью.

Таблица 13

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ЛУННОГО ГРУНТА В ЕСТЕСТВЕННОМ ЗАЛЕГАНИИ, ПОЛУЧЕННЫЕ ПРИ РАБОТАХ "ЛУНОХОДОВ -1, -2" В 1978 Г. [110]

Состояние грунта	Коэффициент пористости, единица	Сцепление, МПа	Угол внутреннего трения, градус		
Особо рыхлое	1,3	0,013	10		
Рыхлое	1,3-1,0	0,013-0,025	10-15		
Средней плотности	1,0-0,9	0,025-0,032	15-18		
Плотное	0,9-0,8	0,032-0,04	18-22		
Сильно уплотненное	0,8	0,04	22		

Таблица 14

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ЛУННОГО ГРУНТА ПО ДАННЫМ ЭКСПЕДИЦИИ "АПОЛЛОН-16", 1972 г. [110]

Номер опыта	Плотность, г/см ³	Сцепление, МПа	Угол внутреннего трения, градус		
1	1,89	0,006	46,6		
2	1,96	0,0037	49,5		
3	1,93	0,006-0,0025	47-50		

Анализ результатов исследований показывает, что реголиту по свойствам наиболее близки земные вулканические пеплы базальтового и андезито-базальтового состава [110], например, пирокластические образования Толбачинского Дола, породы которого относятся к типичным базальтам.

Шлаковые и шлако-лавовые конусы Дола достигают высоты 300 м, диаметра оснований около 1000 м. В зависимости от возраста конусов, состава и окисленности их отложений, плотность сложения материала их построек различна. Например, собственные отложения одного из конусов Песчаных

горок, возраст которых оценивается в 1000-1500 лет [17], значительно окислены, по гранулометрическому составу относятся к гравийным. Плотность пород на его склоне варьирует от 0.80 до 1.09 г/см³, составляя в среднем 0.94 г/см³ (5 определений); пористость, соответственно, от 62 до 72 %, в среднем - 67 % (5). Фрагменты древних конусов, залитых лавами и засыпанных пирокластикой последующих извержений, представляют собой своеобразные "панцири", корки, сформированные зрелыми агглютинатами.

Обширные шлако-пепловые равнины с участками древних И современных лавовых потоков преобладают на площади Дола. В настоящее поверхность большей части равнин покрыта пирокластическими время отложениями Большого трещинного Толбачинского извержения 1975-1976 гг. (БТТИ). Физические и физико-механические шлаков свойства этого извержения описаны в работе [27]. Здесь мы остановимся на свойствах пеплов этого покрова, так как они обладают большим сходством с реголитом Луны. Напомним, что на Северном прорыве (БТТИ) на поверхность поступали, в основном, магнезиальные базальты, на Южном - глиноземистые [25]

Вулканические пеплы состоят из изометричных остроугольных, высокопористых, но без крупной открытой пористости частиц, углы которых нередко оплавлены. По гранулометрическому составу пеплы Северного прорыва БТТИ в радиусе 6 км от конусов относятся к пескам крупным, Южного - к пескам средней крупности. Влажность пеплов Северного и прорывов почти одинакова - 11-17 и 8-14 %, соответственно. Южного Плотность твердой фазы частиц для первых равна 2.96- 3.01 г/см³, для вторых - 2.54-2,58 г/см³. В связи с изометричной формой частиц и преобладающим их размером менее 0,5 мм, пеплы имеют довольно высокую плотность грунта в естественном сложении - 0.91-1.28 г/см³ для Северного и 1.31-1.72 г/см³ для Южного прорыва. Увеличение содержания в пеплах Южного прорыва тонких частиц ведет к увеличению плотности грунта почти в три раза по сравнению со шлаками, для которых эта плотность равна 0.55-0.58 г/см³ [27].

Пористость пеплов ниже, чем шлаков: 63-72 % на Северном и 41-53 % на Южном прорывах, что связано с более плотным сложением пеплов и меньшей открытой пористостью их частиц. Плотность сложения, структура частиц пеплов также оказывают главное влияние на их деформационные и прочностные свойства. Модуль общей деформации пеплов Северного прорыва 6.8-7.2 МПа и 10.0 МПа на Южном. Прочностные характеристики пеплов зависят, в основном, от их плотности сложения, сцепление-зацепления играет для них второстепенную роль - C = 0-0.03 МПа и у =19-38 град. для пеплов Северного прорыва и C = 0-0.04 МПа и у = 20-38 град. для Южного.

При обработке панорам, снятых "Луной-9" и "Луной-13", было рассчитано распределение обломков, попавших в поле зрения телекамер, по крупности (табл. из работы [110]). Для сравнения с вышеприведенными данными на поверхности Толбачинского дола было обработано несколько участков древних лавовых потоков, засыпанных пирокластикой (кеккурников). Хотя на этих участках фрагменты лав в виде обломков, обелисков, борозд и т.д.

встречаются высотой до 2 м и шириной более 50 см, автор ограничился размером обломков 0-20см, как и на лунных участках (табл. 15). И пусть, в целом, распределение обломков на изученных площадках различное, есть среди них и похожие на лунные.

Таблица 15

Участки	Размер обломков, см							Количество	
	2-	-5	6-10		11-15		16-20		обломков
		Количе	ство	обломк	ков	(единиц	(a, %)		на 1 м
"Луна-9"	32	45	31	42	4	5	6	8	1,5
Участок 3	51	29	61	34	40	22	26	15	0,44
Участок 4	58	28	59	28	51	24	41	20	0,52
!Луна-13"	164	91	14	8	2	1	1	-	13
Участок 1 а	243	86	30	10	13	4	1	-	4,5
Участок 1 б	422	84	66	13	8	2	6	1	7,6

РАСПРЕДЕЛЕНИЕ ОБЛОМКОВ РАЗНОЙ КРУПНОСТИ НА УЧАСТКАХ ЛУНЫ И ТОЛБАЧИНСКОГО ДОЛА [110]

* Для участков Луны указывается аппарат, производивший съемку панорам.

Некоторые свойства пирокластических отложений Толбачинского дола приведены в табл. 12. Как видно из сравнения их с лунными, сходство довольно значительное по всем параметрам, исключая сцепление. Различия свойств пород Луны и Земли связаны, в основном вероятно, с планетарными особенностями - небольшой силой тяжести, отсутствием атмосферы, гидросферы на Луне и т.д.

Таким образом, фактически подтверждается правомерность использования вулканогенных отложений базальтового состава в качестве аналогов лунных.

Венера и земные аналоги ее пород. Венера по массе, объему и плотности очень похожа на Землю, но почти на этом сходство планет заканчивается. Отличия же многообразны - "обратное" вращение планеты по сравнению с другими, почти перпендикулярная ось вращения к орбитальной плоскости, отсутствие магнитного поля, атмосфера, состоящая на 96-97 % из углекислого газа; ее облака, представляющие собой аэрозоль серной кислоты; температура на поверхности планеты 480⁰ С и т.д.[66,67,80 и др.]

В целом, на поверхности планеты выделяются три основные геоморфологические провинции; горные области (+11- +2 км), занимающие 7

% поверхности планеты; холмистые равнины (+2- +0,4 км), 60 % поверхности; низменности (+0.4- -2.5 км) - 33 % поверхности [67,99]. Средний уровень

поверхности Венеры: вычисленный по гипсографической кривой, составляет +430 м [99]. Горные области на Венере относятся к континентам, наибольшие из них - Земли Иштар, Афродиты, Область Беты и др. На поверхности планеты распространены кратеры глубиной до 400 м и диаметром до 150 км; гигантские овальные впадины - депрессии диаметром до 1 тыс. км, много тектонических структур - рифтовые зоны, каньоны, гряды, а также вулканические формы рельефа. На наличие активного вулканизма на планете указывают также гравитационные аномалии в районах Бета и Альфа. Многие возвышенности имеют в плане овальную форму и являются, возможно, щитовыми вулканами. Вся область Беты, предполагают, является огромным вулканом щитового типа, сложенным базальтами [67]. В области Альфа отмечаются семь правильных круговых куполовидных поднятий диаметром 25 км и высотой до 750 м, которые интерпретируются "выжимки очень вязкой как лавы на относительно ровную поверхность" [128] и весьма напоминают экструзивные куполы андезитовых вулканов Земли. Два из семи куполов выглядят наиболее молодыми - на них четко видна ячеистая трещинноватость в центральной части купола и радиальная - по его периферии. На других куполах трещинноватость заметна значительно слабее или не выражена совсем, что связано, вероятно, с возрастом куполов и различной интенсивностью процессов выветривания. В целом, основная часть равнин относится, по-видимому, к вулканическим.

В районах посадки аппаратов "Венера" наблюдался грунт двух типов; а) реголит, вероятно гравелистого типа со значительным количеством каменных гряд, консолидированных пород, отдельных камней размером до 20-70 см и б) каменные образования с выраженной слоистостью, их скоплений; пересеченные трещинами, слагающие горизонтальные равнины, с незначительным количеством реголита и мелких обломков [67, 90].

По данным В.С.Авдуевского и др. [67] плотность реголита и каменных образований равна 1.4-1.5 г/см³ и 1.15-1.20 г/см³, соответственно. По данным А.Л.Кемурджиана и др. несущая способность реголита лежит в пределах 0.26-1.0 МПа, а твердых пород - 6.5-25 МПа [90]. Хотя все эти данные вызывают сомнение, Л.В.Ксанфомалити отмечает, что данные А.Л.Кемурджиана и др. для реголита более надежны, чем для твердых пород [67]. При отсутствии других, эти данные, в целом, могут служить ориентиром в свойствах грунтов Венеры.

При изучении отложений Венеры было обнаружено аномально низкое их электрическое сопротивление - около 100 Ом м [90] по сравнению с земными базальтами при температурах, близких к таковым Венеры. Петтенджил и др. сообщили также о высокой электропроводности грунтов в горных районах Венеры (аппарат "Пионер-Венера") и предположили наличие в их составе до 20 % пирита [67].

Непосредственный анализ состава пород поверхности Венеры (равнина Навки Области Феба) указал на базальты [67]. На участках обилия обломков пород грунты близки калиевым щелочным базальтам земной коры, плотные породы тяготеют к толеитовым базальтам, породы приэкваториальных областей - к оливиновым габброноритам [67]. Базальты, как и на Земле, на Венере преобладают.

Основным процессом, преобразующим грунты планеты, является, вероятно, химическое выветривание в результате термохимических реакций между поверхностью и атмосферой. Это, в какой-то мере, подтверждается тем, что на Венере обнаружена богатая калием, ураном и торием порода, которая на Земле соответствует составу не первичных вулканических пород, а претерпевших экзогенную переработку [66].

Исходя из вышесказанного, предполагается использовать в качестве аналогов грунтов Венеры породы площадок постмагматического преобразования пирокластики вулкана Толбачик.

На фумарольных полях шлаковых конусов Северного прорыва И на лавовых потоках Южного прорыва БТТИ 1975-1976 гг. до сих пор достаточно интенсивно идут процессы пневматолитового метасоматоза пород при температурах 20-200 C^0 у поверхности и более 500 C^0 на глубине, в результате которых идет активное изменение шлаков и пеплов базальтового состава и превращения их, в конечном итоге, в кремнистую пористую массу [86, 105]. В процессе преобразования пород происходят следующие явления; образование агглютинатов, широкое развитие процессов заполнения пор частиц шлаков и пеплов новообразованиями - возгонами и рудными минералами; в результате постепенного разрушения острых краев шлаков под влиянием вулканических частицы их, оставаясь практически на месте, приобретают вид газов, окатанных; между частицами шлаков и пеплов появляются новые виды связей физико-химической природы и т.д. [27]

По степени преобразования шлаков на фумарольных полях выделяются; 1/ агглютинаты - плотные корки спеченных шлаков мощностью до 0.2-0.3 м; рыхлые шлаки: 2/ сильноизмененные - полностью перерожденные шлаки красных, оранжевых, зеленоватых, желтых, голубоватых, белесых окрасок частиц; 3/ слабоизмененные - окисленные, имеющие лишь корочки новообразований с поверхности; 4/ среднеизмененные - промежуточные между второй и третьей группами [27].

Агглютинаты, возможно, могут послужить аналогами плотных пород, слагающих горизонтальные участки Венеры; измененные рыхлые шлаки - аналогами ее реголита.

Рыхлые измененные шлаки Северного прорыва вулкана Толбачик по гранулометрическому составу относятся к дресвяным грунтам с преобладанием частиц размером крупнее 3 мм.

В связи с перерождением шлаков, заполнением их пор новообразованиями, все измененные шлаки по сравнению с неизмененными имеют большую плотность отложений и меньшую пористость. Чем более изменены шлаки, чем больше их плотность сложения и меньше пористость (табл. 16, рис. 37). Структурно-текстурные особенности шлаков влияют на их деформационные и прочностные характеристики. Менее преобразованные
шлаки имеют более рыхлое сложение, незначительную псевдоокатанность частиц, поэтому и меньший модуль общей деформации по сравнению с сильноизмененными. Чем сильнее изменены шлаки, тем выше их сцепление, которое в данном случае складывается из сцеплений механической и физической природы. Прочность на разрыв агглютинатов варьирует от 0.08 до 12.0 МПа, составляя в среднем 3.0 МПа.

Таблица 16

ФИЗИЧЕСКИЕ И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ИЗМЕНЕННЫХ ШЛАКОВ СЕВЕРНОГО ПРОРЫВА БТТИ 1975-1976 ГГ.

Названия	Агглютинаты	Сильно-	Средне-	Слабо-
характеристик		измененные	измененные	измененные
		шлаки	шлаки	шлаки
Плотность	1 32(3)	1 24(3)	0.94(2)	0.78
скелета грунта.	1.28-1.37	1.20-1.27	0.91-0.98	0,70
Γ/cM^3	_,,,	_,,,		
Коэффициент	1,25(3)	1,46(3)	1,92(2)	2,54
пористости,	0,91-1,18	1,36-1,59	1,70-2,15	
единица				
Пористості %	51(3)	59(3)	65(2)	72
пористость, 70	48-54	58-61	63-68	12
	-0.5-	50 01	05 00	
Сцепление, Мпа		0,12(3)	0,10	0,06
		0,05-0,19	,	,
Угол		32(3)	42	37
внутреннего		32-33		
трения, градус				
Молуль общей		63(3)	6.0	4.5
леформации.		5.6-7.0	0,0	1,0
МПа		2,2 .,2		

Примечание. В числителе - среднее значение, в знаменателе - минимальное и максимальное. В скобках - количество образцов.

Рис. 37. Физические и физико-механические свойства измененных шлаков Северного прорыва БТТИ 1975-1976 гг.: АГГ- агглютинаты, СИЛ, СР, СЛ – соответственно, сильно-, средне- и слабоизмененные шлаки.

Если на конусах Северного прорыва вулкана Толбачик процессы постмагматического преобразования пород продолжаются, на конусах Песчаных горок этого вулкана такие процессы уже закончились (извержение их происходило 1000-1500 лет назад [17]). Характерно, что шлаки здесь имеют такие же степени преобразования: агглютинаты, сильно-, средне-, слабоизмененные рыхлые породы. Автор ограничится кратким изложением некоторых их свойств в целом. Плотность однородноизмененных желтых шлаков и пеплов на глубине 30 см равна 1.32 г/см³, неоднородноизмененных до красных, синих, желтых окрасок частиц - на глубине 40 см - 1.11 г/см³. шлаков в среднем равна 52 %, Пористость измененных модуль общей деформации - 9.0 МПа, сцепление - 0.03-0.13 МПа и угол внутреннего трения -28-40 град. Плотность агглютинатов Песчаных горок составляет 1.31-1.42 г/см³ , пористость - 50-54 %. Прочность агглютинатов невысокая, так как сотни лет они подвергались процессам физического и физико-химического выветривания, и составляет на разрыв 1.0-2.0 МПа.

Как видно из сравнения, свойства современных и древних шлаков, преобразованных В результате постмагматических процессов, довольно Меньшая пористость шлаков Песчаных горок связана с одинаковы. длительными процессами преобразования их частиц; уменьшение прочностных свойств пород (сцепления для рыхлых шлаков и прочности на разрыв ДЛЯ агглютинатов) связано с древностью их образования и воздействием на них процессов выветривания многие сотни лет. Плотность рыхлых шлаков и твердых пород (агглютинатов) конусов Толбачинского дола и измеренных Венеры Исходя грунтов также сопоставимы. ИЗ вышесказанного, представляется возможным использование пород Земли, преобразованных в результате постмагматических процессов, в качестве грунтов-аналогов Венеры.

Породы Марса и их земные аналоги. Планета, несколько меньшая по размеру чем Земля, издавна привлекала ученых. Многие поколения людей возлагали надежды на то, что именно на Марсе существует жизнь, находятся

разумные существа. Космическая эра позволила ответить на многие вопросы изучения Марса. И хотя человек пока еще не ступил на эту планету, сегодня существуют подробные ее карты, множество фотографий поверхности, известен состав атмосферы и некоторые характеристики поверхностных отложений и т.д. В ближайшее время планируется доставить на планету марсоход, а на Землю - марсианский грунт.

Средний уровень поверхности Марса, вычисленный на основе гипсографической кривой, составляет 2100 м [99]. Западное полушарие несколько выше, чем восточное: средняя высота западного полушария 2,2 км, восточного - 1,8 км относительно среднего уровня планеты. Для Марса характерно полимодальное распределение высотных уровней. Наибольшую площадь планеты - 22.34 % - занимают уровни высот в +3- +4 км относительно ее среднего уровня, наименьшую - 0.02 % - уровни высот в +14 - +13 км.

По генетическим признакам на планете выделены поверхностные образования: ударные, связанные с падением метеоритов; мерзлотные - хаотические местности, оползни в бортах каньонов Долин Маринер, слоистые полярные толщи и т.д.; флювиальные - долинные отложения, сходные с земными, возникающими в результате катастрофического стока больших масс воды; тектонические; вулканические и эоловые [80].

На Марсе отсутствуют кратеры менее нескольких десятков метров, что объясняется большой активностью эрозионных процессов на поверхности и торможением мелких метеоритов атмосферой. Плоские днища крупных кратеров часто являются ловушками для эоловых отложений.

Элементы ударной тектоники образуют систему трещинноватости, которая проявляется на поверхности в виде полигональных контуров валов кратеров диаметром более 20 км и наследуется системами пересекающихся гряд, образованных в результате последующего интрузивного вулканизма по разломам ударной природы [66,80].

На Марсе наблюдаются крупномасштабные проявления эндогенной тектоники, что значительно сближает его с Землей. Это выражается в асимметрии между северным и южным полушариями, в формировании обширных сводовых поднятий типа Фарсида и Элизий. В этих областях отмечаются гигантские грабены и разломы общей протяженностью до 1000 км, гряды и линеаменты, каньоны долин Маринер длиной 5000 км, шириной 100 км и глубиной 5 км; провальные депрессии и связанные с ними крупнейшие долины.

Для Марса характерны крупные вулканические сооружения типа щитовых вулканов, вулканических куполов и провальных кальдер, развит площадной вулканизм. Марсианские вулканические сооружения в основном приурочены к районам Фарсида, Элизий, Эллада. В области Фарсида находятся четыре грандиозных щитовых вулкана - Олимп, Арсия, Павлина и Аскрийская гора. В целом, вулканы имеют следующее строение: собственно вулканический щит, провальная депрессия на вершине, дугообразные грабены, кратерные цепочки вокруг кальдеры. Морфология лавовых потоков вулканов указывает на низкие значения вязкости лав, что характерно для лав основного состава. Широко распространены на Марсе вулканические куполы - крутосклонные сооружения высотой до 8 км, осложненные на вершине многоярусными депрессиями.

Результатом площадного распространения вулканизма Марса явилось образование вулканических равнин, многие из которых находятся в районах, поднимающихся на 4-6 км над окружающей местностью. Их возраст оценивается в 0.3- 4 млрд. лет [80].

Эоловая деятельность планете выразилась формировании на В многочисленных дюн размером от сотен метров до 10 км, эоловых покровов, приуроченных к днищам крупных кратеров и каньонов, к равнинам; и эоловогляциальных образований вокруг северной полярной шапки. На Марсе обнаружены также обширные области покровных отложений эоловой природы, чехлом покрывающие более древние кратерированные и вулканические местности и нивелирующие их расчлененный рельеф. Мощность эоловых отложений колеблется от нескольких метров в экваториальных районах до сотен метров в средних и полярных широтах.

Подробно о морфологических типах образований Марса можно познакомиться в работах [66, 80, 90 и др.].

В целом, считается, что выходы скальных пород занимают не более 10 % поверхности планеты. Мощность реголита, чехлом покрывающего большую ее часть, колеблется от нескольких метров до сотен метров и первых километров. В масштабе нескольких десятков километров по площади марсианский реголит с поверхности довольно однороден, средний размер его частиц оценивается в интервале 0.1 -5.0 мм, но есть и более тонкий материал. Формально реголит относится к гравелистым пескам (по СНиП 11- 15- 74), так как частиц крупнее 2 мм содержится в нем более 25 % [42].

Материал темных областей Марса в петрологическом и физическом аспектах по составу находится ближе к основным породам, вероятно к базальтам. Спектры светлого материала Марса аналогичны спектрам смесей, состоящих из гетита, гематита и глин монтмориллонитового состава. Возможно, что светлый материал является типичным продуктом выветривания коренных пород Марса. Наилучшее приближение к марсианскому грунту дает смесь богатых железом глин, характерных для процессов земного выветривания основных изверженных пород. Химический состав реголита равнин Хриса и Утопии ("Викинг-1,-2") сходен, он относится к породам основного состава или продуктам их изменения. Присутствие больших количеств кислого и щелочного материала исключается [80].

Предполагают, что основная масса тонкозернистого материала на поверхности Марса - продукты химического выветривания коренных пород, которое связано, возможно, с несколькими причинами: химическим выветриванием грунта в результате взаимодействия его с современной атмосферой, выветриванием отложений при гидротермальной деятельности. Значения плотности сложения и диэлектрической проницаемости в целом для грунта планеты получены инфракрасными, радиолокационными и поляриметрическими методами, которые хорошо согласуются между собой. Плотность реголита планеты, оцененная по тепловой инерции, составляет 1,2 - 0.2 г/см³, по данным радиолокации - 1,7 г/см³. Существуют вариации плотности реголита по долготе в диапазоне 0.2 - 2.5 г/см³ при среднем значении 1.4 - 1.5 г/см³ [80].

Достаточно беглого взгляда на фотографии поверхности Марса, сделанные "Викингами" (США), и современных образований вулкана Безымянный, чтобы отметить удивительное сходство отснятых поверхностей. Хотя вулкан Безымянный - типичный представитель андезитового вулканизма, внешнее сходство его отложений с марсианскими дает возможность использовать их в качестве аналогов образований Марса. В Долине потоков вулкана Безымянный можно наблюдать поверхности, сложенные собственно пирокластическими потоками - хаотически расположенными разноразмерными обломками лав андезита (от нескольких сантиметров до 2-3, редко 6-7 м) и песчано-пепловым заполнителем; эоловыми отложениями в руслах сухих ручьев и мульдах между валами пирокластических потоков; алевропелитовым материалом мощностью 3-5 см на плоских участках русел временных водотоков Долины и т.д. Временные водотоки у бортов Долины, ручьи, протекающие через пирокластические образования современных и древних извержений вулкана, своим строением очень похожи на каньоны Марса, в значительно уменьшенном масштабе. Благодаря большому конечно. содержанию пылеватых по размерности фракций в отложениях потоков, ручьи, промывающие эти отложения, имеют преимущественно крутые, вертикальные, порой с отрицательным уклоном стенки. Глубина русел Долины - от первых десятков сантиметров до 10-15 м, их борта порой террасированы, порой имеют осыпи и вывалы глыб. Осыпи Маринер связывают с развитием на Марсе мерзлотных процессов [80]. Хотя мерзлота в районе Долины потоков также наблюдается, например, в обнажении южного борта Долины, основной причиной осыпей в ручьях является сила тяжести, которая неумолимо действует на обломки и глыбы бортов, активно подвергающихся водной и ветровой эрозии.

В целом, поверхность Долины потоков вулкана Безымянный сложена хаотически распределенными обломками лав андезита размером до 5-7 м, погруженными в пылевато-песчаный заполнитель потоков, состоящий из мелких обломков андезита и породообразующих минералов. В пределах Долины количество крупных обломков на поверхности составляет 45-55 %, а на 1 м - 1.5 обломка; размером 0.5 - 5.0 м - 8-10 %; 0.05 - 0.49 м -- 35-45 %, остальное приходится на долю пылевато-песчаной массы пирокластики (заполнителей пирокластических потоков и волн, пеплов). Несколько далее выхода из Долины доля пылевато-песчаной массы увеличивается до 60-70 % (0.5 обломка на 1 м), а содержание глыб разного размера распределяется примерно так: размером 0.5-5.0 м - 5-7 %; 0.05-0.49 м -- 25-30 %, при общем

преобладании обломков размером 0.3-0.5 м. Гранулометрический состав песчано-пылеватой пирокластики варьирует от песков тонких до песков средней крупности и гравелистых с медианными диаметрами от 0.01 мм (пеплы) до 0.37 мм (заполнители пирокластических потоков).

Плотность пирокластики Долины в ее естественном залегании варьирует в пределах от 1.43 до 1.88 г/см³ (40 определений). Плотность твердой фазы меняется от 2.46 до 2.72 г/см³ (32), пористость - от 33 до 67 % (12).

Прочностные характеристики пирокластики близки стандартным их значениям для обыкновенных песков, но иногда значительно от них отличаются. Так, например, сцепления двух образцов заполнителя потока имеют значения 0.005 и 0.064 МПа и угол внутреннего трения 30 и 22 град., соответственно. В данном случае повышение сцепления заполнителя потока связано с увеличением в нем в 2.5 раза по сравнению с другим доли частиц диаметром менее 0.056 мм.

По облику пород и подобию поверхностей Долина потоков Безымянного является прекрасным аналогом марсианских поверхностей. По химическому составу отложения Марса не похожи на современные изверженные образования Земли, хотя, с другой стороны - две точки опробования не могут отразить все многообразие пород Марса, которое, вероятно, существует.

Известные породы Марса менее кислые, чем продукты вулкана Безымянный - содержание кремнезема в них 44 + 5.3 и 56,3 + 0.2 соответственно [80]. По свойствам отложения Марса довольно близки породам вулкана Безымянный. По гранулометрическому составу реголит Марса в среднем относится к пескам гравелистым [80], но содержание тонкого материала в нем меняется в широких пределах _ вероятно, от песков пылеватых до гравелистых; то есть грунты двух планет, вероятно, аналогичны. Плотность реголита Марса варьирует от 1.0 до 1.6 г/см³, вулкана Безымянный -1.38 - 1.88 г/см³. Прочностные характеристики заполнителей двух планет также похожи; сцепление их мало, угол внутреннего трения - 25-45 град. - лежит в обычных пределах для песчано-гравелистых грунтов. Повышение сцепления пород связано с обилием пылеватого материала, возможно, с некоторой цементацией пород в связи с их минерализацией и т.д., повышение угла трения - с высокой окатанностью частиц реголита благодаря внутреннего интенсивным эоловым процессам.

Таким образом, автор полагает, что использование пирокластических отложений вулкана Безымянный в качестве грунтов-аналогов планеты Марс вполне допустимо.

ЛИТЕРАТУРА

1. *Адушкин В.В., Гостинцев Ю.А., Фирстов П.П.* О природе воздушных волн при сильных эксплозивных извержениях //Вулканология и сейсмология. 1984. № 5, С. 3-11.

2. Алидибиров М.А., Богоявленская Г.Е., Кирсанов И.Т., и др. Извержение вулкана Безымянный в 1985 г. //Вулканология и сейсмология. 1988. № 6, С. 3-18.

3. Анортозиты Земли и Луны. М. Наука. 1984. 272 с.

4. Арамаки С. Пирокластические потоки и кальдеры Японии //Вулканизм островных дуг. М.; Наука. 1977. С. 164-172.

5. Асатуров М.Л., Будыко М.И., Винников К.Я. и др. Вулканы, стратосферный аэрозоль и климат Земли. Ленинград. Гидрометеоиздат. 1986. 256 с.

6. *Башарина* Л.А. Водные вытяжки пепла и газы пепловой тучи вулкана Безымянного //Бюллетень вулк.ст. 1958. № 27. С. 38-42.

7. Белый А.Д., Дудлер И.В., Мосьяков Е.Ф. и др. Природа прочности песков и некоторые вопросы оценки песчаных оснований гидротехнических сооружений.//Труды к VIII Междунар. конгрессу по механике грунтов и фундаментостроению. М.;Стройиздат. 1973. С. 246-319.

8. Богоявленская Г.Е., Брайцева О.А. О генетической классификации пирокластических отложений и типах отложений извержения вулкана Безымянный 1955-1956 гг. //Вулканология и сейсмология. 1988. № 3. С. 39-55.

9. Богоявленская Г.Е., Брайцева О.А., Мелекесцев И.В. и др. Катастрофические извержения типа направленных взрывов на вулканах Сент-Хеленс, Безымянный, Шивелуч //Вулканология и сейсмология. 1985. № 2. С. 3-26.

10. Богоявленская Г.Е., Иванов Б.В., Будников В.А. и др. Извержение вулкана Безымянного в 1977 г. //Бюллет.вулк.ст. 1979. N 57. С. 16-25.

11. Богоявленская Г.Е., Кирсанов И.Т. Двадцать пять лет вулканической активности вулкана Безымянный//Вулканология и сейсмология. 1981. № 2. С. 3-13.

12. Бондаренко А.Г., Галдин Н.Ф. О физико-механических и электрических свойствах базальтов при высоких давлениях и температурах//Физика Земли. Известия АН СССР. 1972. № 5. С.28-40

13. *Ботвинкина Л.Н.* Генетические типы отложений областей активного вулканизма //Труды ГИН АН СССР. Вып. 263. М. Наука. 1974. 318 с.

14. *Брайцева О.А., Кирьянов В.Ю.* О прошлой активности вулкана Безымянный по данным тефрохронологических исследований //Вулканология и сейсмология. 1982. № 6. С. 44-55.

15. Брайцева О.А., Мелекесцев И.В., Богоявленская Г.Е. и др. Вулкан Безымянный: история формирования и динамика активности //Вулканология и сейсмология. 1990. № 2. С. 3-22.

16. Брайцева О.А., Мелекесцев И.В., Пономарева В.В. Возрастное расчленение голоценовых образований Толбачинского дола. // Геологические и геофизические данные о Большом трещинном Толбачинском извержении 1975-1976 гг. М. Наука. 1978. С. 64-72.

17. Брайцева О.А., Мелекесцев И.В., Флеров Г.Б. и др. Голоценовый вулканизм Толбачинской региональной зоны шлаковых конусов //Большое трещинное Толбачинское извержение. Камчатка. 1975-76 гг. М. Наука. 1984. С. 177-209.

18. *Будников В.А., Малеев Е.Ф., Овсянников А.А.* Сравнительная характеристика пеплов Северного и Южного прорывов БТТИ 1975-76гг. //Бюллет.вулк.ст. 1979.№ 56. С. 131-141.

19. Будников В.А., Мархинин Е.К., Овсянников А.А. Количество, распространение и петрохимические особенности пирокластики БТТИ // Геологические и геофизические данные о Большом трещинном Толбачинском извержении. М. Наука. 1978. С. 32-43.

20. *Будыко М.И., Голицын Г.С., Израэль Ю.А.* Глобальные климатические катастрофы. М. Гидрометеоиздат. 1986. 160 с.

21. *Быкасов В.Е.* Шлако-пепловый чехол извержения 1975 г.и поражение растительности Толбачинского дола//Вулканология и сейсмология. 1981. № 1.С. 76-78.

22. Влодавец В.И. Ключевская группа вулканов//Труды Камчатской вулк. ст. Вып.1. М-Л. Изд-во АН СССР. 1940. 124 с.

23. Влодавец В.И. Справочник по вулканологии. М.; Наука. 1984. 340 с.

24. Волков В.П. Химия атмосферы и поверхности Венеры. М. Наука. 1983. 208 с.

25. Волынец О.Н., Флеров Г.Б., Хренов А.П. и др. Петрология вулканических пород трещинного Толбачинского извержения 1975 г. //Докл. АН СССР. 1976. т. 228. № 6, С. 1419-1422.

26. Вялов С.С. Новейшие методы исследования прочности и деформируемости грунтов //Труды к VIII Междунар. конгрессу по механике грунтов и фундаментостроению. М. Стройиздат. 1973. С. 341-355.

27. Гирина О.А. Инженерно-геологические особенности шлаков Толбачинского дола и их преобразование в ходе поствулканических процессов //Инженерная геология. 1986. № 1. С. 32-38.

28. Гирина О.А. Отложения пирокластических волн вулкана Безымянный// Вулканология и сейсмология. 1996. № 5. С. 42-53.

29. Гирина О.А. Пирокластические образования вулкана Безымянный извержений 1984-1989 гг. //Вулканология и сейсмология. 1993. № 4. С. 88-97.

30. Гирина О.А. Пирокластические отложения извержения вулкана Безымянный в октябре 1984 г. //Вулканология и сейсмология. 1990. № 3. С. 82-91.

31. *Гирина О.А.* Современные пирокластические отложения вулканов Камчатки и их инженерно-геологические особенности. Автореферат диссерт. на соиск....к.г.-м.н. Москва. 1994. 23 с.

32. Гирина О.А. Типы пирокластических отложений вулкана Безымянного и критерии их выделения //Вулканологические исследования на Камчатке. П-Камчатский. 1988. С. 9-14.

33. Гирина О.А., Богоявленская Г.Е., Демянчук Ю.В. Извержение вулкана Безымянный 2 августа 1989 г. //Вулканология и сейсмология 1993. № 2. С. 8-15.

34. *Гирина О.А., Румянцева Н.А.* Микростроение тефры вулкана Шивелуч //Вулканология и сейсмология. 1993. № 5. С. 34-47.

35. Глубинное строение, сейсмичность и современная деятельность Ключевской группы вулканов. Владивосток. 1976. 148 с.

36. Горшков Г.С. Извержение сопки Безымянной // Бюллет. вулкан. станц. 1957. № 26. С. 19-72.

37. Горшков Г.С., Богоявленская Г.Е. Вулкан Безымянный и особенности его последнего извержения 1955-1963 гг. М. Наука. 1965. 172 с.

38. Горшков Г.С., Дубик Ю.М. Направленный взрыв на вулкане Шивелуч //Вулканы и извержения. М. Наука. 1969. С. 3-37.

39. Горшков Г.С. К вопросу о классификации некоторых типов взрывных извержений //Проблемы вулканизма. Ереван. Изд-во АН АрССР. 1959. С. 55-60.

40. *Горшков Г.С.* Направленные вулканические взрывы //Геология и геофизика. 1963. № 12. С. 140-143.

41. Горькова И.М. Физико-химические исследования дисперсных осадочных пород в строительных целях. М. Стройиздат. 1975.

42. Грунтоведение //Ред. акад. Е.М.Сергеева. М. Изд-во МГУ. 1983. 392 с.

43. Гущенко И.И. Пеплы Северной Камчатки и условия их образования. М. Наука. 1965. 144 с.

44. *Гущенко И.И.* Реконструкция пирокластических ареальных отложений (тефры) //Вулканология и сейсмология. 1986. № 4. С.17-33.

45. Действующие вулканы Камчатки. М. Наука. 1991 г. 1т. 304 с.

46. Дементьева О.В. Изучение зависимости физико-механических свойств песков от структурных особенностей песчаных зерен. Автореферат на соиск.... к.г.-м.н. М. 1983. 23 с.

47. Дубик Ю.М., Меняйлов И.А. Новый этап эруптивной деятельности вулкана Безымянный //Вулканы и извержения. М. Наука. 1969. С. 38-77.

48. Дудлер И.В., Потапов А.Д. Некоторые особенности морфологии зерен песков различного генезиса и методика их изучения //Вопросы инженерной геологии. Сборник трудов МИСИ. № III. М. 1974. С. 109-123.

49. Дудлер И.В. Принципы изучения песков с позиций генетического грунтоведения и основные категории их состояния и свойств //Вопросы инженерной геологии. Сб. трудов МИСИ. № III. М. 1974. С. 96-109.

50. *Ермаков В.А., Важеевская А.А.* Вулканы Острый и Плоский Толбачик. //Бюллет.вулканол. ст. 1973. № 49. С. 43-53.

51. Заварицкий А.Н., Пийп Б.И., Горшков Г.С. Изучение вулканов Камчатки //Тр.Лабор.вулканологии АН СССР. Вып. 8. 1954. М.: Изд-во АН СССР. С. 18-57.

52. Ибрагимов К. Исследования структурно-механических свойств рыхлых и пористых вулканических пород и моделирующих их материалов //Автореферат диссерт. на соиск. к.т.н. М. Изд-во МИСИ. 20 с.

53. *Иванов Б.В.* Типы андезитового вулканизма Тихоокеанского подвижного пояса. М. Наука. 1990. 213 с.

54. Иванов П.Л. Разжижение и уплотнение несвязных грунтов при динамических воздействиях. Л. ЛПИ. 1978. 52 с.

55. Игнатченко Н.А. Влияние землетрясений на условия формирования пород //Литология и полезные ископаемые. 1968. № 2.

56. *Кашкаров И.Ф.,Полканов Ю.А.* О распределении минералов прибрежных титаноносных россыпей по скорости падения в воде и крупности зерен //Литология и полезные ископаемые. 1976. № 2. С. 84-89.

57. Кирсанов И.Т., Гирина О.А. Особенности вулканогенных отложений Камчатки как аналогов грунтов других планет //Вулканизм, структуры и рудообразование. П-Камчатский. 1992. С. 20-21.

58. Кирсанов И.Т., Двигало В.Н., Гирина О.А. и др. Извержение в. Безымянного в 1984 г., его продукты, геологический и энергетический эффекты //Вулканизм и связанные с ним процессы. Вып. 1. П-Камчатский. 1985. С. 34-35.

59. Кирсанов И.Т., Студеникин Б.Ю. Динамика экструзивного извержения вулкана Безымянный в 1965-1968 гг. //Бюллет.вулк.ст. М. Наука. 1971. № 47. С. 15-22.

60. Кирсанов И.Т., Студеникин Б.Ю., Рожков А.М. и др. Новый этап извержения вулкана Безымянного //Бюллет.вулк.ст. 1971. № 47. С. 8-14.

61. *Кирьянов В.Ю.* Гравитационная эоловая дифференциация пеплов вулкана Шивелуч (Камчатка) //Вулканология и сейсмология. 1983. № 6. С. 30-39.

62. Кирьянов В.Ю., Рожков Г.Ф. Гранулометрический состав тефры крупнейших эксплозивных извержений вулканов Камчатки в голоцене //Вулканология и сейсмология. 1989. № 3. С. 16-29.

63. Классификация лунных магматических пород //Под ред. О.Богатикова. М. Недра. 1985. 72 с.

64. *Краевая Т.С.* Генетические типы грубообломочных отложений стратовулканов. М. Недра. 1977. 128 с.

65. Краевая Т.С., Мелекесцев И.В. Рыхлые отложения подножий молодых стратовулканов Камчатки и вопросы их генезиса //Вулканические фации Камчатки. М. Наука. 1969. С.35-55

66. Криволуцких А.Е. Голубая планета. М.; Мысль. 1985. 334 с.

67. Ксанфомалити Л.В. Планета Венера. М.; Наука. 1985. 376 с.

68. *Кригер Н.И.* Дисперсные горные породы как среда распространения сейсмических волн//Сейсмическое микрорайонирование и техногенез. М. Наука. 1985. С. 3-11.

69. *Ларионов А.К.* Гранулометрия рыхлых пород в инженерной геологии //Сб. тр.ГИ АН СССР и Межвед.литологич.комитета АН СССР М. 1978. С. 98-105.

70. Ларионов А.К. Методы исследования структуры грунтов. М. Недра. 1971. 200 с.

71. *Лысенко М.П.* Состав и физико-механические свойства грунтов. М.; Недра. 1980. 272 с.

72. *Макдональд Г*. Вулканы. М. Мир. 1975. 432 с.

73. *Максимов А.П., Фирстов П.П., Гирина О.А. и др.* Извержение вулкана Безымянный в июне 1986 г. //Вулканология и сейсмология 1991.№ 1. С. 3-20.

74. *Малеев Е.Ф.* Вулканиты. М. Недра. 1980. 240 с.

75. *Малеев Е.Ф.* Критерии диагностики фаций и генетических типов вулканитов. М.; Наука. 1975. 256 с.

76. *Малышев А.И.* Извержение вулкана Безымянный в 1981-1984 гг. //Вулканология и сейсмология. 1987. № 2. С. 89-93.

77. *Маркин Б.П.* Просадки в пепловых толщах Камчатки //Инженерная геология. 1980. № 1. С. 61-75.

78. *Маркин Б.П.* Прочностные свойства пепловых грунтов Камчатки //Инженерная геология 1983. № 2. С. 39-47.

79. Мархинин Е.К. Вулканизм. М.; Недра. 1985. 288 с.

80. Маров М.Я. Планеты Солнечной системы. М. Наука. 1986. 320 с.

81. Маслов Н.Н., Канан В.А. К вопросу о динамической устойчивости затопленных песчаных откосов//Гидротехническое строительство. 1970. № 1. С. 11-15.

82. Мелекесцев И.В. Вулканизм и рельефообразование. М. Наука. 1980. 212 с.

83. Мелекесцев И.В., Кирьянов В.Ю., Праслов Н.Д. Катастрофическое извержение в районе Флегрейских полей (Италия)- возможный источник вулканического пепла в позднеплейстоценовых отложениях Европейской части СССР //Вулканология и сейсмология. 1984. № 3. С. 35-44.

84. *Меняйлов А.А.* Вулкан Шивелуч - его геологическое строение состав и извержения //Труды лаборат.вулканол.АН СССР. Вып. 9. М. Изд-во АН СССР. 1955. 264 с.

85. Методическое пособие по инженерно-геологическому изучению горных пород //Под ред.Е.М.Сергеева. 2-е изд. М. Недра. 1984. 438 с

86. *Набоко С.И., Главатских С.Ф.* Постэруптивный метасоматоз и рудообразование. М. Наука. 1983. 168 с.

87. О природе плывунности песчано-коллоидных пород // Тр.ЛГГП АН СССР. 1957. т.15. С. 62-152.

88. Осадочные породы //Под ред. В.И. Богатова. Новосибирск. Наука. 1990. 269 с.

89. Осипов В.И. Природа прочностных и деформационных свойств глинистых пород. М. Изд-во МГУ. 1979. 235 с.

90. Передвижение по грунтам Луны и планет //Под ред. А.Л.Кемурджиана. М.: Машиностроение. 1986. 272 с.

91. *Пийп Б.И*. Ключевская сопка и ее извержения в 1944-45 гг. и в прошлом //Труды лабор. вулканол. Вып. 11. М. Изд-во АН СССР 1956. 312 с.

92. Платов Н.А. Природа структурных связей песчаных несцементированных пород. М. Наука. 1982. 96 с.

93. Пономарева В.В. Тефра как объект исследований при изучении эволюции магматического вещества //Вулканологич.исслед.на Камчатке. П-Камчатский. 1988. С. 14-19.

94. Пономарева В.В. Тефра шлаковых конусов Толбачинского дола (Ключевская группа вулканов, Камчатка) //Вулканология и сейсмология. 1982. № 2. С. 62-72.

95. Пополитов Э.И., Волынец О.Н. Геохимические особенности вулканических пород Курило-Камчатской островной дуги и некоторые вопросы петрогенезиса. Новосибирск. Наука. 1981. 182 с.

96. Потапов А.Д. Влияние морфологии зерен песков различного генезиса на их свойства //Вопросы инженерной геологии. Сборн.трудов МИСИ. N 145. М. 1977.

97. Природные стекла - индикаторы геологических процессов //Отв. ред. О.А.Богатиков, А.М.Борсук. М. Наука. 1987. 158 с.

98. *Раст Х.* Вулканы и вулканизм. М. Мир. 198. 344 с.

99. Родионова Ж.Ф., Дехтярева К.И. Гипсометрические особенности Луны и планет земной группы //Проблемы комплексного исследования Луны. М. Изд-во МГУ. 1986. С. 56-71.

100. *Рожков Г.Ф.* Геологическая интерпретация гранулометрических параметров по данным дробного ситового анализа //Сборник ГИ АН СССР и межвед. литолог.комитета АН СССР. М. 1978. С. 5-25.

101. Романовский С.И. Физическая седиментология. Л. Недра. 1988. 240 с.

102. Росс К.С., Смит Р.Л. Туфы пеплового потока, их происхождение, геологические отношения и идентификация //Проблемы палеовулканизма. М. Изд-во Иностр.литер. 1963. С.347-477.

103. *Сасов А.Ю*. Автоматизация испытаний механических свойств грунтов //Инженерная геология. 1986. № 2. С. 92-98.

104. Селезнев Б.В., Двигало В.Н., Гусев Н.А. Развитие вулкана Безымянный по данным стереофотограмметрической обработки материалов аэрофотосъемок 1950, 1967 и 1976-1981 гг. //Вулканология и сейсмология. 1983. № 1. С. 52-64.

105. Серафимова Е.К., Сергеева, Соловьева Н.А. Постэруптивная активность на Северном прорыве БТТИ через 10 лет после его образования //Вулканология и сейсмология. 1988. № 5, С. 42-52.

106. Смит Р.Л. Потоки вулканического пепла //Проблемы палеовулканизма. М. Изд-во Иностр. литер. 1963. С. 307-370.

107. Теоретические основы инженерной геологии. Физико-химические основы //Под ред. Е.М.Сергеева. М. Недра. 1985. 288 с.

108. Фролов В.Т., Щербакова М.Н. К построению актуалистической модели эксплозивно-осадочного процесса //Вестник МГУ. Сер. 4. Геология. 1991. N 6. С. 33-40.

109. *Чаповский Е.Г.* Лабораторные работы по грунтоведению и механике грунтов. М.; Недра. 1975. 272 с.

110. Черкасов И.И., Шварев В.В. Грунтоведение Луны. М. Наука. 1979. 232 с.

111. Черкасов И.И., Шварев В.В. Физические и механические свойства современных рыхлых отложений вулканов Камчатки и их сопоставление со свойствами грунтов Луны //Изв. АН СССР. Физика Земли. 1970. № 11. С. 3-20.

112. Черкасов И.И., Шварев В.В., Штейнберг Г.С. Рыхлые вулканические отложения - возможные земные аналоги грунтов Луны //Космические исследования. 1969. № 7. вып. 5. С. 760.

113. Banks N.G. and Hoblitt R.P. 1981. Summari of 1980 deposits//The 1980 eruptions of Mount St. Helens, Washington. U.S. Geol. Survey Prof. Paper. 1250. 295-313.

114. *Bogoyavlenskaya G.E., Girina O.A.* Types of pyroclastic deposits of 35-year Bezymianny eruptive circle. Abstracts. International volcanological congress. Mainz. 1990.

115. Bryson R.A., Goodman B.M. Volcanic activity and climatic changes. Science. 1980. vol.207. N 4435. p. 1041-1044.

116. *Curtis G.H.* The stratigraphy of the ejecta from the 1912 eruption of Mount Katmai and Novarupta, Alaska, Geol. Soc.Mem. 1968. 116. p. 153-210.

117. *Fenner C.N.* The origin and mode of emplacement of the great tuff deposit in the Valley of Ten Thousand Smokes, Natl. Geogr. Soc., Contrib.Tech.Papers, Katmai Ser., N 1. P. 1-74.

118. *Ficher R.V.* Models for pyroclastic surges and pyroclastic flows //J.Volcanol. Geotherm. Res. 1979. V 6.P.305-31

119. *Fisher R.V. and Heiken G.* 1982. Mt.Pelee, Martinique. May 8 and 20, 1902 pyroclastic flows and surges. J. Volcanol. Geotherm. Res. 13. P. 339-371.

120. Fisher R.V. and Schminke H.U. Pyroclastic rocks//Springer -Verlag. Berlin, Heidelberg, New York, Tokyo. 1984. 472 p.

121. Gilbert J.S., Lane S.J. The origin of accretionary lapilli //Bull.volcanol. 1995. N 56. P. 626-639.

122. *Heiken G. and Wohletz K.* Volcanic ash.//University of California Press. Berkeley, Los Angeles. London. 1985. 246 p.

123. *Hoblitt R.P., Miller C.D.*, Vallance J.W. Origin and stratigraphy of the deposit produced by the May 18 directed blast //The 1980 Eruptions of Mount ST. Helens, Wash.Geol. Survey Prof. Paper. 1981. V. 1250. P. 401-419.

124. Lacroix A. La Montagne Pelee et ses eruptions //Masson et Cie, Paris. 1904. P. 1-662.

125. *Lacroix A*. Remarques sur les materiaux de projection des volcans et sur la genese des roches pyroclastiques quils constituent//Livre Jubilairo. Centenaire de la Societe Geologique de France. 1830-1930.

126. Lipman P.W., Norton D.R., Taggart J., Brandt E.L. and Engleman E.E. Compositional variations in 1980 magmatic deposits //The 1980 Eruptions of Mount St.Helehs. Washington. Geol.Survey Prof. Paper. 1981. P.631-640.

127. *Miller T.P. and Smith R.L.* Spectacular mobility of ash Hows aboung Aniakchak and Fisher calderas, Alaska. Geologi, 5. 1977. P. 173-176.

128. Magellan Bulletin about Venus and the Radar Mapping Mission. July 1991.

129. *Moore J.G.* Base surge in recent volcanic eruptions // Bull. Volcanol. 1967. V.30. P. 337-363.

130. *Moore J.G., Sisson T.W.* Deposits and effects of the May 18 pyroclastic surge //The 1980 Eruptions of Mount St.Helens. Wash.,Geol. Surv. Prof. Paper. 1981. V.1250. P. 421-439.

131. Perret F.A. The eruption of Mt.Pelee 1929-1932.Carnegie Inst. Washington Publ. 1937. V.458. P.126.

132. *Schmincke H.U and Johnston D.A.* 1977. Contrasting pyroclastic flow deposit the 1976 eruption of Augustine Volcano Alaska.Geol.Soc.Amer.Abst.With Programs 9. P.1161.

133. *Schumacher R., Schmincke H.-U.* Internal structure and occurrence of accretionary lapilli - a case study at Laacher See Volcano //Bull.Volcanol. 1991. N 53. P. 612-634.

134. Schumacher R., Schmincke H.-U. Models for the origin of accretionary lapilli //Bull.Volcanol. 1995. N 56. P. 626-639.

135. *Sheridan M.F.* Emplacement of pyroclastic flows: a review //Geol. Soc. Amer. SP. Paper. 1979. V.180. P.125-136.

136. Sigurdsson M., Carey S.N., Fisher R.V. The 1982 eruptions of El Chichon volcano, Mexico //Physical Properties of Pyroclastic Surges. Bull.Volcanol. 1987. V.49. P. 467-488.

137. *Sparks R.S.I., Walker G.P.L.* The ground surge deposit - a hird type of pyroclastic rock //Nature. Physical Science. 1973. V. 241. P. 62-64.

138. *Sparks R.S.J.* Gas release rates from pyroclastic flows: An assessment of the role of fluidization in their emplacement. Bull. Volcanol. 1979. 41. P. 1-9.

139. *Sparks R.S.J.* Grain size variation in ignimbrites and implications for the transport of pyroclastic flows //Sedimentology. 1976. V. 23 P. 147-188.

140. Sparks R.S.I., Self S., Walker G.P.L. Products of ignimbrite eruptions//Geology. 1973. V.1. P.115-118.

141. *Sparks R.S.L., Wilson L.* A model for the formation of ignimbrite by gravitational column collapse //J.Geol. Soc.London 1976. V.132. P. 441-451.

142. The 1980 Eruptions of Mount St.Helens. Washington. Geol. Survey Prof. Paper. 1981. 1250 p.

143. *Thorarinsson S.* Laxargliufur and Laxarhraun, a tephrochro nological study. Mus.Nat.Hist. Reykjavik.Misc. Papers. 2. 88. 1951.

144. *Wilson L*. Explosive volcanic eruptions. 111 Plinian eruption columns. Geophys. J. R. Soc. 1976. V.45. P. 543-556.

145. Wilson C.J.N., Walker G.P.L. Ignimbrite depositional facies: the anatomy of a pyroclastic flow // J.Gtol. Soc. London 1982. V.139. P.581-592.

146. Wohletz K.H. and Sheridan M.F. A model of pyroclastic surge //Geol. Soc. Amer. Sp. Paper. 1979. V.180 P. 177-194.

147. Wright J.V., Smith A.L., Self S. A working terminology of pyroclastic deposits //J.Volcanol. Geotherm. Res. 1980. V.8.P. 315-336.

148. Wright J.V., Smith A.L., Self S.A. A terminology for pyroclastic deposits//Tephra studies Reidel Publ.Co., Dordrecht. Holland. 1981. P. 457-463.

приложение

Диаметр частиц, мм

