




Practical Seismic Data Analysis

This modern introduction to seismic data processing in both exploration and global geo-
physics demonstrates practical applications through real data and tutorial examples. The
underlying physics and mathematics of the various seismic analysis methods are presented,
giving students an appreciation of their limitations and potential for creating models of
the subsurface. Designed for a one-semester course, this textbook discusses key techniques
within the context of the world’s ever-increasing need for petroleum and mineral resources –
equipping upper undergraduate and graduate students with the tools they need for a career
in industry.

Key features

� Examples throughout the texts allow students to compare different data analysis methods
and can be demonstrated using the instructor’s software of choice.

� Exercises at the end of sections allow the students to check their understanding and put
the theory into practice.

� Further reading lists encourage exploration of more advanced and detailed literature
relating to topics covered in the book.

Hua-Wei Zhou is Professor and Robert Sheriff Endowed Chair of Applied Seismology at the
University of Houston, and has held the position of “Lv-Ka” Scholar at Ocean University
of China in Qingdao since 2010. He is one of the few experts in seismic imaging to have
done extensive research in both exploration geophysics and solid Earth geophysics, having
worked for Exxon Production Research Company as well as having 20 years’ academic
teaching experience. He has taught the materials for this book in graduate classes as well
as in industry short courses, given in the USA, South Africa, and China.

“This book is a valuable reference for senior undergraduates and graduates in exploration
geophysics and seismology. It covers all the common methods and steps of seismic data
processing, using clearly presented mathematics. In particular, helpful Boxes in the text
enable readers to better understand both basic and crucial information, supported well by
the Exercises and Further Reading lists also provided.”
– Jingyi Chen, Decker Dawson Assistant Professor of Geophysics, University of Tulsa
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PREFACE

Seismic data analysis transfers seismic records measured at the surface or along wellbores
into imagery, estimates, and models of subsurface structures and properties. It covers
the topics of digital seismic data processing, seismic migration, and subsurface model
building that are useful in both exploration geophysics and solid Earth geophysics. Although
several excellent books have covered these topics either from the viewpoint of exploration
geophysics or that of solid Earth geophysics, I was motivated to write this book to deal with
common seismic analysis methods for both aspects of geophysics. This book is intended
as an introductory text on common and practical methods in seismic data analysis.

Most of the materials for this book originated as lecture notes for graduate courses in
geophysics at University of Houston and Texas Tech University. Students on these courses
usually have a variety of backgrounds: many are recent graduates from geophysics, geol-
ogy, engineering, computer sciences, or other physical science disciplines, and others are
employees in the petroleum industry. They intend to apply seismic data analysis skills to
problems in exploration geophysics, solid Earth geophysics, and engineering and environ-
mental sciences. Although they may have access to some commercial or free software in
seismic processing, most of these students have not gone through a systematic review of
common approaches to seismic data analysis and the practical limitations of each method.
Hence, an effort has been made in this book to emphasize the concepts and practicality of
common seismic analysis methods using tutorial and case examples or schematic plots.

The first six chapters of the book prepare the background and deal mostly with time
processing. Chapter 1 introduces seismic data and issues of sampling, amplitude, and phase.
Chapter 2 addresses pre-processing of reflection seismic data using examples on normal
moveout (NMO) analysis, noise suppression, and near-surface statics. The topics of discrete
Fourier transform and wavelet transfer are both discussed in Chapter 3 in terms of the law
of decomposition and superposition. Chapter 4 is devoted to the meaning and assessment of
seismic resolution and fidelity. Chapter 5 discusses filtering of time series using z-transform
and Fourier transform methods. Chapter 6 covers several common deconvolution methods.

Each of the final four chapters may be studied independently: Chapters 7 to 9 are on
three main branches of seismic data analysis, and Chapter 10 covers several special topics.
Chapter 7 introduces several seismic migration methods that have served as the main sub-
surface seismic imaging tools in exploration geophysics. Chapter 8 is on seismic velocity
analysis using semblance, migration, and tomography. Chapter 9 discusses the basic issues
and relationship between seismic modeling and inversion. Chapter 10 addresses processing
issues in topics of seismic data acquisition, suppressing of multiple reflections, seismic
velocity anisotropy, multi-component seismic data, and seismic attributes.

Each chapter starts with an overview paragraph describing the sections to follow. Terms
defined are indicated by bold font. For students, it is especially important to comprehend
the meaning of common terms and concepts in the field because this often reflects the
depth of their understanding. A large number of figures are given that illustrate concepts or
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applications. Several boxes are provided in each chapter to examine specific case studies
or ideas. There is an exercise at the end of each main section. Each chapter ends with a
summary of key concepts, and a list of further reading. All serious learners should read
several technical papers from the suggested reading lists, to draw connections between the
issues covered by the chapter and the reference papers.

The mathematical content has been kept to a minimum, although I assume that readers
are comfortable with basic calculus and linear algebra including matrices. Most parts of
the book should be readable by those with an undergraduate degree in physical science
or engineering. Readers without much mathematical training should focus on the main
concepts and physical meanings.

This book could not have been completed without the encouragement of Dr. Robert E.
Sheriff, my colleague and mentor. I would like to thank my fellow geophysicists for granting
permission to reproduce figures from their publications. I acknowledge the assistance
of many people in the preparation of this book, especially those students who provided
feedback. I particularly thank Kurt Marfurt, Oong Youn, Mike Thornton, Zhihui Zou, Fang
Yuan, and Wendy Zhang. This book is dedicated to my parents.

Hua-Wei Zhou



1 Introduction to seismic data and processing

Chapter contents

1.1 Seismic data and their acquisition, processing, and interpretation

1.2 Sampled time series, sampling rate, and aliasing

1.3 Seismic amplitude and gain control

1.4 Phase and Hilbert transforms

1.5 Data format and quality control (QC)

1.6 Summary

Further reading

The discipline of subsurface seismic imaging, or mapping the subsurface using seismic
waves, takes a remote sensing approach to probe the Earth’s interior. It measures
ground motion along the surface and in wellbores, then puts the recorded data through
a series of data processing steps to produce seismic images of the Earth’s interior in
terms of variations in seismic velocity and density. The ground movements recorded by
seismic sensors (such as geophones and seismometers onshore, or hydrophones and
ocean bottom seismometers offshore) contain information on the media’s response to
the seismic wave energy that traverses them. Hence the first topic of this chapter is on
seismic data and their acquisition, processing, and interpretation processes. Because
nearly all modern seismic data are in digital form in order to be stored and analyzed
in computers, we need to learn several important concepts about sampled time series
such as sampling rate and aliasing; the latter is an artifact due to under-sampling. In
exploration seismology, many useful and quantifiable properties of seismic data are
called seismic attributes. Two of the most common seismic attributes are the amplitude
and phase of seismic wiggles. They are introduced here together with relevant processing
issues such as gain control, phase properties of wavelets, and the Hilbert transform,
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which enables many time-domain seismic attributes to be extracted. To process real
seismic data, we also need to know the basic issues of data formats, the rules of storing
seismic data in computers. To assure that the data processing works, we need to
conduct many quality control checks. These two topics are discussed together because
in practice some simple quality control measures need to be applied at the beginning
stage of a processing project.

A newcomer to the field of seismic data processing needs to know the fundamental
principles as well as common technical terms in their new field. In this book, phrases
in boldface denote where special terms or concepts are defined or discussed. To
comprehend each new term or concept, a reader should try to define the term in his
or her own words. The subject of seismic data processing often uses mathematical
formulas to quantify the physical concepts and logic behind the processing sequences.
The reader should try to learn the relevant mathematics as much as possible, and, at
the very least, try to understand the physical basis and potential applications for each
formula. Although it is impossible for this book to endorse particular seismic processing
software, readers are encouraged to use any commercially or openly accessible seismic
processing software while learning seismic data processing procedures and exercises.
An advanced learner should try to write computer code for important processing steps
to allow an in-depth comprehension of the practical issues and limitations.

1.1 Seismic data and their acquisition, processing, and interpretation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
As a newcomer, you first want to know the big picture: the current and future objectives
and practices of seismic data processing, and the relationship of this field to other related
disciplines. You will need to comprehend the meanings of the most fundamental concepts
in this field. This section defines seismic data and a suite of related concepts such as signal-
to-noise ratio (SNR or S/N), various seismic gathers, common midpoint (CMP) binning
and fold, stacking, pre-stack versus post-stack data, and pre-processing versus advanced
processing. The relationship between acquisition, processing, and interpretation of seismic
data is discussed here, since these three processes interrelate and complement each other
to constitute the discipline of subsurface seismic imaging.

1.1.1 Digital seismic data

Seismic data are physical observations, measurements, or estimates about seismic sources,
seismic waves, and their propagating media. They are components of the wider field of
geophysical data, which includes information on seismic, magnetic, gravitational, geother-
mal, electromagnetic, rock physics, tectonophysics, geodynamics, oceanography, and atmo-
spheric sciences. The form of seismic data varies, and can include analog graphs, digital
time series, maps, text, or even ideas in some cases. This book treats the processing of a
subset of seismic data, those in digital forms. We focus on the analysis of data on body
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Figure 1.1 Relationship between data acquisition, processing, and interpretation.

waves, mostly P-waves, in their transmission, reflection, diffraction, refraction, and turning
processes. The processing of other seismic data and many non-seismic data often follows
similar principles.

The purpose of acquiring and processing seismic data is to learn something about the
Earth’s interior. To understand certain aspects of the Earth, we initially need to figure
out some specific relations between the intended targets and measurable parameters. Then
our first step is to conduct data acquisition designed for the problem, our second step
to use data processing to identify and enhance the desired signal, and our third step to
conduct data interpretations based on the processed data. In reality, the processes of data
acquisition, processing and interpretation are interconnected and complement each other;
their relationship may be viewed as shown in Figure 1.1.

After data acquisition and before data processing, we need to conduct the process of
data quality control, or QC. This involves checking the survey geometry, data format, and
consistency between different components of the dataset, and assuring ourselves that the
quality and quantity of the dataset are satisfactory for our study objectives. The data QC
process is typically part of the pre-processing. After pre-processing to suppress various
kinds of noise in the data, seismic imaging is conducted to produce various forms of
imagery for the interpretation process. The seismic imaging methods include seismic
migration, seismic tomography, and many other methods of extracting various seismic
attributes. Some people call seismic imaging methods the advanced processing. The scope
of this book covers the entire procedure from pre-processing to seismic imaging.

After data interpretation, we often conduct seismic modeling using the interpreted model
and the real data geometry to generate predictions to compare with the real measurements,
and hence further verify the interpretation. The three inner arrows shown in Figure 1.1 show
how the interactions between each pair of components (namely the data QC, imaging, or
modeling processes) are influenced by the third component.

1.1.2 Geometry of seismic data gathers

Seismic data acquisition in the energy industry employs a variety of acquisition geometries.
In cross-section views, Figure 1.2 shows two seismic acquisition spreads, the arrangements
of shots and receivers in seismic surveys. Panel (a) shows a split spread, using a shot
located in the middle and many receivers spread around it. This spread is typical of onshore
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Figure 1.2 Cross-section views of two seismic data acquisition spreads and raypaths.
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Figure 1.3 Cross-section views of (a) a common receiver gather and (b) a common midpoint
(CMP) gather.

acquisition geometry using dynamite or Vibroseis technology as sources and geophones as
receivers. The real-world situation is much more complicated, with topographic variations,
irregular source and receiver locations in 3D, and curving raypaths. Panel (b) shows an
end-on spread, with a shot located at one end and all receivers located on one side of
the shot. This spread is the case for most offshore seismic surveys using airgun or other
controlled sources near the boat and one or more streamers of hydrophones as receivers.
In comparison with onshore seismic data, offshore seismic data usually have much higher
quality because of a number of favorable conditions offshore, including consistent and
repeatable sources, good coupling conditions at sources and receivers, and the uniform
property of water as the medium. However, offshore seismic data may have particular noise
sources, especially multiple reflections, and at present most 3D offshore seismic surveys
have much narrower azimuthal coverage than their onshore counterparts.

The seismic data traces collected from many receivers that have recorded the same shot,
such as that shown in Figure 1.2, produce a common shot gather (CSG). A seismic gather
refers to a group of pre-stack seismic traces linked by a common threading point. The phrase
“pre-stack traces” refers to data traces retaining the original source and receiver locations;
they are in contrast to the “post-stack” or “stacked traces” that result from stacking or
summing many traces together.

A common receiver gather (CRG) as shown in Figure 1.3a is a collection of traces
recorded by the same receiver from many shots, and a common midpoint (CMP) gather
(Figure 1.3b) is a collection of traces with their source-to-receiver midpoint falling within
the same small area, called a CMP bin. Among the three common types of seismic gathers,
the reflection spread, or the lateral extent of reflection points from a seismic gather across
a reflector, is zero for the CMP gather in the case of a flat reflector beneath a constant
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Figure 1.4 Map views of an acquisition geometry from the Canadian Rockies (Biondi, 2004).
(a) Locations of shots (asterisks) and receivers (dots) for two consecutive shot gathers.
(b) Offsets of 1000 traces, randomly selected.

velocity medium (Figure 1.3b). There are other gathers, such as a common image-point
(CIG) gather, which is a collection of migrated traces at the same image bin location.
Some people call a collection of traces with the same amount of source-to-receiver offset
as a common offset gather, though it is logically a common offset section.

1.1.3 CMP binning and seismic illumination

Owing to the minimum spread of reflection points, traces of each CMP gather can be
summed or stacked together to form a single stacked trace, A stacked trace is often
used to approximate a zero-offset trace, which can be acquired by placing a shot and a
receiver at the same position. The stacked trace has good signal content because the stack-
ing process allows it to take all the common features of the original traces in the gather.
Consequently, the CMP gathers are preferred to other gathers in many seismic data process-
ing procedures. However, because the CSG or CRG data are actually collected in the field, a
process of re-sorting has to be done to reorganize the field data into the CMP arrangement.
This is done through a process called binning, by dividing the 2D line range or the 3D
survey area into a number of equal-sized CMP bins and, for each bin, collecting those
traces whose midpoints fall within the bin as the CMP gather of this bin. The number
of traces, or midpoints, within each CMP bin is called the fold. As an important seismic
survey parameter, the fold represents the multiplicity of CMP data (Sheriff, 1991).

Figures 1.4 and 1.5, respectively, show the geometries of two 3D surveys onshore and
offshore. In each of these figures the left panel shows the locations of the shots and receivers,
and the right panel shows the midpoint locations of 1000 traces randomly selected from the
corresponding survey. To maintain a good seismic illumination, the fold should be high
enough and distributed as evenly as possible over the survey area. In practice, the desire
for good seismic illumination has to be balanced against the desire to make the survey as
efficient as possible to reduce the cost in money and time. In 3D onshore seismic surveys,
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Figure 1.5 Map views of a three-streamer acquisition from the North Sea (Biondi, 2004).
(a) Locations of shots (asterisks) and receivers (dots) for two consecutive shot gathers.
(b) Offsets of 1000 traces, randomly selected.

the orientations of the shot lines are often perpendicular to the orientations of the receiver
lines in order to maximize the azimuthal coverage of each swath, which is a patch of area
recorded by an array of sensors at one time. Typically there is an inline direction along
which the spatial sampling is denser than the perpendicular crossline direction. The inline
is often along the receiver line direction, like that shown in Figure 1.4a, because the spacing
between receivers is typically denser than the spacing between shots. In the case of irregular
distributions of shots and receiver lines, however, the inline direction may be decided based
on the distribution of midpoints of data, like that shown in Figure 1.5b.

Sometimes special layouts of shot and receivers are taken to optimize the seismic illu-
mination. Figure 1.6 shows an example of a special 3D seismic survey geometry over the
Vinton salt dome in southwest Louisiana. The survey placed receivers along radial lines
and shots in circular geometry centered right over the subsurface salt diapir. In most applied
sciences, quality and cost are the two main objectives that often conflict with each other,
and the cost is in terms of both money and time. Because geophones today are connected
by cables, they are most effectively deployed in linear geometry, such as along the radial
lines in this example. The sources here were Vibroseis trucks which can easily be run along
the circular paths. Similarly, in carrying out seismic data processing projects, we need to
satisfy both the quality and cost objectives.

1.1.4 SNR and CMP stacking

With respect to the objectives of each project, geophysical data may contain relevant
information – the signal – and irrelevant components – noise. A common goal for digital
data processing in general and for seismic data processing in particular is to improve the
signal-to-noise ratio or SNR. In seismology the SNR is often expressed as the ratio between
the amplitude of the signal portion and the amplitude of the noise portion of seismic traces.
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Figure 1.6 Map view of a 3D seismic survey over the Vinton salt dome in west Louisiana. The
straight radial lines denote receiver positions, and the circular lines denote shot positions. The
geometry of the shot and receiver layout is designed to optimize the coverage of reflection
waves from the boundary of the underlying salt dome.

Box 1.1 Why use CMP stacking and what are the assumptions?

The main reason is to improve the SNR and focus the processing on the most coherent
events in the CMP gather. CMP stacking is also a necessary step for post-stack migration
where each stacked trace is regarded as a zero-offset trace. The assumption is there is a
layer-cake depth velocity model, at least locally within each CMP gather.

In practice the meaning of signal versus noise is relative to the objectives of the study and
the chosen data processing strategy. Similarly, the meanings of raw data versus processed
data may refer to the input and output of each specific processing project. The existence
of noise often demands that we treat seismic data from a statistical point of view.

Common midpoint (CMP) stacking (see Box 1.1) refers to summing up those seismic
traces whose reflections are expected to occur at the same time span or comparable reflection
depths. The main motivation for such stacking is to improve the SNR. In fact, stacking is
the most effective way to improve the SNR in many observational sciences. A midpoint
for a source and receiver pair is simply the middle position between the source and receiver.
In a layer-cake model of the subsurface, the reflection points on all reflectors for a pair of
source and receiver will be located vertically beneath the midpoint (Figure 1.7). Since the
layer-cake model is viewed as statistically the most representative situation, it is commonly
taken as the default model, and the lateral positions of real reflectors usually occur quite
close to the midpoint. Consequently on cross-sections we usually plot seismic traces at
their midpoints. Clearly, many traces share the same midpoint. In the configuration of CMP
binning, the number of traces in each CMP bin is the fold.

It is a common practice in seismic data processing to conduct CMP stacking to produce
stacked sections. Thus, reflection seismic data can be divided into pre-stack data and
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Figure 1.7 Reflection rays (black lines) from a source S to a receiver R in (a) a layer-cake
model; and (b) a model of dipping layers. All reflection points are located vertically beneath
the midpoint M in the layer-cake model.

post-stack data, and processing can be divided into pre-stack processing and post-stack
processing. The traditional time sections are obtained through the process of stacking
and then post-stack migration. Modern processing often involves pre-stack processing
and migration to derive depth sections that have accounted for lateral velocity variations
and therefore supposedly have less error in reflector geometry and amplitude. One can
also conduct depth conversion from time section to depth section using a velocity–depth
function. Post-stack seismic processing is cheaper and more stable but less accurate than
pre-stack seismic processing. In contrast, pre-stack seismic processing is more costly, often
unstable, but potentially more accurate than post-stack seismic processing.

1.1.5 Data processing sequence

The primary objective of this book is to allow the reader to gain a comprehensive under-
standing of the principles and procedures of common seismic data processing and anal-
ysis techniques. The sequence of processing from raw seismic data all the way to final
forms ready for interpretation has evolved over the years, and many general aspects of
the sequence have become more-or-less conventional. It is a non-trivial matter to design
a proper sequence of seismic data processing, called a processing flow. Figure 1.8 shows
an example of a processing flow for reflection seismic data more than 30 years ago (W. A.
Schneider, unpublished class notes, 1977). The general procedure shown in this figure still
holds true for today’s processing flow for making post-stack sections.

The goal of seismic data processing is to help interpretation, the process of deciphering
the useful information contained in the data. The task is to transfer the raw data into a form
that is optimal for extracting the signal. The word “optimal” implies making the best choice
after considering all factors. Hence we need to make decisions in the process of seismic
data analysis. All methods of seismic data analysis rely on physical and geological theories
that tie the seismic data and the geological problem together. For instance, a problem of
inferring aligned fractures may involve the theory of seismic anisotropy. The subsequent
data processing will attempt to utilize this theory to extract the signal of the fracture
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f. Exploration Decision Making

1.  Where, when, & how to drill?
2.  Analysis risks & economics

e. Modeling & Interpretation

Produce reservoir models based on 
seismic, geology, & well data

c. Data Enhancement

Input: CDP, statics, & velocity files
1.  NMO & statics corrections
2.  CDP stack
3.  Earth absorption compensation
4.  Time variant band-pass filtering
5.  Display of time section
Output: Time section

b. Parameter Analysis

Input: CDP file
1.  Statics correction 
2.  Stacking velocity analysis
3.  Residual statics analysis / Velocity 
interpretation
4.  QC stack
Output: CDP, statics, & velocity files

d. Migration / Depth Conversion

Input: CDP & velocity files
1.  Time migration 
2.  Migration velocity analysis
3.  Time migration & depth conversion
4.  Depth migration
Output: Migrated volumes

a. Data Conditioning

Input: Field tapes
1.  Gain removal G-1(t) 
2.  Source array stack
3.  Source correction (Vibroseis, etc.) 
4.  True amplitude recovery
5.  Trace editing
6.  Wavelet deconvolution
7.  Reverberation deconvolution
8.  CDP sorting
Output: CDP file

Figure 1.8 A general processing flow, after Schneider (unpublished class notes from 1977).
Steps c, d, and e are usually iterated to test different hypotheses. Pre-stack processing is often
conducted after a post-stack processing to help the velocity model building process. There are
also reports of pre-stack processing using limited offsets to increase the efficiency.

orientation according to the angular variation of traveling speed, and to suppress the noise
that may hamper the signal extraction process.

Exercise 1.1

1. How would you estimate the fold, the number of the source-to-receiver midpoints in
each CMP bin, from a survey map like that shown in Figure 1.6? Describe your
procedure and assumptions.

2. As shown in Figure 1.7, the shapes of reflection raypaths tend to resemble the letter
“U” rather than the letter “V”. Explain the reason behind this phenomenon.

3. Update the processing flow shown in Figure 1.8 by finding and reading at least two
papers published within the past 10 years. What happened to those processing steps in
Figure 1.8 that are missing from your updated processing flow?
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Figure 1.9 A common shot gather from an offshore seismic survey.

1.2 Sampled time series, sampling rate, and aliasing
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Through their propagation history, seismic waves vary in a continuous manner in both tem-
poral and spatial dimensions. However, measurements of seismic data need to be sampled
into digital form in order to be stored and processed using computers. At the acquisition
stage each trace of seismic wiggles has been digitized at a constant sample interval, such
as 2 ms (milliseconds). The resulted string of numbers is known as a time series, where
the number represents the amplitude of the trace at the corresponding sample points. In the
following, some basic properties of the sampled time series are introduced.

1.2.1 Sampled time series

Figure 1.9 shows an example of offshore seismic data for which the streamer of hydrophones
is nearly 20 km long. We treat each recorded seismic trace as a time series, which is
conceptualized as an ordered string of values, and each value represents the magnitude
of a certain property of a physical process. The word “time” here implies sequencing or
connecting points in an orderly fashion. A continuous geological process may be sampled
into a discrete sequence called a sampled time series. Although the length of the sample
is usually finite, it may be extrapolated to infinity when necessary. All the data processing
techniques discussed in this book deal with sampled time series. A 1D time series is usually
taken to simplify the discussion. However, we should not restrict the use of time series to
just the 1D case, because there are many higher-dimensional applications.



11 Introduction to seismic data and processing

x(z)
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Figure 1.10 A signal x(z) and its echo.

1.2.2 The z-transform

Perhaps the easiest way to represent a 1D time series is using the z-transform, a polynomial
in z in which the coefficients are filled with the values of the time series (Claerbout, 1985a).
For instance, a time series

. . . , a−2, a−1, a0, a1, a2, a3, . . . (1–1)

is represented by

x (z) = · · · + a−2z−2 + a−1z−1 + a0z0 + a1z1 + a2z2 + a3z3 + · · · (1–2)

So in the z-transform, the coefficients are the value of the time series, and the exponents
denote the corresponding positions in the time series. The operator z can be interpreted
as the unit-delay operator (or a unit-delay filter, to be described later). For instance,
multiplying x(z) by z will shift the whole time series by one sample point:

zx (z) = · · · + a−2z−1 + a−1z0 + a0z1 + a1z2 + a2z3 + a3z4 + · · · (1–3)

Comparing (1–2) and (1–3), we note that the term with coefficient ak corresponds to zk or
time step k in (1–2), but zk+1 or time step k + 1 in (1–3). In the opposite direction, z–1 is
the unit-advance operator. Therefore, the z-transform offers a convenient algebraic way
to represent discrete geophysical data or time series.

The z-transform notation eases our understanding about processing digital data. An
important fact is that using a complex variable z, it transforms data from a discrete time
domain into a continuous frequency domain. This transform can also be used to describe
more complicated signals. For instance, if linearity (the legitimacy of simple linear addition
of two time series) holds true, a primary wave x(z) plus an echoed wave of half the strength
arriving 10 sample points later will be

y (z) = x (z) − 0.5 x (z) z10 (1–4)

Because linearity is a property of all low-amplitude waves, the equation can be seen as
a seismogram of a primary phase x(z) with its reflection echo, as shown in Figure 1.10.

1.2.3 Sampling rate, aliasing, and Nyquist condition

Let us now turn to sampling rate (or sample rate), the rate at which a continuous process
is sampled into a time series. If the sampling rate is too slow, the sampled series may differ
from the original continuous process. The distortion of the true frequency content due to



12 Practical Seismic Data Analysis

ω(a)  Spectrum of the original data.
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Figure 1.11 Aliasing as seen in the frequency domain.

under-sampling is called aliasing, which is a harmful artifact. On the other hand, if the
sampling rate is too high, we may waste extra processing time and data storage. In the case
that we know the frequency content of a continuous signal prior to sampling, we can use
a sampling rate that is just high enough to prevent aliasing. This brings in the idea of the
Nyquist condition to prevent aliasing.

The Nyquist condition can be examined using the z-transform by inserting the complex
variable z in terms of

z = exp (iω�t)

= cos (ω�t) + i sin (ω�t) (1–5)

where ω is the angular frequency and �t is the sampling interval in the time domain. The
above expression simply says that z is a complex variable with a phase angle ω�t.

As shown in Figure 1.11, we suppose that a time domain function b(t) and its frequency
domain counterpart B(ω) are both continuous. We want to compare the true spectrum
B(ω) with B(ω), the spectrum corresponding to the sampled time series {bn}. Note that
the spectrum here merely means the transformed function in the frequency domain. The
z-transform of the sampled time series is

B (ω) =
∑

bnzn (1–6)

B(ω) is already in the continuous frequency domain if we use (1–5). To see the spectrum
using {bn}, we may evaluate it along the unit circle as a function of the phase angle within
[–π , π ]. This is

B (ω) =
∑

bn exp (iωn�t) (1–7)
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(a) (b)

Figure 1.12 Examples of spatial aliasing. (a) A finely sampled section of folded strata.
(b) The same folded strata sampled coarsely. The poorly sampled steeply dipping thin layers,
as highlighted by three dashed ellipses, show a spatial aliasing artifact.

B(ω) will be equal to the true B(ω) provided that the phase is restricted to within one
cycle, i.e.,

|ω| ≤ π/�t (1–8a)

Or using f = ω�2π , we get

f ≤ 1/ (2�t) (1–8b)

Hence, a time series must be sampled for at least two points per wavelength cycle
to avoid aliasing; this is the Nyquist condition. The frequency ωN = π��t is called
the Nyquist frequency. The energy at frequencies higher than ωN folds back into the
principal region (–ωN, ωN), known as the aliasing or edge folding phenomenon. In practice,
the sampling rate may be set at 5 to 10 points per cycle, with the considerations that the
signal frequency may be higher than anticipated and that a slight redundancy may help in
constraining the noise without too much waste in over-sampling.

1.2.4 Spatial aliasing

In two or higher dimensions, under-sampling of dipping events may produce a particularly
harmful imaging artifact called spatial aliasing. Such an artifact consists of false events
in multi-dimensional data due to alignment of spatially under-sampled dipping events of
high frequencies. In Figure 1.12, panel (a) shows a series of folded strata whose thickness
increases with depth. There is not much evidence of spatial aliasing in this panel as it has a
sufficient sampling rate. In panel (b), however, a coarse sampling rate is used for the same
section as in (a). Spatial aliasing appears in the shallow and steeply dipping portions, as
highlighted by the three dashed ellipses. The shallow layers are thinner (higher frequency)
than the deep layers. By comparing the two panels in this figure, we see that the dipping
direction of the spatial aliased artifact is usually symmetrically opposite to the correct
dipping direction of the targets.

With a fixed sampling rate, the chance of spatial aliasing increases if we increase either
the frequency or the dipping angle of the sampled dipping events. Hence, for those data
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processing steps that will increase the signal frequency or dipping angle, special measures
are necessary to reduce the risk of spatial aliasing. For instance, anti-aliasing filtering is
commonly applied after many seismic migration methods.

Exercise 1.2

1. A given seismic trace is sampled at 4 milliseconds. If the signal frequency is known to
be up to 60 Hz, find a way to reduce the total number of sampling points without losing
the signal.

2. In Figure 1.9 try to identify as many of the seismic events as you can. What are the
main primary reflection events? What are the factors affecting the amplitudes of
seismic events in this figure?

3. In your own words, define the following terms: signal, time series, z-transform,
processing artifact, and spatial aliasing.

1.3 Seismic amplitude and gain control
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3.1 Seismic amplitude

Seismic amplitude refers to the magnitude of the wiggles of seismic records and quantifies
the energy level of seismic waves. This amplitude is one of the most important attributes
of seismic data because it represents the distribution of the energy of seismic waves as a
function of the propagating space, recording time, and frequency. Throughout seismic data
processing, those processes that alter the amplitude of seismic data are called gain controls.

To examine the distribution of amplitude over frequency, we can use Fourier theory to
decompose each seismic trace into a suite of frequencies, which will be discussed later
in Chapter 3. Figure 1.13a gives an example from Yilmaz (1987), where the input trace
on the left is a time series which is decomposed into 128 frequencies, shown as the other
monochromatic time traces in this figure. Applying a time stack or horizontal summation of
these 128 single-frequency time traces will result in the original input trace. The amplitude
spectrum shown in Figure 1.13b is a plot of the amplitude of the monochromatic time traces
against the frequency.

1.3.2 Source radiation pattern and media attenuation

The amplitude of seismic data is a function of three factors: the source, the receiver, and the
media. The source factor may be quantified by the source radiation pattern. An explosion
in fluids may have an “expanding ball” radiation pattern, while shear faulting may have a
double-couple, or DC, “beach ball” radiation pattern. The radiation pattern of a real source
is often complicated, and varies with time, frequency, and spatial angle from the source.
Even for airguns, which are among the simplest seismic sources, the radiation pattern is
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Figure 1.13 (a) The Fourier decomposition of a time series, the input trace on the left side, into
a discrete number of frequency components. (b) The amplitudes of different frequencies form
the amplitude spectrum. (Modified from Yilmaz, 1987.)

a function of the sample frequency. Figure 1.14 shows the radiation pattern of an airgun
array using four different central frequencies. Each of the panels shows a lower-hemisphere
projection of the source amplitude on a map view. The rings denote different take-off
angles from the source, with the center of the rings pointing vertically downwards. As
shown in this figure, as the frequency increases, the source radiation pattern of an airgun
array worsens and becomes less “omni-directional”, meaning invariant with respect to the
azimuth and take-off angles.

The second factor, the characteristics of the receiver, will certainly affect the amplitude
and other properties of seismic data. However, the effect of the receiver is usually known
or measurable and therefore accounted for. In most applications we want to minimize the
difference between different receivers and also to minimize the drifting of each receiver’s
response over time. An effective source includes the physical source plus the portion of
the medium within several wavelengths from the source, and an effective receiver includes
its neighboring media. This is the main reason that offshore seismic data, with nearly
homogeneous and well coupled media surrounding the sources and receivers, have far
better quality than onshore seismic data (see Box 1.2).

The final factor, the effect of the media, is the most interesting because many seismic
studies are geared towards finding the properties of the media. We need to look at three
aspects of seismic attenuation due to media properties: intrinsic attenuation, geometric
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Figure 1.14 Radiation pattern of an airgun array at a tow depth of 9 m. Each panel is a
lower-hemisphere projection of the wave amplitude at a particular frequency as a function of
the azimuth and dip angles (Caldwell & Dragoset, 2000). For color version see plate section.

spreading, and structural properties. Intrinsic attenuation is due to the anelastic behavior
of Earth material, and it is quantified by the quality (Q) factor which is inversely propor-
tional to attenuation. The Q factor is usually assumed to be independent of frequency. Thus,
for a given rock there will be a certain amount of loss of elastic energy per wave cycle.
Consequently, at a given distance, the higher-frequency components have endured more
intrinsic attenuation than the lower-frequency components. Therefore the frequency con-
tent of seismic data usually shifts toward lower frequency with increasing time or distance
from the source.

Geometrical spreading refers to the systematic decay of the wave amplitude in response
to the expansion of the propagating wavefront. Seismic amplitude is proportional to the
square root of the energy density, which is the seismic energy in a unit volume in the
seismic wave train. In a homogeneous space, the geometric spreading of a line source will
be cylindrical and inversely proportional to the square root of the distance from the source.
In contrast, the geometric spreading of a point source in a homogenous space will be
inversely proportional to the distance from the source as the wavefront expands like a
sphere. Furthermore, in a layer-cake model of the Earth, the amplitude decay from a point
source may be described approximately by 1�[tv2(t)], where t is the two-way traveltime and
v(t) is the root-mean-square (rms) velocity of the primary reflection (Newman, 1973). In
inhomogeneous media, wavefront varies according to the variation of velocity gradient. As
shown in Figure 1.15, the amplitude decay of a typical seismic trace is somewhere between
that of spherical spreading and cylindrical spreading.



17 Introduction to seismic data and processing

100,000,000

5,000,000

91,000

3000

140

150

170

190

210

220
230

250
Actual maximum output of arrays

Back calculated level of arrays260 

dB re 1 µPaAmplitude (µbars)

30

300

130

120

2-Way Time (Sec.) on Seismic Trace
0                                3                                  6

110

Largest signal on seismic data

Normal amplitude 1st break

Expert panel “concern” level

Click of solenoid (?)

Noise floor - ambient noise

240

200

180

160

Cylindrical Spreading

Spherical Spreading

Figure 1.15 Amplitude level for a typical seismic trace as a function of recording time denoted
by the gray curve (Caldwell & Dragoset, 2000).

Box 1.2 Comparison between land and marine seismic data

Land and marine seismic data have many similarities and differences due to their different
environments and survey conditions. Can you make a table to compare and contrast them?
As a start, the table below is an example.

Box 1.2 Table 1.1 Comparing land and marine seismic data

Aspect Land seismic data Marine seismic data

SNR Poor Usually moderate to high
Shot and receiver coupling Usually poor and variable Usually high and repeatable
Shot and receiver coverage Possibly wide azimuth coverage Narrow azimuth coverage
Surface multiples N/A Usually strong
Internal multiples Yes, but often disorganized Yes, often coherent
Near-surface statics Yes, usually strong Less apparent, usually of long

wavelength
Ground rolls Usually strong and dispersive Weak, but can be strong in

shallow water
Other 1?
Other 2?
Other 3?
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The third aspect of the seismic properties of a medium is its structural properties, which
are the target of most seismologic studies. The structural properties include variations in
elastic impedance (the product of density and seismic velocity) at all scales and in all
directions, known as seismic inhomogeneity and seismic anisotropy, respectively. Two
end-member descriptions of the structural properties are the layered model and the gradient
model. Because the partition of wave energy is about amplitude, it is easier to consider in
a layered model than in more realistic models. A layered model allows us to focus on the
interfaces between layers of varying thickness, such as the partition of wave energy across
a layer interface. In contrast, a gradient model allows us to study the gradual evolution of
seismic waves through long-wavelength variation of the velocity and density fields in the
medium.

1.3.3 Gain control

To pursue our interest in inferring structural properties from seismic data, we want to
remove the influence of other factors such as source radiation pattern, receiver response,
geometric spreading, and the attenuating effects of the medium. One practical way is
to apply gain control, which balances time-variant amplitude variations. Although gain
control is often applied to improve the display of seismic data, appropriate gain control can
effectively enhance many processing tools. Gain control may be based on our understanding
of a physical process, such as intrinsic attenuation and geometrical spreading. It may also
be based on simple statistical statements to balance the amplitude of a section, such as
automatic gain control or correction (AGC). However, AGC as a statistics-based gain
control is very harmful to those data processing and interpretation projects that rely on the
amplitude variation of seismic data. Consequently, we need to be careful in using AGC,
and record the details of the AGC operator if we have to use it.

The rms amplitude is the square root of the mean squared amplitude of all samples
within a time gate. An rms amplitude AGC is based on the rms amplitude within a specified
time gate on an input trace. The gate length, the length span that the operator is applied to,
can either be constant or increase with time or depth. The ratio of desired rms amplitude
to the input rms value is assigned as the value of the gain function at the center of the gate.
There are also instantaneous AGC, in which we assign the ratio to any desired time
sample of the time gate rather than to the sample at the center of the gate, and the time
gate slides along the time axis one sample a time. An example of gain control is shown
in Figure 1.16, for a shot gather obtained from a physical modeling experiment. There
are surface-consistent gain controls that associate attenuation factors with each source and
geophone location. Surface-consistent processing means that it accounts for all the near-
surface effects such as the locations of the shots and receivers, topography, and possibly
near-surface velocities.

1.3.4 Amplitude versus offset (AVO)

Although its effect is ubiquitous, the use of AGC in practice requires great care because it
is a statistical approach that will harm the characteristics and integrity of real reflections.
The AGC must not be used if the amplitude and phase of the seismic data are at the core
of the study, as in the case of amplitude versus offset (AVO) studies such as that shown
in Figure 1.17. AVO studies aim to reveal the presence of fluids such as gas, oil, or brine,
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Figure 1.16 (a) A 16-trace common shot gather from a physical modeling experiment. (b) After
applying automatic gain cor rection for each trace. (c) After trace balancing.
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Figure 1.17 (a) A mig rated CMP gather before stack at well location. (b) Well logs at the
location. (c) Elastic AVO synthetic derived from well-log rock proper ties (Hilter man, 1990).

and/or type of lithology of a par ticular for mation by analyzing the reflectivity viewed from
different reflection angles. With high-quality data and assistance from understanding the
str uctural proper ties of the for mation and removing the effect of over-b urden strata, the
AV O m a y s e r v e a s a direct hydrocarbon indicator (DHI), par ticularly for the exploration
of natural gas, because its elastic impedance differs so much from the ambient rocks and
other types of fluids. Fur ther details on AVO will be given in Section 10.5.1.1.
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1.3.4 Exercise 1.3

1. Find an example of AGC in seismic data processing from the literature. What was the
gain function used and what was the reason for it?

2. In Figure 1.14 why do the panels with lower central frequencies have smoother
radiation patterns? What was the likely orientation of the airgun array and why?

3. Search the literature to find the basic physical principles for the use of AVO to detect
fluid properties in subsurface. Why is AGC not allowed in AVO studies?

1.4 Phase and Hilbert transforms
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4.1 Phase and phase spectrum

In seismology, seismic phases refer to distinguishable groups of body waves and surface
waves that have particular propagation paths and particle motions, such as P, S, Pg, Pn,
PmP, PmS, LQ, and LR waves (e.g., Storchak et al., 2003). In the context of seismic
data processing, phase quantifies the angular difference between the amplitude peak of
a seismic wiggle and a reference point that is usually at time t = 0. As an important
seismic attribute, phase usually means phase lag, the angular difference between two phase
angles. The concept arose from the general harmonic expression of a seismic signal in
the form of A(ω) exp[iφ(ω)], where A(ω) is the amplitude component, φ(ω) is the phase
component, and ω is angular frequency. In seismology, propagation-induced alternation
in the amplitude component is called attenuation, and propagation-induced alternation of
the phase component is called dispersion. For monochromatic waves like that shown in
Figure 1.18, the phase angle measures the angular difference between where the time zero
is defined and the nearest peak. Thus, the peaks of such waves are always at a phase angle
of zero degrees, in parallel with the definition of the cosine function.

We may understand the concept of the phase spectrum by applying the above definition
of phase for a monochromatic wave to the result of Fourier decomposition of a time series,

(b) Phase = 90º

t

t=0 t=0t=0

(a) Phase = 0º (c) Phase = 180º

Figure 1.18 Phase angles of a monochromatic wave for three different definitions for the
location of time = 0.
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Figure 1.19 (a) The Fourier decomposition of an input trace as shown in Figure 1.13. (b) Its
phase spectrum (dotted curves). When plotting the phase spectrum curve along the zero-time
line in the Fourier decomposition, the curve follows the peaks of the monochromatic time
series; this is because the phase angle at each frequency is the angular distance from time zero
to the nearest peak. (From Yilmaz, 1987.)

as shown in Figure 1.19. Figure 1.19a is the same as Figure 1.13a, a decomposition of an
input trace into 128 monochromatic time series. The dotted curve connects the peaks of
these time series that are the nearest to the zero-time line. This curve is the phase spectrum
as shown in Figure 1.19b, where the vertical scale unit is the phase angle in degrees. Because
the phase angle is confined within a range of ±180°, a “wrap-around” may occur along
the phase spectrum when the phase angle goes beyond the ±180° window:

Phase ± 2πn = Phase (1–9)

1.4.2 Phase of a wavelet

A wavelet is defined as a time series that is confined within a finite time window and a finite
amplitude range. The finite time window means that a wavelet may consist of different
frequencies. Then the phase of a wavelet means the collective value of the phases of all
frequency components with respect to time zero. In practice, the phase of a wavelet depends
on its shape. As shown in Figure 1.20, a zero-phase wavelet is symmetric with respect
to the origin, with its maximum peak located at the zero-time position. This zero-time
position is taken to be special time position, such as the two-way reflection time of the
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Figure 1.20 The phase of a wavelet depends on its shape.

upper interface of a geologic formation, rather than a moment on the clock. The zero-time
position is at the beginning of both the minimum-phase and maximum-phase wavelet. A
minimum-phase wavelet has most of its energy concentrated near its front edge, so it is
front-loaded. Conversely, a maximum-phase wavelet has most of its energy concentrated
near its end, so it is tail-loaded.

Why are the minimum-phase and maximum-phase wavelets front-loaded and tail-loaded,
respectively? The physical cause is the interference between different frequency components
within a wavelet. Among all wavelets of the same amplitude spectrum, the minimum-phase
is the one that minimizes the phase lags between different frequencies. This minimization
means there is constructive inference of the frequency components near time zero, which
is defined to be at the beginning of the wavelet. In contrast, a maximum-phase wavelet
is one that maximizes the phase lags between its frequencies; hence there is destructive
interference near the zero-time position. In practice most wavelets, including zero-phase
wavelets, have mixed phase. Most interpreters prefer zero-phase wavelets because it is easy
to pick out the peaks. However, many time processing steps require the use of minimum-
phase wavelets.

1.4.3 Analytical signal and Hilbert transform

Some seismic attributes such as the envelope and instantaneous phase are called instanta-
neous attributes because they are functions of a particular moment in time. The derivation
of these attributes requires the use of a complex trace or analytical signal. For a real time
series x(t), its analytic signal x(t) is defined as

x (t) = x (t) − i H [x (t)] (1–10)

As shown in Figure 1.21, the analytic signal is a complex time series: its real part is the
original time series, and its imaginary part is the negative of the Hilbert transform of
the original time series (e.g., Choy & Richards, 1975; Clayton et al., 1976). The Hilbert
transform H [] advances the phase of all frequency components by π�2. For instance, it
converts a sine into a cosine. It is therefore called the quadrature filter, since π�2 is
one-quarter of a full cycle.
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Figure 1.21 A schematic view of an analytical signal in the form of a coiled spring. Its
projection on the R–t plane is the original time series. Its projection on the I–t plane is the
negative of the Hilbert transform of the original time series.

In the time domain, the transform can be expressed as a convolution of the original signal
with (–1�π t)

H [x (t)] = x (t) ∗ (−1/π t) (1–11)

Since the Fourier transform of (–1�π t) is equal to iω�|ω| = i sgn ω, where sgn( ) is the
sign function, we have

H [x (t)] = −
∫

X (ω) isgn (ω) eiωt
dω

=
∫

X (ω) e−i(π/2)sgn(ω)eiωt dω

=
∫

X (ω) e−i[ωt−(π/2)sgn(ω)]dω (1–12)

The above equation verifies that the Hilbert transform advances the phase of the original
signal by π�2.

In practice the time-domain convolution approach for the Hilbert transform is very
costly to compute because (–1�π t) is a slowly decaying function with respect to time. In
other words, many terms are needed by the convolution to make a good approximation. In
contrast, it is much more efficient to conduct the Hilbert transform in the frequency domain
in which the analytical signal is defined (e.g., Clayton et al., 1976) as

X (ω) = X (ω) [1 + sgn (ω)] (1–13)

This leads to the following procedure to derive the analytical signal:

� Transform the input signal x(t) to frequency domain X(ω);
� Double the values of the positive frequency terms, and let the negative frequency terms

be zero (this enforces causality in the frequency domain);
� The inverse Fourier transform of the terms from te previous step is the analytical signal.
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1.4.4 Instantaneous attributes

The expression of the analytical signal (1–10) allows the computation of many instantaneous
attributes. For example, the envelope of the original time series is

e (t) = |x (t)| (1–14)

Since the envelope is the absolute value of the analytical signal, we may call it the instan-
taneous amplitude. Next, the instantaneous phase of the original time series x(t) is

φ (t) = tan−1 {−H [x (t)] /x (t)} (1–15)

The instantaneous frequency is just the time derivative of the instantaneous phase

ωins (t) = dφ (t) /dt (1–16)

The instantaneous properties of a simple trace are given in Figure 1.22.

Box 1.3 Generalized Hilbert transform and an application

Attribute extraction and feature detections are among common usages of seismic data
volumes today. An example is the detection of fluvial channels from 3D volumes of seismic
imageries (Luo et al., 2003). Box 1.3 Figure 1 shows cross-sections of three tests for
detecting the edges of a synthetic channel model as the input. The generalized Hilbert
transform (GHT) detected both edges of the channel with good resolution. Box 1.3 Fig-
ure 2 shows an example of applying the GHT to channel detection in field data.

Input

Channel

Derivative
Missing

HT
Support Support

 50 Sample Index 250 

Box 1.3 Figure 1 Channel detection in cross-section views. The synthetic input trace has a
channel with a sloping edge to its left and a sharp edge to its right. The derivative operator
detected the sharp edge but not the sloping edge of the channel. The Hilbert transform (HT)
detected both edges, but the horizontal resolution, or support, is too wide. The generalized
Hilbert transform (GHT) detected both edges with higher resolution. (After Luo et al., 2003.)
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Box 1.3 Figure 2 Time slices of a seismic imagery volume showing amplitude in gray tone.
(a) Input data. (b) Result of channel detection using GHT. Many channels are clearly seen
in (b). (After Luo et al., 2003.)
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Figure 1.22 1: Input signal; 2: Hilbert transform; 3: envelope; 4: instantaneous frequency;
5: instantaneous phase.
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Exercise 1.4

1. When a time series is reversed, what happens to its phase properties? Demonstrate your
point using the time series (1, 2, 3, 4).

2. How can the phase of a seismic trace be advanced by 30°? How can it be advanced by
any degree?

3. Describe the generalized Hilbert transform (GHT) after reading Luo et al., 2003.

1.5 Data format and quality control (QC)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In order to process real seismic data, we need to know the data format, the way that seismic
data are stored in computers. To assure that the data processing works, we need to conduct
many quality control checks.

1.5.1 Format of digital seismic data

The data format is a standard for arranging digital data in the file storage units of computers.
This is an essential issue for seismic data processing because a well-designed data format
standard will ease the understanding of various datasets between different users, maximize
efficiency in moving large amounts of data within computers and through the Internet, and
be convenient for some of the quality control measures. A computer records each piece
of digital information, such as a number, by its value and its address in the computer
memory. One common data format is ASCII (American Standard Code for Information
Interchange), which is readable because it is a character-encoding scheme based on the
English alphabet. Another character encoding scheme is EBCDIC (Extended Binary Coded
Decimal Interchange Code) format used in many IBM computers.

Figure 1.23 shows an example of earthquake phase data in ASCII format. The data are
a portion of a dataset downloaded from the website of the Southern California Earthquake
Center Data Center. In this ASCII data file, the first line contains information on the
earthquake event, including its occurrence year, month, date, hour, minute, and second, its
local magnitude ML = 3.32, latitude = 33.580° N, latitude = 116.822° W, and depth =
7.1 km below the sea level. The quality score of this event is B, and its event number is
513 877. The last four digits in the first line are used for various statistics. Here 29 is the
number of phase readings following this line, and 130 is the number of all phase readings.
The rest of the lines in this file contain the information on the phase pickings. On each
phase picking line, the three letters in the first column denote the station name, the three
letters VHZ in the second column tell us that the recording was from the z-component of
a high-frequency velocity meter, and the three digits in the third column are the station
number. The fourth column designates the seismic phases, such as P, S, Pg, and Pn waves.
The fifth column describes the sharpness and polarity of the first motion reading of the
corresponding phase. The two numbers in the following columns are the source-to-receiver
distance in kilometers and traveltime in seconds.
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1981/04/01 02:05:14.60 L3.32 I 33.580  -116.822   7.1  B513877  29  130  0  0 
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Figure 1.23 Portion of the phase data of an earthquake from Southern California Earthquake
Center Data center.

To achieve the goal of data processing, it is necessary to have a standard data format
that is simple to understand, easy to use, efficient for transporting and storing, and versatile
for different types of applications. Most industry seismic data are stored in binary format,
which has the advantage of efficiency and security. Hence, we want a data format that is able
to store binary data and customized for most common types of seismic applications. The
move towards standard data formats started shortly after the appearance of computers and
the use of digital seismic data. For many years, however, different firms developed their own
‘standards’ which were useful only locally. The Society of Exploration Geophysicists (SEG)
has played a leading role in developing open standards for storing geophysical data. These
include the SEGA, SEGB, SEGC, SEGD, and SEGY, the latest standard. The original rev
0 version of the SEGY format was developed in 1973 to store single-line seismic digital data
on magnetic tapes (Barry et al., 1975). Owing to significant advancements in geophysical
data acquisition since rev 0, especially 3D seismic techniques and high-capacity recording,
rev 1 of the SEGY format was created at the start of the twenty-first century (Norris &
Faichney, 2001).



28 Practical Seismic Data Analysis

Optional
SEG Y
Tape
Label

Nth
3200 byte
Extended 
Textual
File
Header
(Optional)

1st
240 byte
Trace
Header

1st 
Data
Trace

Mth
240 byte
Trace
Header

Mth
Data
Trace

1st
3200 byte
Extended 
Textual
File
Header
(optional)

400 byte
Binary
File
Header

3200
byte
Textual
File
Header

Figure 1.24 Structure of a SEGY file, with N extended textual file header records and M trace
records.

1.5.2 File header, trace header, and data traces

There are three main components of a digital seismic dataset: file headers, trace headers,
and data traces. A file header contains the overall information about the dataset, including
information on the survey, previous processing flow, and parameters of the data. A trace
header contains the specifics of the data traces, such as the number of samples, sample
rate, and number of traces in the following. Each data trace is simply a string of values
such as the amplitude of a seismogram following the specific set of parameters in its trace
header. Such a three-level structure offers many advantages. For instance, one can conduct
reordering or sorting processes, such as a conversion from CSG to CMP, only using the
trace headers.

As an example, Figure 1.24 shows the byte stream structure of a SEGY file. It starts
with the optional SEGY tape label, followed by the 3200 byte textual EBCDIC character
encoded tape header, then a 400 byte binary header. This file header can be extended with
additional pieces of 3200 byte textural file headers that allow the user to store information
such as an image of the survey area. The file header will specify M number of traces of the
data and, as shown in the figure, there are M pairs of trace header and data trace following
the file headers.

1.5.3 Data loading and quality control

In practice, the very first physical step in a seismic data processing project is data loading,
the process of putting the raw data into the processing computer. The raw data are usually
stored on some media device such as various types of magnetic tapes or computer storage
units. Nowadays, some datasets of relatively small size may be downloadable from the
Internet. Obviously we need to know the data format in order to use the data files properly.
After managing to load the data into the processing computer, our first priority is to conduct
QC measures to validate the data content and evaluate the quality and characteristics of the
data. For example, the result of the data QC may indicate that the data loaded are not what
we want. On the other hand, the characteristics of the data from the evaluation process often
help us refining the processing parameters.

Data QC at the initial stage of a data processing project involves checking the survey
geometry, data format, and consistency between different portions of the dataset. It is critical
to assure that the quality and quantity of the data are satisfactory for our study objectives.
The first task after loading the data into the computer is to conduct a series of tests to
verify that all the information given about the dataset is true. The tests may simply involve
making and viewing graphs of the survey geometry and shot gathers using the loaded data,



29 Introduction to seismic data and processing

or simple calculation of the number of bytes in order to check the consistency between the
values in the file headers, and the values in the trace headers and data traces.

Exercise 1.5

1. Find out the meanings of the values in the earthquake phase data example shown in
Figure 1.23.

2. Many data sorting procedures can be carried out by sorting the data headers. Why is
this approach efficient? Can you give examples to illustrate your arguments?

3. Write a flow chart of the processing steps required to convert a seismic dataset in CSG
arrangement into CMP arrangement, assuming that the data are in SEGY format. Try
to write the processes and parameter values in as much detail as possible.

1.6 Summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
� Seismic data are physical observations, measurements, or estimates of seismic sources,

seismic waves, and their propagating media. The processes of data acquisition, process-
ing, and interpretation are interconnected and complement each other.

� The definitions of signal and noise depend on data quality and business objectives. A
major effort of seismic data processing is to improve the signal-to-noise ratio (SNR).

� Common midpoint (CMP) stacking is used widely to generate post-stack seismic traces.
Because CMP stacking assumes a layer-cake Earth model, the stacked traces have the
best SNR for cases with gently dipping reflectors.

� Sampling of seismic data must meet the Nyquist condition of at least two samples per
cycle of the highest signal frequency, in order to avoid aliasing artifacts due to under-
sampling.

� Gain control includes a number of data processing measures to compensate for the
reduction of the amplitude of seismic waves due to factors such as source radiation,
attenuation of the media, and geometric spreading of the energy during wave propagation
within rock strata and across interfaces.

� The phase of a single-frequency wave is the angular difference between time t = 0 and
the nearest peak. The phase of a seismic wavelet is a function of its shape: zero-phase is
symmetric, minimum-phase is front-loaded, maximum-phase is tail-loaded, and the rest
are of mixed phase.

� Each seismic trace is the real component of its analytical signal, a complex trace that
is constructed using the Hilbert transform. The analytical signal is useful in generat-
ing instantaneous attributes such as envelope, instantaneous phase, and instantaneous
frequency.

� Data formats such as SEGY are rules about how the digital seismic data are stored in
computers, and the main components of a digital seismic dataset are file headers, trace
headers, and data traces.
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� Different quality control (QC) measures are required throughout each application of
seismic data processing. Always thinking about QC is a good habit for anyone engaged
in seismic data analysis.
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2 Preliminary analysis of seismic data

Chapter contents

2.1 Pre-processing

2.2 Normal moveout analysis

2.3 Convolution and correlation

2.4 Noise suppression methods

2.5 Correction for near-surface statics

2.6 Summary

Further reading

The practice of seismic data processing with digital records has been progressing for
over six decades. Today all seismic processing projects are started with a set of scientific
and business objectives in mind that often require specific processing flows; usually each
flow involves some pre-processed data rather than the raw data. The pre-processing
includes all preparation steps through which both major and relatively simple problems
in the input data are cleaned up so that the main processing flow can function more
effectively. While the pre-processing steps may be standard and even apparently routine,
each step can be critical to the final result.

This chapter starts with illustrations of the most common pre-processing tasks. One
important aspect of learning seismic data processing is to appreciate the physical
processes that the wavelet from a seismic source has experienced, so that we may
approximately undo or redo some of the processes in computers. For this reason, the
filtering expression of seismic data processing is introduced. As a modern example, the
processing of a multi-component dataset from vertical seismic profile is shown. This
chapter examines several simple but common processing operators, including normal
moveout, stacking, convolution, correlation, and Radon transform. Often the reason for
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using these techniques is to suppress the most common types of noise. The readers
should try to envision the physical processes that each operator attempts to emulate. As
an example of preliminary analysis, the effects of surface topography and near-surface
velocity variations are analyzed using the concept of near-surface statics.

2.1 Pre-processing
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pre-processing refers to the preparation type of processing work that comes before the main
processing task. Its purposes are to identify and fix simple problems of the dataset, and
to apply some common corrections such as removing the gain factor of a seismic sensor.
Although most of the tasks in pre-processing are standard and probably routine, care needs
to be taken to QC the data by assessing the quality of the input dataset, checking for errors,
and finding out the characteristics of the data relevant to the objectives of the processing
work.

2.1.1 Traditional pre-processing steps

Typical tasks in pre-processing of seismic data include:

� Detecting errors by checking consistency between different portions of data
� Assessing uncertainties such as errors in the source and receiver positions
� Sorting data into desired form, for instance demultiplexing and CMP sorting
� Editing file headers and trace headers to update changes
� Merging different navigation data with seismic data
� Muting bad traces
� Amplitude correction
� Phase rotation

In the old days of exploration seismology, many pre-processing steps were necessary to
deal with the special recording processes. One such process is multiplexing, the process of
combining multiple analog ordigital data streams into a single dataset. This means that the
wave field from a shot is recorded in the order of receivers. We may regard a common shot
gather as a matrix of recorded amplitudes, with its column numbers denoting the orders
of receivers and its row numbers denoting the order of time samples. Then a multiplexed
dataset stores the data matrix into a single stream of time series row by row, or taking
column number as the fast axis. So the single stream starts with the top row elements of
the data matrix in their column order, followed by the next row elements in their column
order, and so on. In contrast, a demultiplexed dataset stores the data matrix into a time
series column by column, or taking row number as the fast axis. Hence, the demultiplexing
process is equivalent to a matrix transpose operation. The process is carried out by a simple
transpose sorting process.

Pre-processing may be done in order to allow workers to familiarize themselves with the
data. To do so with a seismic reflection dataset, one can use a processing software package
to produce a number of common offset sections or common shot gathers. Common offset
sections, particularly those of small offset, give a general picture of the structural trend of
the study area and variations in data quality from place to place. It is of particular importance
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if any key horizons, such as the base of the weathering zone or major unconformities, can
be recognized. A horizon refers to a seismic reflection event that is a particular geologic
boundary. In areas with low lateral velocity variation and little thickness variation of the
rock strata, a near-offset section may be a good approximation of a time stack, a cross-
section over the study area with the vertical axis being the two-way traveltime. Common
shot gathers may allow us to decipher more detail at each location, such as the depth of
water column or weathering zone, the level of surface waves, the change in velocity with
depth, and the noise level and frequency content from shallow to deep depths. A scan of
a series of common shot gathers or common midpoint gathers along a profile will allow
the worker a quick evaluation of both the data quality and general geologic features along
the profile. Often the processing strategy and parameters are formulated or refined from
repeated previews of common offset sections and various types of seismic gathers.

Some problems in the data identified from the preview process may be fixable by simple
editing of the data. For example, we may find that a value in the file header is inconsistent
with the data traces because the value has not been updated during previous processing steps.
If we can verify the correct value, then a simple update will fix the problem. Alternatively,
when we need to create a subset of the dataset, we will design and carry out a sorting
process, and then we will need to edit the file header and perhaps the trace headers of the
subset data to reflect the changes. In a similar way, when we need to combine multiple
datasets over the same area into a single dataset, we need to update both the headers and
data traces to reflect the merged data.

2.1.2 Navigation merge

As a major pre-processing task, navigation merge involves checking the accuracy of
different navigation measurements and combining the navigation data with the seismic
data. Because the quality of seismic data is strongly correlated to the quality of navigation
data, the best total quality is achieved when navigation and seismic QCs are carried out in
an integrated process. A major breakthrough in seismic acquisition during the past century
has been the arrival of the global positioning system (GPS), which provides the spatial and
temporal coordination for all modern seismic surveys. In offshore surveys, for instance,
GPS receivers are mounted on the vessels, airgun floats, and tail buoys to triangulate
the positions of the vessel and streamers using signals from satellites. Acoustic or laser
positioning devices are also placed locally on the vessels, airgun floats, and tail buoys to
provide secondary positioning. Data may be checked in the field or in-house by merging the
seismic traces with the field or processed navigation data. During the navigation merge, the
geometric positions of the source and receiver of each trace are added into its trace header.
In offshore surveys the navigation QC aims to detect errors such as:

� Source and receiver positioning errors
� Source timing errors
� Gun flag reversals
� Incorrect definitions
� Shift in source array centers
� Incorrect laybacks to center source
� Unacceptable radio navigation
� Multi-boat timing
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2.1.3 Merging datasets

To merge multiple datasets together, one has to consider several consistency issues: (1)
consistency between sources used in different datasets; (2) compatibility between receivers
of different datasets; (3) consistency in the spacing and orientation of sources and receivers;
and (4) consistency in sample rate, length, and gain parameters.

As shown in Figure 1.14, the amplitude of the source may vary with the azimuth and dip
angles even for airguns, which are among the best seismic sources available. In contrast,
onshore seismic surveys use dynamite or Vibroseis sources that are far more complicated.
A frequency band of about 8 to 80 Hz, typical for most seismic surveys, has wavelengths
between 250 and 25 meters if the average velocity is around 2 km/s. This means that the
effective source will include the rocks and fluids in the immediate neighborhood of the
‘real’ dynamite or Vibroseis sources. Difference in the lithology and structure surrounding
different shots is likely to be a major cause of inconsistency between the source signatures
in an onshore seismic survey. A similar effect also exists for different receivers. The low
repeatability of source and receiver functions for onshore seismic surveys leads to lower
quality for most onshore seismic data than for offshore seismic data.

In order to merge multiple datasets, we have to make the wavelets of different datasets as
similar as possible, usually through the process of phase rotation. If we know the source
wavelet in the data, we can rotate the phase angle using the Hilbert transform described in
the previous chapter. In practice, however, the source wavelet is usually unknown. We might
think of taking a portion of the data, such as that within a small time window around the
first break, as an approximation of the source wavelet. But this approximation is a source
of errors because we choose the time span of the window arbitrarily and all portions of the
data may contain noise. A more practical way to match the phase angle follows the concept
of a matched filter.

2.1.4 Matched filter

Let us look at the process of a sending a source wavelet ft into an Earth structure xt ,
and producing a seismic trace gt , as shown in Figure 2.1. The subscript t denotes that
each function is a time series. This process can be described mathematically using the
convolution operator denoted by the ∗ sign:

gt = xt ∗ ft + nt (2–1)

where nt is the noise term. In the frequency domain, the convolution becomes multiplication:

G(ω) = X (ω)F(ω) + N (ω) (2–2)

where the capitalized terms correspond to the Fourier transforms of the lower-case terms
in the time domain.

t 
tf  tg  tx  

Figure 2.1 A source wavelet ft traverses through the Earth xt, producing a seismic trace gt.
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Our goal is to uncover the Earth structure that is contained in the recorded trace but
is distorted by the source wavelet and the noise terms. The matched filter of the source
wavelet will allow optimal estimation of the Earth structure in the presence of stochastic
noise. When a known signal is embedded in noise, its matched filter will maximize the
SNR. We will examine this issue later in frequency domain deconvolution. In the field of
telecommunication, a matched filter is obtained by correlating a known wavelet with a time
series to detect the presence of the wavelet in the time series. This is equivalent to convolving
the time series with a conjugated and time-reversed version of the wavelet, equivalent to
the cross-correlation process. The SNR is maximized when the impulse response of the
matched filter is a reversed and time-delayed version of the transmitted signal, which in
our case is the source wavelet. As an example, we may use the matched filter concept to
choose the best estimate of the source wavelet among all candidates, such as the first-break
wavelets taken from different time windows at various offsets, by checking the SNRs after
cross-correlating each candidate with all the wavelets.

2.1.5 Processing multi-component data using hodograms

As multi-component seismic surveys become more popular, let us see an example of
pre-processing multi-component data. Figure 2.2a shows a sketch of an offset vertical
seismic profile (VSP). A VSP survey uses surface shots and receivers placed along a
wellbore to image the structure in the neighborhood of the wellbore. Its main advantages
include recordings at different depths to provide time-to-depth conversion and recognition
of multiple reflections, as well as having frequency content higher than surface seismic
data to assist the seismic–well tie, the process of linking horizons on the surface seismic
records with those from well logs. An offset VSP uses a fixed source-to-receiver offset,
producing a common shot gather. A walkaway VSP uses a fixed receiver and a number
of shots of different offsets, producing a common receiver gather. An azimuthal VSP
measures seismic waves by varying the azimuthal angle between sources and receivers. We
may switch sources with receivers, producing a reverse VSP (RVSP). In practice, nearly
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Figure 2.2 (a) A sketched cross-section of offset VSP, where raypaths show various waves from
a shot (star) to the receivers (triangles) along the well bore. (b) A common shot gather of the
two horizontal components from an offset VSP. For color versions see plate section.
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Figure 2.3 (a) A pair of x and y components of seismic traces. (b) A hodogram, a plot of the
time-varying trajectory of the traces, using the amplitudes of the x and y components as the two
axes. The straight dashed line denotes the average orientation of the hodogram.

all wells are deviated, so there are no truly vertical wells. We may use a combination of
different source and receiver geometry to optimize the quality of VSP data and images.

Figure 2.2b shows a common shot gather of the two horizontal components of an offset
VSP data. A convenient tool for data QC of such data is the hodogram, which is a graph
of multi-component data in polar coordinates. As illustrated in Figure 2.3, for a two-
component pair of seismic traces, we take each component as a coordinate axis. Then the
hodogram is a graph of the time trajectory of the traces, as shown in Figure 2.3b, using
the amplitudes of the traces as the coordinate axes of the graph. In this case, the x and
y components represent the two horizontal directions, easting and northing, respectively.
Hence the hodogram represents a map view of the ground particle motion at the receiver
during the time span of the data traces shown in Figure 2.3a. The average orientation of the
particle motion, denoted by a straight dashed line, represents the principal direction of the
seismic waves at this particular location and time span.

The principal orientation of the particle motion as revealed by the hodogram is very
useful. In this case, all three-component geophones were cemented into an old wellbore.
The problem is that the orientations of the multi-component geophones are unknown. The
geophones might have been rotated as they were being raised up from the bottom of the
wellbore before cementation, although their vertical component is likely to be oriented
vertically along the wellbore. Our aim is to determine the orientation of the two horizontal
components of each geophone using hodograms.

We first select a group of shots that have almost the same source-to-receiver offset, as
sketched in Figure 2.4a. If we make a hodogram using the horizontal components and
a time window around the first break, the principal orientation of the hodogram will be
parallel with the azimuth from the receiver to the shot, unless the velocity field is highly
heterogeneous between the shot and receiver. Hence, for each receiver in the wellbore,
we plot the horizontal-component hodograms of the first break traces from all shots. The
angular difference between the source-to-receiver azimuths and the principal orientation
of the hodograms will allow a determination of the rotation angle between the x–y axes
and the easting and northing angles. We can then apply a correction for the angle rotation
error for all horizontal seismic traces of each geophone. Figure 2.4b shows the resulting
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Figure 2.4 (a) A map-view sketch showing a selected g roup of shots (stars) of similar
source-to-receiver offsets but different azimuths from the VSP well (circled triangle). (b) The
common shot gather after cor rection for orientation er rors of the geophones. For color versions
see plate section.

common shot gather after such a cor rection of geophone rotation er rors. This shot gather
shows much better data quality than the version before the cor rection ( Figure 2.2b).

Exercise 2.1

1. Search the literature to find typical surf ace seismic sur vey geometr y onshore and
offshore, and the typical ranges of parameters such as source depths, receiver depths,
source-to-receiver offsets, source-to-receiver azimuths, sample rates, data frequencies,
and recording lengths. The results may be presented using a spreadsheet with clear
citation of the references.

2. Use your own words to define the concepts of: demultiplexing, time stack, matched
filter, and walkaway RVSP.

3. If we have multi-component surf ace reflection data, can we use a hodog ram to suppress
g round rolls? How would you do it? What problems can you anticipate for your
approach?

2.2 Normal moveout analysis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Among the first seismic processing methods that we discussed in Section 1.1 wa s C M P
stacking, which is the most common and useful pre-processing method. CMP stacking
consists of three steps: CMP binning, normal moveout (NMO) correction, and stacking of
the NMO corrected traces. Given the important position of CMP stacking in seismic data
processing, this section explains NMO analysis in terms of its assumptions, formulation,
and usage. Two ubiquitous applications of CMP stacking are noise suppression and velocity
analysis.
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Figure 2.5 For a CMP gather in a constant velocity field the dispersal of reflection points is
zero for a flat reflector (a) and minimum for a dipping reflector (b). In case (b), can you derive
the amount of dispersal �L as a function of offset h and dip angle θ?

2.2.1 Stacking

Among common types of seismic gathers, the reflection spread, or lateral extent of reflection
points across the reflector, is zero for the CMP gather in the case of a flat reflector beneath a
constant velocity field or a layer-cake velocity field (Figure 2.5a). If the reflector dips, then
the spread of the reflection points will be widened: this is referred to as reflection point
dispersal (Figure 2.5b). For a dipping reflector in a constant velocity, the dispersal �L can
be expressed in terms of offset h, midpoint norm to the reflector D, and reflector dip θ :

�L = h2

D
cos θ sin θ (2–3)

As predicted by the above equation, the reflection point dispersal increases as the square
of the offset. Even in the case of a dipping reflector, however, the CMP gather still has
the lowest spread of any gather. While the NMO assumes a layer-cake velocity model,
this assumption has the highest chance of being valid in a CMP gather because of its
minimum reflection point dispersal. This fact makes the CMP gather the most suitable type
for stacking multiple reflection traces in order to improve the SNR (Mayne, 1962).

The main reason behind many of the stacking processes in seismic processing and
imaging is to improve the SNR. Stacking is probably the most common and most effective
way to do this for many observational sciences, an example being the stacking of faint image
signals from remote objects in astronomy. In addition to NMO stacking, other stacking
processes include: (1) field stacking, or vertical stacking of traces from multiple geophones
located at the same place; (2) slant stacking, which stacks dipping reflections across a
seismic gather after transforms such as plane-wave decomposition; and (3) migration
stacking, which stacks migrated traces belonging to the same position together.

2.2.2 Normal moveout correction

For successful stacking of reflection events, we need to align the reflection events in the
gather, and this is the process of NMO. As shown in Figure 2.6a, the two-way reflection
time from source S to receiver R in a constant velocity field V over a flat reflection interface
can be calculated using the Pythagorean theorem for the relationship between the sides of
a right triangle:

(vt)2 = x2 + (zr + zs)
2 (2–4)
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Figure 2.6 (a) A cross-section showing the model space for a NMO with receiver (R) and
source (S) at different depth levels. V = velocity. (b) A sketch of common shot gather showing
the data space for the NMO. Notice that the first breaks include direct wave, refraction (head
wave) in the case of a layer-cake velocity model, and turning wave in the case of a gradient
velocity model. What will be the trends of the events if this is a common midpoint gather?
(c) A land shot record from Alaska (Liner, 1999).
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where zr and zs are depths to the reflector from the receiver and source, respectively. When
the two depths are equal to the same z, we have

(vt)2 = (2h)2 + (2z)2 (2–5)

where h stands for offset from the midpoint to either source or receiver. Of course, h is
one-half of the source-to-receiver offset x.

Since our goal is to flatten reflections on the offset versus traveltime plane (e.g.,
Figure 2.7b), we need to find the relation between traveltime t and offset h. We can easily
derive an expression for this from (2–5):

t (h) = 2

v

(
h2 + z2

)1/2
(2–6)

At zero offset, we have

t0 = t (h = 0) = 2

v
z (2–7)

Thus we arrive at the NMO correction term �t:

�t = t (h) − t0 = 2

v

[(
h2 + z2

)1/2 − z
]

(2–8)

If we replace z by t0 using (2–7) we obtain

�t (h, t0, v) = [
(2h/v)2 + t2

0

]1/2 − t0 (2–9)

The above equation indicates that the NMO correction term is non-linear with respect to
offset h and zero-offset time t0. This non-linear relationship is the source of NMO stretch
(see Box 2.1). One can easily demonstrate using the above equation that the NMO stretch
reaches its maximum extent at shallowest zero-offset time or farthest offset.
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Figure 2.7 (a) A sketch of common shot gather after NMO. (b) The shot record of Figure 2.6c
after NMO (Liner, 1999).
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Box 2.1 Evaluation of NMO stretch

The NMO correction is non-linear with respect to the offset and zero-offset traveltime.
This produces the NMO stretch, the phenomenon of stretched wavelet length after NMO.
Rewrite (2–9) as

τ = �t (h, t, v) = [
(2h/v)2 + t2

]1/2 − t (2–10)

Differentiating the above equation with respect to t, the zero-offset traveltime,

∂τ

∂t
= t[

(2h/v)2 + t2
]1/2

− 1 (2–11)

The above differentiation quantifies the NMO stretch. Evaluating (2–11) in several end-
member cases, if t approaches infinity or h approaches zero, the differentiation approaches
zero, or no stretch. However, when t approaches zero, or h approaches infinity, the dif-
ferentiation approaches –1, its maximum value. Thus, we conclude that the NMO stretch
increases at greater offset or shallower depth (smaller reflection time).

Figure 2.7 shows the consequence of applying NMO. Keep in mind that each vertical
seismic trace was shifted statically (no distortion of the wiggles on the trace) by a fixed
amount of time according to the NMO equation. The field data shown in the right panel
display several problems, and some of them are amplified by the NMO process. Would you
be able to identify them?

2.2.3 Usage of NMO stacking

The NMO stacking process is a good way to suppress coherent noise whose moveout
differs from that of the primary reflection. One such example is the suppression of multiple
reflections, such as the offset versus traveltime graph in Figure 2.8 (from Mayne, 1962) in
which the primary reflection and second order multiple have very different moveout curves
as predicted using a velocity function typical of the Gulf of Mexico.

While the main reason for NMO and the corresponding stacking process is to improve
the SNR, the process requires an appropriate stacking velocity. This dependency on the
stacking velocity becomes the basis for semblance velocity analysis, which is the first major
step in velocity analysis of all reflection seismic data. The NMO equation (2–9) indicates
that the amount of the NMO correction depends on h, the offset from the midpoint (or
half the offset from shot to receiver); t0, the zero-offset two-way reflection time; and v, the
velocity of the constant velocity layer.

Despite the real-world complexity, once we identify a major primary reflection event on
CMP gather, we may approximate the velocity function above this reflector with a constant
velocity value, perform NMO with this velocity and then stack all traces across the offset
axis into a single stacked trace. This constant velocity is the stacking velocity, which serves
as a medium average of the overburden velocities for the reflector. Though we do not
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Figure 2.8 Predicted moveout trends of primary and second-order multiples, based on a
velocity function typical of the Gulf of Mexico (from Mayne, 1962).

know what would be the best stacking velocity for each reflector, we can try many velocity
values within a reasonable range, as shown in Figure 2.9 for a 2D reflection dataset. The
semblance, which is a normalized summation of the stacked traces, is grayscale-coded on
the semblance panel at each location (in terms of common depth point or CDP number)
across the profile.

Notice in Figure 2.9 that the horizontal distance along the profile is expressed in terms
of CDP numbers. CDP is a traditional name for the CMP (e.g., Mayne, 1962). However, as
shown in Figure 2.5b, a CMP gather may not have a common depth point of reflections.
Nevertheless, as one of many traditional names with incorrect meanings, CDP is a common
term describing the distance along the profile. Each profile will be discretized into a
number of CDP bins, whose width is usually half of the station spacing, and all source-
to-receiver midpoints will then be taken into the corresponding CMP (CDP) bins to form
the corresponding CMP (CDP) gathers.

2.2.4 Semblance velocity analysis

Among pioneers who attempted to find ways to quantify different levels of coherency
across multi-channel traces, Neidell and Taner (1971) introduced semblance, a measure of
cumulative amplitudes across seismic traces. The concept stems from the cross-correlation
function which can only be used between two traces. Suppose we have N traces in the gather
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Figure 2.9 Semblance velocity analyses for a 2D dataset. The vertical slice at the back shows
the stacked section as a function of CDP number and two-way reflection time. The semblance
panels at three locations along the profile are functions of time and velocity.

and ati is the amplitude at time t on trace i, then the cross-correlation between trace i and
trace j over a time window t to t + m will be

ci j =
t+m∑

t

ati × at j

/[
t+m∑

t

(ati )
2

t+m∑
t

(at j )
2

]
(2–12)

Similarly, the semblance over the same time window will be

S (t + m, N ) =
t+m∑

t

(
N∑
i

ati

)/
t+m∑

t

N∑
i

(ati )
2 (2–13)

In the above expression
∑N

i ati is the amplitude stack at time t across all N traces that
measures the coherency of events across this time, and

∑N
i (ati )2 is the total “energy” of all

traces at time t. Thus, the numerator of the semblance is a time summation of the squared
amplitude stacks, and the denominator is a time summation of total energy for normaliza-
tion. The normalization by the denominator allows the semblance function to be sensitive
to the relative amplitude of the traces. Notice that the cross-correlation function applies
multiplication between components in its numerator and denominator. In contrast, the sem-
blance function applies summation between components in its numerator and denominator.
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Computationally, summation will have a much lower cost than multiplication. Some peo-
ple have explored the application of weighting functions in the summation (e.g., Celis &
Larner, 2002).

Now what about the choice of length for the time window m? Clearly the time window
should be greater than the “central portion” of the wavelet in the data. The example in
Figure 2.9 used about a dozen sample points as the length of the time window. In general,
for data of high SNR we tend to choose a narrow window, because the narrower the time
window the higher the resolution but also the less tolerance to noise and problems. The
noise includes static shifts, frequency variation, and amplitude variation. The problems
include NMO stretch and systematic change of noise characteristics with increasing time
and offset.

Based on semblance panels like that shown in Figure 2.9, we can pick a string of
semblance peaks as the stacking velocity values for the corresponding zero-offset two-way
time and CDP locations. This will resulted in a stacking velocity section for a 2D profile
or a stacking velocity volume for a 3D survey. In practice, rather than picking the stacking
velocity profile at every CDP position, usually the profile is obtained at one out of every
10 to 50 CDPs to ensure computational efficiency without losing too much of the quality
of the velocity model.

We should keep in mind that semblance as described here is not necessarily the only
or the best way of velocity model building following the stacking approach. Another very
good measure is differential semblance optimization (DSO), proposed by Symes and
Carazzone (1991). A recent paper on velocity analysis by DSO has been presented by
Mulder and ten Kroode (2002).

Exercise 2.2

1. Prove or refute the statement that stacking of seismic traces has the effect of low-pass
filtering.

2. Most semblance velocity analysis stacks all traces with equal weight. Should we apply
variable weights as a function of offset and intersection time? Devise a way to conduct
such a weighted semblance stack process. It would be great if you could write a
program to realize the process.

3. The semblance velocities of multiple reflections are usually slower than the velocity of
the primary reflection, as shown in Figure 2.8. Explain the reasons behind this
observation.

2.3 Convolution and correlation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
As two of the commonly used data processing tools, convolution and correlation are very
similar in their mathematical expression. The property produced by convolution is the
multiplication of the two data strings, or the result of using one data string to filter the other.



45 Preliminary analysis of seismic data

In contrast, the property resulting from correlation is the similarity function between the
two input data strings.

2.3.1 Convolution

Convolution is the mathematical operation of multiplying two time series representing
two input data strings. It is one of the most useful operations in seismology and digital
processing because it represents the physical process of combining two or more time series.
For example, filtering a signal can be expressed as the convolution of the input signal with
the filter function, producing an output signal. A seismogram can be approximated as the
convolution of a source wavelet with the medium function, and with the receiver function.
To match the well-log measurements with a seismic reflection profile in the same area, a
synthetic seismogram is often computed by convolving well-log traces with an appropriate
wavelet.

Mathematically, multiplication of two scalars leads to another scalar, the product of the
original two scalars. Multiplication of two time series leads to another time series, the
convolution of the original two time series. We may express the three time series as at =
{a1, a2, . . . , aN}, bt = {b1, b2, . . . , bM} and ct = {c1, c2, . . . , cN+M–1}, and we may make
three vectors and two matrices as follows:

a =

⎛
⎜⎜⎜⎝

a1

a2
...
aN

⎞
⎟⎟⎟⎠ , b =

⎛
⎜⎜⎜⎝

b1

b2
...
bM

⎞
⎟⎟⎟⎠ , c =

⎛
⎜⎜⎜⎝

c1

c2
...
cN+M−1

⎞
⎟⎟⎟⎠ , A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 . . . 0

a2 a1
. . .

...
... a2

. . . 0

aN

...
. . . a1

0 aN

... a2
...

. . .
. . .

...
0 . . . 0 aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N+M−1)×M

,

and B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 0 · · · 0

b2 b1
. . .

...
... b2

. . . 0

bM

...
. . . b1

0 bM

... b2
...

. . .
. . .

...
0 · · · 0 bM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(M+N−1)×N

(2–14)

Note that matrix A has M columns and each column contains the time series at which is
shifted one element downwards sequentially from the second column on, with zeros filling
the remaining portion. Similarly the matrix B has N columns, each column containing
the time series bt which is also shifted downwards sequentially, and with zeros filling
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the remaining portion. Here A and B are Toeplitz matrices because they are diagonal-
constant – the diagonally oriented values are equal to each other. Then the convolution of
at and bt is

c = Ab =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 · · · 0

a2 a1
. . .

...
... a2

. . . 0

aN

...
. . . a1

0 aN

... a2
...

. . .
. . .

...
0 · · · 0 aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

b1

b2

. . .
bM

⎞
⎟⎟⎟⎠ (2–15a)

or c = Ba =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 0 · · · 0

b2 b1
. . .

...
... b2

. . . 0

bM

...
. . . b1

0 bM

... b2
...

. . .
. . .

...
0 · · · 0 bM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a1

a2
...
aN

⎞
⎟⎟⎟⎠ (2–15b)

Taking the kth row of the above two equations we have

ck =
∑

j

ak− j+1b j (2–16a)

ck =
∑

l

bk−l+1al (2–16b)

where k goes from 1 to N+M–1, and the indexes j and l scan through all the non-zero
elements of the two input time series at and bt. As the digital expression of convolution, the
above equations show that convolution is commutable, or a convolved with b is equal to b
convolved with a. Since a time series can be regarded as a digitized version of a continuous
function, we can derive the continuous form of convolution:

c (t) = a (t) ∗ b (t) =
∫ ∞

−∞
a (t − τ ) b̃ (τ )dτ (2–17a)

c (t) = b (t) ∗ a (t) =
∫ ∞

−∞
b (t − τ )ã (τ ) dτ (2–17b)

where ∗ stands for the convolution operator, and ã (τ )and b̃ (τ ) are the complex conjugates
of a (τ ) and b (τ ), respectively. A comparison between (2–16) and (2–17) indicates that, if
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complex time series are used, then the first time series on the right-hand side of (2–16) will
be the corresponding complex conjugates, {ã j } and {b̃l}. In other words,

ck =
∑

j

ak− j+1b̃ j (2–18a)

ck =
∑

l

bk−l+1ãl (2–18b)

2.3.2 Correlation

The operation of correlation is just a normalized covariance, and both of them quantify the
similarity between two time series as a function of the offset between the two series. They
are among the most useful operations in seismology and digital processing. As an example,
the semblance process as described in the previous section is a direct application of the
correlation function. We may learn the covariance relationship from a study of random
variables. If we have two random variables, x and y, we define the covariance matrix
between them as

C =
(

σxx σxy

σyx σyy

)
(2–19)

The cross-covariance is defined as

σxy = σyx =
∫ ∞

−∞
dx

∫ ∞

−∞
dy(x − x̄)(y − ȳ) f (x, y) (2–20)

where x̄ and ȳ are the means of the two random variables, and f (x, y) is their joint
probability density function (PDF) which quantifies the chance of their occurrence.
The cross-covariance in (2–20) is an expectation of the second moment between the two
random variables. You may derive the auto-covariance σxx and σyy using the format of
(2–20).

In practice the PDF of any random variable can be estimated using the histogram of a set
of observed samples of the variable. Here, great care is needed to ensure that the set contains
sufficient samples and that the samples are representative of the general characteristics of
the random variable. When two random variables are independent with respect to each
other, their cross-covariance becomes zero:

σxy = σyx = 0

Hence the covariance matrix becomes diagonal. This is comparable to the case when two
time series are totally uncorrelated.

We define the cross-covariance of two time series x(t) and y(t) in the continuous case as

γ xy (t) =
∫ ∞

−∞
x̃ (τ )y (t + τ ) dτ (2–21a)

γ yx (t) =
∫ ∞

−∞
ỹ (τ )x (t + τ ) dτ (2–21b)
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Figure 2.10 (a) A boxcar function f1(t) and a minus sine function f2(t) = –sin t. (b) Convolution
between the two functions can be viewed as sliding the second function across the first
function, and cumulating their overlapping area as a function of their differential time.
(c) Result of convolving the two functions.

and in the discrete case as

γ
xy

t =
∑

j

xt+ j+1 ỹ j (2–22a)

γ
yx

t =
∑

l

yt+l+1 x̃l (2–22b)

Comparing the discrete cross-covariance in (2–22) with discrete convolution in (2–18),
their mathematical difference is only in one sign on the right-hand sides. However, cross-
covariance and convolution represent two very different physical processes. The former
cumulates the similarity, whereas the latter quantifies the multiplication or combination
of two time series. Both correlation and convolution operators have numerous applica-
tions in geophysics and other areas. For the correlation operator, a recent example is given
by Shapiro et al. (2005) who obtained valuable data by correlating ambient noise (see
Box 10.1 in Chapter 10). Much of the discussion in the chapters on filtering and deconvo-
lution is devoted to the convolution operator.

2.3.3 Examples of convolution and correlation processes

To help us visualize the convolution process, let us see a graphic example of convolving a
boxcar function f1(t) and a minus sine function f2(t) = –sin t. in Figure 2.10. Convolution
between the two functions can be viewed as sliding the second function across the first
function, and cumulating their overlapping area as a function of their differential time.
Here the graphs in Figure 2.10b display three different stages of sliding the second function
across the first. The graph in Figure 2.10c shows the convolution result, the overlapping
area of the two functions at each moment.
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Figure 2.11 An example of multi-component data from physical modeling. (a) Record from
the vertical component of receivers receiving a vertical source. (b) Record from the inline
component of receivers receiving an inline source. (c) Record from the crossline component of
receivers receiving a crossline source.

You may have noticed that the second function is reversed in time in Figure 2.10b with
respect to that in Figure 2.10a. A time series or a discrete function is order-dependent: its
first element is at its left end and its last element is at its right end. Thus, when one function
interacts with another, the first element of the first function will be the first one encountering
the other function; hence graphically the second function needs to be time-reversed so that
its leading element first encounters the leading element of the first function. In each of the
graphs in Figure 2.10b, the first function, which is a boxcar, is plotted against the integration
variable τ . The second (sine) function is plotted with a reversal of the τ axis, owing to the
minus sign in the convolution, and it is displaced by an amount t. For a given time shift, the
product of the two functions is integrated over the interval in which they overlap, producing
one point on the curve in Figure 2.10c.

Similarities between seismic waveforms are often quantified using cross-correlation. For
instance, a seismometer measures particle motions in three directions: up–down (UD),
north–south (NS), and east–west (EW). The transverse and radial components of seismic
data from a source at an arbitrary location are generally correlated on the NS and EW
coordinates. Rotation of the seismograms to align with the source–receiver azimuth could
minimize the unwanted correlation between the transverse and radial components of the
signals, while there may still be correlated noise. As an example, Figure 2.11 shows a multi-
component dataset acquired from a physical modeling experiment. The data are common
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Figure 2.12 (a) A 16-trace common shot gather from a physical modeling experiment. (b) After
applying a matched filter to alter the wavelet of all traces. (c) Traces within a 400-ms window
shown in the dashed boxes in (a) and (b), showing the first break wavelets of the first trace.

shot gathers with 16 traces for each component. Since each component was acquired
separately with matching polarity for source and receivers, the similarity between different
components should be caused only by the geological structure.

An application of cross-correlation for real data is given in Figure 2.12. Figure 2.12a
shows a common shot gather from a physical modeling experiment. A small window
contains the time series around the first break of the first trace, which is shown in the left
trace in Figure 2.12c. By auto-correlating the left trace with itself, we produce the trace
shown in the right side of Figure 2.12c, and this trace is symmetric since it is a result
of auto-correlation. We may take this symmetric trace as an approximated version of a
zero-phase wavelet. By cross-correlating the left trace in Figure 2.12c with all the traces
shown in Figure 2.12a, we produce the shot gather in Figure 2.12b. We have advanced the
time in Figure 2.12b by a time interval, the difference between the onset time of the left
trace and the peak time of the right trace in Figure 2.12c. This time advancement is done in
order to align the time zero of the approximated zero-phase wavelet with that of the input
traces. You may view the use of the cross-correlation in this case as an application of the
matched filter concept to retrieve the known signal. Note that the cross-correlation of two
traces is exactly the convolution of the first trace with a time-reversed version of the second
trace.
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Figure 2.13 Plots of two time functions of the same length.

Exercise 2.3

1. Sketch the cross-correlation of two functions with equal time durations in Figure 2.13.
(Hint: you may first discretize the functions into short time series, and then use the
formula of discrete cross-correlation.)

2. Compare and contrast the convolution and cross-correlation operations. (Note: it may
be best to organize your answer by using a table listing the similarities and differences.)

3. Cross-correlation is used to measure the similarity between two vectors u = (u1,
u2, . . . , uN) and v = (v1, v2 . . . , vN)T. By removing the averages u and v, we obtain
residual vectors �u = (u1 – u, u2 – u, . . . , uN – u) and �v = (v1 – v, v2 – v, . . . , vN –
v). Is the cross-correlation between u and v the same as the cross-correlation between
�u and �v? Please explain your answer with evidence.

2.4 Noise suppression methods
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Noise suppression or noise attenuation is one of the traditional goals of seismic data
processing. Ideally, we first identify the main differences between the characteristics of
the signal and that of the noise so that a proper data processing flow can be designed to
suppress the noise with minimum impact on the signal. However, the task often becomes
difficult because the signal and noise may not be precisely defined. Some processing meth-
ods assume white noise, with random distribution or white spectra. However, colored
noise, having similar behavior to the signal, often exists in the real world. Onshore seismic
data, for example, are usually associated with complex near-surface or subsurface geologic
conditions that may mean that the seismic signal and noise share a similar range of frequen-
cies and apparent velocities. As a result, we may divide noise suppression into two types,
data-driven methods and model-driven methods.

2.4.1 Model-driven noise suppression methods

For any seismic dataset given, an experienced data processor always attempts to come up
with a simple model to explain key features of the data. As an example, the common shot
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Figure 2.14 (a) Data space: A common shot gather. The slopes of the three triangles quantify
the apparent velocities of the first break. (b) Model space: an interpretation of the velocity field
and raypaths of various waves. (After Sheriff & Geldart, 1995.)

gather in Figure 2.14a shows a coherent first break and a strong reflection at time 2.2 s on
zero-offset, which extends into a head wave beyond a distance of 6.5 km. The slopes of
three triangles along the first break quantify the apparent velocity of the first break at these
locations. An apparent velocity of a seismic event refers to its slope on a time–distance or
equivalent graph. The ground rolls in this case, as an example, have very slow apparent
velocity because they are within a small offset range of about 2 km. The single strong



53 Preliminary analysis of seismic data

reflection leads us to come up with the simple model in Figure 2.14b, with a layer over a
half space. The top and base velocities of the top model layer can be well approximated by
the apparent velocities V1 and V2 of the two triangles at near-offset and before the critical
distance at which the reflection joins the first break. The top velocity of the half space is
approximated by the apparent velocity V3 of the head wave, as shown by the third triangle
in Figure 2.14a. An increase of velocity with depth as shown in Figure 2.14b is evident
from the change of the slopes of the three triangles in Figure 2.14a. We can estimate the
thickness of the top model layer using the zero-offset two-way time of 2.2 s of the reflection
plus the values of the top and base velocities of the layer.

2.4.2 Data-driven noise suppression methods

Data-driven noise suppression methods are based on a difference in character between the
desired signal and unwanted noise in data space. A simple example is when the signal and
noise have separate frequencies, such as when we want to keep high-frequency reflections
and suppress low-frequency surface waves: in this case high-pass filtering of the data
may do the job. However, losing low frequencies will severely reduce the bandwidth and
resolution of the data. Hence we have to make a balanced choice about how much low
frequency we remove. Another example is that most seismic migrations use only primary
reflection events, so we want to remove first arrivals and head waves. Because the events
associated with first breaks fall in different locations from most reflections on CMP or
common shot gathers, we may just apply a mute, the process by which we delete all events
in a pre-defined window. In such cases, an outer mute is often used as a crude way to
remove first breaks on pre-stack gathers. As shown in Figure 2.15, we could also use an
inner mute to remove ground rolls that have low apparent velocities, and a polygon mute
to “surgically” remove any unwanted portion of the data. The mute approach is certainly
effective, but it is a quick-and-dirty method: it throws away both the baby and the bath
water, namely the noise and the signal within the mute zones. In addition, the sharp edges
of the mute zones may introduce artifacts in the subsequent seismic images.

Stacking, or summing of multiple traces along the horizontal axis into a single trace,
is one of the most widely used data-driven noise suppression methods. It resembles an
integration operator. Traditionally, nearly all onshore reflection seismic data are acquired
using a field stack process, which deploys a group of about 10 geophones at each field
location (called a station), and stacks the records of all geophones in each group into a single
trace. The main purpose of such a field stack is to enhance the SNR and suppress various
field noises and inconsistency between the geophones. However, the stacking may harm the
recording quality of multi-component geophones. With the arrival of high durability and
high fidelity of digital geophones, a trend in modern seismic surveying is to employ arrays
of tens of thousands of single geophones or hydrophones without the field stack process.

2.4.3 Linear moveout and tau–p transform

An effective way to use the power of stacking is to apply a moveout, or a transform along
the time axis, prior to stacking. We have already seen the example of normal moveout or
NMO, which aligns reflections using an appropriate NMO velocity field. A subsequent
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Figure 2.15 (a) Outer mute removes first breaks. (b) Inner mute removes ground rolls.
(c) Polygon mute “surgically” removes various events.

stacking produces a stacked trace from each CMP gather, and thus the pre-stack seismic
traces are converted into the post-stack seismic traces. Another simple transform in time is
linear moveout, which converts the original time t into a reduced time τ using a reduction
slowness p (1�p is the reduction velocity):

τ = t − px (2–23)

The reduction slowness is just the ray parameter, or horizontal slowness. Some people
refer to the reduced time as intercept time.

The application of (2–23) is called a linear moveout (LMO) because the relationships
between the original time, offset and reduced time are linear. In contrast, the NMO is a
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Figure 2.16 (a) A sketch of common shot gather with three bold bars denoting those portions
of the first break and two reflection events that have the same slowness, p0. (b) After a linear
moveout using the reduction slowness p0, the corresponding portions of the three events
become flat on the x–τ plane. (c) Sketch of the gather after a τ–p transform.

non-linear moveout. In order to enhance an event of particular slope, we may apply a linear
moveout using the corresponding slope, and then sum the entire gather along the new x-axis.
Such a process is called a slant stack, which is used in various applications including the
Radon transform (e.g., Sheriff & Geldart, 1995; Maeland, 2004). Radon transform is a
primitive form of tomography, which assumes that the internal properties of a medium can
be obtained from many measurements made along the boundary of the medium. If the slant
stack process is a good approximation to the integration of the internal properties of the
medium along the path of a seismic wave, then we may be able to use an inverse slant stack
to uncover the internal properties of the medium. A typical implementation of the inverse
slant stack formula follows the definition of 2D Fourier integration.

If we express the input gather as function of time and offset P(t, x), then we can use
(2–23) to transform the data as a function of the slope p and reduced time τ :

S (p, τ ) =
∑

x

P (x, t) =
∑

x

P (x, τ + px) (2–24)

The above is called a tau-p (τ -p) transform, which is useful in many applications such
as suppression of certain multiple reflections. Clearly, the transform consists of a series of
slant stacks using the ray parameters across the entire input dataset. To implement the tau–p
transform and its inverse in practice, it is often more stable to take the approach of a least
squares inverse. Figure 2.16 shows a schematic picture of a shot gather going through the
tau–p transform.

In addition to muting, filtering and stacking after linear and non-linear moveout, there are
many other kinds of data-driven method to suppress various types of noise. However, the
characteristics of real data are often beyond the routines of general data-driven approaches.
For example, in the presence of rugged topographic variations or considerable thickness
variation of the weathering zone, the regularity of all types of waves will be distorted. In
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Figure 2.17 (a) Stack section after correction for geometric spreading in the t–x domain.
(b) The same section stacked in the τ–p domain after applying plane-wave decomposition
to remove geometric spreading. (From van der Baan, 2004.)

many cases, it is necessary to combine data-driven and model-driven methods of noise
suppression. Model-driven noise suppression methods attempt to customize and adjust
the parameters of the processing flow using predictions from realistic models. In the
above example, if we have a good enough near-surface model that includes topography
and thickness variations of the weathering zone, we should be able to make reasonable
predictions about the distortions of both signals and noise. Such information serves as the
base for building a customized noise suppression flow.

Figure 2.17 illustrates the effectiveness of noise suppression using the τ–p transform
(van der Baan, 2004). The same input data were subjected to two different corrections
for geometric spreading. The stack after correction in the τ–p domain via plane-wave
decomposition yielded a stack of apparently higher SNR than that from a t–x domain
correction. Although different approaches to data processing often yield similar results
as in this case, a small but consistent improvement is often significant. We often need to
analyze subtle differences between wiggle plots at known horizons and SNRs in the spectral
domain.

Exercise 2.4

1. Define white noise versus colored noise, and give several examples for each type of
noise. Why is it usually more difficult to suppress colored noise than white noise?

2. Discuss the meanings of signals and noise in Figures 2.14a and 2.15a.

3. Find a couple of examples in the literature on noise suppression in seismic data
processing using the τ–p transform.
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Table 2.1 P-wave velocities (Vp) of near-surface rocks
(Pralica, 2005).

Rock type Vp (km/s)

Alluvium 0.225–0.4
Loess 0.3–0.6
Weathered layer 0.3–0.9
Clay 0.3–2.5
Diluvium 0.7–1.8

S
an

ds

0.
4–

2.
8

Calcareous 0.8
Consolidated 0.61–0.82

L
oo

se Above water table 1.0
Bellow water table 1.8

Wet 0.75–1.5
Carbonates 1.7–7.0
Reef 1.7–7.0
Tundra (permafrost) 2.3–5.9
Basalt 5.06–6.4

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{

2.5 Correction for near-surface statics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In reflection and refraction seismology the near-surface effect plays a key role. It is caused
by a high level of lateral variations in topography, seismic velocity, lithology, layer thickness,
and seismic attenuation. Variations in topography onshore and in bathymetry offshore are
strong contributors to the near-surface effect. Lateral velocity variation is another strong
contributor. The presence of such a high level of lateral heterogeneities acts like a dirty
glass, distorting the images of the subsurface structure produced from seismic imaging.
A tradition in seismic data processing is to correct for the near-surface effect using an
approximation called near-surface statics, which is introduced in this section.

2.5.1 Large lateral velocity variations near surface

A main reason for the strong lateral heterogeneity in seismic velocity is the presence of
extremely slow velocities, particularly in desert land areas. The loose alluvium, for instance,
may have a P-wave velocity value smaller than the speed of sound (Table 2.1).

The concern about the effect of the near surface contributes to the appreciation of surface
consistency. A surface-consistent processing tool means it accounts for all the near-surface
effects such as locations of the shot and receivers, topography, and even near-surface
velocities. There are surface-consistent gain controls that associate attenuation factors with
each source and geophone location. The goal of removing near-surface effects is to ensure
that deeper amplitude variations are more closely associated with subsurface factors. Near-
surface effects can have very adverse effects on deeper reflections for two reasons. First,
velocity variation is usually at its highest near the surface. Second, the strongest near-field
effects exist because both shot and geophones are located within the near-surface.
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Figure 2.18 Modeling of first arrivals in three models. (a), (c), (e) Models with first-arrival rays
from a single source (star) to a number of receivers (triangles). The velocities of the four model
layers are 1.0, 1.5, 2.0, and 2.5 km/s from top downwards. (b), (d), (f) First arrivals plotted at
horizontal positions of the receivers. The vertical axis is the reduced traveltime using a
reduction velocity of 2.5 km/s.

2.5.2 The model of near-surface statics

It is customary in reflection seismology to quantify the near-surface effect on the vertical
traveltime of seismic waves as near-surface statics. Sheriff (1991) defines static corrections
as “corrections applied to seismic data to compensate for the effects of variations in
elevation, weathering thickness, weathering velocity, or reference to a datum.” While a
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Box 2.2 Raypaths of a first arrival

A first arrival or first break refers to the seismic wave that arrives the earliest from a seismic
source. The raypaths of the first arrival, however, depend on the velocity model. The near-
offset is usually the direct wave. The far-offset could be head waves for a layer-cake model,
but turning waves in a gradient model. The situation could be more complex in the presence
of lateral velocity variations.

static correction compensates the time shifts of reflection assuming vertically traversing
rays through the near-surface, the assumption is supported by the extremely slow velocities
near surface. Thus, the static correction becomes an essential step in nearly all land seismic
data processing (e.g., Taner et al., 1998; Cox, 1999), and in many marine seismic data
processing sequences to account for water velocity or tidal variations (e.g., Lacombe et al.,
2009). Let us see the behavior of first arrival raypaths and traveltimes in three synthetic
models shown in Figure 2.18. Here each model consists of four constant-velocity layers,
and the reduced traveltimes of the first arrivals are flattened by the reduction velocity of
the bottom layer. The traveltime curve in Figure 2.18d shows the effect of topography.
While the traveltimes for the third model may show less variation than those of the second
model, the third model is actually more complicated than the second. The reason is that the
topography and the undulating interfaces are compensating for each other in their impact
on the traveltimes. This example warns us that, in practice, an apparently simpler dataset
does not mean the corresponding model will always be simpler.

2.5.3 Corrections for near-surface statics

The goal of static correction is to transform seismic traces recorded at sources and receivers
near surface into a new set of traces as if they were recorded at sources and receivers along
a datum, a hypothetical surface that is tens to hundreds of meters below the surface
(Figure 2.19). Depending on the ruggedness of topography and thickness of weathering
zone, either a flat datum or floating datum can be chosen. A flat datum has a constant
elevation, whereas a floating datum usually has a fairly constant depth from the surface.
The depth of the datum should be lower than the base of the weathering zone to minimize
the near-surface effect and to be shallower than the depth of significant reflectors. However,
because it is a “static” correction (meaning a constant time shifting of each seismic trace,
corresponding to moving the source and receiver vertically from their original positions),
there is an error in the raypath and traveltime, as shown by the difference between the
original reflection raypath and the corrected reflection raypath in Figure 2.19. Clearly, this
error in static correction is smaller for shallower datum and deeper reflectors.

In practice, it is preferable to apply near-surface static correction based on real mea-
surements. GPS and other satellite or aerial geodetic data provide precise topographic data.
Uphole surveys reaching to depths of 100–200 m are often used to build up the static cor-
rection times to key markers such as the water table and base of the weathering zone. People
have also constructed empirical static correction formulas at places of regularly appearing
near-surface features. For instance, in desert areas covered by sand dunes, a sand dune
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Figure 2.19 A schematic cross-section showing the weathering zone, a floating datum, a flat
datum, and a reflector. With a floating datum, a static correction moves the source S and
receiver R vertically down to S′ and R′. With a flat datum, a different static correction moves
the source and receiver to S′′ and R′′. The original reflection raypath, as shown by the black
curve, is approximated by the dashed black curve in the second correction.
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Figure 2.20 (a) Sand dune topography (upper curve) and the water table depth (lower flat
curve). (b) The sand dune curve in Tarim Basin.

curve of static correction (Figure 2.20) may be established based on measurements at sam-
ple locations and applied elsewhere. Recently, remote-sensing data have been interpreted
to provide lithological and static corrections.

However, it is a common practice in modern reflection seismology to determine cor-
rections for near-surface statics, also called residual statics, based on traveltimes of first
breaks and reflections that are readily available from seismic data (e.g., Taner et al., 1974;
Cox, 1999). Using refraction traveltimes, the approach of refraction statics includes the
field statics and the least squares inversion and assumes a layer-cake velocity model. Field
statics include corrections for source statics and receiver statics, as well as thickness and
velocity variations of the weathering zone. Source and receiver statics refer to the time
corrections due to local velocity variations at source and receiver as well as their position
errors. One may take the mean value of traveltime residuals of all the traces at a source or
a receiver as an estimate of the statics. A more elegant method is to formulate traveltime



61 Preliminary analysis of seismic data

equations of all traces as functions of the static terms at all sources and receivers plus the
structure effect, and then determine the source and receiver statics through a least squares
inversion. This is a simple form of traveltime tomography (e.g., De Amorim et al., 1987).
Because refraction rays have a large offset in comparison with their traversing depth, they
may provide a good estimation of the near-surface statics due to long-wavelength compo-
nents, at a distance range comparable with the seismic cable length.

To better estimate the short-wavelength components of the near-surface statics, one may
apply reflection statics using traveltimes of reflections. As in the determination of refraction
statics, a set of traveltime equations can be formulated for traveltimes of reflection rays
as functions of the static terms and the structure effect. Obviously, it is more beneficial to
combine the refraction and reflection data to determine the static corrections.

Another method of correction for the near-surface statics is trim statics, in which small
static time shifts (less than about 1/3 of the main period) are made to align the reflection
wiggles of neighboring traces. Because the main period of most reflection seismic data
is around 20 ms, the trim statics are usually limited to within 5–7 ms of each pair of
neighboring traces. While trim statics are usually applied to pre-stack seismic gathers, they
can be easily applied to post-stack seismic sections. Trim statics are typically derived from
a process of cross-correlating neighboring traces of the input data. A trimmed dataset after
correcting trim statics may show significantly improved alignment of reflections from the
input, because the optimal alignment of reflections is the goal of the method. However,
because trim statics are estimated statically with the alignment of reflection as the only
objective, this method may produce wrong results, particularly in the presence of high
noise level or aligned noises.

2.5.4 Tomostatics

Perhaps the most popular method of static correction is tomostatics, which first determines a
near-surface velocity model using a tomographic inversion, and then corrects for the statics
predicted by the velocity model. The advantage of the tomostatics approach lies in its use of
a realistic near-surface velocity model to validate the static corrections and its use of global
inversion to determine the velocity model using all the data. Most tomostatics methods
employ first arrivals because they are widely available and the corresponding inversion is
very simple. Depending on the velocity field, the raypaths of first arrivals include that of the
direct wave, turning wave or refracted wave. Early studies of tomostatics were reported by
Chon and Dillon (1986) and De Amorim et al. (1987). After the work of Zhu et al. (1992)
and Docherty (1992), the method became widespread (e.g., Rajasekaran & McMechan,
1996; Zhang & Toksöz, 1998; Chang et al., 2002; Zhou et al., 2009). Two stack sections
after a refraction static correction and a tomostatic correction are shown in Figure 2.21. It is
often a tedious job to compare the relative quality of stack sections after static corrections
because the quality may vary from place to place.

2.5.5 Wavefield datuming

As a final note on the correction for near-surface statics, its underlying model of verti-
cal and static correction as shown in Figure 2.19 has been the subject of major debate
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(b)(a)

Figure 2.21 Comparison of stack sections after: (a) first-break refraction statics; and
(b) tomostatics. Three dashed ellipses show areas of focused comparison.

over many years. The widespread use of static correction is due to its strong practical-
ity. This practicality is reflected mainly in its simplicity and computational efficiency. On
the other hand, if we have a sufficiently accurate near-surface velocity model, we may
apply wavefield datuming to convert the raw data into new data as if they were recorded
along a datum below the near surface (Box 2.3). Alternatively, we may run a surface-
consistent depth migration by integrating the near-surface into the migration velocity
model.

Box 2.3 A synthetic example of wavefield datuming

Wavefield datuming attempts to convert data recorded using surface shots and receivers
into the data that would have been recorded using shots and receivers on the datum below
the weathering zone. Box 2.3 Figure 1 shows a five-layer P-wave velocity model with a
datum between the weathering zone and two reflectors. Box 2.3 Figure 2 shows synthetic
shot records using surface shots and receivers, the static correction result, and the wavefield
datuming results in the upper, middle, and lower rows, respectively. The wavefield datuming
results fit the correct reflector positions much better than the results after statics correction,
especially for the shallow reflector. The difference between statics correction and wavefield
datuming becomes smaller for deeper reflectors.
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800 m/s to 1300 m/s. S2 is a floating datum. R1 and R2 are two reflectors. (From Liu et al.,
2011.)
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Box 2.3 Fig. 2 Shot records of two reflections R1 and R2 for three shot locations at 3 km (left
column), 4.32 km (central column), and 9.24 km (right column). (Upper row) Raw data with
shots and receivers on surface S1. (Middle row) After correction for statics. (Lower row) After
wavefield datuming. Dashed curves are the true trajectories of reflectors. (From Liu et al.,
2011.)
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Exercise 2.5

1. Discuss the advantages and limitations of using the concept of statics to correct for the
near-surface effect on seismic data.

2. The sand dune curve shown in Figure 2.20b is a depth versus traveltime plot that can be
obtained from an uphole or a check shot survey. Derive a 1D velocity function based
on the depth versus traveltime plot in Figure 2.20b.

3. Search the literature to write a short description for: (1) refraction statics; (2) reflection
statics; and (3) trim statics. Which method is the most effective?

2.6 Summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
� The main purposes of pre-processing are identifying problems with the dataset and

applying simple corrections. We need to QC the input data by assessing its quality and
finding out its characteristics relevant to our study objectives.

� Normal moveout (NMO) stacking aims at improving the SNR of primary reflections and
establishing stacking velocities assuming locally layer-cake models. The stacked traces
are input to post-stack data processing and imaging.

� Convolution is the mathematical operation of multiplying two time series such as two
input data strings. It represents the physical process of combining two or more time
series. Filtering is the convolution of the input signal with the filter function to produce
an output signal.

� Correlation measures the similarity between two input time series, resulting in a new time
series which is the similarity function between the two input series. The auto-correlation
function is always symmetric.

� Each digital signal has a matched filter, which has the elements of the signal in reverse
order. Filtering with a matched filter is equivalent to cross-correlating with the signal.
A matched filter maximizes the output in response to the signal; hence it is the most
powerful filter for identifying the presence of a given signal with additive noise.

� Processing of multi-component seismic data requires special care and knowledge about
the orientation of the sensors and physics of wave propagation. An example is given here
for identifying the components of a VSP survey using hodograms of first arrivals.

� Most noise suppression methods search for and take advantage of the difference between
the characteristics of the signal and noise. Model-driven methods attempt to construct
simple models to help identify the properties of signal and noise. Data-driven methods
are based on obvious differences between the signal and noise.

� A linear moveout (LMO) involves time-shifting of seismic traces proportional to a linear
relationship with offset, so that events of certain dips become flat after the moveout.
A slant stack consists of a LMO followed by a stacking to emphasize or beam-steer
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events of certain dips. Slant stacking is used in various applications including the Radon
transform.

� The near-surface effect due to the presence of the weathering zone and topographic
variations may pose challenges to seismic processing. A traditional approximation is the
static correction. Recent improvements include tomostatics and wavefield datuming.

FURTHER READING

Cox, M., 1999, Static Corrections for Seismic Reflection Surveys, SEG.
Sheriff, R. E., 1991, Encyclopedic Dictionary of Exploration Geophysics, 3rd edn, SEG.
Yilmaz, O., 1987, Seismic Data Processing, SEG Series on Investigations in Geophysics, Vol. 2,

SEG.



3 Discrete spectral analysis

Chapter contents

3.1 The law of decomposition and superposition

3.2 Discrete Fourier transform

3.3 Spectral analysis

3.4 Seismic wavelets

3.5 Interpolation

3.6 Summary

Further reading

Discrete spectral analysis is a suite of classic data processing tools aiming to quantify
the energy distribution of seismic data over temporal or spatial scales. This chapter
starts with the law of decomposition and superposition, which is the foundation of
many seismic processing methods. According to Fourier theory, a seismic trace can be
expressed as a linear superposition of harmonic functions of different frequencies with
appropriate amplitudes and phases, thus enabling the spectral analysis. Because seismic
data are in digital form with limited time durations, classic spectral analysis is achieved
using discrete Fourier transform (DFT). Readers should pay special attention to the
characteristics of the DFT, as these often differ from the continuous Fourier transform.
Fast Fourier transform (FFT) is described as an example to improve the computation
efficiency in processing.

Discrete spectral analysis is discussed using several examples. Useful processing
tricks in one type of processing are often borrowed to solve problems in another type
of processing. To decompose seismic traces, for instance, we may use wavelets of fixed
shape but varying amplitudes and lengths rather than harmonic functions as the basic
building blocks. This enables wavelet decomposition and seismic wavelet analysis, as
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= + +

Figure 3.1 The left-most time series is the result of summing the other three time series along
their amplitude direction (amplitude stacking). In other words, the left-most time series can be
decomposed into the other three, and then these three can be superposed to recreate the
left-most time series.

another application of the law of decomposition and superposition. Yet another usage of
the law is in interpolation of digital data, which has many applications in the processing
of seismic and non-seismic data.

3.1 The law of decomposition and superposition
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1.1 Description of the law

The law of decomposition and superposition is a fundamental principle in physics and
geophysics. That a natural system can be decomposed into components, and these com-
ponents can be superposed to recreate the whole system, is the key behind many seismic
data processing procedures. Figure 3.1 shows an example of decomposing a time series
into three time series of the same length, and superposing these three time series into a
single time series. We may, of course, superpose many time series of different lengths.
The summing of the three time series in this figure is called amplitude stacking because
the summation is done along the amplitude direction. In some refraction surveys vertical
stacking is done, which means stacking the traces from a number of sources recorded at
one location to enhance the signal-to-noise ratio.

To appreciate the physics behind the law of decomposition and superposition, let us
examine an example. In 1678, the Dutch physicist Christiaan Huygens explained the prop-
agation of light using a wave model known as the Huygens principle. This principle states
that, from one propagating wavefront, we can generate the next wavefront by decomposing
the first wavefront into a number of point sources emitting new waves, and then superposing
the waves from these point sources. One way to prove this principle was shown in a sketch
(Figure 3.2) by Isaac Newton in his famous book Philosophiæ Naturalis Principia Math-
ematica. Newton’s sketch uses a wall containing a hole to decompose the first wavefront
into a point source in the hole. This hole is considered as a single point source only for
those waves whose first Fresnel zone, as shown by the arrow bar in the figure, is at least
twice as wide as the width of the hole (the Fresnel zone is the length within which the two
wavefronts constructively interfere with each other). If Huygens is correct, the wavefronts
on the right side of the wall will behave as if the hole is their point source. Newton’s sketch
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Figure 3.2 Isaac Newton used the law of decomposition and superposition to prove the
Huygens principle, as shown in this sketch in his Principia (4th edn, 1726, reprinted 1871 by
MacLehose, Glasgow, p.359). The dotted arrow bar approximates the width of the Fresnel zone
of new waves near the hole.

provides a roadmap for physical experiments, such as observing the waves in a lake going
through an opening along a levee.

3.1.2 Examples of the law

When pre-stack seismic data are converted into post-stack data, a NMO is done first
and all the NMO-corrected traces of each CMP, such as that shown in Figure 2.7b, are
stacked along the offset direction to form a single post-stack trace. The NMO stacking
is an example of superposition, and going from the stacked trace to the pre-stack traces
is the corresponding decomposition. Clearly, the stacking will produce a unique trace,
whereas the decomposition does not. We can decompose a seismic trace into many possible
combinations of traces. It is difficult to recover the information that was destroyed by the
stacking, such as the ground rolls in a pre-stack CMP which will be largely suppressed by
the NMO stacking.

A different type of superposition is provided by the convolution process. A recorded
seismic trace may be regarded as the convolutional superposition of the source function,
Earth function, receiver function, and noise. Hence the recorded trace can be decomposed
into these functions. Since the decomposition is not unique, we must search for those
decompositions that both physically make sense and are convenient for our data processing
objectives. The convolution operation can be expressed as multiplying a Toeplitz matrix
with a vector, as shown in equation (2–15). We may carry out the multiplication in two
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Figure 3.3 (a) An input seismic trace (solid curve) and a 20 Hz cosine wave. (b) The correlation
between the input trace and 20 Hz cosine wave as a function of the phase of the cosine. The
peak of the correlation (with a value of 16.1) is reached at phase 175° (Barnes, 1998).

steps. The first step is to multiply the kth column of the matrix with the kth element of
the vector. We may regard this step as a weighting of the columns of the matrix using the
coefficients provided by the vector. The second step is to sum or stack all weighted columns
of the matrix into a single column. Hence, convolution can be regarded as a weighted
stacking. In other words, convolving two vectors is like stacking a Toeplitz matrix made
of the first vector and column-weighted by the second vector.

Fourier decomposition, as shown in Figure 1.13, is another example of the law of decom-
position and superposition. As shown in the lower panel of Figure 1.13, the original time
series on the left is decomposed into harmonic functions of different frequencies with
different amplitudes and phase lags. A superposition or stacking of all the harmonic traces
produces the original time series; this is equivalent to a discrete inverse Fourier transform.
Fourier decomposition is the physical process of a Fourier transform, and the building
blocks are the harmonic functions.

In practice, after we have decided to use a particular building block for the decomposition,
how do we obtain the coefficients? One approach is illustrated by Barnes (1998), as shown
in Figure 3.3.

Figure 3.3 illustrates, for an input seismic trace (solid curve in Figure 3.3a), the derivation
of the amplitude and phase angle for a 20 Hz cosine wave as one of the building blocks.
For this monochromatic cosine wave, the only two parameters that we can change are its
amplitude and its phase angle, or where the time zero is defined. In this figure, the amplitude



70 Practical Seismic Data Analysis

of the cosine wave is normalized at ±1. Then we can compute the cross-correlation between
the input trace and the cosine wave using different phase angles. Owing to the periodicity
of the harmonics, the correlation value has the same periodicity as the cosine wave. It turns
out that the maximum correlation is reached at phase angle 175°, with a peak correlation
value of 16.1. Figure 3.3a displays the 20 Hz cosine wave at 175° phase angle. The peak
correlation of 16.1 is the value at 20 Hz on the amplitude spectra, and the phase angle of
175° is the value at 20 Hz on the phase spectra. By searching for the maximum correlation
for cosine waves of each discrete frequency, we can derive all amplitude values on the
amplitude spectra and all phase angles on the phase spectra for the input seismic trace. If
the input trace in time domain has N sample points, we usually use N discrete frequencies in
frequency domain. Because there are two variables per frequency, the number of variables
in the frequency domain is 2N.

Since the beginning of seismology, there has been an effort to decompose seismic traces
into wavelets. One advantage of this is that, if the chosen wavelet represents a physical
component of the data, such as the source wavelet, then the processes of decomposition
and superposition give a realistic representation of the physical process. Another advantage
is that the wavelet decomposition and superposition are time-domain processes, capable
of showing time-domain properties and local attributes. Details on seismic wavelets and
wavelet decomposition will be discussed in a later section.

Exercise 3.1

1. Find and discuss three applications of the law of decomposition and superposition from
geophysics literature.

2. Conduct a modeling experiment to prove the Huygens principle by following the
sketch by Isaac Newton in Figure 3.2.

3. If we alter the amplitude of the 20 Hz cosine wave in Figure 3.3a, will the pattern of the
correlation function in Figure 3.3b change? Will the amplitude of the correlation
change?

3.2 Discrete Fourier transform
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Fourier transform (FT) is an application of the law of decomposition and superposition
using harmonic sine and cosine functions as the basic building blocks.

This transform enables the conversion of a function between the time domain and fre-
quency domain. The conversion is often useful, owing to the FT’s many special properties.
For instance, a time-domain convolution becomes a frequency-domain multiplication, so
high computational efficiency may be achievable in the frequency domain. The FT is of
particular value to seismic data processing in two additional respects. First, it facilitates
discrete spectral analysis, the main topic of this chapter. Second, many geophysical prob-
lems become easily solvable once the FT has been applied. For example, the wave equation
as a partial differential equation may be converted using multi-dimensional FT into an
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Table 3.1 Some properties of the Fourier transform

Property Time domain Frequency domain

Modulation f (t) exp(iω0t) <= FT => F(ω + ω0)
Linear a1 f 1(t) + a2 f 2(t) <= FT => a1F1(ω) + a2 F2(ω)
Shifting f (t – t0) <= FT => F(ω) exp(–iωt0)
Scaling f (at) <= FT => F(ω�a)�|a|

f (t�a)�|a| <= FT => F(aω)
Convolution f 1(t) f 2(t) <= FT => F1(ω) * F2(ω)

f 1(t) * f 2(t) <= FT => F1(ω) F2(ω)

Parseval’s theorem
∞∫

−∞
| f (t)|2 dt <= FT =>

∞∫
−∞

|F(ω)|2 dω

Differentiation
∂

∂t
f (t) <= FT => iω F(ω)

∂2

∂t2
f (t) <= FT => –ω2 F(ω)

ordinary differential equation that is readily solvable. In this section, the main properties of
the FT will be introduced using one-dimensional continuous FT. Then the 1D discrete FT
is introduced with a finite number of sample points in both time and frequency domains.
Some detailed discussion on fast Fourier transform (FFT) is given to show ways to improve
the computational efficiency during digital data processing. Finally, issues around multi-
dimensional Fourier transform are illustrated with an example.

3.2.1 Continuous Fourier transform

A 1D continuous Fourier transform is defined as

Forward FT: F(ω) =
∞∫

−∞
f (t)eiωt dt (3–1)

Inverse FT: f (t) = 1

2π

∞∫
−∞

F(ω)e−iωt dω (3–2)

Both the forward and inverse FTs are weighted integrations of the input function with the
harmonic function e±iωt = cos ωt ± i sin ωt as the weights. As the values of either ω or t
change, the harmonic function changes its wavelength or frequency; so the output function
of either forward or inverse FT is a linear superposition of the components of the input
function in terms of its different frequency components. The similar forms of the forward
FT and inverse FT mean that there is a duality or symmetry between the time-domain
and frequency-domain expressions of a function. Note that when the input function f(t)
is real, its corresponding frequency-domain term F(ω) will be complex in general. Some
important properties of the FT are listed in Table 3.1.

The FT properties shown in Table 3.1 are very useful in seismic data processing. For
example, the convolution property allows efficient computation of convolution through
multiplication in the spectral domain. The shifting and differentiation properties are behind
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the frequency domain migration. As will be introduced in Chapter 7, the acoustic wave
equation as a partial differential equation can be converted into an ordinary differential
equation using multi-dimensional FT. In this case the FT acts as plane-wave decomposition,
and the downward continuation of each plane wave is equivalent to shifting its phase angle.

3.2.2 Discrete Fourier transform

In practice, seismic data processing deals mostly with the discrete Fourier transform
(DFT); see Box 3.1 for an example of this. Suppose we have N equidistant sampling points
along the t-axis, with a sampling interval �t:

| | | · · · · · · | |
--- → t ------- ------------- · · · · · · ------ -------- ------------- → t

0�t 1�t 2�t · · · · · · (N − 2)�t (N − 1)�t

The measured function values at these N points are: f (0�t), f (1�t), f (2�t), . . .
Discretizing the continuous forward FT (3-1) using t = n�t, we have

F(ω) =
N−1∑
n=0

f (n�t)eiω(n�t)�t (3–3a)

We may simplify the notation by letting �t = 1,

F(ω) =
N−1∑
n=0

f (n)eiωn =
N−1∑
n=0

fneiωn (3–3b)

Because the range of the angular frequency ω is 2π , with N sampling points, the frequency
interval will be

�ω = 2π/N (3–4)

Thus, we obtain the value of F(ω) at a discrete frequency point ω = j�ω = 2π j�N. Hence,
the forward DFT is

Fj = F( j�ω) =
N−1∑
n=0

fnei(2π/N ) jn (3–5a)

Similarly, we can discretize the continuous inverse FT (3-2) using ω = j�ω and
t = n�t = n, yielding

f (n) = 1

2π

N−1∑
j=0

F( j�ω)e−i( j�ω)n2π/N

or

fn = 1

N

N−1∑
j=0

Fj e
−i(2π/N ) jn (3–5b)

which is the inverse DFT formula.
Notice in the above that we have chosen to take the same number of sampling points in

the frequency domain as we have in the time domain. This is called an even-determined
transform. Otherwise, it may become an under-determined transform if we are transferring
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Box 3.1 An example of discrete Fourier transform

Let us use DFT to show the effect in the frequency domain of doubling the length of an
N-length time series

xt = {x0, x1, x2, . . . , xN−1}
into a 2N-length by padding with N zeros in the front:

yt = {0, 0, 0, . . . , 0, x0, x1, x2, . . . , xN−1}
|← N → |← N → |

[Solution]
Following the forward DFT formula, we have

X j =
N−1∑
n=0

xnei 2π
N jn, j = 0, 1, 2, . . . , N − 1

Hence,

Y j =
2N−1∑
n=0

ynei 2π
2N jn =

2N−1∑
n=N

xn−N ei 2π
2N jn, j = 0, 1, 2, . . . , 1N − 1.

Let k = n – N, or n = k + N; thus xn–N = xk. If n = N, then k = 0; if n = 2N – 1, then k =
N – 1.

Y j =
N−1∑
k=0

xkei 2π
2N j(k+N ) =

N−1∑
k=0

xkei 2π
2N jkeiπ j = (−1) j

N−1∑
k=0

xkei 2π j
2N k

If j = 2m,

Y2m =
N−1∑
k=0

xkei 2π
N mk = Xm

If j = 2m + 1,

Y2m+1 = −
N−1∑
k=0

xkei 2π
N (m+1/2)k = −

N−1∑
k=0

xkei 2π
N mkei π

N k

which is a modulated version of (–Xm).
Therefore, the FT of the new series is made up of the FT of the original time series

interlaced by a modulated version of the FT of the original time series.

fewer points from the original domain to more points in the transferred domain; or an
over-determined transform if it is the other way around.

Like the case of the continuous FT, the differences between the forward DFT (3–5a)
and the inverse DFT (3–5b) lie in the sign of the exponent and scaling, which is 1�2π

for FT versus 1�N for DFT. Consequently, the same computer program may be used for
both processes with minor modification. Such a duality makes the meaning of “time” and
“frequency” interchangeable.
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One may write the forward DFT in matrix form, using a variable W = ei2π/N :⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0

F1

F2

...

...

FN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 W 1×1 W 1×2 · · · W 1×(N−1)

1 W 2×1 W 2×2 · · · W 2×(N−1)

...
...

... · · · ...
...

...
... · · · ...

1 W (N−1)×1 W (N−1)×2 · · · W (N−1)×(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0

f1

f2

...

...

fN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3–6)

One can express fn in terms of Fn using the inverse of the matrix in the above equation,
which can be obtained from the inverse Fourier transform. Notice that W–1 is the complex
conjugate of W. Since the forward DFT differs from the inverse DFT only by a change of
sign in the exponent (from W to W–1) and a scaling factor 1�N in front of the inverse DFT,
it is not difficult to figure out from (3–6) that the matrix notation of the inverse DFT is:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0

f1

f2

...

...

fN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 W −1×1 W −1×2 · · · W −1×(N−1)

1 W −2×1 W −2×2 · · · W −2×(N−1)

...
...

... · · · ...
...

...
... · · · ...

1 W −(N−1)×1 W −(N−1)×2 · · · W −(N−1)×(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0

F1

F2

...

...

FN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3–7)

Since (3–6) and (3–7) are inverse to each other, the matrices on the right-hand side of
these equations must form an inverse matrix pair. Let us prove this notion. Our proof is
based on the periodic property of W, i.e. WN = 1. The multiplication of these two matrices
is a matrix Y:

Y = 1

N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 W −1×1 W −1×2 · · · W −1×(N−1)

1 W −2×1 W −2×2 · · · W −2×(N−1)

...
...

... · · · ...
...

...
... · · · ...

1 W −(N−1)×1 W −(N−1)×2 · · · W −(N−1)×(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 W 1×1 W 1×2 · · · W 1×(N−1)

1 W 2×1 W 2×2 · · · W 2×(N−1)

...
...

... · · · ...
...

...
... · · · ...

1 W (N−1)×1 W (N−1)×2 · · · W (N−1)×(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We just need to show that Y is an identity matrix I.
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Suppose yij is an element of the squared matrix Y on the ith row and jth column. The
above matrix multiplication indicates that yij is the dot product of the ith row of the first
matrix with the jth column of the second matrix.

yi j = 1

N
(W −i0, W −i1, . . . , W −i(N−1)) · (W i0, W i1, . . . , W −i(N−1))T = 1

N

N−1∑
k=0

W ( j−i)k

If i = j, yi j = 1
N

∑N−1
k=0 W 0 = 1;

If i 	= j , notice that
∑N−1

k=0 xk = (1 − x N )/(1 − x) and let x = W j−1 to give us

yi j = 1

N

N−1∑
k=0

W ( j−i)k = 1

N
(1 − W ( j−i)N )

/
(1 − W ( j−i)) = 0

Therefore, Y � I.

3.2.3 Fast Fourier transform

Since the operating matrix in (3–6) or (3–7) is an Nth-order square matrix, a straightforward
implementation of the DFT demands N2 operations, i.e. N inner products each of length
N (N multiplications and N additions). The speed of this operation is too slow for general
applications. In practice, fast Fourier Transform (FFT) is used with N logk N operations,
and k = 2 in most cases. If N = 1024, then logk N = 10; this means a tremendous saving
in computation speed. The FFT algorithm was first published by Cooley and Tukey (1965),
although rumor has it that Vern Herbert from Chevron had developed an FFT algorithm in
1962.

FFT takes advantage of the periodic property of the base functions of the FT, the
trigonometric functions. When k = 2, this property is called doubling; when k = 3, it is
called tripling. Let us examine the case of doubling here. The doubling operation is to
use the FT solutions of two equal-length series

xt = (x0, x1, x2, . . . , xN−1) and yt = (y0, y1, y2, . . . , yN−1)

In constructing the FT solution for the interlaced series of the above two,

zt = (x0, y0, x1, y1, x2, y2, . . . , xN−1, yN−1)

Note that the DFT of the interlaced series zt requires (2N)2 = 4N2 operations, while the
DFT of the first two series requires a total of 2N2 operations. Therefore, if we need to do
FT for a series of length N = 2k, we can do the doubling by regarding the series as the
interlaced series of two shorter series, and do a further doubling on the two shorter series,
and thus repeat the doubling operation k times until we reach the shortest series which
contains only one element. Since we go from N to two N�2, and to four N�4, and so on for
a total of k divisions of the data, and each division needs N operations to update for all data
points, the entire FFT process requires a total of N log2 N = Nk operations.

Let us examine the FFT process for a series

ft = ( f0, f1, f2, . . . , fN−1)
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where N = 2k. The lengths of half-division of N for k times are all integers:

N/2 = K1

K1/2 = N/4 = K2

K2/2 = N/8 = K3

· · ·
N/N = Kk = 1

According to (3–5a), the ordinary DFT of ft is

Fj =
N−1∑
n=0

fnei 2π
N jn, for j = 0, 1, 2, . . . , N − 1

Since N = 2K1,

Fj =
2K1−1∑

n=0

fn V jn

where V = ei2π/N = eiπ/K1 .
Let us consider the even and odd indexed elements of ft in two separate series:

xi = f2i

yi = f2i+1

where i = 0, 1, . . . , K1. Their FTs are, for j = 0, 1, . . . , K1,

X j =
K1−1∑
n=0

xn V 2 jn

Y j =
K1−1∑
n=0

yn V 2 jn

Going back to the original series ft for j = 0, 1, . . . , K1–1, K1, . . . , N–1

Fj =
K1−1∑
n=0

f2n V 2nj +
K1−1∑
n=0

f2n+1V (2n+1) j

=
K1−1∑
n=0

xn V 2nj +
K1−1∑
n=0

yn V (2n+1) j

We then consider two cases as follows.

(i) When 0 � j < K1, we have

Fj =
K1−1∑
n=0

xn V 2nj + V j
K1−1∑
n=0

yn V 2nj

= X j + V j Y j
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(ii) When K1 � j < N, let m = j – K1, then

Fj = FK1+m =
K1−1∑
n=0

xn V 2n(K1+m)+
K1−1∑
n=0

yn V (2n+1)(K1+m)

=
K1−1∑
n=0

xn V 2nm V 2nK1 + V m
K1−1∑
n=0

yn V 2nm V (2n+1)K1

= Xm − V mYm

In the foregoing derivation we have used the fact that V2nK1 = VnN = 1, and VK1 =
VN/2 = –1. Combining the above two cases together

Fj = X j + V j Y j

FK1+ j = X j − V j Y j

for j = 0, 1, . . . , K1–1. In other words, if we let

F (e)
j = X j

F (o)
j = Y j

where superscripts (e) and (o) stand for even and odd indexes of the original series, we
have

Fj = F (e)
j + V j F (o)

j (3–8a)

FN/2+ j = F (e)
j − V j F (o)

j (3–8b)

The above equations describe a general doubling operation. Applying the doubling
operation to the next level of division, we have

F (e)
j = F (ee)

j + V j F (eo)
j

F (e)
N/4+ j

= F (ee)
j − V j F (eo)

j

F (o)
j = F (oe)

j + V j F (oo) j

F (o)
N/4+ j

= F (oe)
j − V j F (oo) j

where j = 0, 1, 2, . . . , N�4 – 1. The doubling operation will be applied until each subdivided
series on the RHS has reduced to contain only a single element, which is ft. The actual
practice of the FFT goes from the lower level upwards.

In the general case, one iteration of the FFT relates the FT of a length-2N series {Fk}
into two of its sub-series of length N, {Xk} and {Yk}, through the doubling algorithm,

Fk = Xk + V kYk (3–9a)

Fk+N = Xk − V kYk (3–9b)

where k = 0, 1, . . . , N–1. This doubling operation may be represented symbolically as that
in Figure 3.4. Interested readers may study Box 3.2 for further detail on the implementation
of DFT.
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Input Output

Xk

Yk Fk+N

Vk

Fk

Figure 3.4 A symbolic FFT operator.

Box 3.2 Assigning coefficients of DFT via bit reverse

Let us look at an example of using the doubling operation to build up a complete DFT
for a length-4 time series. Box 3.2 Figure 1 shows a sketch of such a DFT between its
time-domain values { fn and its frequency-domain values {Fj }.

V0
V0

F0

F1

F2

F3

f1

X0

X1

Y0

Y1

f0

f2

f3

one length-4 
transform

two length-2
transforms

four length-
1 transforms

V1
V 0

Box 3.2 Figure 1 Sketch of DFT for a length-4 time series.

Note that the DFT of a length-1 series is just itself. Now we can rewrite the above system
by flipping the left and the right sides of this figure to get the corresponding forward DFT
in Box 3.2 Figure 2.

f0

f2

F0

F2

V0 V0

V1V0

f1

f3

F1

F3

Box 3.2 Figure 2 Sketch of forward DFT for a length-4 time series.
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The above operation cannot be done “in place” because the doubling operations in the left
side of Figure 2 are asymmetric. We may rearrange the order of the input time series to
make it in place, as shown in Box 3.2 Figure 3.

f0

f2

f1

f3

V0

F0

F1

F2

F3

V0

V0
V1

Box 3.2 Figure 3 The forward DFT for a length-4 time series with all symmetric doubling
operations in place.

The reordering in the previous diagram from {F0, f1, f2, f3} to {f0, f2, f1, f3} is referred to
as a “bit reverse” ordering. In other words, the difference between the orders of these two
series is just to reverse their binary orders. Box 3.2 Figure 4 shows the bit-reverse ordering
for the indices of a length-8 series.

BinaryDecimal
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000
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000

100
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110
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111

0

4
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6

1

5

3

7

New indexes

bit

reverse

Box 3.2 Figure 4 Bit-reverse ordering of a length-8 index.

The doubling diagram of FFT for this length-8 series is shown in Box 3.2 Figure 5. You
may check the exponents of V in the above diagram to make sure that they follow equation
(3–9). Are you able to draw such a doubling diagram for a length-16 time series?
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Box 3.2 Figure 5 The forward DFT for a length-8 time series.
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Figure 3.5 An example of 2D FT (Sacchi & Ulrych, 1996). (a) VSP data. (b) f–k spectrum
from conventional DFT. (c) f–k spectrum using the Cauchy–Gauss model. (d) Upgoing waves.
(e) Downgoing waves.
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3.2.4 Multi-dimensional Fourier transform

Multi-dimensional Fourier transforms are among the most useful seismic data processing
tools. Figure 3.5 shows an example of decomposing a VSP dataset into upgoing and down-
going wavefields. In a VSP survey the geophones are located in the well bore. An upgoing
wavefield arrives at geophones in the upwards direction, including waves reflected from
horizons below the geophones. A downgoing wavefield arrives at geophones downwards,
including direct waves from sources above the geophones and multiple reflections reflected
from horizons above the geophones. Many seismic imaging methods use only the upgoing
wavefield, so a separation of the upgoing and downgoing wavefields is necessary. In this
example, the original data in the time-offset domain, or t–x domain, can be transformed via
2D FT into the frequency–wavenumber domain, or f–k domain. Sacchi and Ulrych (1996)
used a Cauchy–Gauss model to produce the f–k spectrum in Figure 3.5c which is much less
noisy than the conventionally produced f–k spectrum in Figure 3.5b.

Exercise 3.2

1. What happens to a function F(ω) if you take two consecutive inverse Fourier
transforms of it? What is the implication of the result?

2. Calculate the Fourier transform of f (t) = (4, –3, 2, –1) using DFT formulation. Please
show the resultant real part and imaginary part separately.

3. Using DFT to show the effect in the frequency domain of interlacing zeros into a time
series xt. Here, interlacing zeros means turning an N-length xt = {x1, x2, x3, . . . , xN}
into a 2N-length yt = {x1, 0, x2, 0, x3, 0, . . . . . . , xN, 0}.

3.3 Spectral analysis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Spectral analysis is a digital data processing method to assess the distribution of the data
energy as a function of frequency and spatial scales. In practice, frequency distributions of
the data energy are often used as important attributes in revealing the nature of the data. For
example, spectral analysis may allow us to detect special seismic events such as explosions
versus shear faulting. An example is given in Box 3.3.

3.3.1 Spectrum definitions

In general, the spectrum of a time series refers to a display of one of the properties
under consideration as a function of frequency (a systematic change in temporal scale) or
wavenumber (systematic change in spatial scale). The most commonly encountered spectra
in geophysics include the amplitude spectrum, phase spectrum, and power spectrum
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Box 3.3 Spectral analysis of the 9/11 disaster events

As a famous example, let us examine the seismic data and displacement spectra for the
September 11 World Trade Center disasters, in Box 3.3 Figure 1. The data were recorded at
a seismologic station in the Lamont Doherty Observatory at Columbia University, located
34 km due north from the World Trade Center. The measured seismic energy due to the
collapse of the two buildings is equivalent to magnitude 2.1 and 2.3 events on the Richter
scale. On the spectra the impacts and collapses stand out as anomalous spectral events in
red, with respect to the background noise spectra in black.
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Box 3.3 Figure 1 Seismic record at Palisades, NY, 34 km north of the World Trade Center
during the 9/11 disaster. (Left) East–west component of time record started at 8:40 EDT, or
13:40 WTC, on 9/11/2001. Two inserted seismograms are zoom-in plots of the first impact and
the first collapse. (Right) Displacement spectra [nm s]. In each panel the upper curve is the
signal spectrum, and the lower curve is the noise spectrum (from Kim et al., 2001). For color
version see plate section.

(squared amplitude spectrum). Let us illustrate the issues of spectral analysis using some
simple examples. Suppose we have a time series:

at = (35,−12, 1)

In the z-transform notation,

a(z) = 35 − 12z + z2
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Ο−2π                −π                                             π                    2π    
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Figure 3.6 An example amplitude spectrum.

ω
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Phase

Figure 3.7 An example phase spectrum.

To denote it as a function of frequency, we insert z = eiω�t,

a(ω) = 35 − 12eiω�t + ei2ω�t

= (35 − 12 cos ω�t + cos 2ω�t) + i(−12 sin ω�t + sin 2ω�t)

Re [a(ω)] Im [a(ω)]

Figure 3.6 shows the amplitude spectrum, which is a plot of the function’s amplitude
with respect to angular frequency ω. Here we have

Amplitude[a(ω)] = {Re[a(ω)]2 + Im[a(ω)]2}1/2

= [(35 − 12 cos ω�t + cos 2ω�t)2 + (−12 sin ω�t + sin 2ω�t)2]1/2

= [1300 − 864 cos ω�t + 140 cos2 ω�t]1/2

= [(13001/2 − 1401/2 cos ω�t)2]1/2

= 36.1 − 11.8 cos ω�t (3–10)

The phase spectrum is the phase of the time series as a function of the frequency. In this
example, we have

Phase[a(ω)] = tan−1{Im[a(ω)]/Re[a(ω)]}
= tan−1{(−12 sin ω�t + sin 2ω�t)/(35 − 12 cos ω�t + cos 2ωt)} (3–11)

which is shown in Figure 3.7.
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Sometimes it is convenient to use the square of the amplitude to represent the power
distribution, since the squared amplitude has a dimension of energy. This is called the
power spectrum, or simply spectrum.

Spectrum[a(ω)] = |Amplitude[a(ω)]|2 (3–12a)

Since the spectrum is the distribution of power over the frequency range, it can also be
expressed as the magnitude square of the Fourier transform:

Spectrum[a(ω)] = A∗(ω)A(ω) (3–12b)

where A(ω) is the FT of at.

3.3.2 Amplitude spectrum and Wiener–Khinchin theorem

The amplitude spectrum displays the energy distribution over the frequency range of the
series of interest, and thus provides important physical insight into the process under
investigation. However, the spectrum obtained is based on a finite sampling of the physical
process; this may cause error in the spectrum estimation. Let us see some ways to estimate
the spectrum of some discrete geophysical data. Figure 3.8 shows sketches of some typical
time series and their amplitude spectra. The horizontal scale of the spectral plots goes from
zero to Nyquist frequencies. Of course, each sampled time series and its spectrum are just
different expressions of the same physical phenomena.

Prior to the invention of FFT, the traditional spectrum estimations for discrete time series
were summarized by Blackman and Tukey (1959). The base of these estimations is the
Wiener–Khinchin theorem (see Box 3.4) which states that the (power) spectrum equals
the Fourier transform of the auto-covariance function of the signal:

Spectrum(xt ) = F

[∫ ∞

−∞
x∗(τ )x(t + τ )dτ

]
(3–13)

=
∫ ∞

−∞

[∫ ∞

−∞
x∗(τ )x(t + τ )dτ

]
eiωt dt

The term inside the bracket of the above expression is the auto-covariance function, denoted
by γ (t). For a continuous time series,

γx (t) =
∫ ∞

−∞
x∗(τ )x(t + τ )dτ (3–14)

The auto-covariance function γ x(t) is a measure of coherent components within a signal
x(t). For example, if the signal x(t) is a real function composed of a source wavelet b(t) and
its echo,

x(t) = b(t) + 0.5 b(t − t0)

which is shown in Figure 3.9.
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Figure 3.8 Some seismic time series and their amplitude spectra.

Following the definition of auto-covariance (3–14), we have

γx (t) =
∫ ∞

−∞
x∗(τ )x(t + τ )dτ

=
∫ ∞

−∞
[b(t) + 0.5b(t − t0)][b(t + τ ) + 0.5b(t + τ − t0)]dτ

=
∫ ∞

−∞
[b(t)b(t + τ ) + 0.5b(t)b(t + τ − t0) + 0.5b(t − t0)b(t + τ )

+ 0.25b(t − t0)b(t + τ − t0)]dτ
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Box 3.4 Proof of the Wiener–Khinchin theorem

The Fourier transform of the auto-covariance function is∫ ∞

−∞
γx (τ )eiωτ dτ =

∫ ∞

−∞

[∫ ∞

−∞
x∗(τ )x(t + τ )dτ

]
eiωt dt

=
∫ ∞

−∞
x∗(τ )

[∫ ∞

−∞
x(t + τ )eiωt dt

]
dτ (3–13’)

Substitute q = t + τ into the inner integral∫ ∞

−∞
γx (τ )eiωτ dτ =

∫ ∞

−∞
x∗(τ )

[∫ ∞

−∞
x(q)eiωqdq

]
e−iωτ dτ

=
∫ ∞

−∞
x∗(τ )X (ω)e−iωτ dτ

=
∫ ∞

−∞
x∗(τ )e−iωτ dτ X (ω)

= X∗(ω)X (ω)

This proves that the FT of auto-covariance equals the (power) spectrum of the signal.

t0

b(t)
0.5b(t–t0)

t

Figure 3.9 An example time series of a wavelet and its echo.

Notice that

γb(t) =
∫ ∞

−∞
b(τ )b(t + τ )dτ =

∫ ∞

−∞
b(τ − t0)b(t + τ − t0) dτ

Thus

γx (t) = (1 + 0.25)γb(t) + 0.5 γb(t − t0) + 0.5 γb(t − t0)

Graphically in Figure 3.10, we have
We therefore can find the spectrum by examining the auto-covariance function. The com-

monly used auto-correlation function is actually the normalized auto-covariance function.
Figure 3.11 shows an example of multiples, or multiple reflections, and use of auto-
correlation as a means to recognize multiple reflections.

The traditional approach to estimate the spectrum of a sampled time series is to estimate
the auto-covariance function first, then multiply the estimate by a taper and finally apply
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Figure 3.10 Auto-covariance of the time series shown in the previous figure.
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Figure 3.11 Twelve traces of a primary reflection and a multiple. The sum of the traces is
shown as the bottom trace.

the Fourier transform to get the spectrum. With FFT, however, the spectrum can be directly
estimated using the squared magnitude of the transform function.

3.3.3 The uncertainty principle

Figure 3.12 from Claerbout (1992) shows auto-correlations and amplitude spectra of some
common signals. Only one-half of the graphs for auto-correlations and amplitude spectra
are shown because these functions are symmetric. The auto-correlation function focuses
the energy towards the origin, making it a noise-resistant operator. The only signal which
preserves its form in the time domain, auto-correlation domain, and spectral domain is
the Gaussian function. Notice in this figure a time series of longer duration in the time
domain usually has shorter duration in frequency domain, and vice versa. In other words,
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Figure 3.12 Some common signals, their autocorrelations and amplitude spectra (from Claerbout, 1992).
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Figure 3.13 A sketch of 2D FT of three bounded vertical reflectors (Chun & Jacewitz, 1981).
(a) Line spike model in the depth domain. (b) Fourier transform in the depth direction. (c)
Typical amplitude contours in the 2D frequency domain.

the product between the temporal duration and spectral duration is more or less a constant;
some call this property the uncertainty principle.

We can see the uncertainty principle in a sketch of 2D Fourier transform (Chun &
Jacewitz, 1981) shown in Figure 3.13. Note that the vertical elongation of the three events
in the space domain turns into the horizontal elongation of a single event in the frequency
domain. The uncertainty principle implies that elongated events after multi-dimensional
Fourier transform will become elongated events in a direction perpendicular to the elongated
direction in the original domain. On the other hand, the width of the events in the frequency
domain is dictated by the bandwidth, or the spectral duration.

We usually prefer data with a broad bandwidth because the corresponding temporal
duration will be short, or of higher temporal resolution. The bandwidth is usually quantified
by octave. One octave of bandwidth covers an interval between any two frequencies having
a ratio of 2 to 1. Hence a power spectrum with energy from 10 to 20 Hz has a bandwidth
of one octave, and another power spectrum with energy from 10 to 40 Hz has a band width
of two octaves, and yet another power spectrum with energy from 1 to 4 Hz also has a
band width of two octaves. Two or more octaves of bandwidth are often required for many
processing tasks.

3.3.4 Practical issues of spectral analysis

When we compare spectra of different time series at various scales, we need to normalize the
spectrum. The normalized spectrum is called the power spectrum, which is often denoted
by P(ω):

P(ω) = X∗(ω)X (ω) (3–15)

The normalization of the auto-covariance function is the auto-correlation function. In
continuous form, it is

r (t) = γ (t)/γ (0) (3–16)

In discrete form, it is

r (t) = 1

N

N−1−t∑
k=0

x∗
k xk+t (3–17)
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Figure 3.14 Spectra of horizontal component of 17 minutes of long-period seismic noise using
three different estimates (Lacoss, 1971).

By the Wiener–Khinchin theorem, the power spectrum of a time series equals the Fourier
transform of its auto-correlation function.

Estimation of the power spectrum for real geophysical data requires further modification
of the sample squared magnitude of the Fourier transform. To suppress the effect of noise,
one may average the squared magnitude for different data samples, or smooth the raw
spectrum in the frequency domain.

Perhaps the most critical issue is the choice of the window over which the spectrum
is estimated. For many applications, the data series is assumed to be stationary, which
means statistical equilibrium. In layperson’s terms, a stationary time series consist of no
trends or no statistical difference from window to window. Hence, a stationary process
may be adequately described by the lower moments of its probability distribution, such as
mean, variance, covariance, and power spectrum. Of course, the validity of the stationary
assumption depends not only on the real physical processes, but also on the size of the
window and the amount of data available. A synthetic illustration shown below is taken
from Jenkins and Watts (1968).

If the interpretation of the spectrum is indeed critical, an adaptive non-linear analysis
may be necessary. In the presence of high noise levels, there are techniques such as the
maximum likelihood method (MLM) and the maximum entropy method (MEM) that
will help maintain good spectral resolution. These methods are described in a review by
Lacoss (1971), and an example is shown in Figure 3.14. The unit of amplitude spectrum
as shown in this figure is in dB (decibel). According to Webster’s dictionary, dB is a unit
for expressing the ratio of the magnitudes of two electric voltages or currents or analogous
acoustic quantities equal to 20 times the common logarithm of the voltage or current ratio.
For analysis of amplitude spectrum,

dB = 20 log[A(ω)/Amax] (3–18)

where A(ω) is the amplitude as a function of the angular frequency ω, and Amax is the
maximum amplitude. Because A(ω) � Amax, the dB value of amplitude spectrum is always
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negative. Using a logarithmic scale in a spectral plot with dB helps to elaborate the detail
of the spectra.

Exercise 3.3

1. Find three examples showing the benefits of the Fourier transform. How are the
benefits realized? What are the assumptions? Are there any limitations or drawbacks?

2. When applying AGC to a seismic trace, will the phase spectrum be changed? Is it
possible to alter amplitude without changing phase spectrum?

3. Figure 3.15 shows the power spectrum of a 30 Hz Ricker wavelet denoted with the
center frequency, the bandwidth, and the root-mean-square frequency. The two dashed
lines are equidistance from the centralfrequency, and the distance between them is
twice the spectral bandwidth.

(a) How many octaves of this spectrum are there in your estimate?

(b) Why is the center frequency not at the position of the peak amplitude?

(c) How would you define the spectral bandwidth for this case?

(d) How is the rms frequency defined?
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Figure 3.15 An example power spectrum.

3.4 Seismic wavelets
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4.1 Wavelet definition

A wavelet is generally defined as a transient signal with two properties. First, it is a one-
sided function. In other words, the first condition that a discrete time function wt is a wavelet
is that all of its coefficients are zero before the time origin:

wt = 0 for t < 0 (3–19)
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Second, a wavelet must be a stable function, meaning it has a finite energy:∑
t

|wt |2 < ∞ (3–20)

In seismic data processing, a stable time series also indicates its time duration is relatively
short.

The idea of a seismic wavelet comes from a long-standing model in seismology that a
recorded seismic trace is a convolution of the source function, Earth structure function,
and receiver function. The wavelet is usually a seismic pulse consisting of a few cycles
only. Hence we may define a seismic wavelet as a short time series with finite amplitude
range and finite time duration. An unusually long seismic wavelet is the chirp or sweeping
signal, which has many cycles and in which the frequency increases (upsweeping) or
decreases (downsweeping) with time, such as the Vibroseis source wavelet. In exploration
geophysics, the receiver function and general trend of geometric spreading are measurable
and correctable in most cases. Hence we often approximate a seismic trace as the source
wavelet convolved with Earth reflectivity and plus noise, as shown in Equation (2–1) and
Figure 2.1.

A physically meaningful approach is to take a seismic wavelet as the far-field response
of an impulsive source. Following this notion, Norman Ricker conducted a series of inves-
tigations on the form and nature of seismic waves from the 1930s to 1950s (Ricker, 1940,
1953a, 1953b). He studied the expressions of seismograms in terms of displacement,
velocity, and acceleration. Clearly, velocity and acceleration are the second and third tem-
poral derivatives of displacement. Typically, structural geologists are mostly interested in
displacement data measured by strainometers or extensometers; engineers are mostly inter-
ested in strong motion data, in other words accelerations measured by accelerometers; and
exploration geophysicists are mostly interested in velocity data measured by geophones or
hydrophones.

3.4.2 Common seismic wavelets

As shown in Figure 3.16, a Ricker wavelet is a zero-phase wavelet resembling the far-field
impulse response on the velocity record. Ricker published the mathematical expression
of the Ricker wavelet in 1940 (Ricker, 1940), and a VSP field study that confirmed the
wavelet in 1953 (Ricker, 1953a). In the time domain, the mathematical formula for a Ricker
wavelet is

Ricker(t) = (1 − 2π2 f 2t2) exp(−π2 f 2t2) (3–21)

where f is its peak frequency, which uniquely defines a Ricker wavelet.
The impulse response of a system is the output of the system after an impulsive input

signal. The significance of an impulse response is that we may use it as a natural building
block to decompose or superpose the system. For instance, an impulse response of an elastic
system is called a Green’s function. Using an impulsive source and an impulsive receiver,
we can measure the Green’s functions of an elastic system in terms of changing source
positions, receiver positions, and frequency. In another example, the impulse responses
between the data space and model space are used to gauge the resolution level in seismic
imaging.
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Figure 3.16 A Ricker wavelet resembles the far-field velocity record of an impulse source
(after Ricker, 1953a).

Considering the non-uniqueness in decomposing seismic traces, the most natural way
to decompose seismic traces is using the true impulse responses, or true seismic wavelets.
Therefore, its resemblance to the far-field seismic impulse response makes the Ricker
wavelet the most popular seismic wavelet. In order to tie reflection seismic imageries with
well logs, a general practice is to generate a reflectivity function based on well logs, and
convolve it with a Ricker or other suitable wavelet to product a synthetic seismogram,
which will be compared closely with seismic sections around the well bore.

Figure 3.17 shows the time expressions and amplitude spectra of a Ricker wavelet,
Ormsby wavelet, and Klauder wavelet. Ormsby wavelets are zero-phase wavelets defined
as the result of applying a trapezoidal-shaped filter (Ormsby filter) to a unit impulse
function. An Ormsby filter is specified by its four corner frequencies in the form of f1–
f2–f3–f4. These four corner frequencies are called the low-cut, low-pass, high-pass, and
high-cut frequencies, respectively. The filter is 1 from f2 to f3, linear from f1 to f2 and from
f3 to f4, and zero below f1 and beyond f4. Unlike the Ricker wavelet with just two side lobes,
an Ormsby wavelet has many side lobes. The number of side lobes increases as the slope
of the sides of the trapezoidal filter gets steeper, or as its bandwidth narrows.

A Klauder wavelet is another zero-phase wavelet representing the autocorrelation of a
chirp or linear sweep signal such as that used in Vibroseis. The real part of the following
complex trace will generate a Klauder wavelet:

Complex Klauder(t) = sin(πkt(T − t))

πkt
exp(i2π f0t) (3–22)

where k is rate of change of frequency with time, T is the time duration of the input signal,
and f0 is the middle frequency. Note in Figure 3.17 that the Klauder wavelet and Ormsby
wavelet are similar in the time domain and in their amplitude spectra.
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Figure 3.17 Time expressions and amplitude spectra of: (a) Ricker wavelet; (b) Ormsby
wavelet; and (c) Klauder wavelet (Ryan, 1994).

3.4.3 Wavelet transform

The use of the convolution model in making the synthetic seismogram leads to the idea
of local decomposition, in contrast to global decomposition. A global decomposition,
such as Fourier decomposition, aims to measure global properties such as amplitude and
phase values across the entire length of the input trace for each wavelength-fixed building
block, such as a cosine function of a fixed frequency. Such global decompositions provide
spectral properties that are global, or relevant to the entire input trace. In contrast, a local
decomposition intends to quantify the properties at local points of the input trace. For
instance, the reflectivity function at a location may be characterized by several peaks and
troughs corresponding to major interfaces of elastic impedance in the subsurface. Seismic
imaging aims at achieving the best resolution of these interfaces. Local decomposition,
through the use of a wavelet transform, has an advantage over global decomposition in
capturing both the local and spectral information. Basically, a wavelet transform expresses
an input trace as a superposition of different expressions of a chosen wavelet whose length
can be stretched continuously or discretely. Figure 3.18 shows the Daubechies 12-coefficient
wavelet at two different scales of stretching, with their amplitude spectra.

In seismic data processing, a discrete wavelet transform (DWT) is suitable and the
wavelets are discretely sampled. The first DWT was proposed by Alfréd Haar (Mallat,
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Figure 3.18 Daubechies 12-coefficient wavelet. (a) Scale 5. (b) Scale 4. (c) Amplitude spectra
of scale 5 (solid curve) and scale 4 (dotted curve). (After Daubechies, 1988.)
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Figure 3.19 Illustration of Haar wavelet transform of a seismic trace. For each pair of
neighboring values of a scale, their difference (D) is the value of the current scale and their
sum or approximation (A) is the input for the next scale.

1999). Similar to the fast Fourier transform, the Haar wavelet transform requires the input
sample number to be a power of two, such as 2n. The first iteration of the Haar transform
pairs up input values, storing the difference and passing the sum to the next iteration. For
each pair of values, their difference (D) becomes the value for the current scale and their
sum becomes the approximation (A) that is passed on as the value in the next iteration.
In the next iteration on a new scale, all the neighboring sums from the previous iteration
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Figure 3.20 (a) Decomposing signal (S) into its approximation (A) and detail (D) components.
(b) Decomposing a signal into subset components of approximations (cA) and details (cD).
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Figure 3.21 (a) A seismic trace. (b) Continuous wavelet transform. (c) Discrete wavelet
transform. For color versions see plate section.

form a new set of pairs to provide the differences as the values of the scale and sums for
the next iteration. After n iterations, the transformation results in 2n – 1 differences and a
final sum. The process is illustrated in Figure 3.19. Clearly, the sums obtained from each
iteration form a smoothed version of the original trace, and the final sum equals the sum of
the original input values.
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Figure 3.22 Discrete wavelet transform of seismic signal. Upper panel shows input seismic
trace. A5 – approximation coefficients; D5, D4, D3, D2, and D1 – detail coefficients at scales
5, 4, 3, 2, and 1, respectively.

The ordering of the scales in the Haar wavelet transform starts from the finest detail of the
input trace, and the higher the scale the longer the stretching of the wavelet. Alternatively,
we may start from the long-wavelength features before moving to the finer details. This
approach is more adequate for seismic applications where the details are contaminated
much more by noise than long-wavelength components. Two schematic plots of this kind
of decomposition are shown in Figure 3.20. In Figure 3.20a, the signal S is low-pass filtered
into its approximation A and high-pass filtered into the detail D. Similarly in Figure 3.20b,
the signal can be decomposed into a cascading series of approximations and details of
different scales. Following this approach, a practical way of wavelet decomposition for
seismic applications is the matching pursuit algorithm (Davis et al., 1994). Starting from
the long-wavelength scales, the algorithm matches the corresponding wavelet with the input
trace, and takes the misfit residuals as the input in the processing of the next scale.

3.4.4 Examples of wavelet transform

In practice, most discrete wavelet transforms follow the formulation of Ingrid Daubechies
(1988) using recurrence relations to generate progressively finer discrete samplings of an
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Figure 3.23 Two-dimensional wavelet decomposition of a seismic time slice in the upper-left panel into three levels or scales. Higher scales are of
lower spatial frequencies. Panel of each scale can be included in the superposition, or inverse wavelet transform.
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implicit mother wavelet function. This approach allows Daubechies to derive a family of
orthogonal wavelets: the first one is the Haar wavelet, and each resolution is twice that of
the previous scale. Examples of the Daubechies wavelet are shown in Figure 3.18 in the
previous subsection. Figure 3.21 shows a seismic trace with its continuous wavelet transform
and discrete wavelet transform. The detail of the discrete wavelet transform is shown in
Figure 3.22, showing the approximation coefficients at scale 5 and detail coefficients at
scales 5 to 1. Note that the higher the scale, the lower the frequency.

The practice of wavelet transforms is still a new subject in seismic data processing. This
means the existence of many obstacles as well as opportunities. Some possibilities for using
wavelet transforms include:

� Data compression
� Estimation of seismic wavelet
� Enhancement of seismic resolution
� Noise suppression by separating particular signals from noise
� Enhancement of seismic imaging quality and efficiency
� Extraction of seismic attributes, such as localized spectra and AVO due to thin beds

Figure 3.23 shows an example of decomposing a time slice of a seismic volume using a
2D discrete wavelet transform. Spatial components of the imagery of horizontal, vertical,
and diagonal orientations are decomposed into three levels. The usefulness of such a
decomposition relies on geologic constraints determining the characteristics of the signal,
such as beddings, interfaces, faults, and fractures, as well as noise such as footprints, spatial
aliasing, and other artifacts.

Another example of noise suppression is shown in Figure 3.24, from the work of Deighan
and Watts (1997). A common shot gather in panel (a) shows the presence of ground
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Figure 3.24 (a) A vertical-component shot gather. Removal of the ground rolls using: (b) a 1D
wavelet transform filter; (c) a 40–70 Hz band-pass filter with a 100 dB/octave slope; and (d) an
f–k filter. (Deighan & Watts, 1997.)
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rolls that severely mask the reflections. The result of applying a 1D wavelet transform,
which is a trace-by-trace operation, is compared with the results of a band-pass plus f–k
filter. The wavelet transform result appears to be slightly better than the other two filtered
results.

Exercise 3.4

1. Discuss wavelet transform in terms of what, why, and how. What are the main benefits
and limitations of the method?

2. Make a table to compare and contrast Fourier decomposition and wavelet
decomposition.

3. Comment on the quality of the three filtering results shown in Figure 3.24. What are
the signals and noises? What are the elements that high-quality signals should possess
in such cases?

3.5 Interpolation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.5.1 Orthogonal function series

A function series defined on [a, b]

φ0(x), φ1(x), φ2(x), . . . , φn(x), . . . (3–23)

is called a orthogonal function series if all elements of the series satisfy

δmm = 1

b − a

∫ b

a
φm(x)φ∗

n (x)dx (3–24)

where φ∗
n (x) is the conjugate of φn(x) in the case that those are complex functions, and δmn

is the Kronecker delta function which equals 1 if m = n and 0 if m � n. We can always
normalize the coefficient so that the integral (3–24) equals 1 if m = n. An orthogonal
function series can be used as the base for an expansion, if we are interested in the global
interpolation of a function based on a finite number of measurements.

A good example of an orthogonal function series is the trigonometric functions

1, cos ωx, cos 2ωx, . . . , cos nωx, . . . , sin ωx, sin 2ωx, . . . , sin nωx, . . . (3–25)

where ω = 2π�T. These functions are orthogonal in the interval [–T�2, T�2].
If a function f (x) can be integrated over the interval [–π , π ], the trigonometric series

(3–25) forms the base of the Fourier series of the function

a0/2 +
∞∑

n=1

(an cos nx + bn sin nx) =
∞∑

n=−∞
cneinx (3–26)
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where the coefficients are defined as

an = 1

π

∫ π

−π

f (t) cos nt dt (n = 0, 1, 2, . . .) (3–27a)

bn = 1

π

∫ π

−π

f (t) sin t dt (n = 1, 2, . . .) (3–27b)

cn = 1

2π

∫ π

−π

f (t)e−intdt (n = . . . ,−2,−1, 0, 1, 2, . . .) (3–27c)

When the series (3–26) is convergent at a value of x, we can use it to approximate f (x) and
call it the Fourier expansion of the function. This expansion leads to the Fourier transform
that we have discussed previously. Notice that the expansion is a periodic function.

The Fourier expansion was historically the first example of an expansion of a function
into orthogonal functions and has retained its supreme importance as the most universal
tool of applied mathematics. The expansion has the nice property that the error oscillation
spreads uniformly throughout the interval of the expansion. If f (x) is an even function, then
all the coefficients in (3–27b) are zero so we get a Fourier cosine expansion. Similarly,
if f (x) is an odd function we get a Fourier sine expansion. When the function is defined
over an interval different from [–π , π ], one can always convert the scale of the variable
to make the expansion work. Around the point of a first-order discontinuity of the original
function, or when the expansion is terminated with too few terms, the Fourier expansion
has an unusually high fitting error known as Gibbs oscillations.

3.5.2 Interpolation

We now turn to the issue of interpolation. Most geophysical data are in tabular form, i.e.
they are time series of equal sampling interval. For instance, conventional 2D or 3D seismic
reflection surveys use regular spacing between geophones and surveying lines, and the sam-
pling rate is also a constant. Obviously, sampling data at equal distance not only simplifies
the sampling process but also eases data storage as well as the subsequent processing and
analysis. Occasionally, we face irregularly sampled data, such as the geographic locations
of many gravity survey occupations. In reflection seismology, data regularization is itself an
important research area. Irregular seismic data are commonly seen in cases of dead traces,
crooked lines, suture zones, and other inaccessible locations within the survey area. Dead
traces are erroneous records due to causes such as a bad sensor or poor coupling between
the sensor and the medium. Crooked lines are irregular 2D seismic survey lines due to
limits in accessibility, such as survey lines following a zigzag road or river. With a crooked
2D line, the midpoints of reflection will not fall on a straight line, causing a number of
irregularities for seismic data processing. Suture zones refer to overlapping areas between
two or more separate seismic surveys.

According to Lanczos (1961) the art of interpolation goes back to the early Hindu alge-
braists. The idea of linear interpolation was known by the early Egyptians and Babylonians
and belongs to the earliest arithmetic experiences of mankind. But the science of interpo-
lation in its more intricate forms starts with the time of Newton and Wallis. The estimation
of error of interpolation came only after the establishment of the exact “limit concept” at
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the beginning of the nineteenth century, through the efforts of Cauchy and Gauss. The true
nature of equidistant interpolation was established even later, around 1900, through the
investigation of Runge and Borel.

The essence of the theory of interpolation may be illustrated through the well-known
Taylor expansion, an extrapolation of a function’s value at the neighborhood of a known
value. If a function f (z) is analytic, meaning that the function’s derivatives of all orders
exist, in the neighborhood of a certain point z = a, we then can represent the function’s
value at an arbitrary point z on the complex plane in the neighborhood by the infinite Taylor
series (Laurent series, if a central circular region has to be excluded)

F(z) = f (a) + f ′(a)

1!
(z − a) + f ′′(a)

2!
(z − a)2 + · · · + f (k)(a)

k!
(z − a)k + · · · (3–28)

Although by formal differentiation on both sides we can show that F(z) coincides with
f (z) in all its derivatives at the point z = a, this does not prove that the infinite series (3–28)
represents f (z) at all values of z. In fact, the theory of complex variables says that F(z)
represents f (z) only in the domain of convergence, which is a circle centered at point z = a
on the complex plane with a radius extending to the nearest “singular” point of the function.

The Taylor expansion is seen on the one hand as an infinite series and on the other hand
as a finite series with a remainder term for error, i.e.,

F(x) = fn(x) + f (n)(x̄)

n!
(z − a)n (3–29)

where

fn(x) = f (a) + f ′(a)

1!
(x − a) + f ′′(a)

2!
(x − a)2 + · · · + f (n−1)(a)

(n − 1)!
(x − a)n−1 (3–30)

and x̄ is some unknown point in the convergence interval. Notice that we denote the
variable here by x, though it could also be z as a complex variable. The finite expansion
(3–29) with the remainder term is much more useful than the infinite expansion (3–28).
Since derivatives of higher than nth order do not appear in either fn(x) or the remainder
term, the finite expansion does not demand the existence of derivatives of all orders, hence
there is no longer a restriction that the function should be analytic.

3.5.3 Linearization via perturbation theory

The usefulness of the finite Taylor expansion shown in equation (3–30) can be viewed in
two ways. First, it facilitates an extrapolation of the function with error estimation. Second,
the polynomial approximation thus derived, especially the lower-order terms, has wide
application in perturbation theory. To the first point, we should add that the remainder
error estimation term does not represent a guarantee for the convergence of the expansion
with increasing n; it merely provides error estimation for the given expansion. It could
happen that the reminder term decreases up to a certain n and then increases again, or it
may increase to infinite with increasing n. Yet we may obtain a very accurate value of f (x)
if we choose an appropriate value of n. In the convergent case, we denote the remainder
term by O[(x – a)n].
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Let us see an example using the first-order Taylor expansion to linearize a modeling
process. In most geophysical modeling, we attempt to choose a particular model estimation
mest that will optimize the prediction dest for the observation d through the known physical
relationship f (.) between data and model

d = f (m) (3–31)

To analyse the trend, we may want to examine the linear component of the above rela-
tionship, which is generally continuous and non-linear. If there are sufficient data to enable
an inversion for the model parameters, it is definitely desirable to discretize the function
to formulate the discrete inverse problem, which is manageable by digital computers. If
the function is already known, the simplest way of linearization is to expand (3–31) into a
first-order finite Taylor series with respect to a known reference model m0 and d0 = f (m0)

d = d0 + ∂ f

∂m
f (m − m0) + O(m − m0)2 (3–32)

where we denote the remainder term by O(m – m0)2 to assure the convergence, and ∂ f
∂m are

the Frechet differential kernels.
The reference model, such as the constant a in (3–28) and (3–29), also contributes to the

convergence of the expansion. If we have a good reference model, the relationship between
the perturbations of data and model will be more linear, i.e.

�d ≈ ∂ f

∂m
�m (3–33)

where �d = d – d0 and �m = m – m0. One can predict the trend of the data from that of
the model, and vice versa. Many other techniques of interpolation exist. For example, one
can conduct a forward Fourier transform using irregularly sampled data as input, followed
by an inverse Fourier transform with regularly sampled output. The recently developed
wavelet transform, as discussed in the previous section, opens another door for many new
ways of interpolation.

Exercise 3.5

1. Regularization of irregularly sampled data is a common need in geophysics. One may
regularize data by first taking a forward Fourier transform of irregularly sampled data
and then taking an inverse Fourier transform using uniformly sampled output. Write a
special DFT formula using irregular sampling intervals for the input, and then
comment on the choice of sampling interval in the frequency and output time domains.

2. Explain why a time series may lose its causality after a forward DFT plus an inverse
DFT.

3. We may need to quantify the similarity between the original dataset and interpolated
dataset. Explain how to quantify the similarity between digital data of two or higher
dimensions. Please give your procedure.
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3.6 Summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
� That a natural system such as a section of a seismic record can be decomposed into

components, and these components can be superposed to form the original or even the
entire system, is the basis of the law of decomposition and superposition that is useful
in physics and geophysics. The Fourier transform and wavelet transform are examples of
this.

� The Fourier transform (FT) allows digital data to be converted back and forth between
the time and frequency spaces. It provides the framework for spectral analysis. Many
problems become easily or efficiently solvable using FT.

� Owing to the finite sample numbers of digital seismic data, their discrete Fourier transform
(DFT) may have different properties from that of continuous FT.

� Fast Fourier transform (FFT) is a classic way to improve computation efficiency by taking
advantage of the cyclic nature of harmonic functions. The idea and tricks involved in
FFT can be useful in other data processing areas.

� Spectral analysis assesses the energy distribution of seismic data over frequency or
wavelength scales. It is useful in many data processing applications.

� For any time series, its duration in temporal space is inversely proportional to its duration
in spectral space; this is known as the uncertainty principle. This principle may help us in
developing intuition about the relationship between temporal and spectral spaces using
the multi-dimensional Fourier transform.

� A seismic wavelet represents the fundamental signal originating from the seismic source.
By the law of decomposition and superposition, we may be able to express a seismic
record as a superposition of seismic wavelets of different wavelengths and amplitudes.
We may also express the seismic record as a convolution of the source wavelet with the
media, the wave propagation, and receiver functions.

� Wavelet transform enables a local decomposition of the input data trace to capture its
local as well as spectral information. It has high potential for many future applications.

� Interpolation takes information from known locations to estimate it at unknown locations.
There are a number of different approaches to interpolation, with a broad range of current
and potential applications in seismic data processing and imaging.
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4 Seismic resolution and fidelity

Chapter contents
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4.3 Resolution versus fidelity

4.4 Practical assessments of resolution and fidelity

4.5 Correction for seismic attenuation

4.6 Summary

Further reading

Seismic resolution and fidelity are two important measures of the quality of seismic
records and seismic images. Seismic resolution quantifies the level of precision, such
as the finest size of subsurface objects detectable by the seismic data. Several definitions
of seismic resolution are introduced in this chapter. Seismic fidelity quantifies the
truthfulness, such as the genuineness of the data or the level to which the imaged
target position matches its true subsurface position. Since seismic data are band-
limited, seismic resolution is proportional to the frequency bandwidth of the data or the
resulting images. If the bandwidth is too narrow, the resolution will be poor because a
single subsurface reflector may produce a number of indistinguishable wiggles on the
seismic traces. For multiple datasets with the same bandwidth, it is easier in practice to
recognize or resolve events with the zero phase wavelet rather than the minimum phase
or mixed phase wavelets. Seismic fidelity is about global resolution, the resolution in
the big picture.

In principle, the highest-quality seismic imagery requires the highest level of seismic
resolution and fidelity. However, in real cases the seismic resolution and fidelity are
always limited because of limited seismic illumination, producing various types of
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Constructive interferences

Destructive
interference

Figure 4.1 The superposition of two monochromatic wavefields from two point sources results
in areas of destructive interferences and constructive interferences.

seismic artifacts. It is therefore important to assess the level of seismic resolution and
fidelity in each seismic processing project, as illustrated by examples in this chapter.
One of the physical reduction factors for seismic resolution is seismic attenuation, the
loss of energy of the seismic signal with the increase of traversing distance. Hence the
final topic discussed here is on the estimation and correction for seismic attenuation in
processing seismic data.

4.1 Vertical and horizontal resolution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
As one of the most essential parameters in assessing the quality of seismic data, seismic
resolution is a measurement of how small a feature can be detected or resolved from
seismic data. The use of the concept in practice is complicated by the fact that seismic
data are made of remotely sensed wiggles combining signal and noise. As an example of
the challenges, the superposition of multiple wavefronts, owing to the presence of either
velocity inhomogeneity or multiple sources, produces constructive interference at places
of phase alignment and destructive interference at places of phase differences (Figure 4.1).
Such interferences take place for both signal and noise. It is difficult to infer the geology
hiding behind the seismic wiggles if you do not know what you are looking for.

In the following, different definitions of seismic resolution are discussed, with illus-
trations. These concepts are of important practical value because most geologic layers
containing oil and gas are of sub-wavelength resolution, meaning the thickness of these
layers is smaller than the wavelength of the main frequency of seismic data. To help the
readers gain more intuition on resolution, the classic wedge model is introduced to assess
the behavior of seismic reflections when the thickness of a thin bed is reduced from more
than a wavelength of the data down to zero. “Tuning” behavior due to the interference of
the reflections from the top and bottom of the thin bed is seen.
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4.1.1 Vertical resolution

Applying the concept of resolution to seismic wiggles, vertical resolution quantifies the
resolvability of seismic waves along the direction of wave propagation, which is usually
the vertical direction. Hence it is also called temporal resolution, depth resolution or 1D
resolution, depending on the application. Sheriff (1991) gives the following three definitions
of vertical resolution:

� The smallest change in input that will produce a detectable change in output. This
is the most generic definition geared towards quantifying a system from its input and
output. It defines the resolution of the system, which can be a piece of hardware or
software. This definition of resolution is applicable to all cases, including all types of
seismic resolution.

� The ability to distinguish two points that are near each other. This definition is the
most commonly used in exploration geophysics because it helps to define the thickness of
a thin bed (Widess, 1982). This definition was derived for vertical or temporal resolution.
However, the concept can be generalized for horizontal resolution as well.

� The ability to localize an event seen through a window, usually taken as the half
width of the major lobe. This definition specifies the vertical resolution (or temporal
resolution) of a 1D seismic trace. Such a specification was pioneered by Ricker (1953b),
using the concept of Ricker wavelet that was discussed in the previous chapter. Hence, the
major lobe referred to that of the underlying seismic wavelet. This definition implicitly
assumes the convolution model, that the seismic trace is a convolution of the seismic
wavelet with the Earth reflectivity function plus noise.

Figure 4.2 shows examples of vertical resolution. Following the above second definition
of seismic resolution, the upper panel shows four cases of two events close together, with

Flat spot

Resolved Rayleigh’s

criterion

Decreasing image separation 

Richer’s 

criterion

Unresolved

b/2 TR

Inflection

points

TR

2T0

b

Wavelet

b = wavelet breadth

b/2 = peak to trough time

2T0 = first zero crossing interval

Figure 4.2 (Upper) Four cases of vertical resolution defined by the detectability of two events
close together. (Lower) Ricker’s resolution limit is the separation interval between inflection
points of the seismic wavelet. (After Kallweit & Wood, 1982.)
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Box 4.1 Conventional-resolution versus high-resolution seismic data

As an example, Box 4.1 Figure 1 shows two time sections taken from 3D migrated seismic
volumes in the same area. The left panel is a section from the dataset produced from a
conventional seismic survey, and the right panel is from a separated high-resolution seismic
survey using much denser shot and receiver spacing and sample rate. The geology of the
area consists of a series of dipping beds of sands and shales. We can see in the time sections
that the pulse width is sharper for the high-resolution data than the conventional-resolution
data. The spectra show that the section from the high-resolution data has a wider bandwidth
than that of the conventional-resolution data. The high-resolution data reveal more detail
about some gas-bearing sands with high reflectivity. In terms of money and time, however,
the high-resolution data cost is more than 10 times that of the conventional-resolution
data.

1                  Trace number                  21

T
im

e
F

requency

1                  Trace number                21

Gas-bearing
sands

Gas-bearing
sands

Box 4.1 Figure 1 (Left) A conventional-resolution seismic section and power spectra of all
traces. (Right) A high-resolution seismic section and its power spectra.

their separation decreasing from left to right. The second case is the Rayleigh criterion
which defines the resolution limit at 1/4 of the main seismic wavelength, which is half of
the dominant seismic period for two-way reflection time. This criterion defines the tuning
limit, the maximum thickness for a thin bed with constructive interference between its top
and bottom reflections. The lower panel in Figure 4.2 shows the third definition of seismic
resolution, or Ricker’s criterion. So if we know the seismic wavelet, the resolution limit
is finer than the Rayleigh criterion.
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(a) (b) (c)

150 m 150 m 150 m

300 m

300 m

300 m

Figure 4.3 (a) Transmitted wave of 300 Hz from a shot (star). (b) Transmitted wave of 300 Hz
from a receiver (triangle). (c) Scatter wavefield from the shot to the receiver. Here the first
Fresnel zone as depicted by the innermost gray ellipse has a width of 73.8 m (Pratt, 2005).

4.1.2 Horizontal resolution

The horizontal resolution quantifies the resolvability of seismic wave perpendicular to
the direction of wave propagation. The horizontal resolution is practically the Fresnel
resolution, defined as the width of the first Fresnel zone due to the interference of spherical
waves from the source and from the receiver. Figure 4.3 illustrates the situation with
monochromatic waves in a constant velocity field of 3 km/s. Panel (a) shows a 300 Hz wave
transmitted from a source denoted by a star, and panel (b) shows another 300 Hz wave
from a receiver denoted by a triangle; here we treat the receiver as another source. The
scatter wavefield from the source to the receiver is a superposition of the two transmitted
wavefields, as shown in panel (c). This scattered wavefield consists of a number of elliptical
wavefronts, which are Fresnel zones due to interference between the wavefields from the
source and receiver. The width of the first Fresnel zone as shown in panel (c) is

W =
√

2dλ + λ2/4 (4–1)

where λ is the wavelength, and d is the distance between the source and receiver. In this
case, the wavelength is 10 m, and the source-to-receiver distance is 271.2 m. This leads to
73.8 m for the width of the Fresnel zone.

We can generalize the definition of the horizontal resolution for reflection case, as shown
in Figure 4.4, showing spherical waves from a point source reflected from a plane interface
back to a receiver at the source position. The first Fresnel zone is the portion of the interface
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Zero-offset source
and receiver

d

Width of 
the first Fresnel Zone

λ/4d+λ/4

Figure 4.4 Spherical waves from a point source reflected from a plane interface back to a
receiver at the source position. The first Fresnel zone is a portion of the interface which reflects
energy back to the receiver within half a cycle of the primary reflection. Owing to the two-way
reflection time, half a cycle behind the primary wavefront is another wavefront one-quarter of a
wavelength (λ/4) behind the primary wavefront.

Width of Hole

1.0
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Figure 4.5 Reflection from a flat reflector containing a hole. Reflection is also observed at the
hole because the hole width is smaller than the Fresnel zone.

that reflects energy back to the receiver within one-quarter of a wavelength behind the
primary wavefront. One can easily derive equation (4–1) using the geometry shown in
Figure 4.4. In the presence of velocity variation, the geometry of the Fresnel zone will be
distorted accordingly. In practice, it is difficult to detect horizontal features that are smaller
than the Fresnel zone, as shown by a synthetic example in Figure 4.5.

4.1.3 The wedge model and tuning

Following the definition of resolution as the ability to separate two features that are close
together, a systematic study on the resolution of thin bed was pioneered by Widess (1973,
1982) using wedge models. Such studies are of critical importance because most petroleum-
bearing reservoir beds are thinner than the wavelength of most reflection data. As shown in
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Figure 4.6 (a) An elastic impedance profile with a thin bed. (b) A basic wavelet and its time
derivative. (c) A 2D wedge model of reflectivity spikes based on profile (a) with the thin bed
thickness decreasing to zero at the right end, and synthetic seismograms of the wedge model
using the basic wavelet in (b). Dashed ellipse shows a zone of tuning due to constructive
interference between the top and bottom reflections of the thin bed. (After Kallweit & Wood,
1982.)

Figure 4.6, when the thickness of a thin bed is around one-quarter wavelength (λ/4) of the
basic wavelet, the reflections from the top and bottom edges of the thin bed will interfere
constructively, producing an increase in amplitude called tuning. Consequently, a thin bed
is defined as having a thickness less than one-quarter of the main wavelength of the data,
or one-quarter of the basic wavelet if it is known. Widess (1973) observed that as the
bed thickness decreases beyond the tuning thickness, the composite wavelet approaches
the derivative of the basic wavelet (Figure 4.6b). The characteristic response of thin beds
is one of the “evergreen” topics in exploration seismology (e.g., Knapp, 1990; Okaya,
1995).

Figure 4.7 shows a modeling study of the wedge model by Partyka et al. (1999). The
reflectivity of a low-velocity thin bed model is in reverse polarity from that in Figure 4.6.
The wedge here thickens from 0 ms on the left to 50 ms on the right. After an 8–10–40–50
Hz Ormsby filtering (a trapezoidal-shaped filter specified by four corner frequencies),
the band-limited reflectivity is shown in Figure 4.7b. On the spectral amplitudes plot in
Figure 4.7c, the black/white stripes of spectral peaks and troughs shift towards lower fre-
quencies from left to right, corresponding to the lowering of frequencies with the thickening
of the wedge.
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Figure 4.7 For a blocky wedge model: (a) reflectivity; (b) filtered reflectivity; (c) spectral
amplitudes. (After Par tyka et al., 1999.)

Exercise 4.1

1. Following Figure 4.6, make synthetic seismog rams for a wedge model containing a
low-velocity thin bed of decreasing thickness. Please demonstrate: (1) tuning; and (2)
that the combined wavefield approaches the derivative of the input wavelet below the
tuning thickness.

2. Based on Figure 4.7, derive a relationship between the thickness of the thin layer in
time domain and the spacing of the notches in the amplitude spectr um.

3. Make a table to compile the ranges of ver tical resolution of various seismic imaging
applications such as near-surf ace geophysics, petroleum exploration in onshore and
offshore cases, cr ustal seismology, and mantle tomog raphy.

4.2 Resolution versus bandwidth
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.1 Frequency bandwidth

A direct consequence of the uncer tainty principle that we discussed in Section 3.3 is
the proportionality between the temporal resolution and the frequency bandwidth. In
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Figure 4.8 Time domain and amplitude spectrum of: (a) a Sinc wavelet; (b) a truncated Ricker
wavelet. The vertical range of the spectra is from 0 to –100 dB.

other words, a higher temporal resolution requires a broader bandwidth. We have learned
previously that the bandwidth in frequency is quantified by octave, and the number of
octaves for an amplitude spectral band with a low-corner frequency fLC and a high-corner
frequency fHC is quantified by

Number of octaves = log2
fHC

fLC
(4–2)

In the following we will see several examples of the relationship between temporal
resolution and spectral bandwidth, examine some practical limitations on the bandwidth,
and check the relationship between resolution and phase.

You may wonder which wavelet offers the broadest bandwidth. A theoretically correct
answer is a spike in the time domain. In practice, seismic data are digital and their entire
time duration is usually less than several thousands of sample points. A practical answer to
the above question is the Sinc wavelet defined by

Sinc (t) = sin (ct)

ct
(4–3)

where c is a constant, which equals π for a normalized Sinc function. Figure 4.8 shows a Sinc
function and its amplitude spectrum, in comparison with that of a truncated Ricker wavelet.
The amplitude spectrum of the Sinc function has high amplitude from zero frequency all
the way to the Nyquist frequency fNyquist. The truncation of the side lobes of the Ricker
wavelet has boosted its low frequencies, but its amplitude decreases to zero at a frequency
around 43% of the Nyquist frequency.

4.2.2 Resolution versus bandwidth

In practice, we can apply trapezoidal filtering of the Sinc wavelet to produce an Ormsby
wavelet with our desired bandwidth. Figure 4.9 shows the convolution of a reflectivity
sequence with four Ormsby wavelets. The high corner frequencies of these wavelets are
the same, 62 Hz as the high-pass and 70 Hz as the high-cut frequencies. Their lower pass
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Figure 4.9 A suite of synthetic seismograms produced by convolving a reflectivity sequence
derived from a well log with a Ormsby wavelet. The upper terminal frequency is kept constant
while the lower terminal frequency varies. The interval between inflection points of the main
lobe, TR, is 10 ms (Kallweit & Wood, 1982).

frequencies are 3, 9, 17, and 23 Hz, respectively, giving bandwidths of approximately 5, 3, 2,
and 1.5 octaves, respectively. As the bandwidth decreases, the wavelet becomes “leggier”
or gains more side lobes of higher amplitudes, and the resolution decreases in the time
domain.

One of the key seismic data processing tasks in exploration seismology today is inver-
sion of migrated seismic data into acoustic impedance, which is the product of P-wave
velocity with density. The resultant impedance sections or volumes are valuable assets for
interpreters because such data carry information about the velocity and density with much
higher accuracy than the seismic data. However, owing to the limited bandwidth of seismic
data, the inverted acoustic impedance is also band-limited. As the bandwidth decreases
(Figure 4.10), the inverted acoustic impedance departs from the measured well acoustic
impedance. Because the real world has multiple rock beds, the combination of the side
lobes due to narrow bandwidth produces severe artifacts. This example underscores the
importance of maintaining low frequencies in seismic data processing.

The bandwidth of seismic data in the real world is constrained by the bandwidth of
the source signal, the effect of Earth filtering, and the bandwidth of the receiver. Among
these three factors, the Earth filtering effect is the most challenging because it is a physical
fact that the loss may not be recoverable. Most young sedimentary rocks, such as fluvial
and deltaic sands and shale sequences, have very low quality (Q) factor; hence they will
attenuate much of the high frequencies of seismic waves. A historic rule of thumb in seismic
data processing is that the SNR of seismic data propagated through such soft rocks will
be too low after 100 wavelengths of propagation. By this rule, if the average velocity is
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Figure 4.10 Impact of low and high frequencies on vertical resolution, as shown by comparing
well acoustic impedance (solid curves) with inverted acoustic impedance (dotted curves) with
different bandwidths (Latimer et al., 2000).

4 km/s, the highest useful frequency of reflections from a reflector at 4 km below the sources
and receivers is 50 Hz, and the corresponding wavelength is as large as 4 km/50 = 80 m.

In practice, it is more feasible to increase our ability to record low-frequency compo-
nents of seismic data. Most seismic sources such as dynamite, Vibroseis and earthquakes
contain very low frequencies that will not be attenuated much by the Earth filtering effect.
Modern broadband seismometers used in solid Earth geophysics can easily record seismic
frequencies as low as 0.01 Hz (a period of 100 s). A practical challenge is the high cost
for low-frequency seismometers. However, unlike the Earth filtering of high frequencies
which is mostly unrecoverable, the recording of low frequencies is achievable and hence
the only feasible way to improve the bandwidth of seismic data. Many examples, such as
Figure 4.10, have shown the value of retaining the low frequencies.

4.2.3 Resolution versus wavelet phase

Another factor affecting seismic resolution is the phase of the seismic wavelet. Most
seismic data processing flows require the use of the minimum-phase wavelet because it has
minimum time duration in the presence of noise and it is causal, or a one-sided function. In
contrast, a zero-phase wavelet that is symmetric with a vertical axis at time zero cannot be
created from a real source. Historically, people have thought that a minimum-phase wavelet
would give the best resolution based on the argument of its minimum time duration. This
view was challenged by Schoenberger (1974) who conducted a series of synthetic modeling
experiments comparing a minimum-phase wavelet and a zero-phase wavelet that have nearly
identical amplitude spectra (Figure 4.11).

As shown in Figure 4.12, Schoenberger demonstrated that the zero-phase wavelet
resolved several pairs of spiky reflectors much better than the minimum-phase wavelet.
The zero-phase wavelet also allows interpreters to easily tie the peaks of seismic wig-
gles with the corresponding reflecting interfaces. Although a zero-phase wavelet is not
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Figure 4.11 Comparison between minimum-phase and zero-phase wavelets in: (a) amplitude
spectra; and (b) time domain (Schoenberger, 1974).

Box 4.2 Hypothetical bandwidth changes in processing

Box 4.2 Figure 1 shows three hypothetical cases of losing bandwidth due to processing.
We may regard the light gray areas as the amplitude spectra of an input signal, and the
dark gray areas as the spectra of outputs from three different processing works. In case
(a), the processing reduces the magnitude of the amplitude; hence there is no loss in
bandwidth, although the SNR may decrease. In case (b) there is a loss in the high-frequency
components. In case (c) the entire band is shifted toward high frequency, meaning a loss
in the low frequencies and gain in high frequencies. However, in terms of reduction in
bandwidth, case (c) is much worse than case (b) if the loss in the low frequencies and gain
in the high frequencies are of the same number of hertz.

|F(ω)|
(a)

ω

|F(ω)|
(b)

ω

|F(ω)|
(c)

ω

Box 4.2 Figure 1 Three hypothetical cases of amplitude spectra for the same input (gray areas)
and outputs (white areas outlined by dashed curve) of three different processing procedures.
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Figure 4.12 Comparing vertical resolution of minimum-phase and zero-phase wavelets
of nearly the same amplitude spectra, like that shown in Figure 4.11. (a) A reflectivity
function with three pairs of double spikes. Convolving the reflectivity function with:
(b) a minimum-phase wavelet and (c) a zero-phase wavelet (Schoenberger, 1974).

physically possible near a source, the far-field seismic response due to an impulse source
does resemble a zero-phase wavelet, as shown by Ricker (1953a).

Exercise 4.2

1. Elaborate the reasons for preserving low-frequency components in seismic data
acquisition and data processing.

2. Read the following paper and write a short summary: Schoenberger, 1974.

3. Each geophone has its marked frequency. What is the position of the marked frequency
on the geophone’s amplitude spectrum? Is it the central frequency of the geophone?
(Hint: search literature to find the answer.)

4.3 Resolution versus fidelity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.1 Fidelity

Fidelity means truthfulness. Thus, seismic fidelity means the truthfulness of the processed
result, the targeted signal. For a targeted signal as the objective of seismic data processing,
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fidelity measures how well this signal has been extracted from the processing. In seismic
imaging, on the other hand, fidelity specifies how accurately an event has been resolved
at the correct location on the imaging result. Seismic fidelity consists of two measures:
seismic resolution specifying how much detail there is in the processing results, and
seismic positioning specifying the temporal or spatial position errors. These two measures
often overlap in seismic data processing.

Most tasks in seismic data processing are categorized into two classes, time processing
and seismic imaging (or seismic mapping). Historically, much of the effort in time process-
ing has aimed at improving seismic resolution, and much of the effort in seismic mapping
has aimed at improving both seismic positioning and seismic resolution. Examples of time
processing include:

� Demultiplexing and editing
� Various data sorting and binning
� Gain corrections
� Phase rotations
� Temporal filtering
� Deconvolution
� Temporal inversions

Examples of seismic mapping include:

� QC and correction for position errors of sources and receivers
� Stacking and velocity estimates
� Time migration
� Depth migration
� Tomography
� Seismic modeling
� Seismic waveform inversion

4.3.2 Resolution versus fidelity

What happens if we have poor seismic resolution but good positioning? In this case, we
have an unclear but well-positioned picture about our target. An example is shown in
Box 4.1 Figure 1 near the beginning of this chapter which compares two seismic sections,
one with conventional resolution and the other with high resolution. In that example, even
if we only have the conventional resolution result and if the position error is acceptable, we
can still use it to achieve many scientific and/or business objectives.

On the other hand, what happens if we have good seismic resolution but poor positioning?
In this case, a well-resolved seismic imagery with expected targets at wrong positions is
one of the worst artifacts from seismic data processing, because it is likely to mislead
interpreters. An example is given in Figure 4.13, comparing results from two different pre-
stack depth migrations, one using an isotropic velocity model and the other an anisotropic
model. The horizon marked by the dotted curve moves by almost 450 ms between the
two results. If the actual velocity field has anisotropy but this is ignored in pre-stack depth
migration, the position error will be comparable to what is shown here. Clearly, an important
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Figure 4.13 Comparison between results of two pre-stack depth mig rations using (a) isotropic
and (b) anisotropic velocity models (Zhou et al., 2004).

issue of seismic fidelity is to better understand various er rors and ar tif acts from different
types of seismic data processing methods.

As will be discussed later (Section 4.4.1), in most applications of seismic imaging the
resolution is proportional to the spatial coverage of the given data. Many imaging artifacts
are caused directly by poor data coverage. In contrast, fidelity requires sufficient quality in
the spatial coverage as well as the accuracy of the data. We will not be able to achieve good
fidelity if the given dataset only has good coverage over the targeted area but poor SNR.

4.3.3 Assessing resolution and fidelity

Several techniques exist to quantify seismic resolution for most seismic data processing
methods, as will be discussed in the next section. However, it is not so straightforward to
assess the level of mis-positioning because in the real world the truth is usually unknown.
Several checks may help remediate the situation:

� Comparing the processed results with known geology to evaluate their geologic plausi-
bility: do the results make sense geologically?

� Comparing independently derived results based on independent datasets;
� Conducting re-sampling tests, by dividing the original data into subsets, running the

subsets through the processing flow, and then checking the consistency between the
solutions;

� Quantifying the potential impact of error-bearing factors using synthetic modeling tests
with realistic value ranges of the factors.

As an example for the first two checks, Figure 4.14 shows the result of a crustal tomog-
raphy study using first arrivals from earthquake data and a regional seismic survey using
active shots and receivers. The velocities in color are produced from a deformable layer
tomography method which determines the best data-fit geometry of some constant-velocity
layers (Zhou, 2004b; 2006). Following the first check, we can verify whether the basins are
underlain by basin-shaped slow velocities and whether the mountains correspond to fast
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Figure 4.14 (a) Map of the profile in southern California showing earthquake foci (small
crosses), seismic stations (triangles), faults (lines), shots (circles), and receivers (triangles).
(b) Cross-section of tomographic velocity model. The tomography Moho at the top of the layer
with 8 km/s velocity is compared with the PmP Moho in light color. Locations: Santa Catalina
Island (SCI), Santa Monica Mountains (SMM), San Fernando Valley (SFV), San Gabriel
Mountains (SGM), Mojave Desert (MVD), Techchapi Mountains (TCM) and Isabella
Reservoir (IBR). Faults in boxes: Santa Monica (SMF), Santa Susana (SSF), San Gabriel
(SGF), San Andreas (SAF), and Garlock (GF). For color versions see plate section.

velocity anomalies in the upper crust. Following the second check, the Moho discontinuity,
which marks the base boundary of the crust, is interpreted here as the interface between
the two layers with velocities of 7.5 and 8.0 km/s. This tomographic Moho is compared
with a PmP Moho that is interpreted based on the PmP waves, or reflections from the
Moho (Fuis et al., 2007). The two Moho interpretations agree well in their general trend,
showing a thinning of the crust toward the ocean on the south side. The depths of the PmP
Moho vary from one side to the other of the tomographic Moho. The difference between
the depths of the two Moho interpretations is about several kilometers. Considering that
the main frequencies of both the first-arrival waves and PmP reflections are less than 5 Hz
around the Moho depth with a velocity of nearly 8 km/s, their wavelengths must be more
than 1.5 kilometers.

Figure 4.15 compares three seismic sections for the same area using different methods
and datasets. Panel (a) shows a reflection stack together with a tomographic velocity model
shown in color. The stacking is among the simplest methods to produce an image using
seismic reflection data. However, it suffers from various sources of noise such as multiple
reflections and off-line reflections and scatterings which are difficult to remove. Panel (b)
shows the result of a pre-stack depth migration using the same seismic reflection data as
used to create panel (a). Although this method suffers from the same noise sources as the
reflection stack, the imaging condition necessary for all pre-stack depth migration methods
has a noise removal effect. In this case, the imaging condition requires that the amplitudes of
events in the image are proportional to the level of cross-correlation between the reflection
data and modeled wavefield. Hence the image quality of panel (b) is higher than that in (a),
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Figure 4.15 Comparison of three seismic cross-sections enclosed by the dashed box that is also
shown in Figure 4.14. (a) Reflection stack (Fuis et al., 2003). (b) Pre-stack depth migration
(Thornton & Zhou, 2008). (c) Receiver functions (Zhu, 2002). Faults denoted: Santa Monica
(SMF), Santa Susana (SSF), San Gabriel (SGF), and San Andreas (SAF). For color versions
see plate section.

although both used the same input data. Panel (c) shows an image of receiver functions
using teleseismic earthquake data recorded by mobile broadband seismometers. This is a
stack of many receiver functions, and each was produced by deconvolving converted waves
from the vertical component of records of teleseismic earthquakes. Although the wavelength
and hence the resolution of receiver functions are lower than the surface reflection images,
the trends of events are comparable amongst them.
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A commonality in the three imaging methods shown in Figure 4.15 is their dependency
on velocity model, which is a requirement of all reflection imaging methods. Error in the
velocity model is a major source of mis-positioning for these methods. As a result, an
important topic in exploration geophysics is how to improve the velocity model building
and how to cope with its associated uncertainties.

Exercise 4.3

1. Explore the relationship between resolution and fidelity. Which one is easier to assess
in the practice of seismic data processing? In practice, do the objectives of improving
resolution and improving fidelity conflict with or complement each other?

2. A major objective of the work shown in Figures 4.14 and 4.15 is to probe the nature of
the Moho discontinuity. Draw your own interpretation of the Moho based on these
figures. What can you say about resolution and fidelity of your Moho interpretation?
How sharp is the Moho discontinuity in this area?

3. In Figure 4.15, what kinds of signal can you identify from each imaging result? In your
interpretation of each result, what may be missing and what may be misinterpreted? Is
there anything extra to be gained from looking at all results together?

4.4 Practical assessments of resolution and fidelity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.1 Factors affecting resolution and fidelity

We have shown in the previous section that seismic fidelity includes aspects of resolution
and positioning. In real cases, errors exist in both seismic resolution and positioning. It
is therefore necessary to assess the level of error in both aspects in order to quantify
the fidelity of the product of a seismic data processing project. Factors to be analyzed
include:

� The highest resolution level of the data, based on analysis of frequency bandwidth and
SNR of datasets from the original input all the way to the final result;

� Reduction of the resolution by all processing methods, including that during time pro-
cessing and seismic imaging;

� Possible causes of mis-positioning due to errors in the positions of sources and receivers,
insufficient data quality, and insufficient data coverage;

� Possible causes of mis-positioning due to factors ignored by the processing, such as the
presence of anisotropy and error in the velocity model;

� Artifacts from the processing.

Assessment of the resolution limit for time processing relies on analysing many of
the issues discussed in the first two sections of this chapter, namely vertical resolution,
bandwidth, phase, and the influence of noise. For most seismic imaging processes, the
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(a)                                  (b)                                      (c)                                  (d)
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Figure 4.16 Waveform modeling in a cross-well setup (from R. G. Pratt, unpublished data). A
shot (star) is placed along the left edge, and the geophones (boxes) are placed along the right
edge. (a) A checkerboard model with cell size 10.5 × 10.5 m and velocities at 2.3 and 3.0
km/s. (b) Shot gather from the setup of (a). (c) Another checkerboard model with cell size
21 × 21 m and velocities at 2.3 and 3.0 km/s. (d) Shot gather from the setup of (c).

resolution depends on the extent of seismic illumination, or data coverage, over the
targeted area, while the positioning of the result depends on correctness of the veloc-
ity model, processing methodology, data coverage, and SNR. For a given location, seis-
mic illumination or data coverage refers to the number and angular range of seismic
waves traversing through the location. In high-frequency seismic studies using traveltime
data rather than waveform data, seismic illumination is simplified into raypath coverage,
which is the number and angular variation of seismic raypaths traversing through the given
location.

The extent of seismic illumination depends on the distribution of sources and receivers,
the frequency bandwidth of data, and velocity variations. The dependency on velocity
variations is due to the fact that seismic waves tend to bend away from areas of lower
velocities. To appreciate this dependency, let us see a pair of seismic modeling results in
Figure 4.16, from Pratt (2005). There are two shot gathers in two models, with a single
shot on the left side and 101 geophones on the right side. The two velocity models have
fast and slow anomalies arranged in a checkerboard pattern with two different cell sizes,
10.5 × 10.5 m and 21 × 21 m, respectively. The bandwidth of the wavelet is very broad, at
50–500 Hz. Most parts of the waveforms consist of scatters from the edges of the model
cells. The input to waveform tomography is the first portion of records like that shown in
panels (c) and (d). Notice that the effect of “wavefront healing” (e.g., Wielandt, 1987),
which is a gradual disappearance of disturbances as the wave propagates, is more obvious in
the case of smaller cell size in panels (a) and (b). Owing to the effect of wavefront healing,
a model with more detail, as in panel (a), may give smoother seismic data (panel (b)) than
the seismic data (panel (d)) from a model with less detail.
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We realize that the difference between the two wavefields in response to the same source
signal in Figure 4.16 is due to the relative difference between the frequencies of the signal
and sizes of the checkerboard velocity anomalies. If we change the bandwidth of the signal,
we expect a change in the pattern of the shot gathers even if the velocity models remain the
same. This reflects the dependency of seismic illumination on the frequency bandwidth of
the input signal.

In summary, seismic resolution and fidelity are limited by:

� Signal bandwidth in the available data
� Data SNR
� Distribution of sources and receivers with respect to the target location
� Correctness of the velocity model and variation level of the velocity field
� Processing methodology

4.4.2 Restoration tests on resolution

Among methods to assess the fidelity of seismic imaging, a practically useful way is a
restoration test. In the test a synthetic true model is used to generate data for the given
source and receiver locations. These data with added noise are used by the seismic imaging
method under test. Finally the resolution is assessed by how well the true model is replicated
by the seismic imaging method. Advantages include the ease of conducting the test and the
fact that it assesses both the level and the resolution and positioning of the intended targets.
A common version of the method for seismic tomography is the checkerboard resolution
test, in which the synthetic true model consists of velocity anomalies in checkerboard
pattern like those shown in the previous figure. In such a test, the velocity anomalies
are expressed in terms of lateral velocity variation, which is typically quantified by the
magnitude of deviation from the layer average velocity (V1D). If the velocity value is Vi at
a model location, then the lateral velocity variation is Vi�V1D – 1.

Figure 4.17 shows a checkerboard resolution test for a cell tomography method using the
source–receiver positions shown in Figure 4.14. The synthetic true velocity model consists
of some isolated fast and slow velocity blocks with lateral velocity variations of up to 5%. In
addition to examining how well the method replicates the checkerboard anomalies, we also
examine how well the method replicates the layer velocity averages in this case. The results
of the test indicate that the cell tomography method has successfully replicated the layer
average velocities, as demonstrated by the curves and numbers in the two panels shown
on the right side of the figure. Most of the velocity anomalies shallower than 20 km in
depth are recovered well. The recovery is poor for anomalies deeper than 20 km and many
along-raypath smear artifacts are present. Poor ray angle coverage and parallel raypaths
cause along-raypath smear. Raypath smear artifacts are especially insidious because of the
tendency for researchers to interpret linear anomalies in seismic images as real features in
the crust and mantle (e.g., Humphreys et al., 1984; Zhou, 1988). A simple rule of thumb
is that all linear tomographic anomalies are questionable if they show geometric pattern
similar to that of the raypaths.

Another restoration test is shown in Figure 4.18 for a deformable layer tomography
method. The synthetic true model contains variations in velocity interfaces including



125 Seismic resolution and fidelity

V/Vlayer–1
5 0 5 [%]

(a) Synthetic true model

(b) Tomography solution

(c) Raypaths in (b)

x [km]

40

200 3000 100

0

Z 
[km]

Vlayer [km/s]

6.132

6.263

5.165

6.382

6.968 7.336
7.476

7.793

Z 
[km]

Vlayer [km/s]

6.131
6.264

5.169

6.369

6.964 7.325
7.471

7.791

85

85

Z 
[km]

40

0

40

0

Smear artifacts 

Figure 4.17 Checkerboard resolution test for a traveltime tomography. The layer velocity
averages are shown in the right panels and the numbers are in km/s. The left panels are the
lateral velocity variations after removal of layer velocity averages. (a) The synthetic true
model. (b) Tomography solution. The small dashed boxes outline the correct positions of the
checkerboard anomalies. (c) Raypaths for model (b). For color versions see plate section.

pinchouts. Nineteen stations, 906 sources, and 2034 first-arrival rays are taken from real
earthquake data to create a synthetic dataset by computing traveltimes in the true model.
Zero-mean Gaussian noise with a standard deviation of 0.11 s was added to the synthetic
data. The initial reference model in panel (b) has eight layers with layer velocities matching
those of the true model, but with flat velocity interfaces whose geometry differs greatly
from that of the true model. The final solution as shown in panel (c) has a strong similarity
to the true model. From the initial model to the final deformable layer tomography (DLT)
solution, the average of the traveltime residuals was reduced from –2.219 s to 0.003 s, and
the standard deviation of the traveltime residuals was reduced from 1.417 s to 0.157 s. Note
that the standard deviation of the added Gaussian noise is 0.11 s. The correlation with the
true model was increased from 72.8% for the initial model in Figure 4.18b to 98.8% for the
final solution in Figure 4.18c. The correlation values were calculated using lateral velocity
variations, which were obtained by mapping the velocities of each deformable layer model
into a fine mesh of regular spatial grids and removing the average velocities of all flat fine
layers.

4.4.3 Re-sampling tests on fidelity

Another assessment of seismic fidelity is to verify the level of consistency between multi-
tudes of measurements on the same subject. If only a single but large dataset is available,
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Figure 4.18 Restoration test of a deformable layer tomography. (a) Stations (triangles), sources
(crosses), and rays (curves) in the synthetic true model. (b) The initial reference model.
(c) Solution velocities in comparison with true model interfaces denoted by dashed curves.
(d) True model. In (c) and (d) the numbers denote layer velocities in km/s. A and S are the
average and standard deviation of traveltime residuals, and R is the correlation with the true
model. Areas without ray coverage are shadowed. For color versions see plate section.

the assessment can be carried through re-sampling. Re-sampling is a set of statistical
techniques based on the notion that we can repeat the experiment by constructing multiple
datasets from a single large dataset. These techniques are easy to use and offer great promise
for estimating the best model and model variance in linear and non-linear problems. The
main reason for considering such re-sampling techniques is that many geophysical data
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are not reproducible. For example, it is not possible to directly verify any assumptions or
estimations made with respect to the probability distribution of the data. The difficulty is
further increased when the physical relation between data and model is non-linear in many
applications. Re-sampling techniques are insensitive to assumptions made with respect
to the statistical properties of the data and do not need an analytical expression for the
connection between model variance and data variance.

Two re-sampling techniques are introduced here: jackknifing and bootstrapping
(Tichelaar & Ruff, 1989). The re-sampling is applied to digital data and model, say d =
(d1, . . . , dn)T and m = (m1, . . . , mp)T, and the ith datum is expressed as

di = fi (m) + εi (4–4)

where fi is the kernel function and εi represents the noise. Using the least squares, the model
estimate mest is the one that minimizes (d – f(m))T (d – f(m)).

Because any statistic estimate is robust only when it is drawn from a large number of
data, the key requirement is that the original data can be re-sampled to form a number of
subsets of data, and the subsequent multiple estimates of the model give information on
model variance. In other words, each subset of data is a “copy” of the original data in terms
of the statistics that we are trying to assess. The re-sampled dataset d*, with a new length
k, can be expressed using a matrix D called the re-sampling operator:

d∗ = Dd (4–5)

where D has n columns and k rows. Each re-sample now defines a new model estimate
m*est that minimizes (d* – f*(m))T (d* – f*(m)), where f* = Df. The difference between
jackknifing and bootstrapping is in the choice and dimension of the re-sampling operator.

A jackknifing re-sampling is extracted from the original data by deleting a fixed number,
say j, of the n original data points (k = n – j). It is therefore called “delete-j ” jackknifing.
Each row of D here contains only one element of value 1 and the rest are of value 0; thus
an original datum is never copied into a re-sample more than once. The total number of
possible jackknifing re-sample data (and hence the number of model estimates) is C K

n . For
example, the total number of re-sample data for “delete-1” jackknife is C1

n = n. See Box 4.3
for an example of delete-half jackknifing.

A statistic of interest for the original dataset can then be obtained from the re-sampled
data. The statistic could be the mean, medium, variance, etc. The estimating procedure is
illustrated in the following with the standard deviation as an example, as this is of wide
interest in geophysics. For a mean x̂ defined as

x̂ = 1

n

n∑
i=1

xi (4–6)

the corresponding standard deviation is usually given by

σ̂ =
(

1

n − 1

n∑
i=1

|xi − x̂ |2
)1/2

(4–7)
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Since there are many re-sampled datasets, one may use some type of averaging scheme
to represent the new dataset. Suppose we consider a new dataset as the sample average of
the dataset deleting the ith datum (“delete-1” jackknifing):

x̂∗
i = nx̂ − xi

n − 1
= 1

n − 1

n∑
j 	=i

x j (4–8)

The average of all n jackknife averages, each defined by (4–8), is

x̄ = 1

n

n∑
i=1

x̂∗
i (4–9)

which equals the average of the original full dataset. Furthermore, the “delete-1” jackknife
estimator of the corresponding standard deviation is given by

σ̂J =
(

n − 1

n

n∑
i=1

∣∣x̂∗
i − x̄

∣∣2)1/2

(4–10)

which can be shown to be equivalent to the usual expression (4–7). The advantage of using
the above expression is that it can be generalized to an estimator of the standard deviation
for any statistical parameter θ that can be estimated from the data by replacing x̂∗

i with
θ̂∗

i and x̄ with θ̄ . θ̂∗
i is an estimator of θ , calculated for the dataset with the ith datum

deleted.
A bootstrap re-sampling is a random selection of a set of n data out of n original data.

In contrast with the jackknife, the re-sampling operator is a square matrix and each column
may contain more than a single “1”, which means that a re-sample may contain a certain
original datum more than once. Just like the jackknife, the bootstrap estimator of standard
deviation σ̂B can be calculated without knowing an analytical expression that relates the
statistic of interest to the data. Suppose that θ̂∗

i is an estimator of the statistic θ of interest
(say the average, as used above, for example), calculated for the bootstrap re-sample i. To
do a Monte Carlo approximation of σ̂B, a large number L of bootstrap estimators θ̂∗

i need
to be calculated. The bootstrap estimate of the standard deviation of θ is

σ̂B =
(

1

L − 1

L∑
i=1

∣∣∣θ̂∗
i − θ̄

∣∣∣2
)1/2

(4–11)

where

θ̄ = 1

L

L∑
i=1

θ̂∗
i (4–12)

As was the case for jackknifing, there are different bootstrap estimators of standard
deviation.
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Box 4.3 An example of delete-half jackknifing

Box 4.3 Figure 1 shows horizontal slices from two P-wave velocity models in southern Cal-
ifornia. Panel (a) shows the 300 km by 480 km study area with major faults and coastlines.
Panels (b) and (c) are horizontal slices of two 3D P-wave velocity models that were derived
from two different halves of the first arrival data covering the periods from 1981 to 1987,
and from 1988 to 1994, respectively. The two models are generated in order to examine
the consistency of the data. The patterns of the two models are mostly similar. The overall
correlation between the slowness perturbations reaches 75%, which is significantly high
because each of the correlating vectors has 18 720 unknowns and layer averages have been
removed. Such a high correlation between solutions using non-overlapping data suggests
that the prominent features in these models come from consistent signals in the data.

(c) P-wave velocity solution from second half data

(b) P-wave velocity solution from first half data
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(a) Map of the area
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Box 4.3 Figure 1 A delete-half jackknife test for crustal P-wave tomography in southern
California (Zhou, 2004a). (a) Map view of major faults and seismologic stations (triangles).
(b) Horizontal slices of the velocity model from the first half of the data. (c) Horizontal slices
of the velocity model from the second half of the data. The dataset consists of more than 1
million P-wave arrivals from local earthquakes to local stations. Vm is the average velocity of
the layer, and r is the correlation coefficient between two model slices in the same depth range.
For color versions see plate section.
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Figure 4.19 A sketch of attenuation of a seismic wavelet in fractured rock, in time and
frequency domains (Young & Hill, 1986).

Exercise 4.4

1. For a seismic wave from a point source, its vertical resolution will be finer than its
horizontal resolution. Does this mean that the resolution of reflection is finer than that
of the direct wave of the same wavelet? How should we define resolution for
refraction? What about a turning wave?

2. Discuss the limitations of the checkerboard resolution test shown in Figure 4.17b. Will
the test yield good results if the given dataset has good ray coverage but poor SNR?
For such a dataset will the layer velocity averages in the right panels be resolved well
or not?

3. The two models shown in Figure 4.19 used different datasets to study the same area.
If the two model results differ at a certain place, are these results wrong at that place?
If the two models show similar anomalies at the same place, are these anomalies
real?

4.5 Correction for seismic attenuation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The seismic attenuation property of real materials sets a physical limit for seismic wave
propagation and therefore seismic resolution and fidelity. In this section, the quality factor
Q is introduced along with one of the common ways to estimate the Q value of media
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using spectral ratio between two seismic measurements. Two examples of Q estimation and
correction are discussed.

4.5.1 The quality factor

One important factor reducing temporal resolution of seismic data is seismic attenuation,
which causes a decay of seismic energy as a function of traveling distance. There are
propagation effects, such as geometric spreading for a point source and energy partitioning
across an interface of acoustic impedance, that attenuate the amplitude of seismic waves.
There is also an intrinsic attenuation of seismic waves due to anelasticity of the medium.
A plane wave traveling in a medium still experiences decay from its amplitude at time
zero,A0 ( f ), to its decayed amplitude at time t:

At ( f ) = A0 ( f ) exp

(−π f t

Q

)
(4–13)

where f is frequency and Q is the quality factor. In analogy to releasing a basketball to
bounce on the ground and measuring the height the ball reaches during subsequent bounces,
seismic attenuation is measured in terms of the ratio of amplitude decay through each period
or each wavelength.

The Q value of media is usually assumed to be independent of frequency. The high-
frequency components of a seismic wave decay faster than its low-frequency components,
because the former have more cycles than the latter over a fixed propagating distance.
Consequently, a seismic wavelet undergoes pulse broadening as it travels, as shown in
Figure 4.20. The pulse broadening in the time domain is associated with a bandwidth
narrowing in the spectral domain. For a causal time series, such as a real signal, we can
prove that seismic attenuation will co-exist with seismic dispersion. Seismic dispersion
is simply the variation of seismic velocity of different frequency components. The normal
case is that the low frequencies or long wavelengths will travel at faster speed in a realistic
medium, forming a normal dispersion trend. The reverse case is called inverse dispersion,
or reverse dispersion. The common occurrence of the normal dispersion is due to the fact
that seismic velocity typically increases with depth, because of the increase of pressure
and greater compaction and solidification of the rocks with depth. The long-wavelength
components will sense a greater depth than the short-wavelength components of a wave.

Correction for the attenuation using estimates of effective Q is an important topic in
seismic data analysis. Attenuation has been suggested as an attribute for quantifying pore
fluid and saturation (e.g., Winkler & Nur, 1982; Best et al., 1994; Gurevich et al., 1997). It
also provides information on lithology and structure (Young & Hill, 1986; Peacock et al.,
1994) and improve the quality of migrated images (Deal et al., 2002). Quantification and
compensation for attenuation is a necessary step in AVO analysis (Estill & Wrolstad, 1993).
Although estimates of the Q value can be drawn from surface seismic data, wellbore and
VSP seismic data offer higher quality Q estimates. In the following, the estimation of
effective Q by the spectral ratio method and an analysis of its accuracy (White, 1992) are
reviewed.
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Figure 4.20 Estimation of effective Q using walkaway VSP data (Guerra & Leaney, 2006).
(Upper) An effective Q = 22 is estimated for the offset range 60–730 m. The amplitude spectra
of records at 60 m and 730 m offsets are shown on the left, and their spectral ratio is shown on
the right. (Lower) An effective Q = 29 is estimated for the offset range 10–1001 m. The
amplitude spectra of records at 10 m and 101 m offsets are shown on the left, and their spectral
ratio is shown on the right.

4.5.2 Estimating Q using spectral ratio

Using power spectra of surface reflection data in two time intervals, t1 and t2, Q can be
estimated from

ln [P2 ( f ) /P1 ( f )] = 2 ln [A2 ( f ) /A1 ( f )] = 2π f (t2 − t1) /Q (4–14)

The power spectra can be estimated in various ways, such as by using multiple coherence
analysis (White, 1973). The method separates the signal and noise spectra on the basis
of the short-range, trace-to-trace coherence of their spectral components. The estimated
spectra Â1 ( f ) and Â2 ( f ) are independent assuring they come from separate time gates.
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White (1992) showed that the accuracy of the estimated spectral ratio can be quantified by
its variance

var{ln[ Â2( f )/ Â1( f )]} = 1

2 ( fH − fL) T
(4–15)

where fH and fL are the high- and low-corner frequencies, and T is the duration of the data
segment.

With two pieces of wellbore seismic data, Q can be estimated from the amplitude spectra
Â12 ( f ) and Â21 ( f ) of two matching filters, matching the deeper to the shallower and
shallower to deeper recording. Both filters are biased estimates of the absorption response
because they contain a noise suppression filter. Random error and noise are reduced in the
ratio

| Â12( f )|/| Â21( f )| = P2( f )/P1( f ) (4–16)

which is precisely the spectral ratio of the trace segments, leading to the Q estimate using
(4–14). This ratio is unbiased if the SNR of the two recording segments is the same. In this
case, White (1992) showed that the accuracy of the estimated spectral ratio is quantified
by

var{ln[ Â2( f )/ Â1( f )]} = 1 − γ 2

2( fH − fL)T
(4–17)

where γ 2 ( f ) is the spectral coherence between the two recording segments.

4.5.3 Examples of Q estimation and correction

Figure 4.20 shows two effective Q estimates from an application of the spectral ratio method
to walkaway VSP data (e.g., Guerra & Leaney, 2006). The correlation coefficients (c.c.)
in the right panels quantify the fit of the data with the straight lines, which are predictions
from the modeled Q values within their respective frequency ranges.

Figure 4.21 compares two inline seismic sections without and with a correction for
effective Q estimated from the surface reflection seismic data (Deal et al., 2002). The
dimming or low-amplitude zone in the central part of the section on the left panel is due
to shallow gas in the first 400 ms. After the Q correction as shown in the right panel the
amplitudes of reflections are restored beneath the gas zone. Although only a 1D Q model
was used in this study, the benefit of the correction is clear. At this moment, however,
accurate estimation of Q model is still a research topic in most cases.

Exercise 4.5

1. Search the literature to compile the Q values of common rocks into a table, including
the physical conditions of the Q measurements or estimates.

2. Discuss factors that may cause error in the estimations of Q using the spectral ratio
method.
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Figure 4.21 Inline sections through a migrated seismic volume without (left) and with (right) a
correction for estimated effective Q based on surface reflection data. Vertical axis is in
milliseconds. The main reservoir is immediately above 2 seconds. The dimming in the central
part of the section is due to shallow gas in the first 400 ms. The nearly vertical lines indicate
existing production wells in the region. (From Deal et al., 2002.)

3. A common notion states that Q is independent of frequency. In this case the spectral
ratio will be linear, like the straight lines shown in the right panels of Figure 4.21.
Discuss the validity of the above notion in light of the observed spectral ratio in
Figure 4.21.

4.6 Summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
� Seismic resolution quantifies the finest scale of subsurface objects detectable by the

seismic data. Vertical resolution measures the resolvability of seismic waves along the
direction of wave propagation, which is typically in near-vertical directions. Horizontal
resolution measures the resolvability of the seismic wave perpendicular to the direction
of wave propagation, which is typically in sub-horizontal directions.

� Seismic fidelity is another quality measure which quantifies the truthfulness, such as the
accuracy of seismic data or the correctness of the imaged target position.

� Because seismic data are band-limited, seismic resolution is proportional to the frequency
bandwidth of seismic data. If the bandwidth is too narrow, the resolution will be poor
because a single subsurface reflector may correspond to a number of indistinguishable
wiggles on the seismic traces.

� For multiple datasets with the same bandwidth, it is easier in practice to recognize events
with zero-phase wavelets than wavelets with non-zero phase, such as the minimum-phase
wavelet preferred by many data processing operations.



135 Seismic resolution and fidelity

� It is important to assess the level of seismic resolution and fidelity in every seismic
processing project. Seismic resolution and fidelity are limited in real cases by the seismic
illumination. Poor resolution and fidelity may produce various types of seismic artifacts.

� Seismic resolution is proportional to seismic illumination provided by the given data
coverage. In practice we may conduct several types of restoration test to assess the
resolution level of given data coverage. However, the real resolution may be hampered
by many factors such as inaccuracy in data coverage due to unknowns in the model.

� Seismic fidelity depends on both data coverage and signal to noise ratio. It is usually
much more difficult to assess fidelity than resolution. One way to assess fidelity is to
check seismic data against direct measurements that may be available. Another way is to
check the level of consistency between multitudes of measurements on the same subject
through re-sampling. We may also infer the fidelity level by comparing results from
different studies using different types of data and methods.

� Seismic attenuation, the phenomenon of losing energy as seismic wave travels in real
media, sets physical limits on seismic resolution and fidelity. Correction for the quality
factor Q is important for many seismic studies, although much of this topic is still in the
research stages today.
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5 Digital filters

Chapter contents

5.1 Filtering of digital data

5.2 Types of filters: pole–zero representation

5.3 Geophysical models for filtering

5.4 Frequency–wavenumber (f–k) filtering

5.5 Inverse filtering

5.6 Summary

Further reading

Digital filtering is a very commonly used seismic data processing technique, and it has
many forms for different applications. This chapter begins by describing three ways to
express digital filtering: the rational form, recursive formula, and block diagram. The
names of the filters usually come from their effects on the frequency spectrum. In the
rational form of a filter, the zeros are the roots of the numerator, and the poles are
the roots of the denominator. Using the zeros and poles we can make the pole–zero
representation on the complex z-plane as a convenient way to quantify the effect of a
digital filter as a function of frequency. The rule of thumb is: poles add, zeros remove,
and the magnitude of the effect of the pole or zero depends on their distance from the
unit circle. Different types of filtering in seismic data processing are discussed in the
chapter using several examples. In particular, f–k filtering is discussed in detail with
its typical processing flow. Owing to the widespread application of inverse problem
in geophysics, much of the attention is given to inverse filtering, which requires that
the corresponding filter be invertible. It can be proven that a minimum-phase filter is
always invertible because all of its zeros and poles are outside the unit circle on the
complex z-plane. This notion means that the minimum-phase filters occupy an important
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position in seismic data processing. In general, a minimum-phase wavelet is preferred
in seismic data processing because of stability concerns, while a zero-phase wavelet is
preferred in seismic interpretation to maximize the seismic resolution. The final section
of the chapter prepares the reader with the physical and mathematical background
materials for inverse filtering. These materials are fundamental to the understanding of
deconvolution, an application of inverse filtering, in the next chapter.

5.1 Filtering of digital data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.1 Functionality of a digital filter

A digital filter is represented by a sequence of numbers called weighting coefficients, which
can be expressed as a time series or denoted by the z-transform. When the filter acts on an
input digital signal which can be expressed as another time series, the filter functions as a
convolution with the input signal (Figure 5.1).

For example, we have a filter h(z) with the weighting coefficients

h(z) =
(

1

16
,

1

4
, 1,

1

4
,

1

16

)
(5–1)

This filter can be graphed using a block diagram as shown in Figure 5.2.
Convolving any filter f (z) with a unit impulse time series, which is zero everywhere

except for having value 1 at one location, produces the same filter f (z). Thus, we can input
a unit impulse to any unknown digital filter to produce the impulse response as the output
of the filter. Clearly, such an impulse response is just the sequence of weighting coefficients
of the filter. In general, the impulse response will serve as a good characterization of any
filter or any digital system that can be characterized as a combination of digital filters.

Input time series

“Black box” 
Filter

Output time series

Figure 5.1 A digital filter acts like a “black box” convolving with the input time series.

1/16 11/4 1/4 1/16

z zz zInput

Output

Figure 5.2 A block diagram for the filter (1/16, 1/4, 1, 1/4, 1/16). The � symbols in the top row
are summing operators, the numbers on the middle row are for scaling, and the z values in the
bottom row are unit-delay operators.
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Unless specified, we usually consider causal digital filters in the context of this book. A
causal digital filter could have the following three functionalities:

� Storage (delay)
� Multiplication by a scale constant
� Addition

5.1.2 Rational form of a digital filter

Mathematically, a digital filter H(z) can be expressed in a rational form as

H (z) = a0 + a1z + a2z2 + · · ·
b0 + b1z + b2z2 + · · · (5–2)

If the denominator is a constant, i.e. bi = 0 for all i > 0, then the filter is called non-
recursive. A non-recursive filter has two properties: it has a finite weighting coefficient
sequence, and is generally stable. For example, h(z) in (5–1) is a non-recursive filter.

On the other hand, recursive filters have a non-constant denominator that causes feedback
loops. Such filters may become unstable although they generally involve few storage units.
For example, we have a recursive filter:

h(z) = (1 + az)/(1 + bz) (5–3)

If the input is x(z), then the output is

y(z) = x(z)(1 + az)/(1 + bz)

Let

w(z) = x(z)/(1 + bz)

i.e.

x(z) = w(z)(1 + bz)

or

w(z) = x(z) − w(z)bz

This last expression is the feedback loop. The filter output is

y(z) = w(z)(1 + az)

5.1.3 Recursive formula for filters

The general case of using a recursive filter can be denoted as

x(z) ⇒ N (z)/D(z) ⇒ y(z)
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For stability, D(z) must be minimum phase. There are two ways to perform the filtering;
the hard way is to divide D(z) into N(z) and come up with an infinitely long filter, and the
easy way is to do recursion. For instance, if

y(z) = n0 + n1z + n2z2

1 + d1z + d2z2
x(z) (5–4)

we can express x(z) = ∑
t xt zt , y(z) = ∑

t yt zt , then multiply by D(z) on both sides. Taking
all the coefficients of the term zt, on both sides of the equation, or at time t, we have

yt + d1 yt−1 + d2 yt−2 = n0xt + n1 xt−1 + n2 xt−2

Note that in the above equation the sum of the subscripts for each combined term is always
t. Hence

yt = n0xt + n1 xt−1 + n2 xt−2 − d1 yt−1 − d2 yt−2 (5–5)

The above equation (5–5) is a recursive formula of a digital filter. The last two terms on
the right-hand side of the equation represent recursive feedback.

5.1.4 Examples of filter block diagrams

Example 1
What is the block diagram for y(z) = x(z) 1+az

1+bz ?

(i) First, for y(z) = w(z) (1 + az), the block diagram is shown in Figure 5.3.

z

a
Feed Forward 

Filter

Input w(z)

Figure 5.3 Block diagram of y(z) = w(z) (1 + az).

(ii) Next, for w(z) = x(z) – w(z) bz, the block diagram is shown in Figure 5.4.

z

-b

w(z) output

Feed Backward Filter

X(z) input

Figure 5.4 Block diagram of w(z) = x(z) – w(z) bz.
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Note the negative sign of coefficient b in the feedback loop. Now combine (i) and
(ii) together as in Figure 5.5.

z

z

-b

a

w(z)

x(z) input

y(z) output

Figure 5.5 Block diagram of y(z).

This can also be shown as in Figure 5.6.

z

a

-b

y(z) output

x(z) input

Figure 5.6 Block diagram of Example 1.

Example 2
For H (z) = a0+a1z+a2z2+a3z3

1+b1z+b2z2 , the block diagram is shown in Figure 5.7.

y(z) output

x(z) input

a0 a1 a2 a3

-b1 -b2

z z z

Figure 5.7 Block diagram of Example 2.

Example 3

For H (z) = 5+z−3z2

2+z−6z2+z3 = (5/2)+(1/2)z−(3/2)z2

1+(1/2)z−3z2+(1/2)z3 , the block diagram is shown in Figure 5.8.
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5/2

z z z

3

1/2 -3/2

-1/2 -1/2

y(z) output

x(z) input

Figure 5.8 Block diagram of Example 3.

Example 4
For H (z) = 1+z4

1−0.656z3 , the block diagram is shown in Figure 5.9.

0.656

z3 z

y(z)

x(z)

Figure 5.9 Block diagram of Example 4.

Box 5.1 Amplitude and phase responses of a Hanning function

A Hanning function is used to smooth the cutoff of a window in data processing to avoid the
undesirable effects of sharp truncation. Let us compute the amplitude and phase responses
of a discrete Hanning filter (¼, ½, ¼), or H(t) = (¼, ½, ¼). Using the z-transform we
have

H (z) = 1

4
(1 + 2z + z2)

Take z = eiθ , where θ = ωn�t ,

H (eiθ ) = 1

4
(1 + 2eiθ + ei2θ )

= 1

4
eiθ (e−iθ + 2 + eiθ )

= 1

2
eiθ (1 + cos θ )

Hence, the amplitude response is |H | = 1
2 (1 + cos θ ) and the phase response is

Arg{H} = θ.



142 Practical Seismic Data Analysis

Suppose the sampling interval is 4 ms. Then in time domain for this filter, θ = 2π f �t =
2π f (4 × 10−3). We can compute the values of the spectra as shown in the following
table.

f (Hz) 0 25 50 75 100 125

|H| 1 0.90451 0.65451 0.34549 0.09549 0
θ (degree) 0 36 72 108 144 180

The responses are graphed in Box 5.1 Figure 1.

Phase (f )

Amplitude |H(f )|

0 120

f (Hz)

Box 5.1 Figure 1 Sketches of the amplitude and phase spectra of a Hanning filter (¼, ½, ¼).

Im z

Re z

Unit circle

ω

O

Figure 5.10 An unit circle on the complex z-plane.

Exercise 5.1

1. Along the unit circle in the complex z-plane shown in Figure 5.10, indicate the angle
of:

(a) Zero frequency;

(b) Nyquist frequency;

(c) 100 Hz if the time sampling rate is 4 ms.
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2. For each of the four example block diag rams shown in Section 5.1.4:

(a) What is the recursive formula?

(b) Compute the amplitude spectrum.

(c) What is the effect of the filter?

3. Find the z-transform formula and recursive formula of the filter whose block diagram
is shown in Figure 5.11.

y(z) output

x(z) input

 4 2 -1

 3  

z z z

1

Figure 5.11 Block diagram of a filter.

5.2 Types of filters: pole–zero representation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Perhaps the best way to classify types of filters is to see their spectral configuration, as
shown in Figure 5.12. Another important way to quantify the characteristics of filters is to
use the distribution of their poles (denoted by X) and zeros (denoted by O) on the complex
z-plane. A zero is the zero root of the numerator of the filter, and a pole is the zero root of
the denominator of the filter. A plot of the digital filters’ zeros and poles on the complex
z-plane is called a pole–zero representation of the filters.

Power(ω)

ω

ω

Low
pass Side lobe

Band pass

Narrow band

High pass

Notch

Pole on pedestal

Figure 5.12 Sketches of power spectra of some common filters.



144 Practical Seismic Data Analysis

(b)
A(ω)

0

1+1/α

1-1/α

-π/Δt

Locations of zeros

π/Δt

ω

α
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Im z

Re z
1

0

Unit circle 

O

ω = π/Δt

Figure 5.13 Filter F(z) = 1 + z�α on: (a) complex z-plane; (b) amplitude spectrum.

5.2.1 Zeros of a filter

Let us look at a simple low-pass filter

F(z) = 1 + z

α
(5–6)

which becomes zero at z = –α. We say that filter F( ) has a zero at –α because F(–α) = 0.
As shown in Figure 5.13, the location of the zero is denoted by an O on the complex
z-plane. In the frequency domain F(ω) = 1 + eiω�t/α. Thus, the amplitude spectrum
A(ω) = |F(ω)| is

A(ω) =
[(

1+ 1

α
cos ω�t

)2

+
(

1

α
sin ω�t

)2
]1/2

=
(

1 + 1

α2
+ 2

α
cos ω�t

)1/2

which is shown in Figure 5.13b. By dividing the amplitude at the highest frequency by that
at the zero frequency, we find that |F(z)| decreases with frequency by a factor of

|F(ω = π )|/|F(ω = 0)| =
(

1 − 1

α

)/(
1 + 1

α

)
(5–7)

Another example of a filter has two zeros at the same place:

F(z) = (1 + z/α)(1 + z/α) (5–8)

This will happen when two filters are in series:

Input ⇒ 1 zero ⇒ 1 zero ⇒ output

Based on the fact that the spectrum of a filter F(z) = A(z)B(z) is equal to the spectrum of
A(z) times the spectrum of B(z), the spectrum of the filter in this example is

F(ω) = 1 + 1

α2
+ 2

α
cos ω�t

Its graph is shown in Figure 5.14. From the lowest to the highest frequencies, the amplitude
spectrum decreases by a factor of

|F(ω = π )|/|F(ω = 0)| =
[(

1 − 1

α

)/(
1 + 1

α

)]2

(5–9)
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A(ω)

(1+1/α)2

(1-1/α)2

-π/∆t  π/∆t0

ω

Figure 5.14 Amplitude spectrum of filter F(z) = (1 + z�a)2.
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-π/Δt π/Δt

ω
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Im z

Re z1

0 β
x

Figure 5.15 Filter F(z) = 1�(1 – z�β) on: (a) complex z-plane; (b) amplitude spectrum.

We may conclude from the above two examples that the closer the zero is to the unit
circle on the complex z-plane, the greater the filter’s effect (in removing the high-
frequency energy in this case).

5.2.2 Poles of a filter

We now turn to a filter with poles

F(z) = 1/(1 − z/β) (5–10)

The zero root of the denominator of the filter is referred to as the pole of the filter, as said
above. In this case, a pole is located at z = β. The amplitude spectrum is

F(ω) =
(

1 + 1

β2
− 2

β
cos ω�t

)−1/2

From the lowest to the highest frequencies, the amplitude spectrum decreases by a factor
of

|F(ω = π )|/|F(ω = 0)| = 1 − β

1 + β
(5–11)

Figure 5.15 shows this filter on the complex z-plane and its amplitude spectrum. The cross
on the complex z-plane to the right indicates the location of the pole.

Now we combine pole and zero into a filter

F(z) = 1 + z/α

1 − z/β
(5–12)
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A(ω)

0

β(α+1)
α(β-1)

-π/Δt π/Δt

ω
β(α-1)
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Im z

Re z
10
ω=0ω = π/Δt

O x

Figure 5.16 Filter F(z) = (1 + z�α)�(1 – z�β) on: (a) complex z-plane; (b) amplitude spectrum.

The zero (O) and pole (X) are shown on the complex z-plane in Figure 5.16. The amplitude
spectrum is

F(ω) =
(

1 + 1
α2 + 2

α
cos ω�t

1 + 1
β2 − 2

β
cos ω�t

)1/2

which is displayed on the right side of the figure.
Let us summarize the observation based on the previous examples: Poles add, zeros

remove. The magnitude of the effect of the pole or zero depends on their distance from
the unit circle.

The distance of a zero or a pole to the unit circle is measured by comparing its modulus
in polar coordinates with 1, the radius of the unit circle. Suppose there are two zeros at
locations z1 = r1 exp(iω1) and z2 = r2 exp(iω2) on the complex z-plane. When both zeros
are outside the unit circle, their moduli r1 and r2 are both greater than 1; hence the smaller
one of the two choices r1 − 1 and r2 − 1 is closer to the unit circle. When the two zeros are
inside the unit circle, their modules r1 and r2 are both smaller than 1; then the smaller one
between 1�r1 − 1 and 1�r2 − 1 is closer to the unit circle. Finally, if z1 is inside the unit
circle and z2 is outside, we can convert the distance of the inside zero to its outside distance
using the reciprocal of its modulus, 1�r1. Hence we can find the smaller one between
1�r1 − 1 and r2 − 1 that is closer to the unit circle. The distance measure for poles is
exactly the same as that for zeros.

By using one zero and one pole of the same angular frequency ω together, we can create
a notch filter by placing the zero slightly closer to the unit circle than the pole; we can
also create a “pole on pedestal” filter by placing the pole slightly closer to the unit circle
than the zero. For example, suppose that we want to make a pole on pedestal filter at
50 Hz for sampling rate at 4 ms. Then the sampling frequency is 1 s / 4 ms = 250 Hz, so
the Nyquist frequency is 125 Hz. Since the Nyquist frequency 125 Hz corresponds to the
Nyquist angular frequency of π or 180°, then our desired frequency of 50 Hz corresponds
to 180° × 50 Hz/125 Hz = 72°. We may choose to use 1.1 as the modulus of the pole, and
a slightly large value of 1.2 as the modulus of the zero; then on the complex z-plane the
pole is at zp = 1.1 exp(i72◦) and zo = 1.2 exp(i72◦). This pole on pedestal filter is

F(z) = z − zo

z − zp
= z − 1.2ei72◦

z − 1.1ei72◦
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Box 5.2 Minimum delay interpretation of minimum-phase wavelet

We want to examine the minimum phase concept using the complex z-plane. As has been
discussed in Sections 1.4 and 4.2, minimum phase is a shor t for m for minimum phase delay,
meaning a minimum change in phase angle for a wavelet over a full cycle on the phase
spectrum. Consider four zeros:

A(z − 2), B(z − 3), C(2z − 1), and D(3z − 1).

As shown in Box 5.2 Figure 5.1, A and C, B and D are polar reciprocals of each other. We
make four wavelets by cascading pairs of zeros:

AB: (z − 2)(z − 3) = 6 − 5z + z2, minimum phase
AD: (z − 2)(3z − 1) = 3 − 7z + 2z2, mixed phase
CB: (2z − 1)(z − 3) = 2 − 7z + 3z2, mixed phase
CD: (2z − 1)(3z − 1) = 1 − 5z + 6z2, maximum phase

Notice that we have labeled the phase property of these four wavelets, and the only
minimum-phase wavelet AB has both of its zeros located outside the unit circle.

Im z

Re z

10

CD A B
O O O O

Box 5.2 Figure 1 Four zeros, A, B, C and D, on complex z-plane.

We can quantify the energy distribution with time by defining an accumulated energy at
time step j as

E j =
∑
k=0

| fk |2

The accumulated energies for the four wavelets are:

Wavelet E0 E1 E2 Phase Line type in Box 5.2 Fig. 2

AB 36 61 62 minimum thick line
AD 9 58 62 mixed dashed line
CB 4 53 62 mixed thin line
CD 1 26 62 maximum dotted line
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The accumulated energies at four time steps for these wavelets are shown in Box 5.2
Figure 2.

Ej

E-1 E0 E1 E2

j

Box 5.2 Figure 2 Accumulated energies of four wavelets.

We see from this example that, of all the possible phases for a given spectrum, the minimum
phase has its energy arrive the earliest, or front-loaded in the time domain.

Q: Why isn’t φ = 0 the minimum phase?
A: With φ = 0, the signal will not be causal.

5.2.3 Stability of a filter

A digital filter is stable if its time duration covers just a short time span and unstable if it
has a long time span. The difference between short and long is relative. In practical seismic
data processing, because the total sample number is usually less than 10 000 points, the
number of points for a stable filter is typically less than 50–100.

We call a filter invertible if its inverse (1/filter) is a stable filter. It can be proven
that a minimum-phase filter is always invertible because all of its zeros and poles are
outside the unit circle on the complex z-plane. Owing to the widespread application of the
inverse problem in geophysics, minimum-phase filters have high significance in seismic
data processing. Figure 5.17 shows the complex z-planes and amplitude spectra of several
minimum-phase filters. Naturally all of them are invertible.

If we want to design a filter that is not complex but real, we can put poles and zeros in
the conjugate positions. For example, the following filter

F(z) = (1 − z/z0)(1 − z/z∗
0)

has two zeros in conjugate positions, as shown in Figure 5.18. We can see that

F(z) = 1 −
(

1

z0
+ 1

z∗
0

)
z + 1

|z0|2
z2

where ( 1
z0

+ 1
z∗

0
) is certainly real.
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Figure 5.17 Plots on z-plane and amplitude spectra of some minimum-phase filters.
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Figure 5.18 A real-number filter on complex z-plane.
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Figure 5.19 Properties of three filters as shown on complex z-plane. (a) Band reject: stable but
not invertible. (b) Pole inside unit circle: this type of filter is useless because it is always
unstable. (c) All-pass filter: the poles and zeros are polar reciprocal pairs. This filter does not
alter the amplitude spectrum, but may alter the phase spectrum. It is stable but not minimum
phase.

Three other types of filters are shown in Figure 5.19. When a filter has only zeros and
all of them are inside the unit circle, it is also a stable band reject filter, but not invertible.
When a filter has only poles and all of them are inside the unit circle, it is always unstable.

5.2.4 All-pass filters

Let us see an example of an all-pass filter

F(z) = 1/α − z

1 − z/α
, (α > 1)

Note that

|F(z)|2 =
(

1/α − z

1 − z/α

)(
1/α − z∗

1 − z∗/α

)
= 1/α2 − z/α − z∗/α + 1

1 − z/α − z∗/α + 1/α2
= 1
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To check the phase spectrum of this all-pass filter,

Phase {F(z)} ≡ �(ω)

= �num(ω) − �den(ω)

= phase {1/α − eiω�t } − phase{1 − eiω�t/α}

= tan−1

{ − sin ω�t

1/α − cos ω�t

}
− tan−1

{
1
α

sin ω�t

1 − 1
α

cos ω�t

}

Now checking two limiting cases:

(i) α → � (zero and pole getting further apart)

�(ω) → tan−1

{− sin ω�t

− cos ω�t

}
− 0 = ω�t (phase delay)

(ii) α → 0 (zero and pole becoming closer together)

�(ω) → 0 − ω�t = −ω�t

Hence the phase spectrum is not flat, although the amplitude spectrum is.

Exercise 5.2

1. What type of filter is

yt = 1

18
xt − 1

6
xt−1 + 1

2
xt−2 + 1

2
yt−1 − 1

4
yt−2?

For a signal sampled at 125 sample/second, at what frequency does this filter have its
maximum effect?

2. For a seismic dataset sampled at 2 ms, design a minimum-phase and real-number filter
that will suppress noise associated with AC power at 60 Hz. What is the recursive
formula of this filter?

3. For the following filter

f (z) = 1.21 + 1.1
√

2z + z2

1.44 + 1.2
√

2z + z2

(a) Sketch the pole–zero locations and identify the filter type;

(b) Sketch the amplitude response and label the frequency axis;

(c) State the recursive formula;

(d) Draw the block diagram.

5.3 Geophysical models for filtering
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5.1 lists many types of filtering. All of them are based on the convolution model. One
of the interesting ones is Wiener filtering, which will be discussed with two examples.
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Table 5.1 Types of filtering (after Sheriff, 1991).

Name Function

High-pass (low cut) filter
Low-pass (high cut) filter Attenuate high and/or low frequencies
Band-pass filter
Notch filter Attenuates narrow band of frequencies
Hi-line balancing Adjusts resistive/reactive impedance
Spike deconvolution Builds up all frequency components within specified

band-pass to same amplitudeWhitening
Predictive deconvolution Removes repetitive aspects after time lag
Optimum filtering Produces results as close as possible to some desired output

subject to constraintsWiener filtering
Wavelet processing Determines or changes embedded wavelet
Maximum entropy filter Produces result as unpredictable as possible
Minimum entropy filter Maximizes spiky character of output
Median filter Suppresses noise by taking the median value from a

predefined neighborhood
Homomorphic deconvolution Lifters in the cepstral domain
Stacking Attenuates out-of-register components
Velocity filter Multichannel filter to attenuate events of certain apparent

velocities or dipsf–k filter
Tau–p (τ–p) filter Multichannel filter to attenuate certain events
Time-variant filter Changing filter parameters with time, usually a linear mix

of processing with different parameters
Coherency filter Multichannel filter to attenuate where certain coherence

tests are not satisfied
Automatic picking Multichannel filter to eliminate data that fail certain

coherency and amplitude tests
Spatial filter Performs discrete sampling in space

⎫⎬
⎭

}

}

}

5.3.1 Wiener filtering

In reflection seismology, we often assume the reflection sequence gt to be an Earth-filtered
version of the wavelet xt that was sent into the Earth:

xt ⇒ ft ⇒ gt (5–13)

This can be expressed as a convolution of the source wavelet xt with the Earth reflectivity
function ft:

xt ∗ ft = gt (5–14)

Our objective is to construct the Earth reflectivity function from the reflection data.
One particular assumption we may invoke is that the reflection function is totally unpre-

dictable. In other words, our knowledge of the amplitudes and traveltimes of the first k
reflections does not permit us to make any deterministic statement about the amplitude and
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traveltime of the (k + 1)th reflection. This also means that the locations of reflectors are
uncorrelated. With this assumption, we can express the misfit et between the output gt and
the prediction by an optimum filter ft0

et = ∣∣gt − xt ∗ f 0
t

∣∣ (5–15)

It turns out that ft0 is actually a good approximation of the reflection function.
The filter that will most nearly produce a desired output is called an optimum filter,

which is usually determined by least squares fitting. In the least squares sense, we simply
minimize the error function (a single scalar)

(et )
2 = (

gt − xt ∗ f 0
t

)2
(5–16)

The resultant filter ft0 is called a least squares filter, or a Wiener filter after Norbert
Wiener (1947) who devised the method. Some more detail on this subject can be found in
Sheriff and Geldart (1995, p. 295).

5.3.2 Modeling far-field seismic body waves

The observed waveforms of seismic body waves are thought to be the result of the source
function (dislocation function and finiteness function) going through Earth filters (Green’s
functions in terms of geometric spreading, velocity heterogeneities, and attenuation), and
the recording instrumentation. Mathematically, these filtering processes are expressed in
terms of convolutions.

Figure 5.20 illustrates the convolution model for far-field seismic body waves emitted
from an earthquake. Specifically for body waves, the far-field geometric spreading G(t) is
modeled as the convolution of source dislocation function (a linear ramp function having
a finite rise time) with a finiteness function (a boxcar); the result is a trapezoidal function.
This trapezoidal function will then be convolved with the Q structure (thought of as a
low-pass filter) and geometrical radiation pattern (thought of as a spatial filter). It will be
further convolved with Earth structure (often as a series of spikes), and finally with the
instrumental filter.

Source
Dislocation, D(t)

Source
Finiteness, F(t)

Far-field
G(t)

Attenuation,
Q(t)

Geometrical
Radiation
Pattern

Instrument,
I(t)

Seismogram,
S(t)

Figure 5.20 Seismograms of an earthquake is the result of convolving many processes.
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Figure 5.21 A box function in frequency domain.

sinc(t)

0 t

Figure 5.22 A sinc function in time domain.

5.3.3 Filtering with DFT

In general, the objective of filtering is to modify the frequency content of a signal. Perhaps
the simplest and most straightforward way to achieve this is to apply the filter in the
frequency domain. The procedure is:

1. Forward FFT the data to frequency domain;
2. Multiply each frequency component by the corresponding filter amplitude;
3. Inverse FFT the modulated data back to time domain.

There are two advantages for this DFT approach:

� Apparent ability to specify the filter response exactly;
� Low cost. The cost of applying the filter is (N + 2N × log N) operations, where N is the

length of the data.

The main disadvantage of the DFT approach is that in practice not all filter shapes can be
used. For example, an ideal low-pass filter should have a spectrum like that in Figure 5.21.

However, the Fourier transfer of the above filter, a sinc function, is usually unacceptably
long in the time domain (see Figure 5.22).

This tends to spread the energy out in time and may lead to wrap-around. If we truncate
the impulse response in time and transfer it back to the frequency domain, we may end up
with a filter whose spectrum looks like that in Figure 5.23.

The oscillations around the sharp corners in the above figure are the Gibbs ears. Even in
the case of an infinitely long signal the overshoot will converge to about 8% of the jump in
the original signal. Note that the frequencies near the cutoff points of the filter are enhanced,
which is usually undesirable.
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Figure 5.23 A frequency-domain box function after an inverse Fourier transform and a forward
Fourier transform.
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Figure 5.24 A box function in frequency domain with tapers applied to its corners.

A remedy for the above problem is to remove the discontinuity in the filter by using
tapers, or making dipping slopes beyond the sharp corners (Figure 5.24).

Below are several comments on filtering with DFT:

� The Fourier transform of this filter is the multiplication of two sinc functions in the time
domain, which means the decay rate in time is 1�t2.

� Causality and minimum phase properties are usually not preserved with frequency-
domain filtering (owing to altering of the amplitude spectrum).

� In terms of computation cost, for short time-domain filters it is cheaper to apply a filter
directly in the time domain rather than the frequency domain. The cost of the convolution
in the time domain is N × Nf, where Nf is the length of the filter.

� DFT methods generally cannot be used in real time.

Exercise 5.3

1. The acquisition of seismic data for petroleum exploration usually applies a low-cut
filter in the field. Find the reasons for using this low-cut filter by searching the
literature.

2. A geophone is specified by a frequency, such as 14 Hz, 4.5 Hz, etc. What is the
meaning of the specified frequency? Is it possible for a geophone to record signals of
frequencies lower than its specified frequency?

3. Explain the benefit of using tapers in applying filtering in frequency domain. Is it
possible to remove the entire Gibbs artifact associated with a DFT?
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5.4 Frequency–wavenumber (f–k) filtering
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4.1 The idea of f–k filtering

An f–k filter is designed to suppress unwanted events in the frequency-wavenumber (f–k)
domain. When applying multidimensional Fourier transforms, such as from (t, x) to (f, kx),
linear events in the original domain will also be linear events in the transformed domain,
except that the orientations of each event in the two domains are perpendicular to each other
(see, e.g., Chun & Jacewitz, 1981). If there are linear noises, or if there are noises with dip
(offset/time) less than a certain angle, such as ground rolls, we can mute such noise in the
f–k domain, and then transfer the remaining data back to the t–x domain. Hence f–k filtering
is also called dip-filtering when it is used to remove linear events of certain dip angle.

Let us look at the behavior of a linear event after Fourier transform. As shown in
Figure 5.25a, suppose that in the (t–x) domain we have a linear event t = x tan α + b. If
the wavelet of this event is w(t), the event will be the following convolution in the (t, x)
domain,

f (t, x) = w(t) ∗ δ(t − x tan α − b) (5–17)

In Figure 5.25b, the Fourier transform of the above function is

F(ω, kx ) = W (ω) exp(−iωb) δ(ω − kx cot α) (5–18)

Notice on the right-hand side that convolution becomes multiplication, the middle term is
due to the shifting property of the Fourier transform, and the last term reflects the fact that
linear events run perpendicular to the original orientation.

Let us see a classic example of f–k filtering in Figure 5.26 given by Embree et al. (1963).
In the t–x space (panel (a)), the signal of reflection events has higher apparent velocities than
that of the ground roll and most high-velocity noise such as refraction and scattering. In the
f–k space (panel (c)), events of different slopes are separated except near the low-frequency
center where everything collapses on top of each other. A horizontal dashed line in panel (b)

O x

(a)

t

α

O kx

ω

α

(b)

Figure 5.25 Linear events before and after a Fourier transform.
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Figure 5.26 A schematic diagram of f–k filtering. (a) Time versus offset plot showing reflection
signal in solid lines, ground rolls in dotted lines, and high-velocity noise in dashed lines. (b)
Plot of f versus k showing spaces occupied by signal, low-velocity ground roll, and
high-frequency noise and its back scatters. (c) A central pass band and two adjacent aliased
pass bands for a 12-trace, ±2 ms/trace f–k filter. (After Embree et al., 1963.)

denotes the limit of a low-cut filter that is typical of seismic data acquisition for petroleum
exploration. The length of the recording cable, which is indicated by two vertical dashed
lines in panel (b) and by KRC in panel (c), produces aliasing for longer events. Consequently
a central pass band and two adjacent aliased pass bands are used by the f–k filter shown in
panel (c).

5.4.2 Processing flow of f–k filtering

A common usage of f–k filtering in exploration seismology is to remove ground rolls, which
are linear surface waves of very low velocity, or steep dip angle on an x–t plot like that in
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Figure 5.26a. A good discussion of the processing flow of f–k filtering is given in Yilmaz
(1987). Other references on the subject include Embree et al. (1963), Wiggins (1966), and
Treitel et al. (1967). Ground rolls are usually of lower frequency than shallow reflections.
However, since surface wave decay is much slower than that of body waves, sometimes
surface waves are of higher amplitude and frequencies than deep reflections. Here is an f–k
processing flow for filtering of ground rolls:

1. Input CSG, CMP, or CMP stack;
2. 2D Fourier transform;
3. Define a fan rejection zone for the amplitude spectrum;
4. Mute the transform within the rejection zone;
5. 2D inverse Fourier transform.

Another application of f–k filtering runs into the design of median filtering (e.g., Stewart,
1985; Duncan & Beresford, 1995). A more recent application of f–k filtering is in removal
of multiples (e.g., Zhou & Greenhalgh, 1994). Below is an example f–k processing flow
from these studies:

1. Input CSG or CMP gathers;
2. Wave-extrapolation of the input to generate multiple model traces;
3. Apply NMO correction to the input and multiple model traces using an intermediate

velocity function;
4. 2D Fourier transform of the NMO-corrected input and NMO-corrected multiple model

traces;
5. Compute the non-linear filter in the f–k domain according to the spectra obtained in

Step 4;
6. Apply the filter in Step 5 to the spectrum of the input in Step 4;
7. 2D inverse Fourier transform of the filtered data obtained in Step 5;
8. Inverse NMO correction of the result in Step 6 using the same velocity function in

Step 3;
9. Proceed to the next processing procedure.

5.4.3 An example of f–k filtering

Figure 5.27 shows stacked seismic sections with a linear f–k filtering and a median f–
k filtering to suppress noises with low apparent velocities (Duncan & Beresford, 1995).
The section in panel (a) without post-stack filtering shows many steeply dipping linear
noises that are likely due to ground rolls and off-line scatterings. Band-pass filtering will
not be effective because the frequency of the noises is comparable with the frequency of
the gently dipping reflectors. The steeply dipping linear noises are well suppressed by the
two f–k filters as shown in panels (b) and (c). At shallow depths, however, some of the
dipping events may still be noise whose apparent velocity is higher than that used in the f–k
filters.

Reflection events after the median f–k filtering have a rougher or more random appearance
than that after the linear f–k filtering, although the differences between the two filtered
results are not significant. Some of this roughness may be due to near-surface statics. A
time migration of the data may improve the image more significantly.
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(a) (b)

(c)

Figure 5.27 Stacked seismic field data from the Surat Basin, Australia. (a) Stacked data
without post-stack filtering. (b) Stacked data after linear f–k filtering. (c) Stacked data after
median f–k filtering. (From Duncan & Beresford, 1995.)

Exercise 5.4

1. Frequency–wavenumber or f–k filtering is an effective way to remove linear noise.
Please research this topic and then write a short report describing f–k filtering in terms
of: (1) the idea; (2) application procedure; (3) pitfalls; and (4) an example.

2. Explain why a smooth transition between the rejection zone and pass zone is necessary
in f–k filtering.

3. Explain or refute the following statement: For broad band input, the cross-correlation
function of the input and output of a system is the impulse response of the system.

5.5 Inverse filtering
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5.1 Convolution and deconvolution

In reflection seismology, seismic waveform data are regarded as the convolution of the
source wavelet, Earth’s noise function, attenuation function, reflectivity function, and
recording instrument response. We are interested in “deconvolving” the data to obtain
the Earth reflectivity function (impulse response of the Earth), which will be the topic of
the next chapter. As a consequence of learning the filtering theory, however, we would like
to check out this issue from the inverse filtering point of view.
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Following the first example in the previous section, we assume a simple case where, after
a removal of the source and receiver effects, the reflection data yt are a result of the Earth
reflectivity function xt filtered by ft, which is a combination of the Earth’s attenuation and
scattering functions:

xt ⇒ ft ⇒ yt (5–19)

Since the reflection data are given, we wish to find an inverse filter ft–1 so that we can
pass the reflection sequence through it to recover xt:

yt ⇒ f −1
t ⇒ xt (5–20)

The first difficulty in finding the inverse filter is that we usually do not know the filter
ft, or at least we do not know it with high accuracy. In other words, a common situation
is that we only know yt among the three factors xt, ft and yt in the convolution model. We
therefore have to make some assumptions about the characteristics of xt and ft in order to
separate them. One way is to assume that the Earth’s reflectivity function xt is random and
uncorrelated with itself. This technically means that xt is white noise, although it is what
we are after. Thus,

E(xt , xt+τ ) = σ 2
x δ(τ ) (5–21)

where E( ) is the expectation operator, σ 2
x is the variance of the noise sequence xt, and δ(τ )

is the delta function.
The above is actually the autocorrelation function in discrete form:

r (τ ) = 1

N

N−1−τ∑
t=0

xt ∗ xt+τ

(5–22)
= E(xt , xt+τ ) = σ 2

x δ(τ )

Following the Wiener–Khinchin theorem, the spectrum is equal to the Fourier transform of
the auto-covariance function, hence

RX (z) = X∗(1/z)X (z) =
∫

Nσ 2
x δ(τ )eiωτ dτ = Nσ 2

x (5–23)

Now rewrite (5–19) in the frequency domain using the z-transform:

Y (z) = F(z)X (z)

The spectrum is

RY (z) = Y ∗(1/z)Y (z)

= F∗(1/z)X∗(1/z)F(z)X (z)
(5–24)= RF (z)RX (z)

= Nσ 2
x RF (z)

In other words,

RY (z) = const RF (z) (5–25)
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Box 5.3 Spectral dominance of the wavelet

Since the Fourier transform of auto-covariance is the power spectrum, the dominance of the
wavelet with respect to the input reflectivity function can be seen in the spectral domain.
Box 5.3 Figure 1 shows an example of convolving a reflectivity with a wavelet to produce
the output. Note that the spectrum of the output is nearly the same as that of the wavelet.
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Box 5.3 Figure 1 A reflectivity function, a wavelet, and their convolution in time and spectral
domains.

as a result of assuming that xt is random in comparison with ft in the model of (5–19). The
above equation states:

The auto-covariance of the output is a scaled version of the auto-covariance of the filter
itself when the input can be regarded as a random sequence.

This result suggests a way to construct the inverse filter by decomposing the auto-
covariance of the data.

5.5.2 Spectral factorization

This is the typical way of decomposing the auto-covariance of the data. Because the phase
information is lost in the auto-covariance, the factorization is non-unique.

The quest is to find F(z) from the auto-covariance

RF (z) = F∗(1/z)F(z)

We will require that the resultant F(z) be minimum phase, because we plan to use it to
construct the inverse filter. There are two methods of spectral factorization that are of
interest to us, as described below.
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Figure 5.28 Zeros of RF(z) on the complex z-plane.

5.5.2.1 Root method

The root method was described by Wold (1938). The zeros of RF(z) are the zeros of F(z)
and F*(1�z). For instance, if

F(z) = z − z0

then

F ∗ (z) = 1/z − z∗
0

Hence if the zero of F(z) is at z0, then the zero of F*(1�z) is at 1/z∗
0.

If we let

z0 = ρeiω0

then

z∗
0 = (1/ρ)eiω0

Thus the zeros of F*(1�z) occur at the polar reciprocal position of the zeros of F(z). This
means that the zeros of RF(z) are in polar reciprocal pairs, as shown in Figure 5.28.

The root method is simply factorizing RF(z) into its zeros and then constructing F(z)
using all zeros outside the unit circle. This will produce a minimum phase F(z) that has the
correct spectrum RF(z).

However, the root method is difficult to use in practice because:

� It is complicated, expensive, and inaccurate to factorize a long RF(z) into its zeros;
� It is not clear what the effect of noise will be when using this method.

5.5.2.2 Toeplitz method

The Toeplitz method (Grenander & Szego, 1958; Atkinson, 1964) is the only practical way
to solve the spectral factorization problem. We want the factorized F(z) to be minimum
phase, so that the inverse of F(z)

A(z) = 1/F(z)
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is stable and well-defined.

RF (z) = F∗(1/z)F(z) = F∗(1/z)/A(z)

or

RF (z)A(z) = F∗(1/z) (5–26)

Suppose that we have the following expansion of each factor in the above equation:

F∗(1/z) = f ∗
0 + f ∗

1 z−1 + f ∗
2 z−2 + · · · (5–27a)

RF (z) = · · · + r−2z−2 + r−1z−1 + r0 + r1z1 + r2z2 + · · · (5–27b)

A(z) = a0 + a1z + a2z + · · · (5–27c)

Then the left-hand side of (5–26) becomes

RF (z)A(z) = · · · · · · + (· · · · · ·)z−2

+ (· · · · · ·)z−1

+ (r0a0 + r−1a1 + r−2a2 + · · ·)z0

+ (r1a0 + r0a1 + r−1a2 + · · ·)z1

+ (r2a0 + r1a1 + r0a2 + · · ·)z2

+ · · · · · · (5–28)

If we match the coefficients of each power of z for the LHS and RHS, we have⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r0 r−1 r−2

r1 r0 r−1
. . .

r2 r1 r0
. . . r−2

. . .
. . .

. . . r−1

r2 r1 r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2
...
...

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

f ∗
0

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(5–29)

This is known as the Toeplitz system. The matrix is called the Toeplitz matrix and all of
its diagonal terms are equal.

To take a three-equation case, we have⎡
⎣r0 r−1 r−2

r1 r0 r−1

r2 r1 r0

⎤
⎦
⎡
⎣a0

a1

a2

⎤
⎦ =

⎡
⎢⎣ f ∗

0

0
0

⎤
⎥⎦ (5–30)

Those three equations contain four unknowns:

a0, a1, a2, and f ∗
0

Hence, we have to give or assume one of the unknowns. Using the argument that we are
not much interested in the amplitude-scaling factor of the filter, we can define a constant

v = f ∗
0 /a0 > 0 (5–31)
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Thus, by dividing (5–30) by a0, we have a′
k = ak / a0, and

⎡
⎢⎣

r0 r−1 r−2

r1 r0 r−1

r2 r1 r0

⎤
⎥⎦
⎡
⎢⎣

1

a′
1

a′
2

⎤
⎥⎦ =

⎡
⎢⎣

v

0

0

⎤
⎥⎦ (5–32)

For real filters, the Toeplitz matrix is symmetric (r–k = rk) because that the auto-covariance
matrix R(z) is symmetric, i.e., F*(1�z) = F(z).

The Toeplitz method of spectral factorization then is to solve the Toeplitz system (5–32).
If N is the number of unknowns, a direct solution to this linear system by least squares
requires N3 operations. Such a solution does not guarantee the minimum-phase property of
the inverse filter A(z).

5.5.3 The Levinson recursion

Levinson in 1947 published an algorithm which produces a minimum phase A(z) and
requires only N2 operations in solving the Toeplitz system. The Levinson approach solves
the Toeplitz system by recursion (not iteration!), taking advantage of the highly structured
form of the system. To show the recursion, we assume that we know the solution to the nth
order system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0 r1
. . . rn

r1 r0
. . .

. . .

. . .
. . .

. . . r1

rn
. . . r1 r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1

a(n)
1

...

a(n)
n

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

v(n)

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(5–33)

where A(n)(z) = 1 + a1
(n)z + a2

(n)z2 + . . . is the nth order solution. From this solution,
we will try to find the solution to the (n + 1)th order system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0 r1
. . . rn rn+1

r1 r0 r1
. . . rn

. . . r1 r0
. . .

. . .

rn
. . .

. . .
. . . r1

rn+1 rn
. . . r1 r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

a(n+1)
1

...

a(n+1)
n

a(n+1)
n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(n+1)

0

...

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5–34)

where A(n+1)(z) = 1 + a1
(n+1)z + a2

(n+1)z2 + . . . is the (n + 1)th order solution.
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We note that the (n + 1)th order Toeplitz system is simply the nth order system with an
additional row and column added. In fact, the new system has the old system imbedded
in either the upper-left corner or the lower-right corner, because the matrix is diagonally
symmetric. To show the recursion, we rewrite the (n + 1)th order system as

r0 r1
. . . rn rn+1

r1 r0 r1
. . . rn

. . . r1 r0
. . .

. . .

rn
. . .

. . .
. . . r1

rn+1 rn
. . . r1 r0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

a(n)
1

...

a(n)
n

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ c

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

a(n)
n

...

a(n)
1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(n)

0

...

0

e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ c

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

0

...

0

v(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5–35)

Notes: <A> <B> <C> <D> <E>

<A> Notice that the up-left (n + 1) × (n + 1) system is the same as the lower-right
(n + 1) × (n + 1) system;

<B> The nth order solution with a zero added to the end;
<C> A upside-down version of <B> with a scaling constant c;
<D> This vector is the result of applying the matrix <A> to vector <B>. Since the

first n + 1 equations are the same as the nth order system (5–35), the first n +
1 elements of vector <D> are the same as in the nth order system. Only the last
element e is different:

e = rn+1 1 + rn a(n)
1 + rn−1 a(n)

2 + · · · + r1 a(n)
n =

n∑
j=0

rn+1− j a
(n)
j

This shows that e depends only on the nth order solution;

<E> A upside-down version of <D> scaled by a constant c. The value of e is the same
as that in <D>, because the top row of <A> is just its bottom row backwards.

To solve the above system, we require that the right-hand side of (5–34) and (5–35) be
equal, hence ⎡

⎢⎢⎢⎢⎢⎣

v(n)

0
...
0
e

⎤
⎥⎥⎥⎥⎥⎦+ c

⎡
⎢⎢⎢⎢⎢⎣

e
0
...
0

v(n)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

v(n+1)

0
...
0
0

⎤
⎥⎥⎥⎥⎥⎦ (5–36)

Thus, e + c v(n) = 0, or

c = −e/v(n) (5–37)
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and

v(n+1) = v(n) + ce = v(n) − e2/v(n) = v(n)
[
1 − (e/v(n))2

]
i.e. (5–38)

v(n+1) = v(n)(1 − c2)

Note that v(n+1) > 0 if and only if v(n) > 0 and |c| < 1. This is equivalent to saying that if
v(n+1) is positive then |c| < 1.

We now can write the updated inverse filter as⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

a(n+1)
1

...

a(n+1)
n

a(n+1)
n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

a(n)
1 + ca(n)

n

...

a(n)
n + ca(n)

1

c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5–39)

The coefficient c is known in the literature as the partial correlation coefficient, or the
‘reflection coefficient’.

To initiate the recursion, we start with the 0th order system

r01 = v(0)

hence

v(0) = r0

Let us address two questions on the Levinson recursion in the following.

Question 1: Is A(z) thus obtained really minimum phase?
We first show that v(n) is positive. Consider the system in vector form

Ra = v

where v = (v, 0, . . . , 0)T. Multiply both sides of the above equation by aT,

aT Ra = aT v = v (because a1 = 1)

Because R is positive definite (its eigenvalues are the power spectrum), the quadratic form

aT Ra ≥ 0, for any a

This proves that v > 0. Therefore, because of (5–38),

1 − c > 0, or |c| < 1

Using the z-transform, the operation of updating the filter, (5–39), can be written as

A(n+1)(z) = A(n)(z) + czn A(n)(1/z) (5–40)

where zn A(n)(1�z) is just writing A(n)(z) backwards.
For instance, if A(z) = a0 + a1z1 + a2z2 + · · · + anzn, then
zn A(n)(1�z) = a0zn + a1zn–1 + a2zn–2 + · · · + an.
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Assume the previous recursion gives us a minimum phase A(n)(z), and we may rewrite
the updated filter as

A(n+1)(z) = A(n)(z)
[
1 + czn A(n)(1/z)/A(n)(z)

]
(5–41)

Note that the amplitude spectra of A(n)(1�z) and A(n)(z) are identical and the spectrum of zn

is 1. Based on the additive property of minimum phase signals, the fact that |c| < 1 and that
the spectrum of zn A(n)(1�z) / A(n)(z) is 1 indicates that A(n+1)(z) is minimum phase. Because
at the starting step of the recursion the inverse filter is A(0)(z) = 1, which is minimum phase,
all the later A(n)(z) will be minimum phase.

Question 2: What happens if F(z) is not minimum phase? (This can be the case for real
data.)

Let us decompose the filter in the original forward problem as

F(z) = Fin(z)Fout(z) (5–42)

where Fout(z) has all its zeros outside the unit circle and hence is minimum phase; and Fin(z)
has all its zeros inside the unit circle and hence is not minimum phase. The auto-covariance
of F(z) will then be

RF (z) = F∗
in(z)F∗

out(z)Fin(z)Fout(z) (5–43)

with positions of the four zeros as follows:

out, in, in, out.

With either the root method or the Toeplitz method, we can find an inverse that uses only
the zeros outside the unit circle, i.e.,

A(z) = 1/
[
F∗

in(1/z)Fout(z)
]

(5–44)

If we apply this inverse filter to the original F(z), we have

F(z)A(z) = Fin(z)Fout(z)/
[
F∗

in(1/z)Fout(z)
] = Fin(z)/F∗

in(1/z) (5–45)

which is a filter with its poles and zeros at polar reciprocal positions, hence an all-pass filter.
This filter is stable because the poles are outside the unit circle. The amplitude spectrum of
this filter is flat with frequency variation. Therefore, if we apply A(z) to Y(z), the output that
we recorded, the effect is that the input sequence X(z) has passed through an all-pass filter.

5.5.4 An example of the inverse filter

The most common reason to find an inverse filter is to “undo” the effect of an unwanted
filter. In this example, we have two transient time series (with definite beginning and end),
a(t) and b(t), of length N:

a(t) = a0, a1, a2, . . . ,aN−1

and

b(t) = b0, b1, b2, . . . , bN−1
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(a): a(t) (b): b(t)

t

(c): fLS(t) (d): apre(t)

t

t

t

Figure 5.29 (a) A delta function a(t); (b) The airgun signal b(t), which is related to other
functions by the convolution a(t) = f(t) * b(t). (c) Estimated filter fLS(t) from a least squares
inversion using a(t) and b(t). (d) The predicted signal, apre(t) = fLS(t) * b(t), is not exactly a
delta function. (After Menke, 1989.)

Our objective is to find a filter f (t) of length M:

f (t) = f0, f1, f2, . . . , fM−1 (usually M � N )

so that

a(t) = f (t) ∗ b(t) (5–46)

An example of this model is shown in Figure 5.29 from Menke (1989). In this case b(t)
is the observed airgun signal with reverberations and a(t) is a delta function. According
to the above equation, f (t) is the inverse filter of b(t). The motivation here is to make the
source wavelet as simple as a spike, hence the output of applying such a source wavelet
to the observed signal will have a high resolution and therefore be more informative. In
other words, after the processing the output will contain more components of the true Earth
reflectivity rather than noises such as airgun echoes and ocean bottom reverberations or
multiples. In terms of theory, we can find an estimated fLS(t) using least squares inversion
of the following equation

f (t) ∗ b(t) = δ(t) (the spike delta function)

Suppose that the Earth’s reflectivity is e(t), so the actual recorded data are

y(t) = b(t) ∗ e(t)
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Then we can apply fLS(t) to the data to get an estimated eLS(t):

fLS(t) ∗ y(t) = [ fLS(t) ∗ b(t)] ∗ e(t) = eLS(t)

In terms of computation, putting (5–46) into the discrete convolution formula

ai =
M−1∑
j=0

f j bi− j (5–47)

Combining all equations (i = 0, 1, 2, . . . , N) into a matrix form:

⎡
⎢⎢⎢⎢⎢⎢⎣

a0

a1
...
...

aN−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 0 · · · 0

b1 b0
. . .

...

b2 b1
. . . 0

... b2
. . . b0

...
. . . b1

...
...

bN−1 bN−2 · · · bN−M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f0

f1
...

fM−1

⎤
⎥⎥⎥⎦ (5–48)

That is

a = Bf (5–49)

The system in (5–49) is linear for the unknown vector f, and it is over-determined (N >

M). Therefore it can be inverted by a least squares inversion that converts the system into

FLS = (BTB)−1
g BTa (5–50)

where the subscript g stands for generalized inverse, the best possible result even if (BTB)
is not invertible in the exact sense.

We can find that (BTB) is a M × M matrix containing the coefficients of auto-correlation
of the observed signal b(t):

(BTB) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N−1∑
i=0

bi bi

N−2∑
i=0

bi+1bi

N−3∑
i=0

bi+2bi · · ·
N−M∑
i=0

bi+M−1bi

N−2∑
i=0

bi bi+1

N−2∑
i=0

bi bi

N−3∑
i=0

bi+1bi · · ·
N−M∑
i=0

bi+M−2bi

N−3∑
i=0

bi bi+2

N−3∑
i=0

bi bi+1

N−3∑
i=0

bi bi
. . .

...

...
...

. . .
. . .

...

N−M∑
i=0

bi bi+M−1

N−M∑
i=0

bi bi+M−2 · · · · · ·
N−M∑
i=0

bi bi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5–51)
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and (BTa) is an M × 1 vector containing the coefficients of cross-correlation between a(t)
and b(t):

(BTa) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N−1∑
i=0

bi ai

N−2∑
i=0

bi ai+1

N−3∑
i=0

bi ai+2

...

b0aM−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5–52)

As we now know, the system (5–49) can be solved either by least squares (Wiener filtering)
or by the Levinson recursion.

According to Menke (1989), the result shown in Figure 5.29 was obtained using the least
squares inversion, hence fLS(t) is called the least squares filter here. In this case N = 240
and M = 100. Notice in the figure that the predicted signal apre(t) is not exactly a delta
function. The reverberations of the airgun signal are certainly reduced, but not removed
completely.

Exercise 5.5

1. For a single seismic trace y(t) as the input, write a computer program (or a flowchart of
descriptions) of the first five iterations of the inverse filtering method using the
Levinson recursion.

2. The auto-covariance of a length-3 trace data trace y(z) is (6, 35, 62, 35, 6).

(a) Find the filter F(z) using the root method;

(b) Form the Toeplitz normal equations;

(c) Find the inverse filter A(z).

(d) Is A(z) minimum phase? Compare it with F(z) and explain.

3. In the deconvolution example shown in Figure 5.29, the predicted signal shown in
panel (C) is much longer than the airgun signal in panel (B). Explain the origin of the
long tails of the predicted signal.

5.6 Summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
� Digital filters either pass or reject the frequency components of the input data according to

the desired frequency content of the output. They provide an effective means to enhance
the signal and/or suppress noise. The names of the filters are usually associated with their
effects on the frequency spectrum.
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� Each digital filter has at least three expressions: (1) the rational form with z-transform;
(2) the recursive formula; and (3) the block diagram. In the rational form of a filter, the
zeros are the roots of the numerator, and the poles are the roots of the denominator.

� Using the zeros and poles on the complex z-plane, we can quantify or design the effect of
a digital filter following a rule of thumb that poles add, zeros remove, and the magnitude
of the effect of the pole or zero depends on their distance from the unit circle.

� A minimum-phase filter is invertible because all of its zeros and poles are outside the
unit circle on the complex z-plane. In general, a minimum-phase wavelet is preferred
in seismic data processing owing to stability concerns, while a zero-phase wavelet is
preferred in seismic interpretation to maximize the seismic resolution.

� f–k filtering is an effective way to separate events of different apparent velocities in the
traveltime versus distance plot. After a 2D or 3D FFT, we need to design the pass bands
for the signal and reject bands for the noise; tapers between the pass bands and reject
bands need to be applied before the inverse 2D or 3D FFT.

� Inverse filtering is at the core of predictive deconvolution, which attempts to extract the
input trace from the output trace of a filter without knowing the filter. It assumes that the
input is random in comparison with the filter, so that the auto-covariance of the output is
a scaled version of the auto-covariance of the filter itself. The filter is the solution of a
normal equation system created by auto-covariance of the output trace.

� The Levinson recursion or Levinson–Durbin recursion is a procedure to recursively solve
the normal equation system of a Toeplitz matrix. A Toeplitz matrix is a diagonal-constant
matrix, in which each descending diagonal from left to right has a constant value. The
inverse filter resolved by the Levinson recursion will be minimum phase.

FURTHER READING

Claerbout, J. F., 1985, Fundamentals of Geophysical Data Processing, Blackwell.
Hatton, L., Worthington, M. H. and Makin, J., 1986, Seismic Data Processing: Theory and Practice,

Section 2.5, Blackwell.



6 Deconvolution

Chapter contents

6.1 Predictive deconvolution

6.2 Frequency domain deconvolution

6.3 Adaptive deconvolution

6.4 Minimum entropy deconvolution

6.5 An example of deterministic deconvolution

6.6 Summary

Further reading

Deconvolution means to “undo” a convolution process. We may view each seismic
trace as the result of convolving the subsurface seismic reflectivity with a seismic
wavelet. Deconvolution can then be used to remove the seismic wavelet from the input
seismic trace in order to yield the seismic reflectivity as the output. As a common
time processing method, the main benefits of deconvolution include increasing data
bandwidth and therefore resolution, suppressing periodicity such as multiples, and
removing known wavelets. In practice we often only have the input seismic trace
and want to find both the wavelet and the reflectivity. This non-uniqueness problem
leads to the approach of predictive deconvolution, which assumes that the predictable
components of the input trace belong to the seismic wavelet and the unpredictable
components of the input trace belong to the reflectivity. To remove the effect of a
known filter, we may use a frequency domain deconvolution which employs a “water
level” to prevent division by zero.

As the amplitude and phase of real data vary with time, the deconvolution operator
may be applied within a time window of the data. An adaptive deconvolution is
a practical way to divide the data trace into time windows that overlap with each
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F(z)t

A(z)tnt

ξt gt

Figure 6.1 A general convolution model. ξ t is called the driving noise, white noise, or
convolutional noise. F(z)t is the process model, and A(z)t is the filter applied to “color” the
additive noise nt. The subscript t indicates that the coefficients of F(z)t and A(z)t may change
with time. gt is the output.

other, to apply deconvolution for each window, and then to integrate the deconvolved
results together. By quantifying the distribution of seismic wiggles using the concept of
entropy, minimum entropy deconvolution seeks to minimize the number of spikes on a
seismic trace; this method works well in cases of few major reflectors. Finally, a method
called extrapolation by deterministic deconvolution (EDD) is shown as a way to take
predictions from sites of joint observations and to extrapolate into nearby sites that
have only a single observation. This method provides the possibility of using seismic
data to anticipate filtered versions of wellbore measurements.

6.1 Predictive deconvolution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1.1 Models of the convolution theory

From the viewpoint of convolution theory, we regard each recorded seismic trace as a
superposition of the variants of a wavelet that vary randomly in amplitude with time. This
means that the timing and amplitude of the wavelet are sequences of random variables.
In such a view, deconvolution is a process of extracting the shape of the wavelet from the
seismic trace, leaving the amplitudes of the wavelet at their respective arrival times.

Deconvolution is an act of inverse filtering, introduced at the end of the previous chapter.
There are many kinds of deconvolution methods, and each is designed to eliminate a
particular type of noise following a specific model. For instance, the spectral factorization
method discussed in the previous chapter belongs to a typical deconvolution process to
separate a random spiky sequence from repetitive events.

Let us first discuss some models for a continuous process, or time series. Probably the
most general model is shown in Figure 6.1.

Recall from (5–22) that if xt is white noise, then its statistical expectation is

E(xt , xt+τ ) = 1

N

N−1−τ∑
t=0

xt ∗ xt +τ = σx2δ(τ ) (5–22ʹ)

Thus for the model shown in Figure 6.1, we have

E(ξt ξt+τ ) = σ 2
ξ δ(τ ) (6–1)

E(nt nt+τ ) = σ 2
n δ(τ ) (6–2)
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and the above two types of noise are uncorrelated:

E(ξt nt+τ ) = 0 (6–3)

The model in Figure 6.1 is too general, or over-parameterized. Although the model can
fit any time series by adjusting the coefficients of F(z) and A(z) for each output point, it is
not practical to determine these coefficients from the data. In the following we simplify this
model to yield some practical models.

6.1.1.1 Time-invariant model

This is a simplified case of the general model in Figure 6.1 when both F(z) and A(z) are
time invariant, as shown in Figure 6.2. This model assumes that the statistics of output gt

are independent of the time at which we choose to measure it; so it is a stationary process.
In data processing, properties that are invariant with time are called stationary, and those
variant with time are called non-stationary. Unfortunately, this model is still too general
for most seismic applications, although some types of signal, such as sinusoids, use this
model.

F(z)

A(z)nt

ξt gt

Figure 6.2 A time-invariant convolution model. ξ t is the driving noise, F(z) is the process
model, and A(z) is the filter applied to “color” the additive noise nt. Both F(z) and A(z) are
invariant with time. gt is the output.

F(z)ξt gt

Figure 6.3 An ARMA convolution model. ξ t is the driving noise, F(z) is the process model,
and gt is the output.

6.1.1.2 Auto-regressive and moving average (ARMA) model

The auto-regressive and moving average (ARMA) model as shown in Figure 6.3 is obtained
by removing the additive noise from the time-invariant general model. A more rigorous
definition of this model can be found in Wold (1938) and Wei (1990).

A general form of F(z) is

F(z) = N (z)/D(z) (6–4)
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If we let

N (z) = β0 + β1z1 + β2z2 + · · · + βq zq (6–5)

D(z) = α0 − α1z1 − α2z2 − · · · − αpz p (6–6)

then the recursion for output gt can be written explicitly as

gt =
p∑

k=1

αk gt−k +
q∑

l=0

βlξt−l (6–7)

In the right-hand side of the above equation, the first summation is the auto-regressive (AR)
part containing p parameters, and the second summation is the moving average (MA) part
containing (q + 1) parameters. Fitting data to solve for those parameters of the model is
still a challenging task because of the large number of parameters.

6.1.1.3 Auto-regressive (AR) model

A further simplification is to drop the MA part of the ARMA model to leave

gt =
p∑

k=1

αk gt−k + ξt (6–8)

Then the parameters of this model are {α1, . . . , αp, and σ 2
ξ }.

6.1.2 Determination of the prediction error operator

In predictive deconvolution, we assume the observed data can be modeled as an AR
process with the source wavelet as the deterministic or predictable portion of the data, and
the Earth’s response as the innovation, or the unpredictable portion of the data. Hence αk

become the coefficients of the prediction operator, and the prediction error operator is

D(z) = 1/F(z) = 1 − α1z1 − α2z2 − · · · − αpz p (6–9)

The AR coefficients can be retrieved by one of the algorithms in the following sections.

See Box 6.1 for an example of predictive deconvolution.

6.1.2.1 Yule–Walker method

To determine the auto-covariance of gt, we multiply both sides of (6–8) by gt–τ and then
take the expectation operation, yielding

rτ = r−τ = E(gt gt−τ ) =
p∑

k=1

αk E(gt−k gt−τ ) + E(ξt gt−τ ) (6–10)
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Box 6.1 Predictive deconvolution for image enhancement

Because predictive deconvolution is a single-trace operator, it can be applied to either
pre-stack gathers or stacked sections. For extremely noisy datasets, it can be used as an
effective image enhancement tool. The left panel in Box 6.1 Figure 1 shows a common-
receiver gather from an ocean bottom seismometer (OBS) recording an airgun source
during an offshore seismic survey, off the coast of southern California. The combination
of a high-impedance ocean floor plus rugged bathymetry produced strong and irregular
multiple reflections and scattering noises that render the seismic gather nearly useless.
After a predictive deconvolution, as shown in the right panel, considerable improvement
is seen in reducing the multiple reflections. The presence of multiples with extremely
long duration required an extremely long time gate of about 1600 ms for the predictive
deconvolution in this case.
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Box 6.1 Figure 1 An ocean bottom seismometer (OBS) gather recorded in offshore California
before (left) and after (right) a predictive deconvolution using a nearly 1600-ms-long time gate.

For τ > 0 we know that E(ξ t gt–τ ) = 0, because current values of the innovation ξ t are
uncorrelated with the past values of gt. For τ = 0 we have E(ξ t gt–τ ) = σ 2

ξ . Thus, for τ � 0
we have

rτ =
p∑

k=1

αkrτ−k + σ 2
ξ δ(τ ) (6–11)

Note that E(ξ t gt–τ ) � 0 for τ < 0. Now if we define

D(z) =
p∑

k=0

γk zk (6–12)

and compare with (6–9), we have γ k = –αk and γ 0 = 1.
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Hence, from (6–11)

rτ +
p∑

k=1

(−αk )rτ−k =
p∑

k=0

γk rτ−k = σ  
2
ξ δ (τ ) (6–13a)

This equation system for ms a set of Toeplitz equations⎡
⎢⎢⎢⎢⎣

r0 r p
. . .

. . .
. . .

. . .
rp r 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
γ1
...

γp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

σ  2ξ

0
...
0

⎤
⎥⎥⎥⎦ 

(6–13b)

where the diagonal-constant matrix is the Toeplitz matrix. Then {γ k } can be solved by the
Levinson algorithm in Section 5.5.3 which guarantees that the solution {γ k} is of minimum
phase.

However, in order to use the Yule–Walker method, we need to estimate the auto-covariance
{rt} from a short sample {xt} taken from gt. We may use

rt = 1

N

∑
k

xt xt+k (6–14a)

or

rt = 1

|N − K |
∑

xt xt+k (6–14b)

The above equations (6–14a, b) give poor estimates when the data segment is short. This
problem motivates the following two methods that directly estimate the AR coefficients
from the data rather than its auto-covariance.

6.1.2.2 Unconstrained least-squares method

We can determine the AR parameters {αk} by least-squares fitting of the model to the
sampled data x(t) with the criterion of minimizing the variation of the innovation noise σ 2

ξ .
This criterion means that we are putting as much energy as possible into the deterministic
part of the model, the αk, and as little as possible into the non-deterministic part, ξ t.

In addition, we can simultaneously minimize the variances of both forward and reverse
models. This will not be necessary for a perfectly stationary time sequence. On the other
hand, it will help in stabilizing the processing for non-stationary time sequences.

In a least-square sense, the objective function of the combined forward and reverse
prediction errors is

E =
N−1∑
t=p

(
xt −

p∑
k=1

αk xt−k

)2

+
N−p−1∑

t=0

(
xt −

p∑
k=1

αk xt+k

)2

(6–15)

Differentiating with respect to αj and setting the equation to zero, we obtain for j = 1,
2, . . . , p,

0 = ∂ E

∂α j
= 2

N−1∑
t=p

(
xt −

p∑
k=1

αk xt−k

)
(−xt− j ) + 2

N−p−1∑
t=0

(
xt −

p∑
k=1

αk xt+k

)
(−xt+k)
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or
p∑

k=1

αk

(
N−1∑
t=p

xt−k xt− j +
n−p−1∑

t=0

xt+k xt+ j

)
=

N−1∑
t=p

xt xt− j +
N−p−1∑

t=0

xt xt+ j

Now let

σk j =
N−1∑
t=p

xt−k xt− j +
n−p−1∑

t=0

xt+k xt+ j (6–16a)

and

s j =
N−1∑
t=p

xt xt− j +
N−p−1∑

t=0

xt xt+ j (6–16b)

Then we have
p∑

k=1

αkσk j = s j , for j = 1, 2, . . . , p (6–17)

Putting the above equation system into a matrix notation, we have⎡
⎢⎣

σ11 · · · σ1p
...

. . .
...

σp1 · · · σpp

⎤
⎥⎦
⎡
⎢⎣

α1
...

αp

⎤
⎥⎦ =

⎡
⎢⎣

s1
...

sp

⎤
⎥⎦ (6–18)

The above system is symmetric, but not Toeplitz. Note that the expectation of σi j is

E(σi j ) = ri− j (6–19)

The unconstrained least-squares method determines the {αk} by solving the above linear
system. Unfortunately, this method cannot guarantee that the resulting prediction error
operator (1, –α1, –α2, . . . , –αp) will be of minimum phase. This means the method is not
very useful for constructing the prediction operator, though it can be used in estimating
power spectra.

6.1.2.3 Constrained least-squares method: Burg’s algorithm

In 1974 John Burg developed an algorithm to determine the AR coefficients with the prop-
erty that the prediction error filter is minimum phase. The method is presented in his PhD
thesis from Stanford University (Burg, 1975). Burg’s method is also based on simultane-
ously minimizing the objective function of the combined forward and reverse prediction
errors

E =
N−1∑
t=p

(
xt −

p∑
k=1

α
(p)
k xt−k

)2

+
N−p−1∑

t=0

(
xt −

p∑
k=1

α
(p)
k xt+k

)2

(6–15ʹ)

We have replaced αk by α
(p)
k , because we will develop it as a recursion from α

(p−1)
k .

Let us switch back to the prediction-error notation γ k = –αk and γ 0 = 1,

E =
N−1∑
t=p

(
p∑

k=0

γ
(p)
k xt−k

)2

+
N−p−1∑

t=0

(
p∑

k=0

γ
(p)
k xt+k

)2

(6–20)
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Defining the forward prediction error as

f (p)
t =

p∑
k=0

γ
(p)
k xt−k (6–21a)

and the reverse prediction error as

r (p)
t =

p∑
k=0

γ
(p)
k xt+k (6–21b)

we have

E =
N−1∑
t=p

(
p∑

k=0

γ
(p)
k xt−k

)2

+
N−p−1∑

t=0

(
r (p)

t

)2
(6–22)

We intend to find a recursion for ft and rt based on the Levinson algorithm.
We can decompose the prediction error operator into

γ
(p)
k = γ

(p−1)
k + cγ (p−1)

p−k (6–23)

This means ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

γ
(p)
1
...

γ
(p)
p−1

γ
(p)
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

γ
(p−1)
1

...

γ
(p−1)
p−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ c

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

γ
(p−1)
p−1

...

γ
(p−1)
1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6–24)

That is

γ (p)
p = c (6–25)

Thus,

f (p)
t =

p∑
k=0

γ
(p)
k xt−k =

p−1∑
k=0

γ
(p−1)
k xt−k + c

p∑
k=1

γ
(p−1)
p−k xt−k (6–26)

The first term on the right-hand side is just f (p−1)
t . For the second term, let s = p – k, so

that k = p – s, hence

f (p)
t = f (p−1)

t + c
0∑

s=p−1

γ (p−1)
s xt−p+s

Reversing the order of summation for the second term on the right-hand side,

f (p)
t = f (p−1)

t + c
p−1∑
s=0

γ (p−1)
s x(t−p)+s

Checking the definition of rt
(p) in (6–21b), we have

f (p)
t = f (p−1)

t + cr (p−1)
t−p (6–27)
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Similarly, the reverse prediction recursion can be established to be

r ( p )
t = r ( p−1)

t + c f  ( p−1)
t+ p (6–28)

The total er ror can be written as

E =
N−1∑
t= p

(
f ( p−1)
t + cr ( p−1)

t− p

)2
+

N− p−1∑
t=0

(
r ( p−1)

t + c f  ( p−1)
t+ p

)2
(6–29)

If we assume f ( p−1 )
t and r ( p−1 )

t are known from the previous recursion, then E is a
function of a single parameter c = γ 

( p )
p . Minimizing the er ror with respect to c, we have

∂ E

∂ c
= 0 =

N−1∑
t= p

f ( p−1)
t r ( p−1)

t− p + c
N−1∑
t= p

(
r ( p−1)

t− p

)2
+

N− p−1∑
t=0

r ( p−1)
t f ( p−1)

t+ p + c
N− p−1∑

t=0

(
r ( p−1)

t+ p

)2

After some algebra, we find

c = 2
N−1∑
t= p

f ( p−1)
t r ( p−1)

t− p

/
N−1∑
t= p

(
f ( p−1)
t + r ( p−1)

t− p

)2
(6–30)

Using the value of c, we can update ft and rt , and hence the filter {γ k }. One can prove that
the final prediction er ror filter {γ k } is indeed of minimum phase.

6.1.3 A synthetic example of Vibroseis processing

Figure 6.4 shows a synthetic example of processing with Vibroseis data (Yilmaz, 1987).
The first three traces show the convolution of a reflectivity function with a Vibroseis
sweep signal. Another convolution with a minimum-phase source wavelet (d) produces
the synthetic data in (e). In practice, we will first make a cross cor relation between each
data trace with the known Vibroseis signal (b), resulting in (f). This cross correlation will
eliminate much of the impact of the Vibroseis signal because its amplitude spectrum is
white. In f act, as discussed in Section 3.4.2, the auto-cor relation of the Vibroseis signal will
resemble the Klauder wavelet in (g). Hence the synthetic data (f) contains the zero-phase
Klauder wavelet.

Deconvolution is a division between two time series. In Figure 6.4, trace (i) is the result of
deconvolution because it is produced by dividing trace (h) by trace (g). We can also regard
trace (i) as a minimum-phase filter because convolving it with Klauder wavelet will result
in a minimum-phase version of the wavelet. Hence, convolving this minimum-phase filter
(i) with (f) produces trace (j), the minimum-phase version of (f). The next two traces in (k)
and (l) are results of spiking deconvolution, which is a specific predictive deconvolution
to maximize the predicted components, so that the output will be of the spikiest form.
Because traces (f) and (j) are the zero-phase and minimum-phase versions of the same
time series, respectively, the resulting spiky traces (k) and (l) are also the zero-phase and
minimum-phase versions of the same time series.

Trace (m) in Figure 6.4 is a band-pass filtered version of the true reflectivity function.
This is the best possible solution of the reflectivity function from the data, because the
passing band of the filter is the same as that of the Vibroseis signal. In comparison with
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Figure 6.4 Processing with Vibroseis data, where ∗ denotes convolution and ¤ denotes
cross-correlation (after Yilmaz, 1987).
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Figure 6.5 A synthetic model data after application of a stationarity transform (left), and then a
predictive deconvolution (from Schoenberger & Houston, 1998).
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ft

nt

xt gt

Figure 6.6 A filtering model. xt is the Earth’s reflectivity function, ft is the source function, nt is
the noise, and gt is the output seismic data.

trace (m), the two results from the processing in traces (k) and (l) show more similarity than
traces (f) and (j). The main improvement is an increase in the frequency content; this is
usually the main benefit from a deconvolution operator. The minimum-phase version in (l)
appears to be slightly spikier than the zero-phase version in (k). However, both results from
the processing missed the phase of the true reflectivity function in (m). A major drawback
of most statistical deconvolution methods is the lack of constraints on the phase.

Exercise 6.1

1. Use your own words to define predictive deconvolution. What are the assumptions,
general procedure, and solution? What is the prediction error operator?

2. Given a data series d(t) = {d0, d1, d2, . . . , dN} and its estimated wavelet w(t) = {w0,
w1, w2, . . . , wM}, how would you deconvolve w(t) from d(t)? Please provide as many
approaches as possible.

3. Figure 6.5 shows the input and output data for a predictive deconvolution. Explain the
origin of the extra events in the output panel. What will happen if random noise is
added in the input?

6.2 Frequency domain deconvolution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2.1 Division in frequency domain

The simplest way to deconvolve a known or an estimated filter from a seismic trace is to
divide it in the frequency domain. The model shown in Figure 6.6 fits such a situation.

We may express the above model in the time domain as

gt = xt ∗ ft + nt (6–31)

and in the frequency domain as

G(ω) = X (ω)F(ω) + N (ω) (6–32)
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Figure 6.7 Maximum and “water level” of a spectrum.

Assuming that we have an estimate of F, say F̃ , we can estimate X (ω) with X̃ (ω)

X̃ (ω) = G(ω)/F̃(ω)

= F̃∗(ω)∣∣F̃(ω)
∣∣2 G(ω)

= F̃∗(ω)∣∣F̃(ω)
∣∣2 [X (ω)F(ω) + N (ω)] (6–33)

= F̃∗(ω)∣∣F̃(ω)
∣∣2 F(ω)X (ω) + F̃∗(ω)∣∣F̃(ω)

∣∣2 N (ω)

= X (ω) + F̃∗(ω)∣∣F̃(ω)
∣∣2 N (ω)

The coefficient in front of the noise term N (ω) is O(|F̃(ω)|−1). Hence the noise will
dominate the estimate when |F̃(ω)| ≈ 0. So we have to clamp the division by |F̃(ω)|2. The
clamping may be done by letting |F̃ |maxbe the maximum amplitude of F̃(ω), and

X̃ (ω) = F̃∗(ω)

max
[∣∣F̃∣∣2 ,

(
α
∣∣F̃∣∣

max

)2
]G(ω) (6–34)

where α 	 [0, 1] is a “water level” parameter, as sketched in Figure 6.7. Note that as
α → 0, we get to the true deconvolution, while as α → 1, we get to cross-correlation, i.e.
X̃= const × GF̃∗ (matched filter of F).

6.2.2 Spectral extension

In general, the frequency domain deconvolution is successful only in a limited bandwidth.
For example, if the amplitude spectrum of output in the model gt = xt ∗ ft is like that
shown in Figure 6.8, then we will only be able to reconstruct X̃ (ω) in the band ω 	 [ωL,
ωH]. We would probably set X̃ (ω) to zero outside this band.

However, if we know a priori that xt is a sum of impulses (e.g., layered reflections) such
as

xt =
∑

n

An ∗ δ(t − tn) (6–35)
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Figure 6.8 An example of amplitude spectrum with low and high corner frequencies, ωL

and ωH.

we can improve the resolution by “predicting” the regions of X̃ (ω) outside [ωL, ωH]. We
call this a “spectral extension” procedure, as described below.

The Fourier transform of the model for xt is

X (ω) =
∑

n

An exp(iωtn) (6–36)

This means that the part of X̃ (ω) that we estimate with deconvolution is actually a finite
sample of a continuous process. We can therefore extend the spectrum by modeling it with
an AR model.

We have at least two options:

1. Fit the AR model to X̃ (ω) in the region ω 	 [ωL, ωH], and then use the prediction from
the AR model to extend the spectrum for ωL → 0 and ωH → ωNyquist. The last step is to
inversely transform the extended spectrum back to the time domain.

2. Fit the AR model to X̃ (ω) in the region ω 	 [ωL, ωH], and then directly use the spectrum
of the AR model itself for the entire frequency range. This will give positive peaks at
the impulse locations. However, the sign of the impulse is lost.

The spectral extension procedure described above depends heavily on the assumption
that xt is impulsive. Since we are fitting an AR model, some variations in the assumption can
be tolerated. In addition, if xt contains too many impulses, the ability of the AR modeling
to pick up many sinusoids from a short part of X̃ (ω) will be limited.

Figure 6.9 shows an example of spectral extension. The model is

Data = source wavelet ∗ (reflectivity + noise) (6–37a)

Or

gt = ft ∗ (xt + nt ) (6–37b)

In the frequency domain:

G(ω) = F(ω)[X (ω) + N (ω)] (6–38)

An estimated wavelet F̃(ω) will result in an estimated reflectivity X̃ (ω)

X̃ (ω) = G(ω)/F̃(ω) (6–39)
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Figure 6.9 Ideal reflectivity function with noise, amplitude spectrum of source wavelet, and the
spectrum and time plots of the resultant synthetic trace. The lower two plots are spectra of
estimated wavelet and estimated reflectivity. All spectra extend from zero to Nyquist frequencies.

“Spectral extended”      xt

“Spectral extended”   X(ω)
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t

Figure 6.10 A procedure of spectral extension was applied to the synthetic trace in the previous
figure. The upper plot shows the enhanced reflectivity function and its envelope. The lower
plot shows its amplitude spectrum after spectral extension.

Figure 6.10 shows the estimated reflectivity and its amplitude spectrum after the spectral
extension. Note that the polarity of the fourth reflection peak has the wrong polarity as
compared with the first trace in Figure 6.9.

Exercise 6.2

1. Why do we prefer broadband data for deconvolution? How broad does the frequency
band need to be?

2. When applying deconvolution in the frequency domain to remove the effect of a known
broadening filter, any noise that came with the filter will be greatly amplified by the
division. The typically small high-frequency components of the broadening filter mean
there is great amplification of high-frequency noise. Can you suggest ways to remedy
this problem? What are the limitations of your suggestion(s)?

3. Describe spectral extension in terms of its objectives, assumptions, procedure, and
limitations.
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6.3 Adaptive deconvolution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A source wavelet may change its form and properties with time owing to factors such
as attenuation (Q) or multi-dimensional effects. Examples of the multi-dimensional effect
include arrivals leaving a seismic source at different angles in the common case of variable
radiation, and changes in the relationship between the “ghost” (free surface reflection) and
the primary. Box 6.2 shows a graphic comparison between the stationary and non-stationary
convolution methods. Here we want to modify the deconvolution algorithms to take the
non-stationary changes into account.

6.3.1 Different approaches of adaptive deconvolution

An adaptive deconvolution is a method that changes with time to accommodate itself to
the change in the time series to be deconvolved. One approach is to divide the data into
several segments and separately deconvolve each piece. The outputs of all segments would
then be put back together by a weighted addition. These segments should overlap to avoid
artificial discontinuities in the output, as shown in Figure 6.11.

A second approach is to adapt the prediction coefficients to account for the apparent
changes in the source wavelet. To achieve this, we define a number of weighted data
segment windows, each looking like that shown in Figure 6.12. Within each window, we
solve for a new prediction operator (source wavelet). However, two issues make this scheme
less attractive. The first is the cost; we basically need to solve for a new filter at each output

t

Segment 1

Segment 2

Segment 3

Weight 2

Weight 1 Weight 3

Figure 6.11 A sketch of the idea of adaptive deconvolution.

Window(t)

t

Figure 6.12 A weighted data segment window.
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Box 6.2 Graphic illustration of stationary and non-stationary convolutions

One way to make deconvolution adaptive is to develop non-stationary deconvolution.
Margrave (1998) gave a nice graphic illustration of the stationary and non-stationary
convolutions, and the latter is a direct extension of the conventional stationary convolution
to non-stationary processes. This extension provides a way to construct a non-stationary
deconvolution. Other possible applications of non-stationary convolution include time-
varying filtering, one-way wave propagation, time migration, normal moveout removal,
and forward and inverse Q filtering.

Box 6.2 Figure 1 shows the conventional stationary convolution between a minimum-
phase band-pass filter a(t – τ ) and a reflectivity series h(τ ) to produce an output seismogram
g(t). All columns in the convolution matrix have the same band-pass filter a(t) with different
time shifts.
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Box 6.2 Figure 1 An illustration of stationary convolution as a time-domain matrix operation.
(a) The stationary convolution matrix for a particular minimum-phase band-pass filter. The
matrix displays Toeplitz symmetry meaning that each column contains the filter impulse
response, each row contains the time reverse of the impulse response, and any diagonal is
constant. (b) A reflectivity series in time to which the convolution matrix is applied. (c) The
output stationary seismogram. (After Margrave, 1998.)

In contrast, Box 6.2 Figure 2 shows the non-stationary convolution between a non-
stationary filter a′(t – τ , τ ) and the same reflectivity series h(t). This time each column
of the non-stationary convolution matrix contains the result of convolving the original
minimum-phase band-pass filter with the impulse response of a constant Q medium at the
corresponding traveltime. In other words, the effect of attenuation due to a constant Q factor
is applied to the filter in the non-stationary convolution matrix.

The difference between stationary and non-stationary filters is that the impulse response
of the latter varies arbitrarily with time. While the example in Box 6.2 Figure 2 used the
impulse response of a constant Q medium, the complete description of a general non-
stationary filter requires that its impulse response be known at all times. Following such
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a definition, it is possible to develop deconvolution schemes to determine the reflectivity
series and the non-stationary trend of the filter.
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Box 6.2 Figure 2 An illustration of non-stationary convolution as a time-domain matrix
operation. (a) The non-stationary convolution matrix for a particular forward Q filter band
limited by the stationary waveform. Each column contains the convolution of the
minimum-phase waveform of previous figure and the minimum-phase impulse response of a
constant Q medium for a traveltime equal to the column time. (b) The same reflectivity series in
time as in the previous figure. (c) The output constant Q seismogram. (After Margrave, 1998.)

point. The second is that the filter can change much too rapidly and hence may remove too
much information from the input data.

The third approach is to solve approximately for a new filter. In Burg’s algorithm, for
example, the error at the last stage in the recursion for the filter is

E =
∑

t

f 2
t +

∑
t

r2
t (6–40)

where ft and rt are the forward and reverse prediction error, respectively. If we add a new
point to a length-1 filter, the error will be

E ′ = E + (xn + Cxn−1)2 + (xn−1 + Cxn)2 (6–41)

Based on this new point, by setting ∂ E ′/∂C = 0, the coefficient C will be

C = −2xn−1xn

x2
n−1 + x2

n

(6–42)

We can now approximately update C by

Cnew = Cold + α C (6–43)

where α 	 [0, 1] is a parameter which controls the rate of the adaptation.
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r(t): Reflectivity

s(t): Source wavelet

y(t) = s(t) * attenuated r(t)

PEF(y)

TVPEF1(y)

TVPEF2(y)

QaD (y)

0.01

1

0.00562

0.00836

0.0102

0.00719

0.00997

Figure 6.13 A comparison of three conventional and Q-adaptive deconvolutions. PEF(y) is a
time-invariant unit-lag prediction er ror filtering of y(t), and TVPEF1(y) and TVPEF2(y) are
the first and second time-var ying prediction er ror filtering of y(t). PEF(y), TVPEF1(y), and
TVPEF2(y) were exponentially gained to amplify events at later times. QaD(y) is the result of
Q-adaptive deconvolution. The numbers shown to the right are maximum amplitudes of each
trace.

6.3.2 Q-adaptive deconvolution

An example of Q-adaptive deconvolution is given in Figure 6.13. The upper three traces
show the creation of the synthetic seismog ram y(t) by convolving the source wavelet with
an attenuated version of the reflectivity function r(t), using Q = 100. The lower four traces
are the results from four different deconvolution methods, in comparison with the tr ue
reflectivity function r(t) as the upper most trace. PEF(y) denotes a time-invariant unit-lag
prediction er ror filtering of y(t), and TVPEF1(y) and TVPEF2(y) respectively are the first
and second time-var ying prediction er ror filtering of y(t). Amplitudes of the above three
predictive er ror filtered traces were exponentially gained to amplify events at later times.
The lower most trace is the result of the Q-adaptive deconvolution, which gives the best
comparison with the reflectivity function among the four deconvolution methods.

Exercise 6.3

1. Following the description of the quality f actor Q in Section 4.5, compute the
expressions of a 20-Hz Ricker wavelet at one-way traveltime of 1 s, 2 s, and 3 s in a
medium of a constant velocity of 2 km/s and a constant Q value of 50.
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2. In the situation of non-stationary convolution shown in Box 6.2 Figure 2, if we know
the seismogram g(t), the original filter a(t–τ ), and the fact that a constant Q is a good
approximation for the medium, how can we determine the Q value?

3. Comment on the similarities of the four deconvolution results with the reflectivity
function r(t) in Figure 6.13. How will you quantify the similarity? How can you
quantify the solution quality in real cases for which you know only y(t) but not r(t)?

6.4 Minimum entropy deconvolution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.4.1 The entropy concept

The minimum entropy deconvolution (MED) takes a very different approach from that of
predictive error filtering and frequency domain division. Entropy here means the degree
of uncertainty, which is a statistical measure of the data. The MED relies on the concept of
minimizing entropy or maximizing the spikiness of the data (Wiggins, 1977). In order to
separate the effects of the source wavelet and the reflectivity series, we have so far assumed
that the reflectivity series is white noise. This means that at every time point there is a
reflector of random amplitude. This assumption clearly does not match what we see in
many real cases.

An alternative assumption is that the reflectivity contains a few spikes of random ampli-
tude. In terms of probability theory, we can cast this assumption in terms of a probability
density function (PDF) for the reflection amplitude as function of the reflector depth z.
Figure 6.14 shows two types of PDF. Panel (a) shows a broad PDF, indicating a situation
in which there are many reflectors with significant amplitudes. In contrast, panel (b) shows
a slender PDF, indicating there are few reflections with significant amplitude. The case of
slender PDF means a spiky reflectivity function, which is the objective of the MED method.
In the following, we introduce a measurement of the “spikiness” known as kurtosis.

6.4.2 Measurement of kurtosis

Moments of a distribution are the most common statistical measures of a stochastic variable
{xt}. The kth moment of a distribution is defined as

mk(x) = E
[
(xt − E[xt ])

k
]

(6–44a)

where E[ ] is the expectation operator. For zero-mean distributions, the kth moment is
defined as

mk(x) = E
[
xk

t

]
(6–44b)

Using the above formula, we can define several common types of zero-mean moments:

Mean: m1(x) =
∑

j

x j (6–45)

Variance: m2(x) =
∑

j

x2
j (6–46)
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Figure 6.14 Two probability density functions of z, the depth of a reflector. (a) A broad PDF.
(b) A slender PDF.

Approximated skewness: m3(x) =
∑

j

x3
j (6–47)

Varimax: m4(x) =
∑

j

x4
j (6–48)

Then the kurtosis measurement is defined as:

Kurtosis V (x) = m4(x)

[m2(x)]2
=
∑

j

x4
j

/⎛
⎝∑

j

x2
j

⎞
⎠

2

(6–49)

which is also known as the varimax norm. Now we are ready to use kurtosis to quantify the
spikiness, and we assume that this spikiness is reversely proportional to entropy. In other
words, maximizing the kurtosis means minimizing the entropy.

In addition, note that we can measure the asymmetry about the mean, called skewness,
by

Skewness S(x) = m3(x)

[m2(x)]3/2
(6–50)

The two measurements given above are scale-independent; i.e., for a constant a, {axt} and
{xt} will have the same kurtosis and skewness.

Let us consider a simple example of kurtosis for the two spiky time series shown in
Figure 6.15.

a. x0 = x1 = 1, V = 1+1
(1+1)2 = 1/2

b. x0 = α, x1 = 0, V = α4

(α2)2 = 1

The comparison of this simple case indicates that in general a distribution with fewer spikes
will have a higher kurtosis V.

(a) (b)

Figure 6.15 Two simple time series.
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6.4.3 Derivation of the minimum entropy deconvolution

We assume a convolution model that seismic data gt are a convolution of the reflectivity
function xt with a source wavelet st:

gt = xt ∗ st (6–51)

We attempt to recover xt by constructing a filter ft so that

xt = ft ∗ gt (6–52)

Thus, by the convolution formula

x j =
∑

k

fk g j−k (6–53)

We solve for the filter ft by maximizing the kurtosis of xt and taking its length as arbitrary:

V (x) =
∑

j

x4
j

/⎛
⎝∑

j

x2
j

⎞
⎠

2

We know that maximizing V(x) is equivalent to minimizing ln V(x), since the logarithm
is monotonic. Then

ln V (x) = ln
∑

j

x4
j − 2 ln

∑
j

x2
j

Differentiating ln V(x) with respect to fk and then setting the result to zero, we get

∂

∂ fk
ln V (x) =

⎛
⎝∑

j

x4
j

⎞
⎠

−1∑
j

x3
j

∂x j

∂ fk
− 2

⎛
⎝∑

j

x2
j

⎞
⎠

−1

2
∑

j

x j
∂x j

∂ fk
= 0

This means, for k = 1, 2, . . . , N (length of the filter),

∑
j

x j
∂x j

∂ fk
=

∑
j

x2
j∑

j
x4

j

∑
j

x3
j

∂x j

∂ fk

From x j = ∑
k

fk g j−k , we have ∂x j

∂ fk
= g j−k . The above equation then becomes

∑
j

x j g j−k = s
∑

j

x3
j g j−k (6–54)

where the scaling factor is

s =
∑

j

x2
j

/∑
j

x4
j (6–55)
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On the left-hand side of (6–54) we substitute using (6–53)

∑
j

x j g j−k =
∑

j

(∑
1

f1g j−1

)
g j−k =

∑
1

f1

∑
j

g j−1g j−k =
∑

1

f1r1−k (6–56)

where rl–k is the auto-covariance of gj.
Equation (6–54) then becomes∑

1

f1r1−k = s
∑

j

x3
j g j−k (6–57)

where the left side is a filtering, and the right side is a cross-correlation between x3
t and gt.

In other words,

Rf = s
∑

j

x3
j g j−k (6–57ʹ)

The above equation contains two kinds of unknowns, f and x, and the equation is non-
linear with respect to x. It can be solved by an iterative process.

First iteration:

� Let f (0)
t = δ(t)

� Compute rt, the auto-correlation of gt.

Further iteration:

� Compute x (n)
t = f (n)

t ∗ gt
� Compute scaling factor s(n) = ∑

j (x (n)
j )2/

∑
j (x (n)

j )4

� Compute the cross-correlation
∑

j x3
j g j−k

� Update filter by solving (e.g., using least squares) Rf = d
where d = s

∑
j (x (n)

j )3g j−k .

The iteration of the above MED process stops when ft ceases changing with further
iterations.

6.4.4 Examples of minimum entropy deconvolution

Two field data examples of the MED are shown here. Figure 6.16 shows a CMP gather
before and after the processing of MED. The MED reduces the number of high-amplitude
reflectors, particularly in an area denoted by the ellipses. The method is most effective for
areas with several well-distinguishable reflectors.

Figure 6.17 shows another comparison for a stacked section. The MED clearly reduces the
number of high-amplitude reflectors. However, the multiple reflections are not suppressed
much by the MED, because the underlying principle for MED is to reduce the occurrence of
high-amplitude events without any preference towards either primary or multiple reflections.
If the objective is to suppress multiples, a predictive deconvolution may be more effective.
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Figure 6.16 Two CMP gathers before (left) and after (right) applying a minimum entropy
deconvolution. Ellipses show an area of contrasting differences.
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Figure 6.17 An example stack section before (upper) and after (lower) a minimum entropy
deconvolution. Ellipses show places of contrasting differences.
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Exercise 6.4

1. The four zero-mean moments (mean, variance, skewness, and varimax) have a number
of applications in data processing, geo-statistics, and attribute studies. Search
geophysics literature for their applications and make a spreadsheet to document these
examples.

2. For 2D land pre-stack reflection seismic data, design processing flows to suppress
noises specified below. State the type of gather, method, assumptions, and potential
pitfalls or cautions.

(i) Surface wave with source on the receiver line;

(ii) Surface wave with source off the receiver line;

(iii) Multiple reverberations.

3. Discuss the effects of minimum phase and white noise in deconvolution. For each
factor, illustrate your point using a particular deconvolution method.

6.5 An example of deterministic deconvolution
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.5.1 Motivation

The previous discussion on conventional deconvolution methods has been focused on
statistical estimation of two of the three factors involved in a convolution (e.g., Robinson &
Treitel, 1980; Ziolkowski, 1984; Yilmaz, 1987). If we know two of the three factors, the
determination of the remaining factor is a deterministic process. In this section, we discuss
a method called extrapolation by deterministic deconvolution (EDD), which is extended
from the approach of deconvolution via inversion (Oldenburg et al., 1981; Treitel & Lines,
1982; Claerbout, 1986).

The motivation for EDD comes from the desire for higher resolution from seismic data.
For industry and environmental applications, many targeted features such as reservoir sands
are at sub-seismic resolution. Individual sands are rarely thicker than a few meters, but the
wavelength of conventional seismic data is ten times greater. On the other hand, high-
resolution seismic data such as well measurements or hazard surveys sometimes do exist.
If high frequencies are missing from the data, they cannot be brought back by processing.
However, if high-resolution and low-resolution data are available at the same location, we
may be able to determine the relationship between them. If this relationship is stable and
does not vary much spatially, we may be able to extrapolate or predict the high frequencies
at a neighboring location where only the low-resolution data are available. This is the basic
idea of the EDD method.
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Figure 6.18 A synthetic example of extrapolation by deterministic deconvolution. A
low-resolution wavelet (a) and a high-resolution wavelet (b) are convolved with the reflectivity
functions at two locations (c) and (d) to produce the low-resolution data in (e) and (f) and
high-resolution data in (g) and (h). In the first test, the low-resolution data at two locations
(e) and (f) plus the high-resolution data at the first location (g) were used to predict the
high-resolution traces in (i) and (j). In the second test, the low-resolution data at the two
locations and the high-resolution data at the second location (h) were used to predict the
high-resolution traces in (k) and (l). The dashed traces in the lower four panels are the true
high-resolution data for comparison.

6.5.2 Derivation

Figure 6.18 shows an example of EDD. Panels (a) and (b), respectively, are a low-resolution
wavelet wl and a high-resolution wavelet wh. Panels (c) and (d) are reflectivity functions, r1

and r2, at two different locations. As shown in panels (e) and (f), the low-resolution seismic
responses using wavelet wl are the convolution of the wavelet with the two reflectivity
functions

l1 = r1 ∗ wl (6–58a)

l2 = r2 ∗ wl (6–58b)
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where the star (*) symbol denotes convolution. Similarly, the high-resolution responses
using wh are

h1 = r1 ∗ wh (6–59a)

h2 = r2 ∗ wh (6–59b)

which are shown in panels (g) and (h), respectively.
Based on (6–58) and (6–59), a pair of seismic responses at the same location will be

related by

li ∗ gi (t) = hi (6–60)

where i = 1 or 2, and gi(t) = wh(t)/wl(t) is the relationship filter connecting the two
responses.

We now make the important assumption that the filter gi(t) is invariant over the survey
area, i.e.,

g(t) ≈ gi (t) = wh(t)/wl(t) (6–61)

This assumes the ratio between the high- and low-resolution wavelets, wh(t)/wl(t), is
invariant throughout the survey. When this assumption is valid, the EDD is applicable in
two steps.

First, we can determine the filter g(t) at the location where both high- and low-resolution
responses are available, by deconvolution of (6–60). To maintain a stable gi(t), wl(t) must
have a broad bandwidth that includes the bandwidth of wh(t). In practice, the bandwidth can
be broadened by pre-whitening. To better handle potential singularities at some frequencies,
we solve for gi(t) in (6–60) in the time domain by using a minimum-norm inverse (to be
discussed in Section 9.3.2).

Second, we use g(t) to extrapolate the high-resolution data at other locations where only
the low-resolution data are known. In the first test shown in Figure 6.18, we determined the
filter g(t) in (6–60) using l1 and r1 at the first location. We then predicted the high-resolution
responses hj

′ using g(t) and li in

h′
j = l j ∗ g(t) (6–62)

The predictions are shown by solid curves in Figure 6.18(i) and (j), along with the true high-
resolution responses, shown by dashed curves, for comparison. In this figure the reflectivity
function at the first location is simpler than that at the second location.

To see the reverse situation, in the second test, we determined the filter g(t) using the
low-resolution and high-resolution data at the second location, and then predicted the high-
resolution responses as shown in solid curves in Figure 6.18(k) and (l). The quality of the
predictions in the second test is comparable with that in the first test.

6.5.3 Examples

Figure 6.19 shows a test of the EDD algorithm on the well-known Marmousi model whose
data have formed a benchmark for testing various depth migration algorithms (Versteeg &
Grau, 1991; Youn & Zhou, 2001). Here synthetic high- and low-resolution data were created
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(a) High-frequency data (c) EDD result 

(b) Low-frequency data
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Figure 6.19 (a), (b) High- and low-resolution data obtained by convolving depth changes
of the Marmousi model with wavelets of central wavelengths at 50 m and 500 m, respectively.
(c) Prediction from the EDD using the low-resolution data (b) and a single high-resolution
trace in (a) that is marked by the arrow. (d) Difference between prediction (c) and true model
(a). Near the bottom of (c) and (d) there are noises due to edge effects.

by convolution with the Marmousi velocity model. Using the low-resolution data and only
a single trace of the high-resolution data, the prediction from EDD as shown in panel (c) is
remarkably similar to the true model shown in panel (a), except for some artifacts caused
by edge effects near the bottom.

Figure 6.20 shows the result of a test of the EDD on a seismic volume after pre-stack time
migration over the Vinton salt dome near Texas/Louisiana border (Constance et al., 1999).
In this test, a small time-trace window along Crossline 340 was taken as the high-resolution
data h(x, t), shown in panel (c). As shown in panel (a), low-resolution data l(x, t) were
created by re-sampling one out of every five points along each trace of the h(x, t), followed
by a moving-average smoothing. Shown near the right side of each panel is the flank of the
salt dome, with much of the geologic strata dipping away from the dome to the left. The
preliminary solution, h′(x, t) in panel (b), was created using the low-resolution data l(x,
t) and the first trace of the high-resolution data h(x, t). The result shows that some of the
trends of the high-resolution data are restored, though artifacts such as horizontal strips are
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Figure 6.20 Preliminary test of EDD on a field dataset acquired over Vinton salt dome,
southwest Louisiana. (c) Part of Crossline 340 of the pre-stack time migrated data. (a)
Low-resolution data created by re-sampling (c) and smoothing. (b) Solution of EDD using
the low-resolution data in (a) and the first trace of the high-resolution data in (c).

also present, probably due to the fact that the l(x, t) panel was not physically acquired but
re-sampled from h(x, t). Considering that only one trace from the high-resolution data was
used for such a field data with salt structure, the result shown is quite promising.

Conventional deconvolution has been focused on statistical estimation of two out of the
three factors involved in a convolution (e.g., Robinson & Treitel, 1980; Ziolkowski, 1984;
Yilmaz, 1987). In contrast, the EDD approach is much more robust because we already know
two out of the three factors. This is true in both the first step of inverting for gi(t) in (6–60)
and the second step of forecasting hj

′ using (6–62). The EDD method is also applicable to
the situation where high-resolution data are available at multiple locations, such as the case
of high-resolution hazard surveys. A regional filter g(t) can be determined using part or
all of the high-resolution responses and corresponding low-resolution responses. Because
EDD is a single-trace operation, it is applicable to 2D and 3D data.
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Box 6.3 Making synthetic seismograms for seismic–well tie

For the ultimate goal of identifying the properties of the subsurface reservoirs, a key
question is how to tie seismic imagery with wellbore measurements. Well logs achieve
high resolution at nearly centimeter scales, but are available only in limited well locations,
with extremely high cost. In contrast, seismic imagery typically covers the entire subsurface
volume of interest at relatively low cost but very low resolution. For instance, the wavelength
of 80-Hz seismic data is 25 m if the average velocity is 2 km/s. Most petroleum-bearing
beds are much thinner than the seismic resolution. A major effort of the industry is to make
predictions away from the limited well measurements, using seismic imagery.

Well-log-based synthetic seismograms are produced traditionally by time-domain con-
volution of a seismic wavelet with a well-log-based impedance curve. There are two asso-
ciated assumptions: the convolution model is valid, and the wavelet is invariant in time.
While the first assumption is commonly acceptable, the second assumption is invalid in
the presence of a moderate amount of attenuation. Modern reservoir characterization has
to deal with additional complications such as: (a) the correctness of amplitude and phase
of seismic data; (b) scalability of each rock-physical property at different frequencies; (c)
validity of the seismic–well tie processing in the presence of fluids; and (d) problems due
to the presence of attenuation and anisotropy. More detail will be given in Section 10.5.4.

There are several major obstacles in the making of the seismic–well tie:

� A huge gap exists between the resolutions of the seismic dataset and well dataset.
A down-scaling or up-scaling between the two datasets may be impossible for some
physical properties that are not scalable, such as viscosity.

� While all well logs are measured along depth, the vertical dimension of seismic data is
typically in time. Hence a conversion between the time and depth domains is necessary,
requiring an appropriate velocity function.

� In the presence of significant dip in the rock strata or significant deviation of the wellbore
from the vertical, it is questionable to make the synthetic seismogram using a convolution
model that assumes a layer-cake Earth model.

Box 6.3 Figure 1 compares a well-log-based synthetic seismogram with seismic data in
the same field area. The seismic data were acquired using surface shots and receivers and
processed through a conventional data processing and migration flow. The well is located at
the pilot trace that is shown in a slightly darker color in the figure. The synthetic seismogram
was produced in two steps. First, a reflectivity function was built based on sonic log and
density log from the well, and it was converted from depth domain to time domain using
a smoothed velocity function based on sonic logs. Second, the time-domain reflectivity
function was convolved with a Ricker wavelet using frequencies that were comparable
with that of the seismic data. To make the comparison more visible, the amplitude of the
synthetic seismogram is enlarged by a factor of two in this figure.

To improve the match of the synthetic seismogram with the pilot trace of the seismic
data, we can repeat the above two steps of making the synthetic seismograms by altering
the frequency and phase of the wavelet, and smoothing the velocity function for the depth-
to-time conversion of the reflectivity function. However, we should not arbitrarily stretch
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Box 6.3 Fig. 1 Comparison between a synthetic seismogram shown as the black trace and a
migrated seismic section shown as the filled gray traces. The well is located at the slightly
darker pilot trace. The synthetic seismogram, whose amplitude is enlarged two times, was
produced in two steps. First, the reflectivity function based on well log data was converted from
the depth domain to time domain using a smoothed velocity function based on sonic logs.
Second, the time-domain reflectivity function was convolved with a Ricker wavelet of
frequencies comparable to that of the seismic section.

or squeeze the synthetic seismogram to increase the match. A good seismic–well tie can
only be proven by a close match between the well-log-based synthetic seismogram and
seismic data with a minimum number of constraints. Only a close match can validate the
similarities in the physical properties that induced the two types of measurable responses,
and hence the possible scalability of the well log prediction at seismic frequencies. Physical
limitations often mean that reasonable matches between the synthetic seismograms and the
seismic imagery are unachievable.
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Exercise 6.5

1. Why is a deterministic processing method usually preferred over a statistical one? Are
there exceptions? Please give examples to support your arguments.

2. Will the deconvolution method be applicable to multi-component data? How will you
utilize the connection between different data components? Devise an approach and
discuss its assumptions, procedure, and potential problems.

3. Make a table describing the deconvolution methods covered in this chapter.
Characterize each method using the following entries: the model, the assumptions,
requirements (e.g., minimum phase), application procedure, and an example from the
literature.

6.6 Summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
� Deconvolution is a direct application of inverse filtering to “undo” a convolution. The

original purpose of deconvolution for seismic data processing is to remove the seismic
wavelet from the seismic data in order to predict the subsurface seismic reflectivity.

� As a major time processing method, the main benefits of deconvolution include increasing
data bandwidth and resolution, suppressing periodicity such as multiples, and removing
a known wavelet.

� In practice we may only have the input seismic trace and we need to estimate both
the wavelet and the reflectivity. This non-uniqueness problem leads to the approach of
predictive deconvolution, which assumes that the predictable components of the input
trace belong to the seismic wavelet and the unpredictable components of the input trace
belong to the reflectivity.

� To remove a known filter from the data, we may apply a frequency domain deconvolution.
However, since the noise will be amplified by the division in frequency domain, we need
to take certain measures such as smoothing the data and constraining the deconvolution
to a frequency region of a sufficiently high signal-to-noise ratio.

� Because the amplitude and phase of real data vary with wave-propagation time, the
deconvolution operator may be applicable only to data within a certain time window.
Adaptive deconvolution is a practical way to divide a data trace into small time windows
that overlap with each other, to apply deconvolution for each window, and then to integrate
the deconvolved results together.

� By quantifying the distribution of seismic wiggles using the concept of entropy, minimum
entropy deconvolution seeks to minimize the number of spikes on a seismic trace. The
method works well in cases of few major reflectors.

� The method of extrapolation by deterministic deconvolution (EDD) attempts to extrap-
olate predictions from some locations where joint observations are available to nearby
locations that have only a single observation. It provides the possibility of using seismic
data to forecast filtered versions of wellbore measurements.
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As the most widely used subsurface imaging method in petroleum exploration, seismic
migration attempts to place seismic reflection data into their correct spatial or temporal
reflector positions. Similar to the echo sounding technique to fathom the water bottom
from a boat, seismic migration maps the subsurface reflectors in two steps. Step one
is to back-project the seismic data measured at the surface downwards using the
wave equation and a velocity model, producing an extrapolated wavefield that is a
function of space and time. Step two is to use an imaging condition to capture the
positions of the subsurface reflectors from the extrapolated wavefield. These two steps
are demonstrated by the three common seismic migration methods introduced in this
chapter. First, Kirchhoff migration is the most intuitive and flexible migration method,
and it uses the ray theory approximation in practice. Second, frequency domain migration
is theoretically rigorous and made efficient by taking advantage of the Fourier transform,
although it is less effective in the presence of strong lateral velocity variations. Like
these two methods, most migrations simplify reality by assuming that the input data
contain only primary reflections; hence some pre-processing procedures are necessary
to suppress other seismic waves recorded. Third, reverse time migration is a full wave
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migration method that is capable of using both primary reflections and other waves
such as refractions and multiple reflections.

Fundamentally, a velocity model is required for all seismic migration methods. A
time migration uses layer-cake models without lateral velocity variations. In contrast,
a depth migration may handle a significant level of lateral velocity variations in the
velocity model. In the case of gently dipping reflectors, a post-stack migration may
be sufficient, using post-NMO stacked traces to approximate zero-offset traces. In the
presence of steeply dipping reflectors, a pre-stack migration is usually more suitable but
takes many more computational resources. Depending on the complexity of the target
structures, we may choose from a suite of migration methods, from the crude but fast
post-stack time migration which is not sensitive to velocity variations, to the expensive
pre-stack depth migration to handle steep reflector dips and strong lateral variations in
the velocity models.

7.1 Seismic imaging via stacking
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1.1 Modeling, inversion, and migration

Seismic imaging is the process of forming an image of the elastic impedance responses
of the subsurface using observed seismic data. There are various types of seismic imaging
methods using different types of seismic data such as refractions, reflections, and surface
waves; and there are different types of imaging targets and required accuracy. Given a model
of the distribution of elastic impedance of the subsurface, we can use forward modeling to
calculate traveltimes and waveforms of various types of seismic phases. We may be able to
simplify the forward modeling process into a linear operator A which maps a model vector
m into a predicted data vector d:

d = Am (7–1)

Conversely, an inversion aims to reverse the forward modeling process. It may be possible
to use the data vector and the above linear relationship to invert for the model vector. For
instance, we can use a generalized linear inversion of the matrix, A–1

m = A−1d (7–2)

The above two equations show that seismic modeling is the process of mapping a
given model from the model space into its projection in the data space, and the reverse
process of seismic inversion is the mapping of a given dataset in the data space into its
projection in the model space. There are linear and non-linear operators for both seismic
modeling and inversion. Seismic inversion is clearly one type of seismic imaging because
it produces subsurface models using seismic data as the input. In current practice, however,
it is often unfeasible to apply seismic inversion, owing to limitations in the data coverage
and effectiveness of the inversion methods. Data coverage for seismic imaging refers to the
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number of seismic wave or raypaths traversing over the targeted area; we usually prefer a
high level of diversity in the traversing angles of the paths over the target area.

The effectiveness of seismic processing and imaging methods can be assessed in many
ways. Two practical assessments of the effectiveness are simplicity and stability. If two
methods deliver results of similar quality, we prefer the simpler one. A simple method
usually has high efficiency in computation. More importantly, it is easier to find the reasons
for success and the origin of error in simple methods. Given the common occurrence of
noise and insufficient coverage of seismic data, we want to be able to detect the signals as
well as artifacts of each seismic imaging method. The assessment of stability is not merely
the convergence of computation during an application. A broad definition of stability refers
to whether the method works as expected in most situations.

Currently the most effective seismic imaging method is seismic migration. This is a
process of repositioning seismic energy into its correct spatial or temporal locations. Most
seismic migration methods consist of two steps: downward continuation and imaging
conditioning. Downward continuation is an extrapolation process to move seismic data
from the recording positions of sources and receivers into a subsurface model space includ-
ing the target zone, and the result is called the migrated wavefield. Imaging conditioning is
the process of producing the migrated images from the migrated wavefield. We may regard
the NMO stacking process covered in Chapter 2 as a simple example of seismic migration.
In this case, downward continuation means forming the CMP gathers and conducting the
NMO processing, and imaging conditioning means stacking the NMO-corrected traces
into a post-stack trace for each CMP gather. The quality of the migrated result, the section
containing all stacked traces, depends on the validity of the assumptions involved in the
NMO and stacking processes. Mathematically, if the forward modeling can be simplified
into a linear mapping as shown in (7–1), then seismic migration can be expressed as an
approximation of the inversion matrix by a transpose matrix, AT

m̃ = ATd (7–3)

where m̃ is the migrated solution model. This approximation is an adjoint operator (matrix
transposing) with respect to (7–1). An exemplary list of operators and their adjoints is given
in Chapter 5 of Claerbout (1992). For any matrix, it is much easier to find its transpose
matrix than its inverse matrix.

7.1.2 Three assumptions of seismic migration

There are three general assumptions for seismic migration. First, all the velocities, in both
vertical and lateral sense, are known; this is required for both time and depth migration
methods. Second, all of the input signals are primary reflections or diffractions, so that there
are no multiples, shear waves, or converted waves. This second assumption has originated
from years of practice in exploration geophysics showing that primary reflections are the
preferred signal in seismic imaging. This assumption can be removed for some special
migration methods that are able to use shear waves, converted waves, and even multiples
(e.g., Youn & Zhou, 2001). Finally, all events for a 2D migration come from vertically
beneath the seismic line so that there is no sideswipe energy. This third assumption spells out
the difference between 2D and 3D migration methods. Three-dimensional (3D) migration
eliminates the third assumption above, and requires that data be collected in a 3D sense



207 Practical seismic migration

Box 7.1 An example comparison between time and depth migrations

Box 7.1 Figure 1 shows vertical slices of a pre-stack time migration and a pre-stack depth
migration of a 3D field data acquired over a salt dome in southwest Louisiana (Duncan,
2005). Most parts of each panel show imagery of sediments along the flank of a salt dome
situated near the right end of each slice.
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Box 7.1 Figure 1 Vertical slices of 3D pre-stack migrations over a salt dome. (a) and (b) are
slices of a pre-stack time migration along south–north and west–east directions. (c) and (d) are
slices of a pre-stack depth migration along south–north and west–east directions. The CDP line
spacing is about 60 feet.

As shown here, the positions of reflectors often differ considerably, both laterally and
vertically, between the time and depth migration results. In this case, the time-migrated
results have higher lateral continuity than the depth-migrated results, but the depth-migrated
reflectors and faults have steeper dip angles and appear to be more plausible geologically.

with evenly spaced traces in both the x and y directions. Energy is repositioned in both the
inline and crossline directions. After 3D migration, inline images and crossline images
will tie in with each other.

In general, seismic migration moves the input energy both laterally from trace to trace
and vertically along either time or depth axis. In cases of constant velocity, seismic migra-
tion may help in focusing the imaged reflectors and improving their resolution. A depth
migration maps the input data into the subsurface depth or time spaces, and the mapping
process honors the lateral velocity variations. A time migration conducts a similar map-
ping process but assumes there are no lateral variations in the velocity model. Hence, the
difference between depth migration and time migration is whether one accounts for lateral
velocity variations during the mapping process (see Box 7.1 for a comparison of results).
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Figure 7.1 (Left) Zero-offset experiment. (Right) Exploding reflector model.

The main advantages of time migration are efficiency in computation and low sensitivity
with respect to velocity errors. In situations with a crude velocity model, we can use time
migration to get a quick-and-dirty migrated image. However, only depth migration can
properly account for lateral velocity variations, and is therefore useful in migration velocity
analysis. Although after a time migration we can obtain a depth section by a time to depth
conversion using a velocity model, the result will not be considered to be a depth-migrated
model.

7.1.3 The exploding reflector model

When the velocity structure can be approximated by local layer-cake models, the NMO
stacking process has the advantages of enhancing the SNR and reducing the data vol-
ume. The corresponding post-stack migrations are much more efficient than the pre-stack
migrations. Because of the assumption about the locally layer-cake models, post-stack
migrations are less sensitive to velocity variations than the pre-stack migrations. Kine-
matically, post-stack data can be viewed as equivalent to zero-offset data. For zero-offset
data, an exploding reflector model can be used to increase the computational efficiency of
post-stack migrations. As shown in the right panel of Figure 7.1, this model decomposes
all reflectors into a number of point sources. In the case of a constant velocity V, the seis-
mic reflections and diffractions have the same arrival times in both the zero-offset seismic
experiment in the left panel and the exploding reflector model, with half the velocity, in the
right panel. Except for the difference in the velocity values for the medium, the two panels
are kinematically equivalent for the seismic reflections and diffractions.

In terms of the imaging quality, however, there are several problems with the post-stack
migrations due to the NMO stacking. First, the NMO stacking produces depth point smear
due to both reflection point dispersal and the large size of the horizontal resolution even
in case of flat reflectors. Second, the NMO stretch, which is most severe at far offset and
shallow depth, results in a reduction in resolution, and in alteration of the wavelet. Third,
NMO cannot handle coincident events of different move-outs, such as dipping reflectors
and diffractions that have the same zero-offset times. Finally, it is insensitive to velocity
variations, particularly lateral velocity variations. In contrast, pre-stack migration aims
to solve all of the above problems. A major drawback of pre-stack migration is its huge
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Figure 7.2 Suitability of different migration approaches in terms of dipping angle of main
reflectors, level of lateral velocity variation, and cost (modified from Liner, 1999).

appetite for computation power in terms of large memory size, high speed of computing,
and fast data transmission.

7.1.4 Classification of migration methods

A practical issue in applying seismic migration is the choice of the appropriate migration
method for the given dataset, intended targets, complexity of the geology, and project time
span. A practical solution is to quantify the complexity of the geology in two aspects: the
level of lateral velocity variations and the dipping angle of main reflectors, especially the
targets. Together with the cost in money and time, the suitability of four main migration
approaches is depicted in Figure 7.2. Time migrations work well in cases of none or little
lateral velocity variations, while the presence of strong lateral velocity variation requires
the use of depth migration after velocity model building (VMB). Post-stack migrations
are suitable and efficient in cases of low dipping angle of reflectors, but the presence of
steeply dipping reflectors of interest demands the use of pre-stack migrations.

For each approach to seismic migration shown in Figure 7.2, there are a number of
migration methods based on various principles. Figure 7.3 shows a hierarchical list of some
common types of seismic migration methods (Bednar, 2005). In the rest of this chapter,
three of these methods will be introduced. The effect of seismic migration on some simple
but common structures can be appreciated intuitively:

� Flat horizons remain unchanged if there are no lateral velocity variations above them;
� Dipping horizons become steeper, shallower in time, and move laterally updip;
� Synclines become broader, with any bow ties eliminated;
� Anticlines become narrower; and
� Diffractions are collapsed to their apex points.
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Figure 7.3 A hierarchy of migration methodology (Bednar, 2005).

Exercise 7.1

1. In what situations is the exploding reflector model in Figure 7.1 not applicable?

2. Discuss the differences between a depth migration and a time migration followed by a
time to depth conversion.

3. A well log records a physical property at a constant depth increment of 1 ft
(wj = w( j * �z), �z = 1 ft). A depth-to-time conversion of the well log gives a
variable time interval due to velocity variations. How would you extract the well log
with a constant time interval and a minimum loss of information?

7.2 Kirchhoff integral migration
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.2.1 Common-tangent method

Kirchhoff migration is one of the original seismic migration methods and still one of the
most popular today. Before exploring it in detail, let us first look at a simple example of
using zero-offset data in a constant velocity model. In such case, migration can be carried
out by hand using so-called common-tangent method. We can demonstrate this method
using a case of zero-offset data for a single reflecting horizon in the constant velocity model
shown in Figure 7.4. The input trace, denoted by a dashed line, consists of a number of
reflectors along the dipping horizon, such as a point A with two-way time TA and a point B
with two-way time TB. The true reflection positions of the two input points A and B must lie
on the circles, with radius TA and TB respectively, centered at the corresponding zero-offset
shot and receiver locations denoted by the stars. The common tangent line of all such circles
defines the correct position of the reflecting horizon, as denoted by the solid line. With v

denoting the velocity, the simple geometry leads to a relation between the dipping angles
of the input horizon αin and the migrated horizon αout:

tan αin = 2

v
sin αout (7–4)
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Figure 7.4 Constant velocity migration of a zero-offset dipping horizon (heavy dipping line)
from its input position (dashed line) to its output position (solid line). Point A is migrated to
point A′, and B is migrated to B′.

Figure 7.5 shows another example of the common-tangent method. Figure 7.5a shows
the depth model of a syncline and raypaths of zero-offset reflections. Figure 7.5b shows
the reflection time section where each reflection arrival time is plotted right below the
corresponding shot-geophone position. The classic “bow-tie” pattern is formed owing to
multiple reflections from the synclinal reflector. In Figure 7.5c the common-tangent method
is applied with the assistance of a pair of compasses. For a given stacking bin, we measure
the arrival time by placing the central pivot of the compass at the stacking bin location at
zero time and extending the compass directly beneath this spot so that the pencil point rests
on the arrival time curve. With the pivot point fixed, draw an arc of a circle. Repeat this
procedure at about every tenth stacking bin and do this for each lobe of the arrival time
curve. The curve that is the common tangent to all the arcs is the migrated response, as
shown by the thick curve in Figure 7.5c.

Why does the common-tangent method work? One view is to decompose the reflection
into a large number of separate pulses. The migration response of each individual pulse
is a circular arc in a constant velocity model. The migration of the entire reflector is
a superposition or stacking of all these circular arcs. The amplitude along the common
tangent of the arcs is cumulated through constructive interference, whereas it cancels at
positions away from the common tangent owing to destructive interference.

7.2.2 Gathering approach versus spreading approach

The common-tangent method laid the foundation for the Kirchhoff migration, also known
as the diffraction summation method. There are two intuitive views of the process of
Kirchhoff migration by Schneider (1971). The first view is the gathering approach, which
loops over each image point in the solution model space and gathers the contributions of all
the input traces that are within a migration aperture, which is an input zone for migration
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Figure 7.5 (a) A syncline depth model with selected zero-offset reflection rays. (b) Reflection
time arrivals as input to migration. (c) The input arrivals together with the migrated arcs using
the common-tangent method. The true reflector (solid curve) is along the common-tangent
trajectory of all migrated arcs.

defined in the data space. As shown in Figure 7.6, each value of the output trace is a stack
of many values of the input traces along the two-way equal-traveltime contour in the data
space. In the case of a constant velocity model, the equal-traveltime contour will be a
hyperbolic surface centered over the image point. In the case of a variable velocity model,
the equal-traveltime contour can be calculated by ray tracing in the velocity model.

The second view is the spraying approach, which loops over each input trace in data
space and sprays the data over all the image traces within another migration aperture defined
in solution model space. As shown in Figure 7.7 using a pre-stack input trace, each value
of the input trace is sprayed along the two-way equal-traveltime contour in the solution
model space. In the case of a constant velocity model, the equal-traveltime contour will
be an elliptical surface with the source and receiver as the two foci. In a variable velocity
model, the two-way equal-traveltime contour can also be calculated by ray tracing through
the velocity model.
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Figure 7.6 The gathering approach, which takes each image point in the solution model space
and gathers the contributions it received from all the input traces that are within the migration
aperture (Schneider, 1971).
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Figure 7.7 The spraying approach, which takes each piece of the input trace (such as the small
wiggle shown) and sprays it over all the proper image positions like the elliptic curve shown
(Schneider, 1971).

7.2.3 Impulse response and migrated gathers

The previous two views of Kirchhoff migration are rooted in the concept of impulse
response applied in mapping between the data space and model space. Similar to its usage
in filtering theory, here it refers to the response in the mapped space due to an impulse in
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Figure 7.8 An example of the impulse response of a data trace (Zhu & Lines, 1998). The
velocity model consists of blocks and the velocity in each block linearly increases with
depth.
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Figure 7.9 Three migrated shot gathers for the Marmousi dataset (Zhu & Lines, 1998).

the mapping space. Using such impulse responses to scan through the spaces involved, one
can figure out the entire mapping process. As shown in Figures 7.6 and 7.7, the impulse
in the solution model space gives rise to the gathering approach, and the impulse in data
space gives rise to the spraying approach.

The concept of the impulse response can be expanded to use the entire data trace, such as
the example shown in Figure 7.8. This is called a migrated trace gather, which is the result
of apply the spraying approach to an input trace. To extend the concept further, one can
apply the spraying approach using a common shot gather of multiple traces, and stack the
responses of all trace gathers together to form a migrated shot gather. Several examples
of migrated shot gathers are shown in Figure 7.9.

The final migrated section can be produced by stacking all the migrated gathers together.
In practice, all traces will be migrated first, and the stacking process takes place only in the
final stage. Since each input trace will produce many migrated traces over the migrated 2D
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section or 3D volume, it is a non-trivial matter to design the migration strategy, selecting
the proper routine and parameters such as aperture size, sample rate, and weight functions
to ensure high efficiency and to minimize problems such as artifacts. The migrated traces
can be used to create partial stacks, which are stacked sections or volumes involving
subsets of the migrated data. The trace gather in Figure 7.8 and shot gathers in Figure 7.9
are examples of such partial stacks. See Box 7.2 for concerns about aliasing.

7.2.4 Mathematical expression of Kirchhoff migration

The mathematical formula for the Kirchhoff migration is one form of the Kirchhoff–
Rayleigh integrals. One expression of the Kirchhoff integral is

Pout(x, z, t) =
1

2π

∫
dx

{
cos θ

r2
Pin(xin, z = 0, t − r/v) + cos θ

vr

∂

∂t
Pin(xin, z = 0, t − r/v)

}
(7–5)

where Pout(x, z, t) is the output wave field at a subsurface location (x, z), Pin(xin, z = 0, t) is
the zero-offset wave field measured at the surface (z = 0), v is the root-mean-square (rms)
velocity at the output point (x, z), and r = [(xin − x)2 + z2]1/2 is the distance between the

Box 7.2 Spatial aliasing concerns

One challenge for migrating and stacking is spatial aliasing. Aliasing is a phenomenon
of under-sampling of high-frequency events owing to limitations in sample rate. It occurs
with multi-trace data, where the mapping process will increase the dip angle of dipping
events and therefore create spatial aliasing. Box 7.2 Figure 1 shows an example of migration
aliasing, from Zhang et al. (2003).
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Box 7.2 Figure 1 Common-shot migrated images (Zhang et al., 2003). (a) The imaging
condition was applied to uninterpolated wavefields. (b) Imaging-condition aliasing overcome
by interpolating the downward-continued wavefields before imaging.
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input (xin, z = 0, t) and the output (x, z) points. The above formula is compatible with the
migration integral of Yilmaz (1987).

At large distance or r, the first near-field term in (7–5), which is proportional to 1�r2, is
negligible compared with the second far-field term, which is proportional to (1�r). As an
example, the Kirchhoff migration formula given by Gray (1986) is

P(x, z, 0) =
∫

W (x, z, xin)

(
∂

∂t

)1/2

Pin(xin, z = 0, t − r/v)dxin (7–6)

where W() is the weight applied to the input data.
The Kirchhoff integral allows us to appreciate the details of the method. Yilmaz (1987)

defines the Kirchhoff migration as the diffraction summation method of migration that
incorporates three factors:

� The cosine terms in (7–5) account for the obliquity factor or the directivity factor, which
describes the angle dependence of amplitudes. It is expressed in terms of cosine of the
angle between the direction of propagation and the vertical axis z.

� The denominators of the cosine terms account for the spherical spreading factor.
Equation (7–5) is formulated for 3D wave propagation. In 2D cases, however, the right-
hand side of (7–5) will have (r)–1 instead of (r)–2, and (1/vr)1/2 instead of (1�vr).

� The temporal derivative in the last term of (7–5) and in the right side of (7–6) account
for the wavelet shaping factor. For instance, the half-derivative operator ( ∂

∂t )1/2 is the

temporal expression of the filter
√

iω applied in the frequency domain. It is equivalent
to a phase shift of 90° in the 3D case and 45° in the 2D case, aiming to restore the
correct phase to the data after migration without greatly altering the locality of the input
samples.

7.2.5 A schematic illustration of Kirchhoff migration

Let us see the process of Kirchhoff pre-stack depth migration in a schematic illustration.
Suppose that a seismic trace di j is recorded at station Rj from shot Si. The trace is subjected
to a series of pre-processing, such as statics correction to remove near-surface effects,
outer mute to remove first arrivals, inner mute to remove ground rolls, and various filtering
processes to suppress multiples and other noise. Afterwards, the trace may supposedly
contain only primary reflection events. The trace is also corrected for: (1) the obliquity
factor which describes the angle dependence of amplitudes; (2) the spherical spreading
factor which will make the reflection energy roughly stationary; and (3) the wavelet shaping
factor, which is a phase shift of 45° for 2D cases and 90° for 3D cases.

With the processed input trace, d ′
i j , the mapping process of Kirchhoff pre-stack depth

migration is sketched in Figure 7.10. Based on the given velocity model V(x, z), one-way
traveltimes from the source and receivers can be calculated, as shown in the first two panels
in the figure. Then the two-way traveltime from the source via scatters in any part of the
model back to the receiver can be approximated by summing the one-way traveltime fields
for the corresponding source and receiver, as shown in panel (c) of the figure. In other
words, the two-way traveltime at each pixel in (c) is just the summation of the values of
the same pixel positions in the first two panels of the figure. Now following the spraying
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Figure 7.10 A schematic 2D Kirchhoff pre-stack depth migration. Two-way traveltimes in
(c) result from summing one-way traveltimes from source Si in (a) and from receiver Rj in
(b) at every spatial pixel. The Kirchhoff migration maps each piece ak of input data onto all
positions in the output model space along the contour of two-way traveltime tk.

approach, we can map each point of the input trace (panel (d)) into the model space, to all
points along the corresponding traveltime contour as shown in panel (e). Note that such
spraying mapping of an input trace will result in a migrated trace gather like that shown in
Figure 7.8.

The Kirchhoff migration, based on traveltimes calculated from all shot–receiver pairs
to all model grid points, has become a conventional means of pre-stack time and depth
migration methods for variable velocity fields. Since it is a ray-theory method, it is cheaper
but less rigorous than advanced full-wave migration methods. To carry out the Kirchhoff
migration properly, we must have a velocity model of sufficient accuracy and correct for
the effects of geometrical spreading, directivity of the shots and geophones, phase shift,
and other factors that may affect the pulse shape of reflection energy. A key to improving
Kirchhoff migration is the ray tracing methodology, which affects both the accuracy and
efficiency of Kirchhoff migration. Advanced ray tracing methods will allow Kirchhoff
migration to become a multiple arrival method or to be applicable in the presence of
velocity anisotropy. These topics are beyond the scope of this text.
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Figure 7.11 A zero-offset seismic section.
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Figure 7.12 A common-shot gather using a line of surface receivers and a single surface shot in
the middle.

Exercise 7.2

1. How can you constrain Kirchhoff migration so that it will produce a result similar to
that from a NMO stacking? Discuss what is missing from NMO stacking if taking it as
a seismic imaging method.

2. For the zero-offset section shown in Figure 7.11, apply the common-tangent method to
obtain the migrated section.

3. Figure 7.12 shows a common-shot gather over a five-layer model using a line of surface
receivers and a single surface shot in the middle. Write a procedure to migrate these
data and show your migration result.
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7.3 Frequency domain migration
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3.1 Development highlights

The methods of carrying out downward continuation and imaging in the frequency domain
are known collectively as frequency domain migration or f–k migration. This type of
migration emphasizes two objectives, rigorously following the wave theory and maximizing
the computational efficiency. Fourier transform allows seismic waveforms recorded at the
surface to be downward-continued to subsurface positions, and the computation is greatly
improved by the use of FFT. Ordinary Fourier migration is most suitable for cases of
steeply dipping reflectors but relatively low levels of lateral velocity variations. The main
advantages of f–k migration are:

� A “wave-equation” approach delivering good performance under low SNR conditions;
� Good performance for steep dipping reflectors but smooth lateral velocity variations;
� Computational efficiency.

The main disadvantages of f–k migration are:

� Difficulty in handling strong velocity variations, especially lateral abrupt velocity varia-
tions, for most f–k migration methods;

� Usually requires regular and fully covered shot and receiver geometry.

The method was developed in the 1970s as people realized the usefulness of expressing
downward continuation as a phase shift of monochromatic waves after the creation of the
FFT in the 1960s. The ground-breaking publications include that by Stolt (1978) who
expressed the post-stack f–k migration in constant velocity media as an inverse Fourier
transform. This approach of Stolt migration will be introduced in detail in this section.
Gazdag (1978) showed the phase-shift nature of wave field extrapolation in the frequency
domain, leading to the phase-shift migration in layer-cake velocity models. An insightful
early description of f–k migration was given by Chun and Jacewitz (1981). Several years
later, in an effort to extend f–k migration to cases with lateral velocity variations, Gazdag and
Squazzero (1984) refined the phase-shift migration into the phase-shift plus interpolation
(PSPI) method of Fourier migration. A more elegant handling of the lateral velocity
variations was given by split-step Fourier migration (Pai, 1985; Stoffa et al., 1990).
Following this work, many other f–k and FKX (frequency, wavenumber, space) migrations
(see Figure 7.3) were developed, forming the majority of one-way propagator wave-equation
migration methods.

7.3.2 Post-stack f–k migration

7.3.2.1 Pre-processing

Let us examine the idea of the post-stack f–k migration in a 2D constant velocity model.
As shown in Figure 7.13, the horizontal distances from the origin to the shot and geophone
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Figure 7.13 Relationship between shot–geophone coordinates and midpoint–offset coordinates
on a cross-section.

are denoted as s and g, respectively. The horizontal distance from the origin to the midpoint
between shot and geophone is denoted by m, and the offset distance between the shot and
geophone is denoted by h. Then the shot–geophone coordinates and the midpoint–offset
coordinates are related by

m = (g + s)/2 (7–7a)

h = (g − s)/2 (7–7b)

For a pre-stack 2D dataset p(s, g, t), we can produce a stacked section by taking the
following steps:

� Take common-midpoint (CMP) sorting to convert p(s, g, t) into midpoint–offset coordi-
nates p(m, h, t), where t is two-way reflection time;

� Take normal moveout to produce p(m, h, t0), where t0 is zero-offset time;
� Stack or sum along the offset axis to produce the stacked section p(m, t0).

The resulted stacked section is the input to the Stolt migration.

7.3.2.2 Downward continuation via phase shift

The objective of post-stack migration is to produce an image r(x, z) from the stacked section
p(m, t), where we have dropped the subscript zero for the zero-offset time. To achieve this
we first want to downward-continue the surface data to a depth z:

p(m, t, z = 0) − downward continuation → p(m, t, z) (7–8)

After substituting m by x, the downward continuation is carried out using the acoustic wave
equation:

pzz + pxx − 1

v2
ptt =

(
∂2

∂z2
+ ∂2

∂x2
− 1

v2

∂2

∂t2

)
p(x, z, t) = 0 (7–9)
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where v is velocity. To solve this partial differential equation, we take a 2D Fourier
transform (FT) over x and t using:

F(kx , ω) = 1

2π

∫ ∫
f (x, t)e−ikx x+iωt dxdt (7–10a)

f (x, t) = 1

2π

∫ ∫
F(kx , ω)eikx x−iωt dkx dω (7–10b)

Note that differentiation corresponds to multiplication by constants after Fourier trans-
form:

∂

∂x
f (x, t) − FT → ikx F(kx , ω),

∂2

∂x2
f (x, t) − FT → −kx2 F(kx , ω); (7–11a)

∂

∂t
f (x, t) − FT → iω F(kx , ω),

∂2

∂t2
f (x, t) − FT → −ω2 F(kx , ω) (7–11b)

Therefore, after the Fourier transform, (7–9) is transferred into an ordinary differential
equation

(
∂2

∂z2
− k2

x + ω2

v2

)
P(kx, z, ω) = 0 (7–12)

or

∂2

∂z2
P = −

(
ω2

v2
− k2

x

)
P (7–12ʹ)

Solving the above equation as an initial value problem in z, we obtain

p(kx , z, ω) = P(kx , z = 0, ω)e±i
√

ω2/v2−k2
x z (7–13)

where the left-hand side is the downward-continued data, the first term on the right-hand
side is the surface data, and the second term on the right is the phase-shift term. An inverse
Fourier transform of (7–13) over kx and ω leads to

p(x, z, t) =
∫ ∫

P(kx , z = 0, ω)e±i
√

ω2/v2−k2
x z eikx x−iωt dkx dω (7–14)

What is the physics behind the above procedure? The 2D Fourier transform decomposes
the input waveform data into many monochromatic wavefields each with a single variable z,
the depth. We can call this plane-wave decomposition. For each monochromatic wavefield,
its downward or upward movement can be realized by a phase shift as denoted by (7–13).
While the example in this equation moves the data wavefields from depth 0 to depth z, you
can use the form of this equation to move wavefields from any depth z1 to another depth
z2 with the corresponding phase shift. After phase shifts of all monochromatic wavefields,
the inverse Fourier transform (7–14) is effectively a plane-wave superposition.
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Figure 7.14 Relationship between Fourier components kx, kz and ω2/v2 for downgoing and
upgoing waves.

7.3.2.3 Choosing the one-way operators

We now need to decide the sign in the phase-shift exponent, which determines the type of
waves that we use in the migration. To do so, we take another single Fourier transform of
(7–12) over z: (

−k2
z − k2

x + ω2

v2

)
P(kx , kz, ω) = 0 (7–15)

This equation shows the dispersion relation

k2
z + k2

x − ω2

v2
= 0 (7–16)

which is a circle in the (kx, kz) space shown in Figure 7.14
Now we can separate the solutions of (7–10) into upgoing and downgoing waves.

Downgoing waves: kz = +
√

ω2/v2 − k2
x > 0 (7–17a)

Upgoing waves: kz = −
√

ω2/v2 − k2
x < 0 (7–17b)

As shown in Figure 7.15, in the case of downgoing waves, z increases as t increases; in
the case of upgoing waves, z increases as t decreases. While the pressure field data recorded
at z = 0 are the same for both cases, the choice of sign for kz determines where we think
the source or the exploding reflector is.

To map subsurface reflectors using upgoing waves, we must use a minus (–) sign
for the exponent of the phase-shift term. Then, the downward continuation operator
becomes

P(kx , z, ω) = P(kx , z = 0, ω)e−i
√

ω2/v2−k2
x z (7–18)

or

P(x, z, t) =
∫ ∫

P(kx , z = 0, ω)e−i
√

ω2/v2−k2
x zeikx x−iωt dkx dω (7–19)
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Figure 7.15 Relationship between time and depth for (a) downgoing waves and (b) upgoing
waves.

7.3.2.4 Imaging condition for post-stack data

Now let us turn to the second step of migration, the imaging condition. Consider a medium
with two reflecting points A and B as shown in Figure 7.16. A line of zero-offset shots and
receivers are placed at four depths. At the surface z = 0, the record shows two diffractions
from the two reflecting points. As the recording line gets closer to the reflection points,
the corresponding diffractions become narrower at shorter reflection times. At an arbitrary
depth z, the recording line is on top of reflecting point A, and the recorded data show a
very narrow diffraction with its apex on the true position of point A. As the recording
depth goes deeper, the recorded diffraction from point A appears on the minus side of
time.

The above experiment let us conclude that, for the exploding reflector model, the imaging
condition is: Reflections exist at t = 0. Putting the above together, we have the result of
downward continuation as

P(x, z, t) =
∫ ∫

P(kx , z = 0, ω)e−i
√

ω2/v2−k2
x zeikx x−iωt dkx dω (7–19ʹ)

Applying the imaging condition, we have

r (x, z) = lim
t→0

p(x, z, t) (7–20)

This leads to the 2D post-stack Fourier migration formula:

r (x, z) =
∫ ∫

P(kx , z = 0, ω)e−i
√

ω2/v2−k2
x zeikx x dkx dω (7–21)
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Figure 7.16 The left panels show four steps of an experiment in model space with two
reflectors A and B, with the zero-offset shot and receiver lines at four depths. The right panels
are the corresponding data recorded at the four depths.

7.3.2.5 Stolt migration

Stolt (1978) noticed that the previous expression for r(x, z) looks almost like an inverse
2D Fourier transform, except for the

√
ω2/v2 − k2

x term in the exponent. He suggested a
substitution to realize the inverse Fourier transform. Let

kz = −
√

ω2/v2 − k2
x

Hence

ω = v

√
k2

x + k2
z

and

∂ω

∂kz
= v |kz|√

k2
x + k2

z

(7–22)

which is the obliquity factor. Taking this into equation (7–21) leads to the Stolt migration

r (x, z) =
∫ ∫

Q(kx , kz)e
ikx x eikz zdkx dkz (7–23)
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z=0

Figure 7.17 A cross-section view of pre-stack shot gather data.

where the Fourier transform of the image r(x, z) is

Q(kx , kz) = v |kz|√
k2

x + k2
z

P

[
kx , z = 0, ω = −sgn(kz)v

√
k2

x + k2
z

]
(7–24)

In the right-hand side of the above equation, the first term is the obliquity factor, and
the second term is a mapping factor or stretching factor in ω. The application of the Stolt
( f–k) migration has three steps:

� Double Fourier transform data from p(x, z = 0, t) to P(kx, z = 0, ω).
� Interpolate P() onto a new mesh so that it is a function of kx and kz. Multiply P() by the

obliquity factor.
� Inverse Fourier transform back to the (x, z)-space.

A synthetic example of the Stolt migration is shown in Box 7.3.

7.3.3 Pre-stack f–k migration

Let us now examine the process of pre-stack f–k migration. As being discussed previously,
pre-stack migration avoids one or more of the following problems associated with the NMO
stacking:

� Reflection point smear, especially for steep dip;
� NMO stretch of far offset traces;
� Inability to simultaneously NMO-correct for flat reflectors, dipping reflectors, and diffrac-

tors that have the same zero-offset times.

On the other hand, pre-stack migration consumes large amounts of computer resource,
and the method is very sensitive to errors in the velocity model. As was the case for
Stolt migration, the following illustrations use a constant-velocity 2D case to illustrate the
multi-offset f–k migration.

7.3.3.1 Survey sink

To image using multiple offset data, a procedure known as survey-sink is applied. We start
in the (s, g, t) space as shown in Figure 7.17. The pre-stack 2D data have five dimensions,
P(zs, zg, g, s, t), where the depths of shot and geophones are zs and zg, and the distances of
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Box 7.3 The original 2D synthetic example of Stolt migration

Box 7.3 Figure 1 shows an example of the Stolt migration using 2D synthetic data (Stolt,
1978). The three synclinal reflectors are imaged well. However, there are “ringing” artifacts
associated with the true reflectors in the solution panel (c). These artifacts are due to error in
the Fourier transform as well as the edge effect in the numerical computation. Nevertheless,
in cases of little lateral velocity variation, Stolt migration is the most efficient wave equation
method for post-stack time migration. Its migration velocity is an integral of the overburden
velocities that is similar to stacking velocity.
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Box 7.3 Figure 1 (a) 2D model with three reflectors in a constant velocity of 2926 m/s.
(b) Synthetic seismic section. Trace spacing is 36.6 m. (c) Result of Fourier migration of
the synthetic seismic section.
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Figure 7.18 A cross-section view of pre-stack common shot gather data after downward
continuation of receivers to z.

s

g
zg=z

Figure 7.19 A cross-section view of pre-stack common receiver gather data after downward
continuation of receivers to z.

shot and geophone are g and s. From the surface-recorded data, we first downward-continue
the receivers using the wave equation.

pzz + pgg − 1

v2
ptt = 0 (7–25)

The situation is illustrated in Figure 7.18. The downward-continued field is

P(zs = 0, zg = z, kg, ks, ω) = P(zs = 0, zg = 0, kg, ks, ω)e−i
√

ω2/v2−k2
g z (7–26)

where kg and ks are the Fourier duals of g and s.
After downward-continuing the geophones of all shots, we can sort data into common

receiver gathers, as shown in Figure 7.19. Then we can downward-continue the shots of
each common receiver gather to depth z. Based on the wave equation

pzz + pss − 1

v2
ptt = 0 (7–27)

Like that shown in Figure 7.20, the corresponding phase-shift equation is

P(zs = 0, zg = z, kg, ks, ω) = P(zs = 0, zg = 0, kg, ks, ω)e−i
√

ω2/v2−k2
s z (7–28)

We can switch from common receiver gathers to common shot gathers as shown in
Figure 7.21. Now the entire downward-continued data are related with the surface data by

P(zs = z, zg = z, kg, ks, ω) = P(zs = 0, zg = 0, kg, ks, ω)e−i
√

ω2/v2−k2
g ze−i

√
ω2/v2−k2

s z

(7–29)

We can drop the distinction between zs and zg using zs = zg = z, or

P(z, kg, ks, ω) = P(z = 0, kg, ks, ω)e−iψ(kg,ks ,ω)z (7–30)
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Figure 7.20 A cross-section view of pre-stack common receiver gather data after downward
continuation of receiver and shots to z.
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Figure 7.21 A cross-section view of a pre-stack common shot gather data after downward
continuation of receivers and shots to z.

where ψ(kg, ks, ω) =
√

ω2/v2 − k2
g +√

ω2/v2 − k2
s . We now have a procedure for

downward-continuing the multi-offset data in physical coordinates (s, g, t) or equivalently
(kg, ks, ω).

7.3.3.2 Double square root (DSR) equation

In practice midpoint–offset coordinates are preferred over the shot–receiver coordinates.
To convert the above phase-shift equation to midpoint–offset coordinates, we derive the
following based on equation (7–7)

g = m + h (7–31a)

s = m − h (7–31b)

To realize this coordinate change in the wavenumber domain, apply chain differentiation:

∂

∂m
= ∂g

∂m

∂

∂g
+ ∂s

∂m

∂

∂s
= 1

∂

∂g
+ 1

∂

∂s
(7–32)

This implies that in Fourier space

ikm = ikg + iks

or

km = kg + ks (7–33a)

Similarly, we find that

kh = kg − ks (7–33b)
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We therefore have

kg = (km + kh)/2 (7–34a)

ks = (km − kh)/2 (7–34b)

Now we can convert the data to midpoint–offset coordinates by changing the phase,

p(z, g, s, t) → p(z, m, h, t)

P(z, kg, ks, ω) → P(z, km, kh, ω)

ψ(kg, ks, ω) → ψ(km, kh, ω) (7–35)

where

ψ(km, kh, ω) =
√

ω2

v2
−
(

km + kh

2

)2

+
√

ω2

v2
−
(

km − kh

2

)2

(7–36)

The above is known as the double square root (DSR) equation (e.g., Sections 3.3 and 3.4
of Claerbout, 1985b). Note that it is not separable in (km, kh, ω)-coordinates as it was in (kg,
ks, ω)-coordinates. This is the reason that downward continuation and stacking have to be
done together.

To put the downward-continued experiment into (m, h, t) space, we apply a 3D inverse
Fourier transform

p(z, m, h, t) =
∫ ∫ ∫

P(z = 0, km, kh, ω) e−iψ(km ,kh ,ω)z eikm m+kh h−iωt dkmdkhdω

(7–37)

This equation facilitates the downward continuation for the pre-stack data.

7.3.3.3 Imaging condition for pre-stack data

To image the pre-stack data, we use a slightly modified imaging condition based on the
following general principle:

Reflectors exist where up- and downgoing waves are coincident in time and space.

In our downward-continued experiment, the waves are coincident in time when t →
0, and are coincident in space when h → 0 (i.e., no offset between source and receiver).
Hence, the formula of our imaging condition is:

r (z, m) = lim
t→0
h→0

p(z, m, h, t) (7–38)

Therefore,

r (z, m) =
∫ ∫ ∫

P(z = 0, km, kh, ω) e−iψz eikm mdkmdkhdω (7–39)

To convert the above to a workable migration method, substitute

kz = −ψ(km, kh, ω) = −
√

ω2

v2
−
(

km + kh

2

)2

−
√

ω2

v2
−
(

km − kh

2

)2

(7–40)
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This leads to

ω(km, kh, kz) ≡ ω = vkz

2

√(
1 + k2
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)(
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z

)
(7–41)

this is the ω-stretching for pre-stack cases. Therefore,

∂ω

∂kz
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z

)(
1 + k2

h/k2
z

) (7–42)

The Jacobian ∂ω
∂kz

is known as the obliquity factor.
Now following (7–39),

r (z, m) =
∫ ∫

Q(km, kh)eikz zeikm mdkzdkm (7–43)

where

Q(km, kh) =
∫ ∣∣∣∣ ∂ω

∂kz

∣∣∣∣ P(z = 0, km, kh, ω = ω(km, kh, kz))dkh (7–44)

7.3.3.4 Evanescent waves

In making the substitution we have to guarantee that the Jacobian of the transformation,∣∣ ∂ω
∂kz

∣∣, never goes to zero. This implies the restriction

|kmkh | < k2
z (7–45)

This restriction keeps the square roots from going to zero. In terms of the original downward
continuation, it keeps evanescent waves out of the problem. These are standing waves
forming at an interface with their amplitude decaying exponentially away from the interface.
In other words, expression (7–45) means that

k2
g < (ω/v)2 (7–46a)

k2
s < (ω/v)2 (7–46b)

In practice, an important issue for pre-stack f–k migration is to choose adequate range
in the offset dimension. Larger offset means wider illumination angle and better solution
for steeply dipping events, but demands more computation resources and more stringent
requirement for small and smooth lateral velocity variations. The f–k migration requires
that the input data be sampled regularly, and it is most suitable for cases of variable reflector
dipping angles but no or smooth lateral velocity variations.

7.3.4 Two f–k depth migration methods

As mentioned previously, in order to handle lateral velocity variations, the pioneers of
Fourier migration developed several approaches. One approach, known as the phase-shift
plus interpolation (PSPI) method (Gazdag & Squazzero, 1984), applies several phase-
shift migrations using a number of 1D reference velocity models based on the given 2D or
3D velocity models. The final image of the PSPI method is an interpolation of the multitude
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Figure 7.22 PSPI migration of a synthetic data (Gazdag & Squazzero, 1984). (a) Model with a
ditch-shaped reflector in a four-layer velocity model. (b) Zero-offset data. (c) Result of PSPI
migration.

of 1D-model solutions based on the 2D or 3D velocity models. A synthetic example of PSPI
is shown in Figure 7.22. The synthetic “Earth model” of the velocity field and reflectors
is shown in panel (a). As is traditional in seismic migration, the velocity field is totally
decoupled from the reflector distribution. The zero-offset data shown in panel (b) indicate
the influence of lateral velocity variations.
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Figure 7.23 Dip-line slices of migration results of field data (Stoffa et al., 1990). (a) Stacked
3D data. (b) 2D split-step migration. (c) 3D split-step migration.

A more elegant approach to the lateral velocity variations was provided by split-step
Fourier migration (Pai, 1985; Stoffa et al., 1990). This approach decomposes the total
velocity model into two portions, a layer-cake average reference velocity field plus the
lateral velocity variations. For each depth interval the phase-shift downward continuation
of monochromatic wavefields in the wavenumber domain is split into two steps. The
first step is laterally homogeneous downward continuation using the layer-cake reference
velocity for the depth interval. The second step is another downward continuation using
the laterally varying velocity variations to adjust the waveform data within the depth
interval.

Figure 7.23 shows the application of 2D and 3D split-step Fourier migration of field
zero-offset data acquired over the accretionary wedge off the shore of Costa Rica (Stoffa
et al., 1990). Thirty lines of a 3D data volume were used to compare 2D and 3D split-step
migrations. Each line has 512 traces with a spacing of 33 m. The line spacing was 50 m. The
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slice shown is a portion of dip line in the middle of the data volume. The diffractions in the
stacked data are gone in both of the migration results. There are considerable differences
between the 2D and 3D migration images.

Exercise 7.3

1. Explain the use of Fourier transform in Stolt migration. What are the benefits of using
FT? What is the assumption involved in the use of FT?

2. Read the paper by Stoffa et al. (1990) on split-step Fourier migration, and create a
summary covering the procedure, assumptions, benefits, and limitations of the method.

3. Compare and contrast between the PSPI and split-step f–k migration methods. How
does each method treat the lateral velocity variations?

7.4 Reverse time migration
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.4.1 The concept of reverse time migration

As shown previously in Figure 7.3, reverse time migration (RTM) is the only seis-
mic migration method that is able to employ full two-way propagation in the downward-
continuation process (e.g., Gray et al., 2001; Bednar, 2005). In laypeople’s words, a two-way
propagation of seismic waves means consideration of multiple reflections or scatterings.
Such a consideration for a layer-cake model means an exponential growth in the number of
multiple reflections involving both upgoing and downgoing waves with time. In practice the
computation of complicated multiples is feasible only with a forward modeling approach.
The RTM takes the real shot and receiver positions as the computation “sources” in forward
modeling processes.

The schematic on the left side of Figure 7.24 illustrates the concept of reverse time,
by reversing the time sequence of the letters in an echo of “Hello” with respect to the
original word from the mouth of the speaker. In other words, if a shot is placed at the
speaker’s position and a line of receivers are placed along the wall, then to re-create
the correct sequence backwards from the receivers to the shot using the signal received
by the receivers, we must reverse the sequence of the recorded signal. This situation is
shown in the four pairs of panels on the right side of Figure 7.24. Each pair consists of
two views in data space and model space at a time step. At the first three time steps with a
forward wavefield from the shot to a line of receivers, the data space shows the expansion
of a hyperbolic first arrival wavefield recorded by the line receivers. At the last time step,
to send the recorded signal from the receivers back to the source, the signal must be time
reversed before sending it back.

Reverse time migration is generically applied in the common shot gather domain. For each
common shot gather, the downward continuation is realized using two forward modeling
processes: one creates a forward wavefield from the shot using an estimated wavelet, and the
other creates a backward wavefield from all receivers with the time-reversed recorded data
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Figure 7.24 (Left) Cartoon by Dusan Petricic on time-reversed acoustics (Fink, 1999).
(Right) Illustration of reverse-time migration with four pairs of data and model panels.
Receivers and shot are shown by triangles and star. The top three pairs are the wavefield at
three forward time steps, and the lowest pair is at a reversed time step.

as source functions. Let us see these processes in Figure 7.25, after Biondi (2004). Panel (a)
is a synthetic model with two reflectors in gray color, and panel (b) is a common shot gather
consisting of only primary reflections recorded by a line of surface receivers and a surface
shot in the middle. Using an estimated wavelet, the forward wavefield from the shot position
is shown in panels (c), (f) and (i) at traveltimes of 1.2, 0.75, and 0.3 seconds, respectively.
The recorded data shown in panel (b) were used to create the backward wavefield. At each
receiver, the recorded trace is time-reversed first, and then sent out as the source function
from a source placed at this receiver position. The backward wavefield shown in panels (d),
(g) and (j) are superpositions of the modeled waves from all receivers using the reverse time
data, at traveltimes of 1.2, 0.75, and 0.3 seconds, respectively. Note that the diffractions
along the shallow reflection are due to the small steps used in creating the dipping reflector
shown in panel (c).

7.4.2 The imaging condition for RTM

The imaging condition for RTM is:

Reflectors exist where the forward wavefield from the source and backward wavefield from the
receivers using the reverse time data are coincident in time and space.
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Figure 7.25 Illustration of reverse-time migration (Biondi, 2004). (a) A model with two plane
reflectors. (b) A synthetic shot gather with a line of surface receivers and a surface shot in the
middle. The remaining nine panels show, at three time steps of 1.2, 0.75 and 0.3 s, the forward
wavefield from a shot in the left column; the wavefields from all receivers using time-reversed
data in the middle column; and the migrated image in the right column.

This imaging condition can be realized at each pixel in the model space by a time cross-
correlation between the forward and backward wavefields at the pixel position, and then
taking the amplitude of the cross-correlation function at time zero as the image value for the
pixel. At spatial position (x, y, z) in the model space, Claerbout (1971) gave the following
expression for the cross-correlation:

S(x, y, z) =
∑

t

F(x, y, z, t)B(x, y, z, t) (7–47)

where S(x, y, x) is a shot record image, F(x, y, z, t) is the forward wavefield at time index t,
and B(x, y, z, t) is the backward wavefield at the corresponding time index. This process is
a zero-lag correlation, i.e., it takes the zero-time amplitude of the correlation as the image
value.
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The imaging condition originally defined in Claerbout’s unified mapping theory (1971)
was primarily formulated for a one-way wave equation to map reflection geometries. How-
ever, the two-way wave equation propagates waves in all directions, and the cross-correlation
produces the strength of the wavefield at a particular time and space location. Thus, high
correlation values will be obtained at all points of homogeneous velocity and density. At
boundaries, the correlation values will be smaller than those for the homogeneous zones.
Therefore, the correlation image is like a photographic negative. It needs to zero-out all
high-valued homogeneous transmission areas and to map only heterogeneous boundaries.
To do this, a Laplacian image reconstruction operator is devised:

I (x, y, z) =
(

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
S(x, y, z) (7–48)

where I(x, y, z) is the reconstructed image frame for a shot record.
The resulting image represents boundaries in the velocity–depth model by the rate of

change in correlation amplitudes between forward and backward propagation wavefields. A
divergence operator for image reconstruction depicts boundaries in one direction (positive
coordinate direction), which is the nature of a first-order differential. However, a Lapla-
cian operator depicts boundaries in all directions (both positive and negative coordinate
directions), which makes it suitable to represent natural wave propagation in all directions.
One associated issue is the phase and amplitude changes in the output spatial wavelets.
The Laplacian operator causes a 90° phase shift and amplitude changes because it is a
second-order differential. A phase-shift filter can correct the phase problem. However, the
issue of amplitude changes, particularly the frequency-dependent behavior of Laplacian
amplitude, needs to be investigated further.

Since reverse time migration makes fewer approximations to the equations governing
seismic wave propagation than any other migration method, it is the most accurate migration
method currently available. Unfortunately, it is usually the slowest in terms of computation.
Nevertheless, it has served us well, both as a conceptual model to calibrate other migration
techniques and as a method of last resort in extremely complex areas with good velocity
control.

7.4.3 Highlights and examples of RTM

Many people have contributed to the development of the reverse time migration method.
Baysal et al. (1983) and McMechan (1983) separately introduced RTM as they noticed
that the numerical finite-difference modeling can be carried out in forward and reverse
directions. Loewenthal and Mufti (1983) conducted RTM in the spatial frequency domain.
Although some synthetic examples of RTM were shown by Chang and McMechan (1986,
1987), 2D field data examples of RTM were first reported by Rajaskaran and McMechan
(1995) and Lines et al. (1996). Mufti et al. (1996) applied RTM to 3D field data using
relatively large horizontal grid steps to save computation resources. Zhu and Lines (1998)
compared RTM with Kirchhoff migration in pre-stack depth imaging. While nearly all early
RTM applications used only primary reflections, Youn and Zhou (2001) showed the benefit
of using multiple reflections in pre-stack depth migration that is facilitated by the two-way
propagating RTM.
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Figure 7.26 (a) A multiple-generating model and shooting geometry. (b) The RTM result of
10 synthetic shot gathers (Youn & Zhou, 2001).

Two examples of RTM from Youn and Zhou (2001) are shown in the following. The
process goes through four main steps:

1. Forward modeling with an estimated source wavelet using the full two-way scalar wave
equation from a source location to all parts of the model space.

2. Backward modeling of the time-reversed recorded traces in a shot gather using the full
two-way scalar wave equation from all receiver positions in the gather to all parts of the
model space.

3. Cross-correlating the forward- and backward-propagated wavefields and summing for
all time indices.

4. Applying a Laplacian image reconstruction operator to the correlated image.

As shown in Figure 7.26, a line of 10 synthetic shot gathers was acquired over a simple
multiple-generating model simulating a carbonate reservoir. The model has a flat water-
bottom of shale at a depth of 160 m, with a relatively high normal incidence reflectivity of
0.3, which generates abundant water-bottom multiples. Below the shale, we placed a tight
carbonate formation which contains a porous reservoir zone in the middle. The boundary
between the carbonate and shale has about a 5° dip. Another shale formation is placed
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Figure 7.27 (a) A raw offset VSP gather. The shot offset from the borehole is 722.7 m. There
are 95 receivers with a 7.62 m interval from 162 to 878 m depth. (b) Result from a depth
migration using processed upgoing wavefield data. (c) Result from a two-way RTM using raw
shot gathers and check-shot velocities (Youn & Zhou, 2001).

below the carbonate layer. The velocity contrasts between layers were intentionally set at
high values within realistic bounds to generate a significant number of multiples. The lower
panel in the figure is the RTM solution using all 10 shot gathers. In this case the two-way
wave equation for forward and backward directions of wave propagation was solved using
a finite-difference technique. The method is able to use all types of acoustic waves such as
primary waves and reflections, refraction, diffraction, transmission, and any combination
of these waves.

The RTM method can be applied to all types of seismic data such as surface seismic,
vertical seismic profile (VSP), crosswell seismic, vertical cable seismic, and ocean bottom
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cable (OBC) seismic. Because all wave types can be mig rated, the input data should be
raw shot gathers without any processing. Hence, it is only a one-step process from the
raw field gathers to a final depth image. Exter nal noise in the raw data will not cor relate
with the forward wavefield except for some coincidental matching; therefore, it is usually
unnecessar y to do signal enhancement processing before the RTM using multiple reflec-
tions. After mig ration of an entire 2D line or 3D cube, all the image frames are registered
at their cor rect spatial locations, and summed to produce a final depth image dataset. In the
stacking process, it may be desirable to mute marginal por tions of the image frames and to
apply amplitude nor malization for uneven fold or coverage distrib ution.

Figure 7.27 compares a two-way RTM with a one-way depth imaging using a field VSP
dataset. Like that shown in panel (a), VSP data typically show many downgoing multiples
with a much weaker upgoing wavefield. The upgoing wavefield also has b uilt-in multiple
trains within it, so a downgoing-wavefield deconvolution before common depth point (CDP)
transfor m or depth imaging is usually done. Chang and McMechan (1986) and Whitmore
and Lines (1986) have investigated the VSP depth imaging using RTM techniques.

The main objective of this offset VSP study was to discover the extent of the sand
reser voir and shale-out zones that were apparently encountered during horizontal drilling.
As shown in Figure 7.27a, the data consist of upgoing and downgoing P and S waves as well
as P to S conver ted waves. Figure 7.27b shows a depth mig ration by a contracting company,
which has gone through the standard separation of upgoing wavefield and downgoing
wavefield, and only the upgoing reflection wavefield was used for this depth mig ration. The
output CDP inter val is 7.62 m and there are 48 CDPs. In comparison, Figure 7.27c shows
the result of the two-way RTM using the raw gather without any processing. As indicated
on the figure, the shale-out zone can be seen clearly on the two-way RTM result, b ut is
undetectable on the one-way depth mig ration result.

Exercise 7.4

1. Describe the assumptions and procedure of reverse time mig ration.

2. If only first ar rivals can be recognized in our data, will the RTM still be applicable?
What kinds of target may be imaged by such RTM? What may be the problems?

3. The imaging condition for the RTM described in Section 7.4.3 involves
cross-correlating the forward- and backward-propagated wavefields. Can you suggest
other types of imaging condition? For the described imaging condition and for your
imaging conditions, what situations may limit their effectiveness?

7.5 Practical issues in seismic migration
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
As the final processing step to turn seismic data into images of subsurface distribution
of elastic impedance variations, seismic migration is among the most important seismic
imaging methods. Various seismic migration methods, from simple stacking to pre-stack
depth migrations, have served as leading seismic imaging methods for the petroleum
industry for at least the past 50 years. However, errors and artifacts always exist in the
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imaging results because of practical limitations. For example, the discovery rate for deep
water (>1000 feet) exploratory wells in the Gulf of Mexico only reached around 17% for
2008, according to the US Minerals Management Service. Considering that each such well
costs more than $100 million, it is critical for the petroleum industry to improve the quality
of seismic data and seismic imaging methods, and to improve the practical procedure of
seismic migration and its associated methodology.

To most users of seismic migration in the petroleum industry or other physical science
disciplines, it is critical to comprehend the practical issues of seismic migration. The major
issues include:

� Selection of the appropriate migration methods for the scientific and business objectives;
� Velocity model building, detection of velocity errors, and assessment of the conse-

quences;
� Appreciation of various artifacts from seismic migration and associate processing

methods;
� Choices of migration parameters, such as migration aperture and sample rate.

7.5.1 Selection of methods

In order to select a suitable migration method, we need to consider several questions. (1)
What are the target features according to the scientific and business objectives? Examples
include pinnacles and fractures in carbonate reservoirs or major discontinuities in crustal
seismology. (2) Will the targeted features be detectable by the given data coverage and SNR?
This question may be addressed by conducting resolution tests and/or checking similar case
studies. (3) Which migration methods might potentially be able to address the first two
questions within the given time span? Since all real-life projects have deadlines, we must
give the best answer within those time constraints. (4) What are the limitations and artifacts
from the candidate methods? And will you be able to assess the limitations and artifacts?
While the answer to this question belongs to the third issue, the limitations and artifacts are
among the key criteria for choosing the right method(s).

The above questions may be addressed by running some preliminary tests. Although most
commercial seismic processing software contains all common seismic migration methods,
a method given the same name by two different vendors may have considerable differences
in implementation and emphasis. Hence, given any unfamiliar migration software, one must
conduct a series of standard tests, such as checking the impulse responses in both data and
model spaces using constant and variable velocity models. It is also helpful to produce some
migrated gathers or partial stacks to assess all the parameters of the code. Any unfamiliar
migration software should be tested using standard synthetic model datasets such as the
Marmousi dataset for 2D pre-stack migration or various versions of the SEG/EAGE 3D
datasets for different imaging purposes.

Some general properties of common migration approaches hold true in most cases, such
as the insensitivity of time migration to lateral velocity variations, and the effectiveness of
Fourier migration to situations with steeply dipping reflectors but smooth lateral velocity
variation. Another common situation is the need to consider the relative effectiveness of
Kirchhoff migration and wave equation migration. As shown with a synthetic 2D salt-body
example in Figure 7.28, wave equation migration handles the top salt rugosity (the rough
undulation of the interface) much more effectively than Kirchhoff migration. The rugosity
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Figure 7.28 (a) Crossline section of the interval velocities for a SEG-EAGE model.
(b) Kirchhoff migration result. (c) Wave equation migration result (Biondi, 2004).

of the interface between the low-velocity sediments and high-velocity salt body produces
multiple paths of traversing waves that make it difficult to image this top salt interface
and cause imaging artifacts for all interfaces beneath it. In this case, the artifacts in the
bottom salt image are more apparent in the Kirchhoff migration solution than in the wave
equation migration solution. On the other hand, most wave equation migration methods
require regularly sampled data and an even distribution of data quality over the model
space. In the presence of velocity model errors and uneven distribution of data over the
model space, Kirchhoff migration may be easily customized to the situation and therefore
produce a more reliable result than the wave equation migration.

One way to help in selecting the proper migration method is to run and compare all
available methods using a subset of the data. In the above example, the difference between
the Kirchhoff migration and wave equation migration results for the bottom salt interface
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will aler t us to the possible presence of imaging ar tif acts. In general, a careful comparative
analysis of the results from different mig ration methods may allow us to evaluate many
impor tant questions such as: (1) reliability of chosen signals; (2) accuracy of velocity model;
(3) effectiveness of chosen mig ration and processing methods for the geologic targets; and
(4) processing ar tif acts.

7.5.2 Velocity model building

The second practical issue of seismic imaging is that of velocity model b uilding, details of
which will be given in the next chapter. Because a velocity model is a precondition for all
seismic mig ration methods, a practical issue is how to b uild the mig ration velocity models
and how to assess their quality. Many mig ration methods use inter val velocities. These
may differ from the Dix inter val velocities (see Section 8.2.2) derived from the stacking
velocities, especially in cases of dipping reflectors. Using too fast a velocity may cause
over-migration, where the reflected energy is moved too far. Using too slow a velocity
may cause under-migration, where the reflected energy is not moved far enough. If we
are uncertain about the given velocities, using a smoothed velocity model usually gives a
more stable result, so it has become common practice to smooth the migration velocity
model in order to minimize the impacts of incorrect velocities. To choose between a fast
and a slow velocity model, it is usually better to use the slower velocity model so that the
reflection energy will be more separated in most places. Owing to the sensitivity of depth
migration to velocities, migration velocity analysis has been devised as the most powerful
way of velocity determination.

7.5.3 Assessing migration artifacts

The third practical issue is that of migration artifacts. The common types of migration
artifacts include:

� Acquisition footprints. These are image artifacts resembling the survey geometry but
caused by insufficient fold at shallow depths. Recall from Chapter 1 that “fold” is the
number of midpoints within each CMP bin. An example of a time slice in the Permian
Basin is shown in Figure 7.29. The intensity of the footprints typically decreases with
depth owing to a combination of decreasing frequency and more even fold distribution
with increasing depth.

� Smearing. This refers to artificial stretching of imaged anomalies along isochrons owing
to insufficient or uneven illumination. Figure 7.30 shows a cross-section of migrated VSP
data across the San Andreas fault in California using surface shots and wellbore receivers.
In such cases, reliable image solution is only defined within the “VSP corridor”, which
is a portion of the model space with sufficient seismic illumination as defined by a
sufficient level of crisscrossing rays or wavepaths.

� Spatial aliasing. This is spatial alignment of artificial events due to under-sampling
as discussed in Chapter 1. Because migration moves input dipping events in the
up-dipping direction so that dipping events become steeper on the output image, the
vertical sample rate for the input may not be sufficient to prevent spatial aliasing of
the output. In addition, the time-to-depth mapping in depth migration may increase the
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Figure 7.30 A cross-section of VSP Kirchhoff migration near the San Andreas Fault using
receivers in wellbore and surface shots. Smearing artifacts are evident along isochrons, or
contours of equal traveltime between the shot and receiver via the reflector.

apparent vertical frequencies at some portions of the output image. Consequently, we
need to estimate the maximum dipping angle and frequency of the output image and see
if the output is in danger of spatial aliasing. The spatial aliasing artifact can be suppressed
either by sampling the result using a fine enough sample rate, or by smoothing the result
so that its frequency is properly sampled by the given sample rate.

� Local velocity-induced artifacts. These are anomalous pull-ups or pull-downs of oth-
erwise flat reflection events beneath a localized velocity anomaly. The so-called velocity
pull-ups are upward displacements of events beneath a high-velocity anomaly such as a
salt body, a carbonate pinnacle, or a patch reef. The velocity pull-downs are downward
displacements of events beneath a low-velocity anomaly such as a gas chimney, a gas
hydrate body, or a carbonate sink hole. As illustrated in Figure 7.31, the pull-ups and
pull-downs can be created by a fault offsetting a layered velocity structure. In reality, a
fault may consist of several branches and cut through a number of velocity layers, hence
producing a set of time sags and pull-ups that are collectively called a fault shadow,
like that shown in Figure 7.32. Velocity-induced artifacts occur much more often for
time-migrated results because such results ignore lateral velocity variations.
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Figure 7.31 Two pairs of schematics showing the traveltime effects that structural extension
creates on reflectors below high-velocity and low-velocity bodies (Fagin, 1996).

Time Sag

Disrupted Reflection

Time Pull-up

Figure 7.32 A synthetic time-migrated section created from CMP gathers after NMO velocity
analysis and stacking, showing fault shadow effect with time sags and time pull-ups (Fagin,
1996).

� Fake events. When the input contains coherent events that are unacceptable in the
migration method, fake events will be produced on the migrated results which may
mislead the interpretations. For instance, many migration software only accept primary
reflections as the signals in the input, so it is necessary for pre-migration data processing
to suppress all events other than primary reflections. In this case, the “colored noises”
may include first arrivals, surface waves, multiple reflections, and converted waves. As
another example, a 2D migration will assume that all input signals are from the vertical
plane containing the survey line, or that there is no sideswipe energy from scatters or
reflectors away from the vertical plane. As shown in Figure 7.33, taking sideswipe events
as input to 2D migration results in fake events like the fuzzy channel-like anomalies
(right panel of Figure 7.33) which disappear from the result of a proper 3D migration.

7.5.4 Setting migration parameters

The last practical issue to be addressed here is the choice of parameters for a migration
method. Depending on the chosen method, there are a number of key parameters for seismic
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Figure 7.33 Depth slices of 3D (left) and 2D (right) migration results (Biondi, 2004). Arrows
labeled A and B denote fake events in the 2D migration result that disappear in the 3D
migration result.

migration, such as migration aperture or its equivalents such as cable length, sample rate
in the solution space with consideration on spatial aliasing, weighting coefficients for
Kirchhoff migration, and concerns about the preservation of amplitude and phase of seismic
wavelets. To become an expert user of a seismic migration method, one needs to satisfy a
set of minimum requirements:

� Comprehension of the underlying principles, assumptions and application domains of
the method, so that you know why the method is chosen for the given situation.

� For a chosen commercial migration software, the capability to quantify its effectiveness
by running standard tests to produce impulse responses and partial stacks, and the ability
to learn how to use the software.

� For the chosen migration method, the ability to understand or find out the impact of the
velocity model and data parameters on the migration result.

� Knowledge of the common artifacts such as smearing and spatial aliasing for the method,
and ability to find ways to QC the validity of all migrated features.

Exercise 7.5

1. Describe the general assumptions and procedure of seismic migration. What are the
specifics for Kirchhoff, Stolt, and reverse time migration methods? For seismic data in
an area with nearly flat reflectors, will migration be necessary?

2. How would you check the quality of a seismic migration method? Make a list of tests
that you would conduct in order to quantify the quality.

3. Someone has said that smoothing the velocity model is a practical way to improve the
migration result. Discuss the possible effects of smoothing velocity model on seismic
migration. What are the potential benefits and drawbacks from the smoothing?
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7.6 Summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
� Seismic migration is a mapping method to place seismic reflection data into their correct

spatial or temporal reflector positions in two steps. Step one is to back-project the
measured seismic data into subsurface using the wave equation and a velocity model,
producing an extrapolated wavefield. Step two is to apply an imaging condition to capture
the image of subsurface reflectors from the extrapolated wavefield.

� All migration methods assume, first, that the given velocity model is sufficiently accurate.
Second, many traditional migration methods also assume that the input data contain only
primary reflections. Third, each 2D migration method assumes that the reflections in the
input data are confined within a vertical plane containing the 2D profile. The second and
third assumptions are the reasons for extensive pre-processing before applying migration.

� A velocity model is a precondition for seismic migration. Time migration uses a layer-
cake velocity model without lateral velocity variation. In contrast, depth migration is
able to use a velocity model containing a significant level of lateral velocity variation.

� In the case of gently dipping reflectors, a post-stack migration may be sufficient using
post-NMO stacked data traces to approximate zero-offset data traces. In the presence of
steeply dipping reflectors, a pre-stack migration is usually more suitable but takes much
more computational time and resource than post-stack migration.

� Kirchhoff migration uses two-way reflection traveltime tables calculated based on wave
or ray theories to map the amplitude- and phase-calibrated waveform records to the
subsurface, and then stack all mapped data together to capture the image of subsurface
reflectors. It is intuitive and flexible, although it uses the ray theory approximation.

� f–k migration is efficient and thorough because it takes advantage of Fourier transform.
It is very effective in migrating steeply dipping reflectors in smoothly varying velocity
models, but usually less effective in the presence of strong lateral velocity variations.

� Reverse time migration is a full wave migration method that is capable of using both
primary reflections and other waves such as refractions and multiple reflections. It
maps time-reversed data from receivers into a backward wavefield, propagates a forward
wavefield from each source, and finally applies an imaging condition to take the common
denominators from the backward and forward wavefields as the image of the subsurface
structure.
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Figure 1.14 Radiation pattern of an airgun array at a tow depth of 9 m. Each panel is a
lower-hemisphere projection of the wave amplitude at a particular frequency as a function of
the azimuth and dip angles (Caldwell & Dragoset, 2000).
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Figure 2.2 (a) A sketched cross-section of offset VSP, where raypaths show various waves from
a shot (star) to the receivers (triangles) along the well bore. (b) A common shot gather of the
two horizontal components from an offset VSP.
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Figure 2.4 (a) A map-view sketch showing a selected group of shots (stars) of similar
source-to-receiver offsets but different azimuths from the VSP well (triangle). (b) The common
shot gather after correction for orientation errors of the geophones.
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Box 3.3 Figure 1 Seismic record at Palisades, NY, 34 km north of the World Trade Center
during the 9/11 disaster. (Left) East–west component of time record started at 8:40 EDT, or
13:40 WTC, on 9/11/2001. Two inserted seismograms are zoom-in plots of the first impact and
the first collapse. (Right) Displacement spectra [nm s]. In each panel the upper curve is the
signal spectrum, and the lower curve is the noise spectrum (from Kim et al., 2001).
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Figure 3.21 (a) A seismic trace. (b) Continuous wavelet transform. (c) Discrete wavelet
transform.
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Figure 4.14 (a) Map of the profile in southern California showing earthquake foci (small
crosses), seismic stations (triangles), faults (lines), shots (circles), and receivers (triangles).
(b) Cross-section of tomographic velocity model. The tomography Moho at the top of the layer
with 8 km/s velocity is compared with the PmP Moho in light color. Locations: Santa Catalina
Island (SCI), Santa Monica Mountains (SMM), San Fernando Valley (SFV), San Gabriel
Mountains (SGM), Mojave Desert (MVD), Techchapi Mountains (TCM) and Isabella
Reservoir (IBR). Faults in boxes: Santa Monica (SMF), Santa Susana (SSF), San Gabriel
(SGF), San Andreas (SAF), and Garlock (GF).
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Figure 4.17 Checkerboard resolution test for a traveltime tomography. The layer velocity
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Box 4.3 Figure 1 A delete-half jackknife test for crustal P-wave tomography in southern
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of the velocity model from the second half of the data. The dataset consists of more than 1
million P-wave arrivals from local earthquakes to local stations. Vm is the average velocity of
the layer, and r is the correlation coefficient between two model slices in the same depth range.
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Figure 8.7 3D view of seven layers of lateral variations of Vp in the lower mantle, where the
slow and fast velocity anomalies are displayed as red hills and blue basins, respectively.



4.2 

1.8 

3.0 

V [km/s] 

0 

3 

Z 
[km] 

X [km] 0 1 

(c) 
0 

3 

Z 
[km] 

X [km] 0 1 

(a) 
0

3

Z 
[km] 

X [km] 0 1 

(d) 
0 

3 

Z 
[km] 

X [km] 0 1 

(b) 

Order 1

Figure 8.25 (a) A synthetic true velocity model in a cross-well survey using 43 shots (purple
stars) and 43 receivers (green triangles). (b) Raypaths in the true model. (c) A cell tomography
grid. (d) Solution of single-cell tomography using first-arrival traveltimes in the true model.

4.2 

1.8 

3.0 

V [km/s] 0 

3 

Z 
[km] 

X [km] 0 1 

Order 1 Order 2

9 redrO5 redrO

Order 3 Order 4

Order 10Order 7Order 6 Order 8

Figure 8.26 The upper-left panel is the same synthetic true model as in Figure 8.25 in a
cross-well survey. The other panels show 10 MST sub-models. The Order 1 sub-model has the
same geometry as the SST model in Figure 8.25.



4.2

1.8

3.0

Velocity 
[km/s]

0

3

Z 
[km]

X [km]            0 1

(a) True model

0

3

Z 
[km]

X [km]0 1

(b) Initial model
AV=1.5  SD=83.7

0

3

Z 
[km]

X [km]0 1

(c) MST
AV=0.1  SD=1.3

0

3

Z 
[km]

X [km]0 1

(d)SST
AV=0.4  SD=1.5

Figure 8.27 (a) A synthetic true velocity model. (b) The initial reference velocity model. (c)
The fourth iteration MST solution. (d) The fourth iteration SST solution. The average (AV) and
standard deviation (SD) of traveltime residuals in milliseconds are indicated on top of the
solution models.

0

3
Distance [km]

0 1

Order 10

Order 4Order 3Order 2Order 1

Order 9Order 8Order 7Order 6Order 5

Vm=2.7 km/s
dV/Vm (%)

D
ep

th
 [k

m
]

Figure 8.28 The upper-left panel is the MST solution, which is a superposition of the solutions
of 10 sub-models shown in the rest of the panels. Plotted are the ratios in per cent between the
velocity perturbations and the mean velocity Vm = 2.7 km/s.



dV/Vlayer

5%0%-5%

(c) SST with true rays, r = 77% 

(e) SST without true rays, r = 59% 

(a) True model

(g) Difference (e) – (a) 

Z 
[km]  

X [km]  

0

39
0  300  

Z 
[km]  

X [km]  

0

39
0  300  

Z 
[km]  

X [km]  

0

39
0  300  

Z 
[km]  

X [km]  

0

39
0  300  

(d) MST with true rays, r = 87%

(f) MST without true rays, r = 79% 

(b) True rays

(h) Difference (f) – (a)

Z 
[km]  

X [km]  

0

39
0  300  

Z 
[km]  

X [km]  

0

39
0  300  

Z 
[km]  

X [km]  

0

39
0  300  

Z 
[km]  

X [km]  

0

39
0  300  

Figure 8.29 Velocity perturbations are contoured in the unit of percentage of the layer averages.
(a) True model. (b) First-arriving rays in true model. (c) and (d) are SST and MST solution
using true rays. (e) and (f) are solutions without the knowledge of true rays. (g) and (h) are
difference between model pairs. r is correlation between the solution and the true model.

(c)

Distance [km]

(a)

Velocity [km/s]

D
e
p
th

 [k
m

]

1.0

4.0
(b)

10

D
e
p
th

 [k
m

]

1.0

4.0
(d)

4.51.5

Distance [km]0 10 0

Box 8.3 Figure 1 Comparison between SST and MST for a Gulf of Mexico dataset (Cao et al.,
2008). (a) and (c) are velocity models derived using SST and MST, respectively. (b) and (d) are
the corresponding common image gathers.



Figure 8.30 (a) 2D synthetic
model for a synthetic
reflection tomographic test.
The values in this panel
denote average velocities of
each model layer in km/s.
(b) Raypaths in the true
model from eight shots
(stars) to nine receivers
(triangles). (c)–(h) Examples
of the multi-cell sub-models.

Figure 8.31 The initial
reference velocity model
and solutions of five
iterations of the MST. The
numbers on the models
are layer average
velocities in km/s. The
dashed curves show the
interfaces of the true
model. The average (av)
and standard deviation
(sd) of traveltime
residuals in milliseconds
are shown at the top of
each model. See Figure
8.30 for the velocity scale.
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Figure 8.34 Images from a VSP Kirchhoff migration near the San Andreas Fault (SAF)
illustrating the along-isochronal smear artifacts.
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shown in the upper right panel (Xie et al., 2006).
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8 Practical seismic velocity analysis

Chapter contents

8.1 Velocity measurements and refraction velocity analysis

8.2 Semblance velocity analysis

8.3 Migration velocity analysis

8.4 Tomographic velocity analysis

8.5 Practical issues in tomographic velocity model building

8.6 Summary

Further reading

Velocity analysis is synonymous with velocity model building (VMB) because the
goal is to produce a velocity model for the subsurface. VMB is among the most common
practices in seismology for two reasons. First, for any study area, its seismic velocity
model is one of the main measurable results from geoscience. Second, a velocity model
is a precondition for seismic migration and other seismic imaging methods to map
subsurface reflectors and scatters using reflected or scattered waves. Since seismic
velocity is inferred from traveltimes of seismic waves, the resolution of each velocity
model is limited by the frequency bandwidth and spatial coverage of seismic data.
This chapter starts with definitions and measurements of different types of seismic
velocities. The observations reveal the trends of seismic velocities as functions of
pressure, temperature, and other physical parameters. The dominance of the 1D or
V(z) velocity variation at large scale in the Earth leads to the classic refraction velocity
analysis based on seismic ray tracing in a layer-cake velocity model.

The three common seismic velocity analysis methods based on NMO semblance,
seismic migration, and seismic tomography are discussed in three sections. Assuming
gentle to no changes in the reflector dip and lateral velocity variation, semblance velocity
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analysis provides stable estimates of the stacking velocity. The stacking velocity at each
depth, marked by the corresponding two-way traveltime, is the average velocity of all
layers above the depth. By taking advantage of the dependency of depth migration on
velocity variations, migration velocity analysis enables the velocity model to be refined
using horizons defined by data to accommodate lateral velocity variations. Nowadays
most migration velocity analyses are conducted on common image gathers (CIGs).
To constrain the velocity variation using all data together, tomographic velocity analysis
derives or refines the velocity model through an inversion approach to update the velocity
perturbations iteratively. Some practical issues in tomographic VMB are discussed in
the final section, mostly on inversion artifacts and deformable layer tomography.

8.1 Velocity measurements and refraction velocity analysis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.1.1 Introduction to seismic velocities

Seismic velocity is the speed at which a seismic phase travels through a medium and hence
is a primary property of the medium. A seismic phase is a packet of traveling wave energy
representing a particular wave type, such as a reflected P-wave, a P-to-S converted wave,
a multiple reflection, or a Rayleigh wave. A seismic phase may have different velocities
as it traverses through different media, referred to as velocity inhomogeneity, and may
have different velocities in different directions at the same medium position, referred
to as velocity anisotropy. Detecting the properties of the media is a major motivation
for studying seismic velocities of different types, because they may help us decipher the
lithology and structure of the media. The task of detecting lithology from seismic velocity is
very challenging because seismic velocity depends on many factors in addition to lithology.
Some factors are properties of the medium, such as its density, porosity, or their structure
variation, other factors are physical conditions such as temperature and pressure, and
yet others are wave properties such as frequency and wave type. The traveling speed of
a single-frequency component is called the phase velocity. For a broadband wave, the
traveling speed of its main energy is called the group velocity. Group velocity is the rate at
which the energy in a wave train travels. Even for a homogeneous medium, phase velocity
may differ from group velocity in the presence of seismic attenuation and/or anisotropy.

Why do we need seismic velocity? First, we need to have seismic velocity in order to
obtain information for interpreting subsurface properties in terms of structure and lithology.
A good example is the case of over-pressure prediction in petroleum exploration. Over-
pressured areas of subsurface have abnormally high porosity and therefore abnormally low
seismic velocity. Second, a pre-condition for applying seismic migration is the availability
of a proper velocity model. Even for time migration, we still need to have a velocity model.
In order to tie seismic data with well-log measurements, we need a velocity model to
conduct time-to-depth conversion since seismic records are acquired as a function of time,
and well logs are acquired as a function of depth.

In the practice of seismic migration, people often decouple the variation in velocity field
from the variation of reflector geometry. How can they do this? The answer lies in the general
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Internal properties
Vp, Vs, ρ, Q, ... Velocity model building:

Long-wavelength features

Boundary properties
dVp, dVs, dρ, dQ, ...

Seismic migration:
Short-wavelength features

Figure 8.1 A view of seismic imaging – from real Earth via seismic Earth to the Earth model.

view of seismic imaging as shown in Figure 8.1. In this view, we decompose the spatial
distribution of the elastic impedance field into two components. One component consists
of long-wavelength features that vary slowly over the model space, which is the velocity
model that is targeted by velocity model building (VMB). The parameters in the velocity
model may include compression velocity, shear velocity, density, and the quality (Q) factor.
The other component consists of short-wavelength features that quickly vary over the model
space, which are interfaces or the reflector geometry targeted by seismic migration. We
may regard the interfaces as spatial derivatives of the velocity model. Mapping the long-
wavelength features is the goal of VMB, while mapping the short-wavelength features is
the goal of seismic migration. Hence velocity model building and seismic migration are
two complementary processes of subsurface imaging.

In theory, seismic velocity V is a function of density ρ and incompressibility K for an
acoustic medium such as a fluid:

V = (K/ρ)1/2 (8–1)

For general elastic media, K can be regarded as the effective elastic parameter. For solid
media, K is equivalent to the bulk modulus, and the velocities of compression wave VP

and shear wave VS are

VP = [(λ + 2μ)/ρ]1/2 (8–2a)

VS = [(μ)/ρ]1/2 (8–2b)

where λ and μ are the two Lamé constants of the medium. The parameter μ is also known as
shear modulus or rigidity, and λ is the bulk modulus less two-thirds of the shear modulus:

λ = K − 2/3μ (8–3)

For fluid media, the shear modulus vanishes, hence we have

VP = [(λ)/ρ]1/2 (8–4a)

VS = 0 (8–4b)
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8.1.2 Measurements of seismic velocities

Seismic velocity can be obtained either through direct measurements, such as well logs,
or through indirect inferences based on seismic data. Since the direct measurements and
indirect inferences can only be conducted in discrete forms, we always need to know more
about the physical and geologic tendencies of seismic velocity in order to populate its
values in space based on a limited set of measurements. The difference in seismic velocity
of various rocks is a primary reason that seismology is a useful tool for deciphering rocks.
The problem, however, is that different rocks may have similar velocities, while the same
rock type may have a wide range of velocities. This can be seen in Figure 8.2, from Sheriff
and Geldart (1995, p. 101).

Because the level of bending of seismic wavepaths is proportional to the velocity variation
rather than the absolute velocity difference, it is useful to quantify the velocity variation
of rock types in terms of a percentage between the minimum and maximum velocities.
As an example of comparing the velocity variation versus the absolute velocity difference,
Grant and West (1965) cited VP for alluvium as 0.3–1.6 km/s, and VP for limestone as
2.75–6.3 km/s. As shown in the two lines ending in filled circles in Figure 8.2, alluvium
has a narrower range of absolute velocity than limestone. However, in terms of velocity
variation measured as a percentage, that of alluvium is 1.6/0.3 = 533%, which is much
wider than that of limestone at 6.3/2.75 = 229%. Since the level of velocity variation of
a lithology depends mainly on its minimum velocity, places of low velocities such as near
surface and low velocity zones require special attention in velocity analysis.

The primary causes for the wide range of velocity for the same rock type are vari-
ations in temperature, pressure and rock texture. We may use rock texture to describe
the consequence of different geologic histories, resulting in differences in age, tectonic
and solidification level due to compaction and re-crystallization. The difference in rock
texture can be genetic, due to variations in porosity, grain distribution, and depositional
environment at the original formation stage; or diagenetic, caused by alterations after the
lithification of the original rock. The wide range of rock velocities means their lithological
interpretations can be non-unique. On the other hand, if we understand the effects on seis-
mic velocity of various factors at genetic and evolutionary stages, we may have a chance
to decipher the depositional environment and evolution history through analyzing seismic
velocity in conjunction with all geologic and geophysical information.

The near-surface depth range, roughly from the surface down to several hundred meters
in depth, has the largest variation in velocities owing to the extremely low velocities of the
weathering layer. Table 2.1 showed the P-wave velocities of some typical rocks in the near-
surface depth range. We have discussed corrections for the effect of near-surface velocities
in Section 2.5, a topic that is impor tant in exploration seismology and geo-engineering
studies.

The near-surface depth range is a phase boundary layer. The largest variations in seismic
velocities exist in all phase boundary layers, such as the air–solid, air–water, water–solid,
and core–mantle boundary (D′′) layers of the Earth. As an example, the weathering layer
is usually a low velocity layer (LVL) whose bottom is marked by the water table where
velocity increases significantly. In arid areas the water table can be very deep (100 m)
and marked by a strong change in velocity (0.6–3.0 km/s for the P-wave). Eroded rocks
such as limestone caverns could be buried, with significant velocity variations. Cox (1999)
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summarized the velocity characteristics of some near-surface layers:

� Sand dunes (height up to 200 m) have dips on the windward slopes of 15–20° and slip
slope of 30°. Owing to differences in height and compaction, velocities near the base of
a dune will be higher than near the edge. The base of a sand dune is usually of higher
velocity and gentler relief (Sabkhas gravel plains). Velocities could be from 0.15 km/s to
1.5 km/s depending on thickness and compaction, and vary from dune to dune.
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� A highly irregular weathered layer has rapid changes in near-surface velocity and thick-
ness associated with recent unconsolidated sediments. Examples would be swamps,
deltas, or river mouths with high rate of sedimentation (in the Mississippi Delta the top
30 m has 0.3 km/s velocity). Mud with shallow gas could have very low velocities, less
than 100 m/s. Loess topography could be very thick, as much as 300 m, with velocities
from 0.6 km/s above the water table to 1.2 km/s at the water table. Karst limestone,
alluvial fans, stream channels, mature topography with irregular bedrock, etc. could also
be examples of irregular weathered layers.

� Permafrost is defined as permanently frozen soil or rock (Sheriff, 1991). It is characteristic
of areas like the Arctic, Antarctic, and similar regions. Because of its high velocity
(
3.6 km/s) relative to surrounding lower velocities, it is important to know its base and
extent. It may change thickness, decreasing from land to offshore.

� A combination of old topography, such as river channels or glacial valleys, and young
sediments can disguise the signs of large changes below the surface. These sediments
could be very thick and cause high lateral velocity variations which depend on channel
depth and width.

� Near-surface velocities also have time-variant changes due to daily and seasonal varia-
tions. This factor needs attention in seismic acquisition and 4D seismic surveys.

8.1.3 Trends of seismic velocities

It is very useful in practice to understand the general behavior of seismic velocity under
various conditions. Such knowledge is largely supported by laboratory measurements. In
most VMB projects we will never be able to obtain all possible measurements to constrain
all aspects of seismic velocity. Thus, knowledge of the general behavior of seismic velocity
can be used to make predictions in areas of poor or no data constraints. More importantly,
knowledge of the general trend of seismic velocity may assist VMB projects in designing
data acquisition and model parameterization.

Figure 8.3 from Tatham and McCormack (1991) summarizes the effects of various rock
properties on seismic velocities and Vp/Vs ratio. Some of the effects are monotonic, such
as the effects of porosity, pore shape, pressure, and temperature. Others are somewhat non-
linear, such as the effects of lithology, pore fluid type, and anisotropy. It is good practice to
compile a list of such “rules of thumb” in each VMB project.

Seismic velocities usually follow the trend of density, which generally increases with
burial depth and/or increase in the confining pressure. Seismic velocities usually decrease
with the increase of porosity, because pore space typically has much lower velocity than
that of the rock matrix. Figure 8.4 shows some measurements of velocity versus porosity for
sandstone and limestone samples (Wyllie et al., 1958). Porosity in a clastic rock decreases
with depth of burial or the extent of compaction. At comparable depths, porosity increases
with increasing level of sorting, but decreases with increasing level of cementation. Porosity
is usually unchanged by uplifting of the rocks after their formation.

On the other hand, velocity decreases with an increase in the number of microcracks,
as shown in Figure 8.5. Age is typically proportional to the extent of consolidation of the
rocks. Hence the effect of age is similar to the effect of burial depth and increase of pressure.
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Figure 8.3 Summary of effects of different rock properties on Vp and Vs and their ratios. (After Tatham & McCormack, 1991.)
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Figure 8.6 P-wave velocity in Berea sandstone as the temperature passes through the freezing
point. (From Timur, 1968.)

The effect of temperature on seismic velocities can be viewed in two aspects. First, for
near-surface rocks, there is a large effect when the temperature passes through the freezing
point, as shown in Figure 8.6. This figure shows a velocity jump of more than 20% when the
rock is frozen. In many cold regions, seismic acquisitions are conducted during the frozen
winter season to take advantage of the temperature effect on seismic velocity.

Second, in crustal and mantle seismology, velocity anomalies are usually expressed in
terms of lateral velocity variation, or (dV�Vlayer – 1), where Vlayer denotes average velocity
of the layer. The de-mean process, or removal of the layer average, takes away the effect
of pressure or depth. Hence the lateral variation in velocity can be interpreted mostly as
the consequence of lateral temperature variation. owing to thermal expansion, the slow
lateral velocity anomalies indicate areas of higher or hotter temperature, and fast lateral
velocity anomalies indicate areas of lower or cooler temperature. An example of such an
interpretation for mantle P-wave tomography is shown in Figure 8.7.

8.1.4 Refraction velocity analysis

8.1.4.1 Refraction and turning rays

Our initial understanding of large-scale trends of seismic velocities in the real Earth comes
largely from refraction surveys, which were the first type of seismologic studies. Such
studies were motivated by the fact that the velocity variation at large scale in the Earth
is dominated by the 1D or V(z) trend. The data for refraction study are primarily the first
arrivals, or the first breaks. As indicated by the name, a refraction study implies that the
seismic waves travel through a depth-varying or layer-cake velocity model so that the
seismic rays are making refraction-type turns. The paths of all seismic waves depend on
the velocity variations. For first arrivals, their raypaths can be pure refraction rays in a



256 Practical Seismic Data Analysis

765–820km

820–880km

880–940km

940–1000km

1000–1065km

1065–1130km

1130–1200km

P1200 Model dV/V [%]
1.0 0.0 –1.0

Figure 8.7 3D view of seven layers of lateral variations of Vp in the lower mantle, where the
slow and fast velocity anomalies are displayed as red hills and blue basins, respectively. For
color versions see plate section.

layer-cake model, or turning rays in a gradient model where velocity varies gradually with
depth, as shown in Figure 8.8.

Since refraction rays and turning rays will not graze a greater depth without an increase
in velocity with depth, a refraction study will assume that velocity increases with depth
either monotonically or throughout most of the depth range of the study. The existence of a
low-velocity layer (LVL) below a higher velocity layer (HVL) is sometimes called velocity
inversion (please be sure to distinguish this term from the other meaning of inversion –
which means determining model parameters from data). The appearance of velocity inver-
sion is troublesome for refraction studies.

8.1.4.2 Global 1D velocity models

Why should we care about the 1D velocity model? While it is true that it is simple to
use a 1D velocity model, the main reason is that at large scale the Earth’s velocity field is
predominantly 1D. This is evident from the good match between observed traveltimes and
predictions from the JB model (Jeffreys & Bullen, 1940) in Figure 8.9. Taking the Earth
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Figure 8.8 (Left) A layer-cake velocity model of the crust and upper mantle of the Earth.
(Right) Refracted rays in the model. On decreasing the take-off angle from the source, rays
shown as solid curves increase the offset, and rays shown as dashed curves decrease the offset.
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Figure 8.10 Traveltime versus distance graph in the IASP91 velocity model.

as a whole, because of the combined effects of billions of years of tectonic recycling
of Earth’s interior materials and predominately depth-varying nature of the pressure and
temperature fields, the Earth’s velocity field is mostly depth-varying.

Consequently, over 98% of the traveltimes of major seismic phases, such as P, pP, sP,
PP, S, SS, PcP, PKP, SKS, and PKIKP, can be explained by a standard 1D Earth model.
The most famous seismologic 1D Earth models include the JB model, the Herrin model
(Herrin, 1968), the PREM model (Dziewonski & Anderson, 1981), and most recently the
IASP91 model (Kennett & Engdahl, 1991). Figure 8.10 shows the predicted traveltimes
from the IASP91 model of the global 1D P-wave and S-wave velocities.

Except in the case of a constant-velocity model, obtaining the 1D velocity model is often
a useful first step in velocity model building. A 1D velocity model is a depth-varying and
laterally homogeneous velocity model. A further simplification is the layer-cake model,
which consists of a set of flat and constant-velocity layers. The layer-cake velocity model
is most useful in refraction and reflection studies, where the velocity profile is often a step
function on a graph of velocity versus depth graph or velocity versus zero-offset time. The



259 Practical seismic velocity analysis

0             V (km/s)            5

(a)v0

v1

v2

v3

D
epth

0           xc1         xc2                  xc3   Offset  

(b)

0

z1

z2

z3

0           xc1         xc2                  xc3   

0

T
ra

ve
ltim

e
 

(c)1/V0

1/V1

1/V2

1/V3

Offset  

Figure 8.11 (a) A four-layer velocity model; (b) refraction rays in the model. Dashed curves
denote critical refraction rays for the three interfaces; (c) first arrival versus offset, whose slope
corresponds to the interval velocity at the bottom portion of the rays.

simplification from a continuous velocity function into a layer-cake function focuses our
attention on the velocity interfaces, or reflectors. Some prominent velocity interfaces are
called seismic discontinuities, such as the Moho discontinuity which separates the crust
from the upper mantle, and the 670-km discontinuity which separates the upper mantle
from the lower mantle.

8.1.4.3 Use of traveltime versus distance graphs

A traveltime versus distance graph is the most basic way to analyze seismic data. Here the
distance means source-to-receiver offset, and traveltime can be one-way or two-way times
for refraction data, or two-way traveltime for reflection data.

A traveltime versus distance graph can be used to solve some common problems:

� QC signals and noises
� Distinguishing the types of wave modes
� Estimating and extracting velocity information (apparent velocity, etc.)

In a layer-cake velocity model, we may use traveltime versus source-to-receiver offset
plots to estimate velocities traversed by the bottoming portions of refraction rays. Figure 8.11
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Box 8.1 Estimate velocities using reduced traveltime versus offset plot

Here a real data example demonstrates the estimation of interval velocities using a plot
of reduced traveltime versus offset. Box 8.1 Figure 1a shows the geometry of a vertical
seismic profile (VSP) study (Zhou, 2006). Panel b shows first arrivals from two common
receiver gathers of seismic records from the surface shots to the receivers placed along a
nearly vertical wellbore. The thin lines in the figure show the theoretical arrival times for
several reduction velocities. If the bottoming portion of a first-arrival ray travels at the speed
of a reduction velocity, then it will fall on the corresponding line on the plot of reduced
traveltime versus offset.
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Box 8.1 Figure 1 (a) 3D view of a VSP survey with dashed curves denoting first arrival raypaths
from surface shots to receivers along the wellbore. (b) First arrivals with a reduction velocity of
2.5 km/s versus shot–receiver distance for the shallowest receiver (+ symbols) and the deepest
receiver (×). Lines show the theoretical arrival times for the reduction velocities indicated.
Picks inside the small circles probably traversed along the salt flank. (After Zhou, 2006.)
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In panel (b) the first arrivals of the shallowest receivers show at least three segments in
their slope trend. The slope at the near offset follows the trend of 1.8 km/s in reduction
velocity. At intermediate offset the slope is parallel with the trend of 2.3 km/s in reduction
velocity. At the far offset the slope is between 2.3 and 2.5 km/s. Hence the first arrivals of
this common receiver gather indicate the general pattern of the velocity model: three layers,
with interval velocities of 1.8, 2.3, and 2.4 km/s, respectively. This pattern is consistent
with the first arrivals for the deepest common receiver gathers.

gives a schematic illustration using a four-layer model in which the interval velocity
increases with depth. Along each model interface, a critical distance xc denotes the minimum
offset of the refracted head wave traversing along the interface. The corresponding critical
refraction rays for the three model interfaces are denoted by dotted curves in Figure 8.11b.
Between zero offset and the critical distance of the first interface, xc1, the first arrivals are
direct waves; hence their slope on the traveltime–offset plot corresponds to the slowness
of the first layer, 1�V0. Between xc1 and the critical distance of the second interface, xc2,
the first arrivals are head waves traversing along the first interface; hence their slope on the
traveltime–offset plot corresponds to the slowness of the second layer, 1�V1. Similarly the
slopes of the first arrivals in the next two distance intervals correspond to the slowness of
the other two layers. The slope on the traveltime–offset plot can be more easily measured
using the reduced traveltime τ as defined in Chapter 2:

τ = t − x/v (2–23′)

where t is traveltime, x is source to receiver offset, and v is the reduction velocity.
A field example of estimating interval velocities using a reduced traveltime–offset plot

is demonstrated in Box 8.1.

8.1.5 Basics of seismic ray tracing

8.1.5.1 Overview

The predicted traveltimes from a velocity model are calculated using ray tracing, which is
one of the oldest topics in applied seismology but still a useful one. Kinematic ray tracing
involves determining the traveltime and raypath from point A to point B in a velocity model.
Dynamic ray tracing may involve additional parameters that are frequency-dependent
and/or amplitude-dependent. In addition to seismology, ray tracing has been applied widely
in many other fields. For instance, modern computer graphic design often uses rendering
techniques that are based on ray tracing of light. Kinematic ray tracing is a fundamental
step for traveltime tomography, because it connects the traveltimes with velocity anomalies.
Seismologists also use ray tracing to study illumination of seismic data, and Kirchhoff depth
migration is based on traveltime tables generated by ray tracing.

One of the early 3D ray tracing techniques (Jacob, 1970) is designed to incorporate the
effect of a subducted slab. Based on their different approaches to the problem there are
four types of 3D ray tracing technique. The two traditional methods include the shooting
method (Julian, 1970) and the bending method (Wesson, 1971). There are many hybrid
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versions of these two methods (e.g., Julian & Gubbins, 1977; Pereyra et al., 1980; Thurber
& Ellsworth, 1980). The third method is the finite-difference eikonal solver (Vidale, 1990;
Qin et al., 1992), and the fourth method is the shortest-path method (Moser, 1991) which
follows network theory. Practically, however, it is more convenient to classify different ray
tracing methods based on the number of dots to be connected. By this classification, there
are usually three ray tracing classes: (1) one-point ray tracing, which simulates shooting
of rays; (2) two-point ray tracing, which simulates transmission or refraction rays; and (3)
three-point ray tracing, which simulates reflection rays.

8.1.5.2 Ray tracing in V(z) models: the Moho velocity distribution

Ray tracing in 1D or V(z) models has been of interest to seismologists since the birth of
seismology. The main reason is that on a global scale, the Earth’s velocity structure is
predominately 1D. For many large-scale studies, a 1D model or a 2D model (assuming that
the raypath stays in the great-circle plane through the source and receiver) is often sufficient.
The main benefit of using the V(z) model is its computational efficiency. For example, in
1985 I was able to trace around 100 rays per second in a V(z) mantle model using a
SUN2 computer. Another benefit of using the V(z) model is the stability of the solutions.
Since the reference velocity model usually differs from the reality, such stability is very
helpful.

One particularly interesting way of ray tracing in global V(z) models is based on a classic
approximation due to Mohorovicic (Chapter 7 of Bullen, 1963). By this Moho velocity
distribution, the Earth’s velocity field is composed of many shells or layers, and in the ith
layer, the velocity is

vi (r ) = ai exp(r, bi ) (8–5)

where r is the distance to the center of the Earth, and ai and bi are two constants for the ith
layer. Both Figures 8.8b and 8.9b were produced following this approach.

Two factors make the Moho velocity distribution very useful. First, the 1D velocity
profiles in many areas can be closely modeled by the Moho velocity distribution. Second,
when the Moho velocity distribution becomes valid, analytical solutions exist for source–
receiver traveltime and distance. For a refraction ray with ray parameter p, the distance
�(p) and traveltime T(p) of first arrivals are given by

�(p) = 2p

∫ γ0

γp

dr

r
√

η2 − p2
(8–6)

T (p) = 2
∫ γ0

γp

η2dr

r
√

η2 − p2
(8–7)

With the above Moho velocity distribution, we will have

η = r/v = exp(r, 1 − b)/a (8–8)
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Table 8.1 Format of a velocity model using the Moho approximation.

Order Bottom radius 1st constant 2nd constant

1 r1 a1 b1

2 r2 a2 b2

3 r3 a3 b3

. . . . . . . . . . . .

Then the solutions of the distance and time terms are

�(p or i0) = 2

1 − b
cos−1

(
a · p · rb−1

0

) = 2

1 − b
cos−1(sin i0) (8–9)

T (p or i0) = 2

(1 − b)

√
a−2r2−2b − p2 = 2

(1 − b)

r1−b
0

a
cos i0 (8–10)

where i0 is the take-off angle at the surface. In a V(z) model described by the Moho velocity
distribution with a single pair of constants a and b, the above solutions can be used to
compute distance and traveltime from the surface ray take-off angle. Since the equations
are analytical, one can also obtain the take-off angle i0 from given distance �.

A much more useful V(z) model is composed of multiple shell layers, each following
the Moho approximation. The model may be expressed like that in Table 8.1. In this case,
for a given ray parameter p, we can use Equations (8–9) and (8–10) to compute changes
in distance and traveltime between any two levels within each velocity layer. For example,
suppose that we have two radius levels rupper and rlower within the ith layer, then for ray
parameter p,

�(rupper) − �(rlower) = 2

1 − bi

[
cos−1

(
ai · p · rbi −1

upper

)
− cos−1

(
ai · p · rbi −1

lower

)]
(8–11)

T (rupper) − T (rlower) = 2

(1 − bi )

[√
a−2

i r2−2bi
upper − p2 −

√
a−2

i r2−2bi
lower − p2

]
(8–12)

Repeated use of the above two equations for each velocity layer will lead to total distance
and traveltime of any ray in the multi-layered V(z) model.

8.1.5.3 Ray tracing using reference tables

One particularly efficient way to do ray tracing in the above type of V(z) velocity model
is to use a reference ray table. We construct the reference ray table using the fact that all
seismic stations are usually located at the surface. To make the table from a surface source
a series of rays in the given V(z) model is computed for source–receiver distances increased
by a small step �x, as shown in Figure 8.12.

As shown in Table 8.2, each row of the reference ray table contains information for one
ray. The first part of the ith row is the “header” part that includes ray parameter pi, total
traveltime Ti, and bottoming depth of the ray zbi. The remaining part of the row contains
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Table 8.2 An example reference ray table.

Ray Header Ray depth and traveltime

1 p1 zb1 T1 z11:t11 z12:t12 z13:t13 . . . . . . 0:0 0:0
2 p2 zb2 T2 z21:t21 z22:t22 z23:t23 . . . . . . 0:0 0:0
3 p3 zb3 T3 z31:t31 z32:t32 z33:t33 . . . . . . 0:0 0:0
4 p4 zb4 T4 z41:t41 z42:t42 z43:t43 . . . . . . 0:0 0:0

0          1Δx         2Δx         3Δx        4Δx        5Δx        6Δx          ...       nΔx

x

z

Figure 8.12 A series of rays of incremental distance �x.

the ray depth zi j and traveltime ti j at the intersection point between the ith ray and the jth
distance step.

To use the reference ray table, we start with the given source–receiver distance and
source depth. We will locate the column of the table that has a distance nearest to the given
source–receiver distance. We will then search through the column to find the row with
a depth nearest to the given focal depth. A close approximation of the given ray is thus
yielded, represented by the ray parameter of the row. If a better approximation is desired,
one can either use a finer reference ray table, or trace the raypath further from the current
ray information.

Exercise 8.1

1. Using a spreadsheet to compile observed 1D, or V(z), profiles from the literature, make
a list of entries to include location, geologic setting, wave type, frequency, depth range,
velocity profile, reference (authors, year, and publication), etc.

2. If velocity increases linearly with depth, what is the maximum depth of the raypath of a
first arrival at 10-km offset between a source and a receiver located on the surface?

3. The traveltimes and raypaths of transmitted and reflected waves are dependent on
velocity variation but independent of density variation. The amplitudes of transmitted
and reflected waves depend on the variations of both velocity and density. Can you
devise a way to extract density variation using transmission and reflection data jointly?
As a first-order approach, you may simplify the model and acquisition geometry.
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8.2 Semblance velocity analysis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.2.1 NMO semblance velocity analysis

In Section 2.2 we discussed nor mal moveout (NMO) stacking and associated semblance
velocity analysis that deliver two products for each CMP gather: the stacking velocity
profile and a stack trace defined at the midpoint in lateral position. Here the usefulness
and limitations of NMO semblance velocity analysis are examined. In most seismic data
processing projects, NMO semblance velocity analysis is the first type of velocity analysis.
At each CMP location, after identifying some major primary reflection events, we may
approximate the velocity function above each chosen event with an average velocity that is
the stacking velocity, and perform NMO with a profile of stacking velocities. The stacking
velocity profile should be able to flatten most primary reflections after NMO, so that all
data traces can be stacked across the offset axis to form a single stacked trace. Therefore,
the stacking velocity at each depth, marked by the corresponding two-way traveltime, is a
medium average of all the overburden velocities above that depth.

Semblance velocity analysis has the following advantages:

1. Simplicity – the underlying model, assumptions, and equations involved are all very
straightforward.

2. Robustness – the processes of NMO and stacking are computationally robust.
3. Objectivity – the semblance can be computed regardless of the data quality and validity

of the assumptions. It is up to the user to interpret the validity of the analysis and pick
the stacking velocity.

The semblance velocity analysis also has a number of pitfalls in terms of:

1. Assumptions – a number of assumptions are involved to compute the semblance:
� All events are primary reflections (this requires the elimination of multiples and

converted waves when possible);
� The velocity field is locally layer-cake (this requires the use of CMP gathers);
� Reflection raypaths are straight due to the layer-cake assumption, but real reflection

raypaths are curved like the letter U (this is one of the reasons behind the hockey-stick
at far offset which will be discussed in the next section).

2. Non-uniqueness – it is non-unique to determine interval velocities from rms velocities.
This issue will be examined in a moment.

3. Challenges – the process has to tolerate a number of problems and associated noises,
such as:
� Narrow offset range of reflections at shallow times;
� NMO stretch at farther offset and shallower times;
� Static problem at short and long wavelengths;
� Increase of data frequency with depth;
� Cross-over events, or events with conflicting dipping angles.
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Figure 8.13 A migrated gather illustrating the hockey-stick pattern at far offset.

An example of the consequence of some of the challenges is the “hockey-stick” pattern
after NMO, or on a time-migrated gather such as that shown in Figure 8.13. Since both
processes contain far-offset stretch, one explanation for the cause of the hockey-stick is
the stretch effect at far offset. However, there are a number of other factors that may cause
or at least affect the pattern. These include the existence of velocity anisotropy and the
effect of ray bending. It will be illuminating to compile all factors that may contribute
to the hockey-stick pattern and then quantify their impact using both synthetic and field
datasets.

In practice, semblance velocity analysis can be affected by a number of factors. Box 8.2
illustrates the impact of data filtering on the result of semblance velocity analysis.

The result of the semblance analysis for each CMP gather is a stacking velocity profile
for the midpoint position of the CMP. For 2D or 3D seismic data, we can construct a 2D or
3D model of stacking velocities by combining the semblance velocity solutions along the
2D profile or 3D data volume. The stacking velocities are functions of zero-offset two-way
reflection time, and they can be used in post-stack migration.

8.2.2 Interval velocities and Dix formula

For many seismic imaging processes, we need to have a model of interval velocity, which
is the velocity of a local interval either in spatial or temporal scales. Hence, there is a
need to relate the stacking velocity profile to either the temporal interval velocity profile
or the depth interval velocity profile. Dix (1955) formulated the relationship between the
temporal velocity profile and its rms velocity, Vrms, which may approximate the stacking
velocity.
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Box 8.2 Effects of filtering on semblance velocity analysis

The accuracy of picking stacking velocity via the semblance velocity analysis can be
affected by various pre-processing methods and parameters such as fold and offset range.
Here the effects of filtering on the semblance analysis are illustrated in Box 8.2 Figure 1
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Box 8.2 Figure 1 The left panels are the semblance plots, and the curves with stars denote some
of the velocity profiles picked. The right panels are the CMP gathers after NMO using the
picked velocity profiles in the left panels. (Upper) The original data. (Middle) After a low-cut
(25–30–55–65 Hz Ormsby) filter. (Lower) After a high-cut (3–6–25–30 Hz Ormsby) filter.
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(D. Reynolds, personal communication, 2007). The data were acquired in the Gulf of Mexico
using an airgun source and ocean bottom node receivers that were tethered to a buoy with
antenna sending the signal to the recording vessel. Shot spacing is 33.5 m, receiver spacing
is 100.6 m, and the maximum offset 10 737 m. A surface-consistent deconvolution was
applied prior to the semblance analysis.

The upper panels of the figure show the semblance and NMO plots of the original data.
In comparison, the data after a low-cut filter in the middle-left panel have more focused
semblance but lose shallow events; the data after a high-cut filter in the lower-left panel
maintain more slow events, losing the high-velocity “clouds” and shallow events. Overall,
the low-cut filter has improved the focused trend in the semblance plot, hence helped
the process of picking the correct stacking velocity. Cutting out the low frequencies may
remove much of the average values of the input data and hence increase the distinction
between events of different dips. In contrast, cutting out the high frequencies will reduce
the distinction between events of different dips.

For a layer-cake model, let �ti and vi be the time interval and interval velocity of the
ith layer, respectively. Then from the first to the kth model layers the square power of the
temporal rms velocity will be

V 2
rms(k) =

k∑
i=1

v2
i �ti/T (k) (8–13)

where Vrms(k) is the temporal rms velocity of the top k layer, and T (k) is the total two-way
reflection time from the surface down to the bottom of the kth layer:

T (k) =
k∑

i=1

�ti (8–14)

Notice in (8–13) that rms velocity is an average of the interval velocity of the k layers
weighted by their time intervals. A layer of greater time interval will therefore have a
greater impact on the rms velocity.

Similar to the above temporal rms velocity, if �zi is the depth interval of the ith layer,
we can obtain the squared power of the depth rms velocity of the top k layers Urms

k:

U 2
rms(k) =

k∑
i=1

v2
i �zi/Z (k) (8–15)

where Z (k) is the total thickness from the surface down to the bottom of the kth layer:

Z (k) =
k∑

i=1

�zi (8–16)

The major motivation for Dix (1955) is to derive the reverse process, i.e., from the rms
velocity back to the interval velocities. From (8–13) we know that

V 2
rms(k)T (k) − V 2

rms(k − 1)(k − 1) = v2
k �tk
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Figure 8.14 A cross-section showing the model of normal moveout with a dipping reflector.

Hence the squared power of the interval velocity of the kth layer is

v2
k = [

V 2
rms(k)T (k) − V 2

rms(k − 1)T (k − 1)
]
/�tk (8–17)

From the top layer downwards, we can use the above Dix formula repeatedly to obtain the
temporal interval velocity profile from the temporal rms velocity profile. Notice that for
the ith layer its depth interval and temporal interval must satisfy

vi = �zi/�ti (8–18)

Thus one can easily derive the depth intervals from a temporal interval velocity profile.
From a stacking velocity profile, it is common practice in reflection seismology to

approximate the stacking velocity as the rms velocity and use the Dix formula (8–17) to
calculate the interval velocities of a layer-cake model. However, it is a non-unique process
to obtain the interval velocities from the rms velocities, although the reverse process based
on (8–13) is unique. When the interval velocities are given, the corresponding time intervals
of all model layers will also be given; thus the process to calculate the rms velocity is unique.
In contrast, when an rms velocity profile is given, the number of model layers and their
traveltime intervals are not given. It is well known (e.g., Aki & Richards, 1980) that a
number of different combinations of time intervals and interval velocities may give exactly
the same rms velocity. Hence, the solution of the interval velocities is often determined
with a number of constraints, such as determining the number and time intervals of model
layers based on data quality and geology, and constraining the range or trend of interval
velocities using other information.

8.2.3 Dipping reflectors and point scatters

From the viewpoint of velocity analysis, the essential idea behind the semblance velocity
analysis is to create a situation in which the value of the velocity will affect the semblance
or stacked amplitude of a specific seismic gather; hence we can derive the velocity based
on the intensity of the semblance. We may extend the above idea to gathers other than the
NMO process for CMP gathers. Let us examine a couple of cases in the following.

In the case of a dipping reflector like that shown in Figure 8.14, the reflection traveltime
can be derived from a coordinate rotation. The original coordinate system (x, zr), is rotated
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Figure 8.15 A cross-section showing the geometry of a point scatter.

to a new coordinate system (x′, zr′). In the rotated coordinates with dipping axes, we
have

(vt)2 = (x ′)2 + (
z′

r + z′
s

)2
(8–19)

We can transform the above back to the original coordinates with non-dipping axes to
yield

(vt/ cos δ)2 = (x − ds tan δ)2 + (zr + zs)
2 (8–20)

The existence of dip reflectors argues the need for dip move-out (DMO). Aiming to
preserve conflicting dips with different stacking velocities, DMO is a mapping process that
is applied to pre-stack data after NMO correction. A tutorial discussion on NMO and DMO
is given by Liner (1999).

Another case is that of point scatter, which is fundamental to applications such as
Kirchhoff migration. Figure 8.15 sketches a cross-section with a point scatter at location
(x, z), and the shot and geophone are located at (s, 0) and (g, 0) respectively.

The total raypath length from the shot to scatter and back to the geophone is

tv =
√

z2 + (x − s)2 +
√

z2 + (x − g)2 (8–21)

We can convert from the shot and geophone coordinates to the midpoint (m) and half-
offset (h) coordinates using

m = (g + s)/2 (7–7a′)

h = (g − s)/2 (7–7b′)

In other words,

g = m + h (7–31a′)

s = m − h (7–31b′)

Hence from (8–21) we have

tv =
√

z2 + (x − m + h)2 +
√

z2 + (x − m − h)2 (8–22)

The contours of traveltimes of different values of either (m, h) or (g, s) coordinate systems,
as portrayed by either (8–21) or (8–22), respectively, form a graph similar to the Cheops
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Figure 8.16 A 3D view of the Cheops Pyramid for a single scatter (modified from Biondi
(2004).

Pyramid. Figure 8.16 shows an example of the pyramid, modified from Biondi (2004).
Would you be able to draw a cross-section of the Cheops Pyramid using either Equation
(8–21) or (8–22) and using a spreadsheet?

Exercise 8.2

1. In semblance velocity analysis we usually stack all traces with equal weight. Should we
apply variable weights as a function of offset and intersection time? Devise a way to
conduct such a weighted semblance stack process.

2. Explain why the root-mean-square velocity is not the exact stacking velocity. Which of
the two velocities is usually faster than the other and why?

3. Use an Excel spreadsheet to illustrate the Cheops Pyramid in imaging a point diffractor.

8.3 Migration velocity analysis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.3.1 Motivation

Migration velocity analysis refines the velocity model by utilizing the dependency of
depth migration on velocity variations. It is an extension of semblance velocity analysis for
migrated gathers. While a velocity model is a pre-condition for seismic migration, we often
do not have a sufficiently good velocity model and we still need to deliver the best possible
migration result. This motivated the creation of time migration methods which attempt



272 Practical Seismic Data Analysis

0            T
im

e (s)         3.5

0            T
im

e (s)         3.5

Figure 8.17 Comparison between cross-sections of: (left) Kirchhoff curved ray pre-stack
time migration; and (right) Kirchhoff pre-stack depth migration for a synthetic salt model
(Lazarevic, 2004). The pre-stack depth migration produces a much better image of the
sub-salt areas.

to image reflectors of different dipping angles without the presence of lateral velocity
variation. Specifically, a post-stack time migration will take either a constant velocity
model or a semblance velocity model, while a pre-stack time migration will use an interval
velocity model created based on semblance velocity analysis plus a conversion using the
Dix formula. In general, time migrations are not sensitive to changes in velocity model.

The high sensitivity of depth migration methods toward velocity variations is the main
motivation for migration velocity analysis. In the presence of lateral velocity variations the
quality of depth migration is much superior to time migration, as shown in Figure 8.17.
Post-stack depth migration may be a relatively inexpensive way to image in the presence
of strong lateral velocity variations such as salt flank and highly faulted and folded areas.
Pre-stack depth migration is currently the state-of-the-art imaging method to deal with
cases that have high structural complexity as well as strong lateral velocity variations.

8.3.2 Velocity–depth ambiguity

One challenge to reflection velocity analysis is the velocity–depth ambiguity, which refers
to the notion that many different velocity and depth combinations are able to satisfy the
same traveltime of seismic reflections. This non-uniqueness problem has been studied by
Bickel (1990), Lines (1993) and Tieman (1994) for the flat reflector case. Rathor (1997)
extended the analysis to the dipping reflector case. Let us examine the velocity–depth
ambiguity with the simple case shown in Figure 8.18.

In Figure 8.18 the left panel shows a simple post-stack case, and the right panel shows a
pre-stack case. Since velocity is constant, we can calculate the traveltime with small changes
in velocity and reflector depth. As shown in Table 8.3, the zero-offset traces will have the
same traveltime of 1 s in three different combinations of reflector depth and velocity.
However, the traveltime varies for the three combinations when offset is 1 km. Hence, we
need to use pre-stack depth in order to determine the correct velocity and reflector depth.

8.3.3 The impact of velocity errors on migration solutions

Migration frowns and migration smiles, respectively, are often used as indicators of
under-migration (migration velocity is too slow) or over-migration (migration velocity
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Table 8.3 Comparison between zero-offset and non-zero-offset cases.

Zero-offset Offset = 1 km

Reflector depth (km) 0.9 1 1.1 0.9 1 1.1
Velocity (km/s) 1.8 2 2.2 1.8 2 2.2
Traveltime (s) 1 1 1 1.144 1.118 1.098

S1 S2
R1 R2

1 km S1

R1 R2

1 kmS2

V = 2 km/s V = 2 km/s

1 km 1 km

Figure 8.18 Reflection rays in a one-layer model. (Left) Two zero-offset reflection rays. (Right)
A zero-offset and a non-zero offset reflection ray.

is too fast). Figure 8.19 shows an example by Lazarevic (2004) illustrating the influence of
velocity on Kirchhoff pre-stack depth migration of a synthetic SEG/EAGE salt model. As
shown in panel (a), when the migration velocity is too fast, the observed reflection time is
longer than the predicted time, resulting in deeper reflector positions than the correct ones.
A number of migration smiles also appear near the edges of the reflection features in panel
(a). Beddings near the fault traces show signs of migration smiles above discontinuous
points along interfaces and faults. In contrast, when the migration velocity is too slow, the
observed reflection time is shorter than the predicted time, resulting in shallower reflector
positions than the correct ones. Events tend be of lower dip angles, and the synclinal features
tend to have cross-over events.

A careful comparison between the three migrated images in the figure reveals that the
image has the best focus when the correct velocity model is used. However, such evidence
may not be easy to capture in real cases where we may not have much clue about what is the
correct image. There are also data noise and processing artifacts in practice. Nevertheless,
the better the velocity model, the less appearance of offsetting events at kinked corners of
synclines, anticlines, and faults.

Another question is about whether it is better to use slower or faster velocity models
when we are not sure about their correctness. Since a faster velocity model will result in
shallower reflection events, there will be more reflection events when such a model is used,
as shown in the first panel of Figure 8.19. Hence, from the perspective of capturing as much
reflection energy as possible, we would be better off trying faster migration velocity models
until we reach to the most reasonable velocity model. Without knowledge of the correct
velocity model, people often smooth the most reasonable velocity model in order to reduce
the short-wavelength errors for the velocity field.
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Figure 8.19 Comparison of cross-sections of Kirchhoff pre-stack depth migration using:
(a) 10% faster velocity, (b) correct velocity, and (c) 10% slower velocity (Lazarevic, 2004).
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8.3.4 The common image gather (CIG) flattening principle

Following the discussion in Section 7.2, let us re-visit the general process of the single-
arrival Kirchhoff pre-stack depth migration as shown in Figure 7.10. Each piece of the input
data trace is mapped to all model points that satisfy the corresponding two-way traveltime.
As shown in Figure 7.10, the migration process produces extra dimension(s) of traces. In
other words, each input trace will produce many migrated traces over the migrated section
in 2D or volume in 3D. While the final migration image can be produced by stacking
all migrated traces, we can make partial stacks by using a subset of migrated traces.
We can collect some of the migrated traces to form different types of migrated gathers,
such as taking migrated traces from each common shot gather to produce migrated shot
gathers.

For migration velocity analysis, we want to select such migrated gathers that will be
most sensitive to velocity variations. One of the best choices is the common image gather
(CIG), which is a collection of migrated traces at a common image location. A CIG is
defined for a fixed lateral position in the solution space: we may call it the image position,
image location, or image bin. The CIG for each image position is simply a collection of
all migrated traces within the image bin – a stack of these traces forms a single trace of the
final image at the image position.

Let us see the CIG using schematic plots shown in Figure 8.20. Panel (a) shows the
model space with one image bin highlighted. The final migrated image will be divided
into many such image bins. Following the concept of the exploding reflector model, the
portions of the two reflectors inside the given image bin can be regarded as two diffractors
denoted by open and filled stars, respectively. For each of the three shot–receiver pairs,
the two-way reflection raypaths from the shot to each of the diffractors are represented by
the dashed curves connecting the mid points with the diffractors. Panel (b) shows the data
traces recorded by the three receivers. Each data trace contains reflected events from all
parts of the two reflectors, including the portions from the two diffractors inside the image
bin that are highlighted by the open and filled stars in this panel.

In Kirchhoff migration, each data trace will be mapped into the entire solution space
based on two-way traveltime tables. Out of the many migrated traces from a single input
data trace, there may be one migrated trace that falls in the given image bin, and we have
plotted this migrated trace at the corresponding midpoint in panel (c) of Figure 8.20. The
offset CIG, as shown in panel (d), is a graph of all migrated traces of this image bin
according to the offset between the image bin and the midpoint of each trace.

In the final migrated section, the single trace in the given image bin of this example will
be a stack of all migrated traces shown in panel (c). If the velocity model used agrees well
with the true velocity field, then the diffractors of each of the migrated traces in this CIG
will be at the same depths as the two reflectors in the image bin. In other words, with a
correct velocity model, events on the CIG tend to be flattened. If the velocity is in error,
however, the diffractors of some of the migrated traces may deviate from being flat on the
CIG. In fact, when the velocity field follows a layer-cake model, the offset CIG is nearly
the same as the NMO-corrected CMP gather.

The CIG flattening principle describes the notion that the correct velocity model should
result in flat reflectors on all CIGs. Figure 8.21 shows an example of the CIGs with three
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Figure 8.20 A schematic offset CIG in 2D imaging. (a) The portions of reflectors within the
image bin are viewed as diffractors. Dashed curves follow diffraction rays to three midpoints,
mi. (b) Three data traces, di. The two dotted wavelets denote events from the two diffractors.
(c) Migrated traces for the image bin plotted at midpoints, with diffractions from the image
bin. (d) Offset CIG; the offset is between the image bin and each midpoint.

different velocity models. Only the correct velocity model in the middle panel produces a
CIG with most events flat. Notice the appearance of hockey sticks at far offset in all panels.
Can you explain why there are non-flat events even when the correct velocity model is
used?

The CIG flattening principle is among the foundations of migration velocity analysis
(Al-Yahya, 1989). Such analyses are based on exploitation of the sensitivity of migration



277 Practical seismic velocity analysis

offset (m)
0               2000

offset (m)
0               2000

offset (m)
0               20001        1.2      1.4       1.6      1.8

T
im

e (s)

1        1.2      1.4       1.6      1.8
T

im
e (s)

1        1.2      1.4       1.6      1.8
T

im
e (s)

(a) (b) (c)

Figure 8.21 CIGs after migration with the total velocity field scaled by a factor of: (a) 0.92;
(b) 1; (c) 1.08 (Biondi, 2004).

to velocity variations. An incorrect velocity model may not only lead to wrong reflector
positions, but also blur the images in the forms of over-migration, under-migration, or a
mixture of the two effects. The migration velocity analysis basically performs migration
using different velocity models and checks the focusing level of the images. The level of
focusing may be measured in terms of spatial alignment, particularly on CIGs. It may also
be measured in terms of the coherency of events in the stack of individual depth-migrated
sections.

In a generalized sense, we can see that semblance velocity analysis exploits the sensitivity
of some particular seismic data gathers to velocity variations and measures the velocity
error using semblance or other criteria, such as flatness of the reflection events on some
particular gathers. The most common examples are the CMP gathers for NMO velocity
analysis and the CIGs for migration velocity analysis. A remaining task is to convert the
semblance velocities into interval velocities.

Exercise 8.3

1. Some people say that a correct velocity model will result in a more focused migration
image. Explain the possible reasons for this statement, and its limitations.

2. Explain why, even when using the correct velocity model, some reflection events on a
CIG may not be flat (e.g. in Figure 8.21b).

3. Explain the notion that the NMO plot is a special case of the CIG plot. Compare and
contrast the two plots. Can you construct a semblance graph for a CIG?
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Figure 8.22 Comparison between forward modeling and inverse imaging processes.

8.4 Tomographic velocity analysis
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8.4.1 Forward modeling versus inverse imaging

8.4.1.1 Comparison and contrast

Seismic tomographic velocity analysis is an application of tomographic inversion for
VMB. It is based on the relationship between the velocity model and the traveltimes and
waveforms of seismic data. Typically a linear approximation of the relationship is taken
to allow a mathematical inversion for the updates of the velocity model based on misfits
between the observed data and model predictions. The non-linearity of the relationship and
poor data coverage are the major sources of non-uniqueness in the tomographic inversion.
Therefore, solving non-unique inverse problems in seismology is a major goal of seismic
tomography.

As shown in Figure 8.22, forward modeling and inverse imaging are two opposite
mapping processes between the model space and data space. Although the sense of
“forward” and “inverse” is only relative in terms of mathematics, geoscientists usually
refer to a forward problem as a process that uses values of intrinsic variables (model) to
predict the values of observational parameters (data), and inverse imaging as the process
of finding the images of intrinsic parameters (model) from the observed values (data). For
both forward and inverse approaches, usually the first step is to formulate a theoretical
relationship between the data and model spaces and the underlying physics.

Consider, for instance, the problem of inferring subsurface density distribution from the
surface or aerial gravity measurements. We first use Newton’s gravitational law to relate
the observed gravity field to a density model. Then we can use geological information
to build an initial reference model as well as a range of model variations. If we choose
to take the forward modeling approach, we can use the initial reference model and the
range of model variations to make a set of guessed models, and use the theoretical formula
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to compute their predictions. The fit of each prediction with the observed data quantifies
the likelihood of the corresponding guessed model. As shown in Figure 8.22, the forward
modeling produces only predictable output that is constrained by the model simplification
and theoretical constraints. Consequently, the forward modeling can be as simple as a
trial-and-error process, or as extensive as an exhaustive search through the model space.

In contrast, inverse imaging attempts to constrain some properties of the Earth into an
inverted model using a chosen signal that is the most identifiable (discernible) portion of
the observed data. Inversion is desirable in geophysics because a major goal of geophysics
is to detect the properties of the Earth’s interior using measurements made mostly along
the surface of the Earth. In addition, within a given initial reference model and its variation
range, the inverse imaging is usually more objective than the forward modeling. Often the
inverse is more efficient than forward modeling when we look for the best model possible
for a given set of data and model constraints. In other words, the inverse approach is more
attractive as more data become available. The basic tasks of inverse imaging are:

� To establish the inverse problem, usually based on a forward problem;
� To invert for, or to determine, the model parameters such as seismic velocity, Q-values,

density, and seismic source locations, from observations;
� Within the inevitable limitations of data, to evaluate the reliability and other aspects of

those obtained parameters.

8.4.1.2 Linearization using perturbations

Since most observational data are collected in discrete form and are processed in digital
computers, it is sometimes inevitable but generally desirable to discretize a continuous
forward problem directly to formulate the corresponding discrete inverse problem. We may
express the forward problem as

d = f (m) (8–23)

where d is a vector of observations (data), m is the unknown model vector, and f () is the
functional describing the forward problem. The functional is usually assumed to be known,
and is generally non-linear. The model vector m, an assorted collection of parameters, is a
discrete description of the continuum model.

We can linearize the forward system by mathematically expanding it into a Taylor series
about a starting reference model mo:

d = do + ∂ f

∂m
(m − mo) + O(m − mo)2 (8–24)

or, in a linearized form by omitting the higher-order terms

�d ≈ ∂ f

∂m
�m (8–25)

where �d = d – do = d – f (mo), �m = m – mo, and ∂f
∂m is the Frechet differential kernel

matrix A.
The linear system (8–25) can therefore be denoted by conventional matrix notation

�d = A �m (8–26)
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using A = {ai j } with ai j = ∂ fi

∂m j
. A is a matrix of M columns (number of model parameters)

and N rows (number of observations, or number of equations). Consequently, the discrete
linear inverse is

�m = A−1�d (8–27)

The above formula almost never works in a deterministic sense, because A–1 generally does
not exist. This is because A is usually rank defective owing to:

� Data inaccuracy: Two or more measurements under the same conditions give different
data values. In other words, the number of equations is more than the number of unknowns
in (8–27).

� Model non-uniqueness: Different models give the same predictions in the data space.
In other words, the number of equations is less than the number of unknowns in (8–27).

The above two challenges can be dealt with by the approaches of either a generalized
inverse or some types of approximated inverse. A greater challenge, however, is that the
kernel matrix A is unknown in most real applications. This means that we know only the
data vector b in the forward system (8–26) or the inverse system (8–27).

8.4.2 Iterative tomographic inversion

Practically, we often use the kernel matrix in the reference model to approximate the kernel
matrix of the true model. This gives the dependency of the solution on the initial reference
model. As a result, most tomographic inversions are done in an iterative fashion. At the kth
iteration, we use the reference model m(k–1) to compute the kernel matrix A(k–1) as well as
the traveltime residual vector �d(k–1) = d – A m(k–1). We then try to invert the following
forward system for the inverse solution �m(k):

�d(k−1) = A(k−1)�m(k) (8–28)

The solution perturbations can be used to update the reference model as

m(k) = m(k−1) + �m(k) (8–29)

The general processing flow of an iterative traveltime tomography using first arrivals
is shown in Figure 8.23. The first three steps include data input and preparation for the
inversion; Step 4 is the tomographic inversion iteration; and Step 5 is the QC and output
of the final model. The kth tomographic iteration in Step 4 will continue until pre-defined
stopping criteria are reached. The details will be illustrated using several examples in the
following.

Figure 8.24 shows a synthetic test for a 2D VSP case. The true model has four layers of
constant interval velocities and with lateral variations in the interface geometry. The test
used nine surface shots and three wellbore receivers. The objective of this VSP simulation
is to determine the geometry of model interfaces using known layer velocities from well
data that were used to establish the initial velocity model, as shown in the top-right panel
of this figure. Ray tracing of the first arrivals in the reference model produces traveltime
residual and raypath of each source–receiver pair, which are taken into the data vector and
the kernel matrix in the forward system (8–28). For example, for the ith ray, we calculate
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Figure 8.23 Processing flow of an iterative tomographic inversion using first arrivals.
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Figure 8.24 The upper-left panel shows the true model with four layers, and the upper-middle
panel shows first-arrival rays from nine surface shots to three VSP receivers in the true model.
The other panels show the initial reference model and the solutions of the first, second, and
fourth tomographic iterations. The values on the layers are the velocities in km/s. The dashed
curves denote the true interface positions. The average (av) and standard deviation (sd) of
traveltime misfits in milliseconds are shown.

traveltime residual δdi and a raypath which traverses near many model nodes defining the
interface geometry. The position of the jth model node is (xj, zj). Thus, the ith row of the
forward system becomes

δdi =
J∑
j

ci jδmj (8–30)
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where J is the number of model per turbations, one of which is δ mj , and ci j  is the cor re-
sponding ker nel. In this par ticular case, δ di is the ith traveltime residual, δ m j is the spatial
per turbation of the jth interf ace node, and ci j  is an element of the ker nel matrix at the ith
row and jth column.

The stopping criteria for the tomog raphic iteration may be based on obser vations in both
the data and model spaces. In the data space, the statistics on data misfit level explicitly
reflect the fitness of model prediction as function of tomog raphic iteration. In the case
shown in Figure 8.24, the average and standard deviation of traveltime residuals show a
nice reduction with fur ther iterations, b ut the reduction stops around iteration four. In the
model space, the inver ted models do not change much beyond the four th iteration. The
combined use of the stopping criteria in both data and model space usually works when
the change in data fitness matches well with change model updates. A significant help is if
we know the trend or some other characteristics of the model from a priori geological and
geophysical infor mation. It is also helpful if we have a good estimate of the data noise level.
One concer n is that the inversion may converge to a wrong solution in cases of er ratic data
and poor ray coverage. Ray coverage is a measure of the hit count and angular coverage of
all traversing raypaths in a given model. Concer n about various imaging ar tif acts will be
addressed in Section 8.5.

8.4.3 Three groups of model parameterization

Seismic tomog raphy seeks a model that best fits the obser ved data for given parameteriza-
tions in the data and model spaces. Parameterization in the data space is done through the
data acquisition process. At the processing stage, we may have a number of different ways
of model parameterization. Model parameterization is an impor tant issue because the data
are er ratic and incomplete, and por tions of the model space are poorly covered in nearly
all seismic applications. Most of the existing tomog raphic velocity analyses employ the
local model parameterization. The velocity field is represented by its values on a discrete
mesh of g rids or cells, and the tomog raphic inversion seeks the velocity values on the g rids
or cells that will best fit the obser ved traveltimes. Figure 8.25 shows an example of cell
tomog raphy.

Another model representation is global model parameterization, which expresses the
velocity field using some base functions, such as the spherical har monics used in some
global mantle tomography studies (e.g., Dziewonski, 1984; Dziewonski & Woodhouse,
1987). As an application of the law of decomposition and super position (see Section 3.1.1),
global model parameterization is commonly used to retrieve long-wavelength velocity
anomalies, and it requires that all the model areas have at least a minimum level of ray
coverage. In contrast, local parameterization seeks to achieve locally high resolution and
leaves uncovered areas untouched. Some comparative studies in mantle tomography show
that the two types of parameterization can achieve solutions of comparable quality (Pulliam
et al., 1993; Wang & Zhou, 1993).

Most traveltime tomography studies took the local model parameterization using cells
or grids. Figure 8.25 shows a synthetic example of traveltime cell tomography using first
arrivals in a cross-well survey. The velocity field is represented by its values on a set
of non-overlapping square-shaped cells. This is a single-scale tomography (SST), which
represent the velocities by non-overlapping and regularly spaced cells. Once specified, the
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Figure 8.25 (a) A synthetic true velocity model in a cross-well survey using 43 shots (purple
stars) and 43 receivers (green triangles). (b) Raypaths in the true model. (c) A cell tomography
grid. (d) Solution of single-cell tomography using first-arrival traveltimes in the true model.
For color versions see plate section.

regular spacing of model parameters defines a Nyquist wavenumber to which the inversion
is especially sensitive. For given raypaths, an increase in the cell size will degrade the
resolution but will also enhance the robustness of the slowness solution because the inverted
result will be more unique and less sensitive to errors in raypaths and residuals. For real
data, the ray coverage depends not only on the positions of shots and receivers, but also on
the velocity gradient of the reference velocity model. Even with regularly spaced shots and
receivers, unevenness in ray coverage will coexist with velocity heterogeneities. In Figure
8.25b, for instance, the paths of the first arrival rays tend to stay along fast velocities and
avoid slow velocities. This is a main cause of non-linearity in traveltime tomography, and
it is difficult to accommodate all parts of a model with a single cell size.

A third model representation is the wavelet model parameterization, which represent the
model by a set of overlapping wavelets that are defined locally. This is another application of
the law of superposition and decomposition. This representation is more complex than the
first two as it attempts to take advantage of both the basis functions and local decomposition.

8.4.4 Multi-scale tomography

8.4.4.1 Methodology

There are many measures proposed to overcome the non-uniqueness in tomographic velocity
analysis, such as the use of penalty functions to constrain the inversion. Because poor and
uneven ray coverage is a major source of non-uniqueness in the practice of tomography, a
multi-scale tomography (MST) method (Zhou, 1996) has been devised. As a simple form
of wavelet model parameterization, the MST aims to cope with mixed-determinacy due
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to unevenness in ray coverage. Like a combined use of many SST using different cell sizes,
the MST consists of three steps. The first step of MST is to define a set of sub-models with
different cell sizes; each sub-model covers the whole model region. The sub-models allow
a decomposition of velocity anomalies into components of different cell sizes.

The second step of MST is to determine all sub-model values simultaneously rather
than progressively. Many previous tomographic studies have attempted to use multiple
sets of cell sizes progressively (Fukoa et al., 1992; Bijwaard et al., 1998). In contrast, a
simultaneous determination of the parameters of all sub-models in the MST will minimize
the spread of model values between different model cells. Each spatial location belongs to
all sub-models, while at the same location the consistency between the data contributions,
such as the apparent slowness of different rays, may vary over different sub-models. The
sub-model with a higher level of consistency between data contributions will gain more
from the inversion. Owing to the weight of their sizes, larger cells will take more model
values when they match well with the geometry of the true model anomalies. The sum
of velocity values of all sub-models at each position should approximate the true velocity
value there.

The final step of MST model is a superposition of all sub-model values. We may choose
K sub-models, and let M (k)

j be the model value of the jth cell in the kth MST sub-model.
Then the final value of the jth model variable is

mj =
K∑
k

w(k) M (k)
j (8–31)

where w(k) is a weighting factor which can be defined a priori. The unbiasedness condition
in statistics requires that the sum of all weighting factors is equal to one, i.e.

K∑
k

w(k) = 1 (8–32)

The default value of w(k) is 1�K, or a constant value for all sub-models. Differentiating
(8–31) on both sides and inserting the result into (8–30), we obtain the general forward
equation for the MST

δdi =
K∑
k

w(k)
JK∑
j

c(k)
i j δM (k)

j (8–33)

where Jk is the number of model parameters in the kth sub-model. The inversion variables
for the MST are the function values {δM (k)

j }.
As an example using notation specified for traveltime tomography, the forward multi-

scale equation is

δti =
K∑
k

w(k)
Jk∑
j

l (k)
i j δs(k)

j (8–34)

where δs(k)
j is the slowness perturbation of the jth cell of the kth sub-model; and l (k)

i j is the
length of the ith ray in the jth cell of the kth sub-model. At each model location the cells
containing a higher level of consistency between data contributions will stand to gain more
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Figure 8.26 The upper-left panel is the same synthetic true model as in Figure 8.25 in a
cross-well survey. The other panels show 10 MST sub-models. The Order 1 sub-model has the
same geometry as the SST model in Figure 8.25. For color versions see plate section.

from the inversion. After inverting the system (8–34) for {δs(k)
j }, the final MST solution is

a superposition of solutions of all multi-scale sub-models

δs j =
K∑
k

w(k)δs(k)
j (8–35)

Owing to the above superposition, the number of model variables and cell size of the final
solution of the MST is identical to that of the SST with the dimension of the smallest MST
sub-model. Notice that the superposition in the above equation will not alter the traveltime
residues because it is consistent with the decomposition in (8–34).

8.4.4.2 A synthetic example

Figure 8.26 shows some MST sub-models for the cross-well synthetic case shown previously
in Figure 8.25 using the SST. The cell size of the SST model is 40 × 40 m2, giving a total
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of 25 × 75 = 1875 inversion variables for the SST. Taking the SST model as the first-order
MST sub-model, the cell sizes of the first nine MST sub-models are multiples of the cell
size of the SST model. The last MST sub-model takes the whole model area as a single
cell. Combining all sub-model cells, there are 2765 inversion variables for the MST model.
Depending on the ray coverage, the actual number of inversion variables might be lower. In
contrast, the 43 shots in the left well and 43 receivers in the right well give a total of 1849
first arrivals. After the post-inversion superposition of all MST sub-models, the final MST
solution has the same 1875 cells as the SST solution.

Figure 8.27 shows the true model, the initial reference model with constant velocity, and
the solution of the MST and SST. Using the same data and initial reference model, both
the MST and SST solutions were derived after four iterations of ray tracing in the reference
model, inverting for slowness perturbations, and updating of the reference velocity model.
The mean and standard deviation of traveltime residuals are 0.1 ms and 1.3 ms for the
MST solution, and 0.4 ms and 1.5 ms for the SST solution. The similar level of data fitting
for these two solutions manifests the non-uniqueness in tomographic inversion. However,
the MST solution is smoother than the SST solution. By the “principle of parsimony”,
the simpler (or smoother here) of the two equally fitting solutions is the best solution.
Comparing with the true solution in this synthetic example, the MST solution outperforms
the SST solution.

Figure 8.28 provides a detailed breakdown of the contributions from the MST sub-
models. The solutions are plotted as percentage ratio of the velocity perturbations to the
mean velocity of 2.7 km/s. The final MST model shown in the upper left panel is a spatial
superposition of the 10 sub-model solutions that were inverted simultaneously. Clearly, the
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Figure 8.28 The upper-left panel is the MST solution, which is a superposition of the solutions
of 10 sub-models shown in the rest of the panels. Plotted here are the ratios in per cent between
the velocity perturbations and the mean velocity Vm = 2.7 km/s. For color versions see plate
section.

sub-models of different wavelengths all contributed significantly to the final model. We
may visualize that each velocity anomaly, such as the fast velocity anomaly enclosed by a
dotted circle in the middle part of the true model, is composed of contributions from the
portions of solutions enclosed by the purple circles in different sub-models in this figure.
Interestingly, patterns of the X-shaped stretches in the first-order sub-model in this figure
are similar to that of the SST model in Figure 8.27d. These stretches are along-raypath
smearing artifacts due to lack of crisscrossing rays for small cell sizes.

8.4.4.3 Impact of the ray dependency on velocity variations

A major reason for the non-linearity of traveltime tomography lies in the dependency of
raypaths on the velocity variations. Each raypath tends to bend away from areas of slower
velocities and toward areas of faster velocities. Consequently, the ray coverage in the
reference model may differ from that in the true model. Figure 8.29 shows a set of synthetic
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Figure 8.29 Velocity perturbations are contoured in the unit of percentage of the layer averages.
(a) True model. (b) First-arriving rays in true model. (c) and (d) are SST and MST solution
using true rays. (e) and (f) are solutions without the knowledge of true rays. (g) and (h) are
difference between model pairs. r is correlation between the solution and the true model. For
color versions see plate section.

tests over a 300 km wide and 39 km deep cross-section simulating a crustal tomography.
The true model consists of a series of lateral inhomogeneities that are superposed over a
depth-varying 1D velocity profile which is not shown in this figure. There are 16 surface
receivers and 31 sources at two focal depths. The true rays in panel (b) indicate that the ray
coverage is good in the top portion of the model and poor in the lower portion.

Here each layer (rather than the cross-section) is decomposed into MST sub-models. The
lateral size of the single cells is 10 km, while the lateral sizes of the nine multi-cells used
are 10, 20, 30, 45, 60, 75, 100, 150, and 300 km. The applications of the SST and MST
differ only in their model representation, and all other processing parameters are identical.
Panels c and d show solutions of SST and MST, respectively, using true rays to obtain
the best possible answers. In real situations, we will not know the true raypaths and have
to derive them with the velocities. Panels e and f show SST and MST solutions without
a priori knowledge of true rays, following the procedure outlined in Figure 8.23. Panels g
and h display the difference between the solutions and the true model. As expected, more
difference occurs at places of poor raypath coverage. The superiority of the MST over the
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Box 8.3 CIG-based multi-scale tomography

Based on the CIG flattening principle described in Section 8.3.4, we can pick the depth devi-
ations of major reflectors on the CIGs and then use these depth deviations in a tomographic
inversion to determine the velocity perturbations required to improve the velocity model.
The levels of flatness of the reflectors in the CIGs are good indications of the correctness
of the corresponding velocity models.
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Box 8.3 Figure 1 Comparison between SST and MST for a Gulf of Mexico dataset (Cao et al.,
2008). (a) and (c) are velocity models derived using SST and MST, respectively. (b) and (d) are
the corresponding common image gathers. For color versions see plate section.

Box 8.3 Figure 1compares the inverted velocity models and CIGs from the SST and MST
methods for a 10 km long seismic profile in the Gulf of Mexico (Cao et al., 2008). Note
that the velocity model derived from the MST in panel (c) has smoother lateral variations
than the velocity model from the SST in panel (a). The reflectors shown in the CIGs of the
MST model in panel (d) are flatter than in the CIGs of the SST in panel (b). The ellipses
in these panels highlight the areas of high contrast between the two CIG panels. Further
improvement in the model could be made by applying more tomographic iterations.

SST is evident from their correlation coefficients with the true model. Box 8.3 shows a
field data example of multi-scale tomography which uses common image gather to measure
velocity errors.
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Figure 8.30 (a) 2D synthetic model for a synthetic reflection tomographic test. The values in
this panel denote average velocities of each model layer in km/s. (b) Raypaths in the true model
from eight shots (stars) to nine receivers (triangles). (c)–(h) Examples of the multi-cell
sub-models. For color versions see plate section.
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Figure 8.31 The initial reference velocity model and solutions of five iterations of the MST.
The numbers on the models are layer average velocities in km/s. The dashed curves show the
interfaces of the true model. The average (av) and standard deviation (sd) of traveltime
residuals in milliseconds are shown at the top of each model. See Figure 8.30 for the velocity
scale. For color versions see plate section.

8.4.5 Reflection traveltime tomography

In reflection seismology, angle-limited ray coverage results in velocity–depth ambiguity
(Bickel, 1990; Lines, 1993; Tieman, 1994), owing to the competing effects of medium
velocity and reflector depth on traveltimes. One way to cope with the ambiguity is to apply
tomographic inversion to account for the effect of velocity and reflector depth properly and
to assess the non-uniqueness.

In the synthetic example in Figure 8.30, we use a reflection tomography to recover the
slowness and interface geometry for a 2D model simulating a marine survey. Panels (a) and
(b) show the synthetic true model and reflection rays from eight shots to nine receivers. The
true model consists of a water column over five layers of sediment, with velocities ranging
from 1.5 km/s near the surface to 5 km/s in the bottom layer. Lateral velocity variation
exists in the second and fourth layers, and in terms of variable interface geometry. The
MST sub-models are applied for each layer to describe both the slowness cells and the
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interface nodes. Panels (c) to (h) show six examples of the sub-models. The sub-model
with the largest cell size has the layer average values. Since there are 10 columns of cells
in each layer, we used 10 velocity sub-models and 11 interface sub-models (Zhou, 2003).

In the synthetic test, reflection traveltime data were created by ray tracing in the true
model. A set of Gaussian random noise of 20 ms in standard deviation is added to the
synthetic traveltime data. These data are used by the reflection traveltime tomography
following the procedure of Figure 8.23.

Figure 8.31 shows the initial reference model and solutions of five iterations of the MST.
The initial model has six flat and constant-velocity layers whose interval velocities are
similar but slightly differ from that of the true velocity model. The standard deviation of
traveltime residuals decreases monotonically with the MST iterations, reaching a level that
is comparable to the added noise in the synthetic data. The MST solution from the fifth
iteration matches the true model very well in both velocity values and interface geometry.
While the lateral velocity variations in the second and fourth layers are recovered well,
there are small amounts of erroneous lateral velocity variation in the third and fifth layers.

Exercise 8.4

1. While traveltime tomography derives model updates by minimizing the traveltime
misfit, are there other constraints and information that we can use to help the process?
Make a list of such extra information and give some details on how to use each
constraint.

2. Devise a residual velocity tomography method for common image gathers based on the
Kirchhoff migration. Please provide the main formula and a list of procedures of your
method.

3. What are the factors that we should consider in selecting the multi-scale elements in
multi-scale tomography? Make a checklist for best-practice procedure in conducting
multi-scale tomography.

8.5 Practical issues in tomographic velocity model building
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.5.1 Origins and symptoms of artifacts in seismic tomography

Various artifacts produced from velocity model building and seismic imaging processes are
of major concern in practice. Nearly all geophysical imaging methods produce both signals
and artifacts, which refer to a range of undesirable anomalies in the solution images due to
inadequacy in data quality, coverage, and processing algorithms. Artifacts in tomography
images are especially harmful because they are often regarded as real features. Much of this
section is devoted to examining pitfalls due to artifacts in tomographic velocity modeling
building. Near the end, a tomography method is designed to cope with the artifacts in
velocity model building. In some ways, advances in seismic tomography might be measured
by our ability to detect and appreciate the presence of artifacts.
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The main causes of artifacts in seismic tomography include the following factors, which
often overlap with each other:

� Non-linearity of the tomography system due to flaws in the assumptions and theory
that describe each inverse problem, as well as the non-linear nature of most geophysical
inverse problems themselves;

� Poor and biased ray coverage, which lead to an ill-conditioned kernel matrix;
� Dependency of the kernel matrix on the solution’s pattern and magnitude – this means

that the resolution may depend on the solution model as well as ray or wave coverage;
� Under-determinacy, or too many unknowns for given data, in global and local scales;
� Data error that is not recognized and appreciated.

The above and other factors are the causes of non-uniqueness of the tomographic solu-
tion. Such non-uniqueness may produce artifacts, or features in the solution that are incor-
rect and often unrecognizable as errors. Table 8.4 lists 15 common types of tomography
artifacts and their symptoms.

These artifacts are detailed in the following:

1. Poor resolution is the inability to resolve the morphology and amplitude of targeted
features, usually caused by insufficient data ray coverage or erroneous ray coverage
due to inadequate processing.

2. Along-raypath smearing, or smearing, is elongation of imaged anomalies along raypaths
due to lack of angular variation of raypaths.

3. Near-edge artifacts are erroneous amplitudes and patterns near the edges of tomo-
graphic solutions due to lack of ray coverage or inadequate processing.

4. Illumination shadow is a footprint artifact due to uneven and insufficient ray coverage
or inadequate processing.

5. Low-velocity holes are low velocity anomalies without ray coverage, usually due to the
rays’ avoidance of low velocities during tomographic iterations.

6. Depth–velocity ambiguity is the tradeoff between the depth extent of a raypath and the
velocities it traversed.

7. Out-of-model contribution can produce artifacts that are indistinguishable from real
features; it is due to use of data rays that traverse outside the model volume.

8. Misidentification of event can cause undetectable and severe artifacts.
9. Source and receiver position error can cause spiky pattern near sources and receivers.

10. Erroneous ray tracing is a common error in traveltime tomography which can produce
anomalies of wrong location, shape, and amplitude.

11. De-mean is the removal of either the traveltime means before inversion, or the layer
velocity means after inversion. This common practice in tomography can result in
under-estimation of amplitude of sub-horizontal features and various artifacts.

12. Inadequate model parameterization is a mismatch between model grid and morphology
of the real. This will limit the resolution of tomography and cause various artifacts.

13. Inadequate initial reference model can result in wrong images due to the fact that
traveltime tomography uses raypaths and traveltime residuals in a reference model to
update the velocity iteratively.

14. Over- or under-damping in tomographic inversion can produce overly smoothed or
spiky solution models.

15. Inconsistent display is a major factor of many poor interpretations of tomographic
solutions.
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Table 8.4 Typical artifacts in seismic tomography.

Name of the
artifact

Mainly due
to poor
data/ray
coverage

Mainly due to
errors in
interpretation

Mainly
due to
errors in
processing

Symptoms / verification
of the artifact

1 Poor resolution mostly partly Blurred images, random appearance,
and systematic variation in image
amplitude / Resolution tests

2 Along-raypath
smearing

mostly partly Elongation of imaged anomalies
along raypaths / Resolution tests

3 Near-edge
artifact

mostly partly Erroneous amplitude and pattern at
edges / Resolution tests, changing
model size

4 Illumination
shadow

mostly partly Casting shallow patterns in deeper
parts of the image / Resolution test

5 Low-velocity
holes

partly largely Persistence of low-velocity
anomalies through tomographic
iterations / Study ray coverage

6 Depth–velocity
ambiguity

largely partly partly Tradeoff between the depth extent of
a ray and the velocities it traversed

7 Out-of-model
contribution

partly largely partly Use rays partly traversing outside
model volume / Compare with
solutions using only inside data

8 Misidentification
of event

mostly partly May cause undetectable artifacts /
Careful modeling and QC with other
info

9 Source and
receiver position
error

mostly partly Somewhat spiky pattern near source
and receiver / Checking raw data
geometry

10 Erroneous ray
tracing

partly largely May produce anomalies of wrong
location and pattern / Testing and
comparing ray tracing codes

11 De-mean, or
removal of data
or layer means

largely partly Lowering amplitude of horizontal
anomalies and reversed polarities
around the main features

12 Improper model
parameterization

partly largely Mismatch between model grid and
geology for available data coverage

13 Inadequate initial
reference model

partly largely Verifiable by tests using different
initial reference models

14 Over- or
under-damping

mostly Appearance of overly smoothed or
spiky images / Resolution tests

15 Inconsistent
display

mostly partly Study the original tomographic
model with different display options
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Figure 8.32 (a) A cartoon illustrating the along-raypath smear artifact. Owing to uneven
raypaths (dashed curves), the inverted anomaly differs from the true anomaly (circle). (b) A
map showing many hotspots (triangles) and cross-section A across Hawaii. (c) Input synthetic
true velocity model on cross-section A. (d) Inverted result using traveltimes from the synthetic
true model and real source and station locations. The inverted result shows some along-raypath
smears from the base of the slow-velocity anomaly. (Panels (b)–(d) are from D. Zhao, personal
communication.)

8.5.2 Smear artifacts

Let us examine several types of tomography artifacts graphically. Figure 8.32 shows a
synthetic restoration resolution test to check the ability of using real earthquake raypaths
to resolve a slow velocity anomaly beneath Hawaii (D. Zhao, personal communication).
In all restoration resolution tests, a synthetic true model and real source and receiver
locations are used to see how well the synthetic true model can be restored. Such tests
check the resolution of source and receiver coverage and the tomographic algorithm. The
checkerboard resolution tests shown in the previous section are restoration resolution tests
using checkerboard type synthetic models. Here in Figure 8.32 the test is on a slow velocity
anomaly that assembles the high-temperature and therefore low-velocity plume anomaly in
the mantle beneath the Hawaii. The inverted result shows two along-raypath smears from
the base of the slow-velocity anomaly in the lower right panel of this figure. The appearance
of the smear artifact here is due to the lack of seismologic stations and earthquake events
in the Pacific Ocean.

Figure 8.33 shows the lateral velocity variations on a west–east cross-section beneath
Iceland. This figure is from Bijwaard and Spakman (1999) who attempted to map the
low-velocity signature of the mantle plume beneath the Iceland hotspot. As was the case for
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Figure 8.33 (a) Map-view of a cross-section through the Iceland. (b) Cross-section of lateral
velocity variations from the tomographic inversion (Bijwaard & Spakman, 1999). Can you tell
the signature of the Iceland plume from artifacts? For color versions see plate section.

Hawaii, the raypaths are very biased because of the lack of stations on the ocean floor and
lack of earthquakes at different distances and azimuths from the target areas. Consequently,
most of the raypaths are within a conical fan centered on the island. In fact, one can almost
see the trajectories of raypaths from the cross-section solution in this figure. A challenge
to all interpreters of such images is: can you really tell the signature of the Iceland plume
from tomographic artifacts?

The smear artifact occurs not only in traveltime tomography, but also in all imaging pro-
cedures that involve back-projection of scattered data to form image of the scatter sources.
Kirchhoff migration, for instance, can produce along-isochronal smear artifacts. Because
the Kirchhoff migration maps the reflected or scattered waves along the corresponding
isochrons, or equal-traveltime contours, the lack of crisscrossing isochrons due to poor
source and receiver coverage will result in such an along-isochronal smear. Figure 8.34
displays an example of such an artifact from an attempt to map faults near the San Andreas
fault using a VSP dataset. In this case the acquisition of the VSP data employed a line
of surface sources and several receivers in a wellbore down to a depth of nearly 1.6 km
from the surface. The spatial distribution of the sources and receiver allows seismic map-
ping reflectors and scatters within a limited space called a VSP corridor. Unfortunately,
the authors in this study attempted to map subsurface anomalies widely outside the VSP
corridor, resulting in the spherical smear pattern in this figure that is known as the “cabbage
artifact” in VSP imaging.
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Figure 8.34 Images from a VSP Kirchhoff migration near the San Andreas Fault (SAF)
illustrating the along-isochronal smear artifacts. For color versions see plate section.

8.5.3 De-mean artifacts

Another common artifact is due to the de-mean process, or removal of the average value.
There are three types of de-mean processes in traveltime tomography. The first type is
removal of traveltime average, such as that using traveltime residual rather than total
traveltime. Many tomography papers use relative time between two seismic phases, which
is an implicit de-mean process. The second type of de-mean is due to the assumption in most
inverse operators that the statistical mean of the misfit between data and model prediction
is zero. The third type of de-mean is the removal of some averages from the tomographic
solution. For instance, the average velocities of all model layers are often removed in
velocity tomography because many interpretations are based on the lateral variations of the
velocity field rather than the absolute velocity field.

Figure 8.35 shows a cartoon illustrating an artifact due to the third de-mean process, or
removal of the layer averages of the velocity model after tomographic inversion. As we do
not know the true 1D velocity model in a specific region, we often use the layer averages
of the tomographic model to approximate the 1D velocity model. Then if the true velocity
anomaly is biased toward either slow or fast polarity, as in the case of slow velocity due
to a mantle plume as shown in this figure, the layer averages of the velocity model will
be biased, as shown in panel (e). Consequently, the de-mean or removal of such a biased
1D velocity model will produce artifacts in both the background portion and the anomaly
portion of the lateral velocity variation model (e.g., panel (f)).
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Figure 8.35 Schematic cross-sections showing the de-mean artifact. (a) Lateral velocity
variation of a low-velocity plume anomaly. (b) 1D velocity model where the unit is km/s. (c)
The absolute velocity field as a summation of the lateral velocity variation and the 1D velocity
model. (d) Solution of the absolution velocity field. (e) Estimates of 1D velocities based on (d).
Superscript bars (¯) indicate estimates are slower owing to the plume anomaly. (f) The model
of lateral velocity variations from the de-mean process, or subtracting (e) from (d).
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Figure 8.36 A restoration resolution test along a cross-section beneath Hawaii (back triangle)
from surface down to the core–mantle boundary (CMB). (Left) Synthetic true model of a
low-velocity plume. (Right) Tomographic solution using real sources and station locations and
traveltimes in the synthetic true model.

Figure 8.36 shows another restoration resolution test (from D. Zhao, personal communi-
cation) to check the ability to resolve a slow-velocity cylinder resembling a mantle plume
beneath Hawaii from the surface all the way down to the core–mantle boundary (CMB).
Can you identify on this north–south cross-section the artifacts due to the de-mean process
and due to along-raypath smearing?
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Figure 8.37 (Left) Conventional tomography determines velocity as a function of location,
v(r). Crisscrossing raypaths (dark dashed line) are required. (Right) Deformable layer
tomography (DLT) determines geometry of velocity interfaces, r(v).

8.5.4 Deformable layer tomography

8.5.4.1 Motivation and method

As an example of how to cope with the artifacts in traveltime inversion, let us examine
a deformable-layer tomography (DLT) approach (Zhou, 2004b). Seismic tomography
traditionally inverts for velocity field on a regularly spaced and fixed-in-space model grid,
as shown in the left panel of Figure 8.37. Such an approach cannot adequately describe
pinchouts or wedge-shaped velocities as commonly seen at basin boundaries, faulted rock
beds, and back-arc mantle wedges. A regularly spaced model grid also requires the use
of a large number of model variables. The DLT attempts to invert for velocity interfaces,
as shown in the right panel of this figure. The use of thickness-varying layers allows a
much smaller number of model variables for the DLT than the regularly spaced model
grid. In the DLT the geologic framework and known velocity range are adopted into the
initial reference model, and the best-data-fitting geometry of the velocity interfaces is
determined.

Conceptually, the traditional cell tomography (left panel of Figure 8.37) regards the
velocity field v as a function of the space r, or v(r ). Then the objective is to determine
the velocity values of all model grids or cells. In practice, however, we know the velocity
ranges of most Earth materials and velocity range of most study areas. What we do not
know is the location of these materials and velocity values. Hence, the concept of DLT is
to regard the velocity field as a series of velocity contours or interfaces, and the objective
is to determine the spatial location of these velocity contours. In other words, DLT seeks
to determine the depth of velocity interfaces using thickness-varying velocity layers.

Figure 8.38 shows the initial reference model and results of iterations 1, 6, and 12 of a DLT
using earthquake data along a crustal profile in southern California. The depth variations
of the seven model interfaces have been updated through each of the DLT iterations of ray
tracing in the current velocity model and inversion. The averages and standard deviations
of the traveltime residuals, as measure of data misfit level, show a systematic reduction
through the DLT iterations. The misfits of the final solution at iteration 12 are –8 ms for the
average and 257 ms for the standard deviation.
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Figure 8.38 The initial reference model (a) and three DLT solutions (b–d). Panel (e) shows
raypaths in model (d). Small triangles are stations. Small crosses are earthquake foci. A and S
are the average and standard deviation of traveltime residuals in seconds. Areas without ray
coverage are shadowed. Area in dashed box in (d) is the next figure. For color versions see
plate section.

8.5.4.2 Comparison between cell tomography and DLT

In Figure 8.39, the solutions from DLT and cell tomography are compared along the same
150-km-long and 20-km-deep transect. These two models were derived from the same
earthquake dataset, same initial reference model, and roughly the same level of data misfit.
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Figure 8.39 Comparison between a DLT model and a cell tomography model in California
using the same data. Faults: Santa Monica (SMF), Santa Susana (SSF), San Gabriel (SGF),
San Andreas (SAF) and Garlock (GF). For color versions see plate section.

While these two solutions are an example of non-uniqueness of tomography, the model
features can be compared directly with many geologic features such as basins and mountains
denoted on the figure. The DLT profile exhibits much better vertical resolution than cell
tomography because DLT directly inverts for the depths of velocity interfaces and is not
limited by cell dimensions. The DLT solution in panel (a) seems to be more geologically
plausible than the cell tomography solution in panel (b). At shallow depths in the DLT
solution, the Santa Monica Basin, San Fernando Valley and Mojave Desert are lens-shaped
basins and correspond to low-velocity anomalies near the surface. High-velocity anomalies
at shallow depths correlate with the Santa Monica Mountains and San Gabriel Mountains.
The block-shaped, pixelated images of the cell tomography model do not clearly depict
the lens-shaped geometries of many crustal structures. A decrease of cell size to improve
cell tomography resolution increases the number of unknown parameters and is limited
by the density of ray coverage. The locations of pinchouts or wedge-shaped features as
shown in the DLT solution simply cannot be replicated by the block-shaped images of cell
tomography. In the vicinity of pinchouts, cell tomography velocity values are the averages of
velocities of different lithological units and not representative of wedge-shaped lithological
units.

Cell tomography models are usually represented on profiles and maps in publications by
velocity contours, which are interpolations of grid point values. The contoured representa-
tions do not represent traveltime best-fit solutions of the original data and are not unique
solutions of the grid point array. The differences between the original inverse solution
model and the contoured representation of the model are potentially significant, especially
in the areas of wedge-outs or pinchouts of layers. The blocky model parameterization of
cell tomography truncates pinchout features that are thinner than the cell thickness, and
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Figure 8.40 Comparison of constrained DLT model (e) with three cell tomography models: (b)
Hauksson and Haase (1997), (c) Kohler et al. (2003), (d) Zhou (2004a). Purple crosses in (e)
are earthquake foci. Faults (pink) are: Sierra Madre (SMF), Mission Hills (MHF), San Gabriel
(SGF), San Andreas (SAF), and Garlock (GF). A and S are the average and standard deviation
of traveltime residuals. Solid and dotted curves of light-blue in (b) to (f) denote the PmP Moho
interpreted by Fuis et al. (2007). For color versions see plate section.

contour representations cannot recover pinchout features not preserved by the inversion
process. Because of the problems introduced by contour representations of a grid of data
points, we have not used post-inversion smoothing or contouring here.

8.5.5 Constrained traveltime tomography

An important measure to help increase the geologic plausibility and reduce the non-
uniqueness is to incorporate constraints in the tomographic inversion process using existing
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knowledge from other studies. Some of the constraints can be inserted into the design of
model parameterization, such as the use of deformable layers in DLT in contrast to the
fixed-in-space model grid in cell tomography. We can implement hard constraints that a
tomographic inversion must satisfy. We can also implement soft constraints that a tomog-
raphy inversion needs to satisfy within a given tolerance range.

As an example, Figure 8.40 shows the use of soft constraints, the ranges of crustal
thickness from receiver functions, to constrain a DLT crustal velocity profile. Here a
constrained DLT model (panel (e)) is compared with three published cell-based crustal P-
wave velocity models of southern California (Hauksson & Haase, 1997; Kohler et al., 2003;
Zhou, 2004b). The DLT profile fits the data significantly better than the cross-sections of
three published cell tomography models. The DLT model has been constrained by the crustal
thicknesses estimates based on analyses of receiver functions at seven locations along the
profile (Zhu & Kanamori, 2000). In addition, the tomographic solutions are compared with
the PmP Moho interpreted from the Moho reflections (Fuis et al., 2007). The DLT Moho
correlates well with the PmP Moho along this profile. The difference between these two
independently derived Moho depths is less than 3 km at most places.

The velocity distribution patterns of the DLT solution and the cell tomography solutions
in Figure 8.40 show some similarities. The constrained DLT solution supports an upward
trend of the Moho toward the continental margin. The blocky patterns of cell-based models
severely limit realistic representations of crustal features, especially where raypath smearing
artifacts are present. Post-inversion contouring of blocky models will differ markedly in
regions of artifacts from DLT models, which do not require post-inversion smoothing or
contouring, and will not necessarily delineate the shapes of real crustal features. The better
data fitness and the absence of raypath smearing artifacts suggest that DLT methodology
has the potential to significantly improve 3D crustal velocity models.

Exercise 8.5

1. Compile a list of the “rule of thumb” ways to QC at least five types of common
tomographic artifacts. Specify the tests that can be conducted to verify the artifact and
quantify its extent.

2. Make a computer algorithm to illustrate the de-mean artifact in traveltime tomography.

3. How should we deal with localized velocity anomalies, such as a small salt body, in
deformable-layer tomography? Make a 2D computer algorithm to illustrate your idea.

8.6 Summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
� Seismic velocity is the speed at which a seismic phase travels through a medium. The

velocity structure is indicative of the properties of the medium. Velocity inhomogeneity
refers to variation of velocity as a function of spatial location, and velocity anisotropy
refers to variation of velocity in different directions at a fixed location.
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� Velocity model building (VMB) is among the most common practices in seismology,
owing to the value of the velocity model for geologic interpretation and seismic imaging.
The resolution of each velocity model is limited by the frequency bandwidth of seismic
data.

� On a global scale, over 98% of the traveltimes of major types of seismic waves can be
explained by one of the standard V(z) 1D Earth models. The dominance of the 1D velocity
variation at large scales in the Earth leads to the classic refraction velocity analysis based
on seismic ray tracing in a layer-cake velocity model.

� Semblance velocity analysis estimates the stacking velocity by assuming gentle to no
changes in the reflector dip and lateral velocity variation. The stacking velocity at each
depth is the average velocity of all layers above the depth. The stacking velocity can be
approximated by the rms velocity, which is linked with the interval velocity via the Dix
formula. The derivation of the interval velocity from the rms velocity is non-unique.

� The reflection traveltimes from a single scatter in a constant velocity field, if expressed
as a function of midpoint and offset, form a geometrical shape resembling the Cheops
Pyramid. Such expression is useful in studies associated with 3D time migration.

� Migration velocity analysis refines the velocity model by utilizing the dependency of
depth migration on velocity variations. Migration velocity analyses are usually conducted
using common image gathers (CIGs); each CIG is a collection of migrated traces at an
image location. Using the CIG flattening principle that the correct velocity model will
make reflectors flat on the CIGs, the depth variations of major reflectors on the CIGs are
used to refine the lateral velocity variations.

� Tomographic velocity analysis takes an inversion approach based on relationship between
the velocity model and the traveltimes and waveforms of seismic data. Typically a linear
approximation of the relationship is taken to allow a mathematical inversion for the
updates of the velocity model based on misfits between the observed data and model
predictions.

� The non-linearity of the relationship and poor data coverage are the major sources of
non-uniqueness in the tomographic inversion. As an illustration of the means to overcome
the non-uniqueness, multi-scale tomography (MST) decomposes the model space into
overlapping sub-models of different cell sizes, inverts for the solutions of all sub-models
simultaneously, and stacks all sub-model solutions into the final model. It is an application
of the law of decomposition and superposition.

� Artifacts are often produced in velocity model building and seismic imaging processes
owing to inadequacy in data quality, coverage, and processing methods. It is important to
know the characteristics of artifacts because they may be misinterpreted as real features.
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9 Data fitting and model inversion
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9.6 Summary

Further reading

A common objective of geophysics is to probe the properties of the Earth’s interior
based on data from observations. Geoscientists often use seismic data to build a model
of the subsurface as a representation of various assessments of some simplified key
aspects of the real world. The validity of each model depends on its consistency with
observations. All observable datasets constitute a data space, and all possible models
constitute a model space. Data fitting and model inversion are two complementary
approaches in geophysics to relate the data space to the model space. Data fitting uses
forward modeling to search for models that fit well with the observed data and satisfy
our scientific intuition. Model inversion uses our scientific intuition to set up rules about
how the models should behave and then determines the model variations that fit best
with the available data. The usefulness of data fitting and model inversion is evident in
many applications illustrated in this chapter.

The basic theories of seismic modeling and inverse theory are reviewed here. Data
fitting is introduced in the first two sections via several seismic forward modeling
methods and a simple example of regression. The basic theories on inverting a system of
linear equations are given in the next three sections, in conjunction with the tomographic
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velocity analysis in Section 8.4. The least squares method as a classic linear inversion is
widely applicable in geophysical data analysis and beyond. Some mathematic insights
on inversion of linear equations are illustrated via several common ways of matrix
decomposition. The common causes of non-uniqueness in geophysical inversion include
insufficient constraining power of the data, the non-linear relationship between data
and model, and dependency of that relationship on the solution. Several practical inverse
solutions discussed here include the Backus–Gilbert method and the LSQR algorithm.
Practically, seismic inversion is synonymous with the inverse imaging in Section 8.4. The
inverse approach has the advantage of subjectively determining the values of model
properties based on the given model parameterization and data. For some applications
such as inverse filtering and tomographic velocity analysis, inversion is the preferred
method because of its objectiveness in obtaining the solutions.

9.1 Seismic forward modeling
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.1.1 Introduction to seismic modeling

A common objective of seismic data processing is to come up with models quantifying the
subsurface structures and properties. To achieve this objective, we need to consider two
common approaches to seismic model building: forward modeling and inversion. Seismic
modeling is the process of verifying the likelihood of different models by comparing the
observed seismic data with model predictions. The process is guided by our scientific
intuition as to what extent each model is geologically plausible. Seismic inversion is the
process of determining certain model values as representations of the subsurface properties
by directly inverting seismic data. Seismic modeling has three general steps: selecting the
data and models, making predictions, and validating the models. In practice these three
steps are often repeated until the most satisfactory set of models has been obtained.

Modeling can be carried out mentally, physically, and numerically. By mentally, we may
propose hypothetical models of the subsurface, and then predict the consequences of each
hypothetical model. A high level of agreement between the predictions and observations
means there is a high likelihood that the corresponding model represents the reality. How-
ever, we have to consider uniqueness, because there are usually a number of different
models that fit equally well with available observations. In practice, seismic modeling is
most often carried out using numerical algorithms in computers. There are occasionally
physical modeling studies using selected materials.

One useful notion is to visualize a data space including all datasets possible, and a model
space consisting of all models possible. The data space constitutes all the observables, while
the model space contains all possible causes of the observables. Typically, the data space in
geophysics consists of observations made at the surface of the Earth, while the model space
covers a targeted volume in the Earth’s interior. As was discussed previously in Section
8.4.1.1, forward modeling is the process of making predictions using the given seismic
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Figure 9.1 (a) A photograph of sediments in Grand Canyon, USA. (b) A seismic facies “cube”
(Gao, 2009). (c) A schematic geologic model illustrating the depositional environment of a
turbidite reservoir (Soroka et al., 2002). (d) A statistical model in which many variables behave
randomly. (e) A layered model. (f) A grid model.

acquisition setup in each given model, and inverse imaging is the process of determining
images of the subsurface based on the given data.

In the first step of seismic modeling, we need to choose the datasets that are most suitable
for our scientific or business objectives, and come up with hypothetical models. All seismic
models are simplified scenarios of the subsurface seismic properties, such as the spatial
distributions of seismic velocities, density, and their derivatives such as reflectivity, that
are interpreted from the geologic and geophysical information. Making models requires
the use of a certain format, called model parameterization, or model partition. Let us see
some examples.

Figure 9.1a shows a photograph of the Grand Canyon, exhibiting sediments in layered
geometry that are exposed on a highly irregular surface topography. Figure 9.1b is a seismic
facies “cube” exhibiting the differences between sediments, fluvial channels, and interfaces
in terms of geometry and fabrics of rocks. These observations may lead to geologic models
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like the one shown in Figure 9.1c, as well as seismic models. A seismic model can be
statistical, such as a fixed level of porosity b ut a random pore distrib ution ( Figure 9.1d).
In practice, most seismic models are deter ministic, with geologically meaningful and fixed
values at all spatial positions in each model. Two of the most popular types of seismic
models are the layered model (Figure 9.1e) and the g rid model ( Figure 9.1f). The layered
model emphasizes the lateral continuity of rock strata and depth dependency of physical
proper ties such as pressure and temperature in the Ear th’s interior. The g rid model provides
a simple and equally spaced representation of spatial and/or temporal distrib utions of
physical proper ties.

In the second step of seismic modeling, we use a given seismic model and the spatial
distrib utions of sources and receivers to produce measurable seismic responses in ter ms
of traveltime, amplitude, and phase angle of various wave types as functions of space,
time and frequency. The responses are produced based on scientific principles of seismic
wave and ray theories, which will be elaborated in the next three subsections. The process
allows us to map each model’s responses in the data space. Conversely, mapping from
the data space back to the model space is called an inverse with respect to the forward
modeling. Compared with forward modeling, an inverse approach is often considered as a
more objective, b ut challenging, task.

In the third step of seismic modeling, we quantify the fitness between the model predic-
tions and observed data, and evaluate the validity or resolvability of the model parameters
for the given data and data coverage. As was discussed in Section 4.4, the resolvability is
the constraining power of the given data to define the model parameters. The validity of a
model requires a good fit between its predictions and the observed data as well as sufficient
data coverage to constrain its uniqueness. Though there are always non-unique models for
each dataset in geophysical practice, a tighter connection between the data space and model
space of a given application means a better chance that our best data-fitting model may
agree with reality in some key aspects.

As an example, Figure 9.2 shows a seismic modeling study by Dreger et al. (2008) on the
source mechanisms of a magnitude 3.9 seismic event associated with the tragic collapse of
a coal mine in the Crandall Canyon in central Utah on August 6, 2007. Here the predicted
seismograms were computed using a synthetic model of the source that is dominated by a
horizontal closing crack to resemble the collapse of the coal mine shafts. A reasonable level
of fit between the observed data (dark curves) and predicted seismograms (light curves) is
shown in this figure, suggesting that the source model of a horizontal closing crack is a
reasonable explanation of what has happened there. The wide azimuthal coverage of the six
seismologic stations as shown in the left panel of this figure strengthens the likelihood of
the source model. The quality of the source model can be quantified further via resolution
tests.

Modeling is a useful way to solve many practical problems. It is the most straightforward
way to verify our intuitive concepts and to scan through many hypothetical scenarios.
Modeling is a direct way to illuminate the relationship between observations and the models
and, most importantly, to quantify the relationship between the variation of the observations
and variation of the models. In addition, one can easily adopt a priori information to confine
the likely models to within a subset of the model space. One can use the modeling approach
even without a complete understanding of the mapping functions between the model space
and the data space.
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Figure 9.2 (Left) A map of Utah showing the location of the magnitude 3.9 seismic event (star)
associated with the tragic collapse of a Utah coal mine on August 6, 2007, and six nearby
seismologic stations (triangles). (Right) Fitting obser ved seismog rams (dark cur ves) with
wavefor m predictions (light cur ves) for a source dominated by a horizontal closing crack
(Dreger et al., 2008). Each row shows the transverse (T), radial (R), and ver tical (V)
component of a seismologic station whose name is denoted at the right.

9.1.2 Seismic ray modeling

As a simple model method, seismic ray modeling aims at verifying the raypaths and trav-
eltime of seismic events under investigation in order to understand the origin of the events,
or to verify the velocity model containing the spatial distrib utions of seismic velocities
and density. Using moder n computers, numerical modeling has become the most popular
means of seismic modeling. In applied seismology, the numerical modeling algorithms
follow either ray theor y or wave theor y. The ray theory approach assumes that the spatial
dimension of the velocity and density anomalies is much g reater than the wavelength of
seismic waves, and the theor y is based on a series of principles such as Snell’s law. The
ray theor y enables many simple, intuitive, and often efficient approximations. In contrast,
the wave theory approach takes a rigorous path to quantify the variations in amplitude and
frequency during seismic wave propagation.

Most of the ray theor y methods focus on computing traveltimes and/or raypaths of distinc-
tive waves such as first ar rivals, primar y reflections, and conver ted waves. In par ticular, ray
tracing methods, which compute traveltimes and raypaths of distinctive waves, are useful in
many applications such as ray modeling, Kirchhoff migration, and traveltime tomography.
As was discussed in Section 8.1.5, numerical ray theor y methods include kinematic ray
tracing and dynamic ray tracing. The former computes raypaths and traveltimes only,
while the later also computes the pulse shape with amplitude and phase information. Kine-
matic ray tracing is intuitive and efficient, but cannot handle many frequency-dependent
wave phenomena. Dynamic ray tracing usually solves a system of dynamic ray equations.
Examples of dynamic ray tracing include Gaussian beam and paraxial ray tracing.

There are many practical ways to conduct dynamic ray tracing, or ray-based waveform
modeling. A popular and simplified approach in exploration seismology is convolutional
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modeling which computes the seismic wave events of interest in two steps. First, it traces
the raypaths and traveltimes of the interested wave events in the velocity model, and then
convolves impulses at the corresponding arrival times of the events with a calibrated source
wavelet. The convolutional modeling approach is intuitive and practical, despite its over-
simplification of many wave propagation phenomena. Specifically, we can single out events
of interest using the ray model approach without worrying about other events that may
complicate the picture on the seismograms.

Figure 9.3 shows a ray-based convolutional modeling to verify the seismic structure
of a gently dipping subduction zone near Hokkaido, Japan (Iwasaki et al., 1989) using
ocean bottom seismographs (OBS). The map in Figure 9.3a shows a NW–SE oriented
seismic profile with seven OBSs (denoted by dots with labels such as S6 and SD), and a
line indicating the shooting positions of the airgun sources. The bathometry is portrayed by
contours of a 1 km interval. Figure 9.3b is a cross-section from SE to NW of the 2D velocity
model structure. The lines are velocity interfaces, and the numbers are P-wave velocities
in km/s. The P-wave and S-wave 1D velocities beneath the S5 OBS site are shown in
two inserts in the lower-left corner of this panel. Two reduced traveltime versus distance
plots in Figure 9.3c and Figure 9.3d shows the observed waveform data at OBS S3 and the
modeled predictions from the convolutional modeling, respectively. As explained in Section
8.1.4.3, the reduced time helps the identification of refraction events at different bottoming
depths. In this case, nearly flat first arrival events may be Moho refractions because the
reduced velocity of 8 km/s is close to the upper mantle velocity directly beneath the Moho at
7.9 km/s. The modeled raypaths shown in Figure 9.3e are indicative of the origins of various
events on the plot of predicted traveltime versus distance in Figure 9.3d.

OBS data such as shown in Figure 9.3c are typically of poor quality owing to their
narrow bandwidth and the presence of multiple reflections. Understanding of the OBS
data is further challenged by the small number of receivers and difficulty of understanding
waves in a 3D world from a 2D observational grid. Nevertheless, the convolutional modeling
may help in identifying the observed events, as illustrated here by comparing observed and
modeled events in Figure 9.3c and Figure 9.3d. The modeled raypaths are especially helpful
in identifying the wave modes and ray coverage.

In another example of convolutional modeling, Figure 9.4 illustrates a study of reflection
events from the steep flank of a salt-diapirs model in the North Sea (Jones, 2008). Here
two types of salt flank reflections under examination are that bounced from the inner side
of the salt body and that double-bounced at flat and dipping horizons. The double-bounced
reflections are called prismatic reflections because of the shape of their ray trajectory. The
convolutional modeling helps us recognize complicated events by providing both raypaths
in model space (Figure 9.4b) and moveout patterns in the CMP (Figure 9.4c) or in other
types of data displays.

This example shows an advantage of ray modeling owing to the ease of modeling one
event at a time. In contrast, it is a challenging task to study overlapping events in most
waveform modeling results. For instance, one can appreciate the difficulty of differentiating
various events in waveform modeling results like those shown in Figure 9.4d without
knowing their paths in the model space. In this case, the two CMPs in Figure 9.4c and 9.4d
demonstrate the value of verifying the ray-traced events with waveform-modeled events.
Box 9.1 shows the use of conventional modeling to make synthetic seismograms based on
well logs.
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Figure 9.3 A ray modeling study of the subducted oceanic lithosphere east of Japan (Iwasaki et al., 1989). (a) Map of the seismic profile.
(b) 2D velocity model. (c) A common receiver gather recorded at OBS site S3. (d) Synthetic seismograms. (e) Raypaths.
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Figure 9.4 A ray modeling study of reflections from the steep salt flank (Jones, 2008). (a)
Interval-velocity model. (b) Reflection raypaths through the salt and double bounce at flat
and dipping horizons. (c) Ray-traced events on a CMP gather at surface location 1.5 km.
(d) Finite-difference (FD) modeled events on the same CMP gather.

9.1.3 Seismic waveform modeling

9.1.3.1 Seismograms and snapshots

Seismic waveform modeling is useful to study subsurface structures and/or seismic sources.
A basic understanding of seismic waveform modeling is necessary for everyone involved in
seismic data processing because at the core of most seismic imaging and inversion methods
there is a forward modeling method based on waveform or ray theories. A graph of seismic
waves recorded at a fixed location as a function of time is called a seismogram. A graph of
seismic waves recorded at a fixed time moment over a model is called a snapshot. How we
model wave propagation in computers represents how we approximate the seismic waves
in the real world.

While the records from a seismic sensor are seismograms, it is usually more difficult
to understand events on seismograms than on snapshots because the latter show the wave
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Box 9.1 Modeling of multiple reflections in well logs using
convolutional modeling

A practical use of the convolutional modeling in exploration seismology is the making of
synthetic seismograms using well logs. This is a necessary step for relating reflection events
seen on well logs to those seen on seismic profile imageries. An issue of concern is the role
of multiple reflections. Although there are various ways to suppress multiple reflections
in processing surface seismic data, the resultant images may still contain influences from
multiple reflections, especially interbed multiples. Hence there is a need to study the relative
amplitude of multiple reflections versus primary reflections in synthetic seismograms based
on well log data.

Box 9.1 Figure 1 shows such a study conducted by Schoenberger and Levin (1974). The
top two traces are density log and velocity log from one well, which are used to derive
the third trace, showing the reflection coefficient. The remaining four traces are synthetic
seismograms of the input trace, direct trace, multiple trace, and total trace. Here the input
trace includes only primary reflections without transmission losses at interfaces, and the
direct trace includes transmission losses and intrabed reflections. Most of the difference
between these two traces is due to transmission losses. The multiple trace includes only
multiple reflections, and the total trace is a stack of the direct trace and the multiple trace.
We can see in this case that the primary reflections have much higher amplitude than the
multiples, though the latter is gaining power with increasing recording time.
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Box 9.1 Figure 1 Density log, velocity log, reflectivity log, and four synthetic seismograms
based on convolutional modeling (Schoenberger & Levin, 1974).
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Figure 9.5 (a) A low-velocity wedge model, with a shot (star) and 40 receivers (triangles) along
the surface. (b), (c), Modeled common shot gathers of vertical and horizontal components,
respectively. (d)–(g), Modeled snapshots at 1.8 s and 3 s after the shot onset time, respectively.
Symbols T and R denote the transmitted and reflected waves, respectively, and their subscripts
denote order of the interface emitting P or S waves.

propagation history similar to what we see in real life. As an example, Figure 9.5 shows
elastic waveform modeling for a simple low-velocity wedge model using a pseudo-spectral
method (e.g., Kosloff & Baysal, 1982). In the simple model shown in panel (a), the P-wave
velocities are twice as high as the corresponding S-wave velocities. From the modeling, the
vertical and horizontal components of a common shot gather of seismograms are shown in
panels (b) and (c), respectively; snapshots at 1.8 and 3.0 seconds after the onset of the shot
are shown in panels (d) to (g). On each snapshot symbols T and P denote the transmitted and
reflected waves, respectively, and their subscripts denote the order of the model interface
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where the P or S waves are transmitted or reflected. For instance, T0p is the original P-wave
transmitted from the shot that is located on the 0th interface, the surface of the model.

Looking at the vertical or horizontal components of the common shot gather, we should be
able to identify the direct wave (T0p) and P-wave reflections from the two interfaces, R1p and
R2p. On the other hand, it is not easy to identify additional wave types on the seismograms.
In contrast, it is much easier to recognize major transmission and reflection waves on the
snapshots. It is even better to view a time sequence of snapshots as a movie of the wave
propagation history in a model. In the snapshots in panels (d) to (g) of Figure 9.5, since the
source is located in the upper-left corner of the model, all reflection waves dip toward the
upper-left direction from their reflectors, and all transmitted waves dip toward down-left or
upper-right directions from their transmission interfaces. Most primary transmission and
reflection waves are denoted on these snapshot panels.

We may visualize a 3D volume to record the modeling result of this 2D model, in which
the x-axis denotes distance, the z-axis denotes depth, and the y-axis denotes the recording
time. Then each time slice is a snapshot, and each depth slice is a collection of seismograms
at the depth. It is then easy to realize that on each snapshot the waves appearing near the
model surface should be recorded on the seismograms at the time moment of each snapshot.
To illustrate this notion, the gray dashed and dotted lines in the seismograms of panels (b)
and (c) denote 1.8 and 3 seconds, respectively, the time moments for the snapshots in panels
(d) to (g). There is indeed good agreement between events T0p, R1p and R2p on the gray
dashed lines in panels (b) and (c) and the corresponding events along the top surface of
snapshots in panels (d) and (e). Equally good agreement is seen between events T0p, R1p,
R2p, R1s, and R2s on the gray dotted lines in panels (b) and (c) with these events along
the top surface of snapshots in panels (f) and (g). It may not be easy for many people to
recognize the reflected S-waves R1s and R2s on the common shot gather seismograms in
panels (b) and (c), but the snapshots may be helpful.

Field seismic records are shot gathers or other types of seismograms rather than snapshots.
Geophysicists must be able to come up with simple velocity models based on geologic and
geophysical information, and then use waveform modeling to assess the validity of the
models. Once a reasonably good velocity model is established, seismic migration methods
can be carried out to map the reflectors. As discussed in Chapter 7, the first step in seismic
migration is downward continuation, which is a process to produce snapshots at depth from
the surface-recorded seismograms.

9.1.3.2 Common seismic waveform modeling methods

In practice the propagation of seismic waves is modeled using various versions of wave
equations. While analytical solutions of the differential equations may exist for some
simple models, nearly all applied geophysicists use numerical methods to carry out seismic
waveform modeling. The most common ones are the finite-difference (FD), finite-element
(FE), and pseudo-spectral (PS) methods. These methods can be designed for both acoustic
and elastic applications in models of different dimensions.

By approximating differentiation operations with difference operations, the FD method
is the most straightforward and therefore the most popular method of waveform modeling.
For example, if q is the variable of a single-variable function, f (q), the first derivative
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Figure 9.6 Snapshots of three cross-sections showing some absorbing boundary conditions in
finite-difference modeling of monochromatic waves from a point source denoted by the stars
(Clayton & Engquist, 1980). The left and right model edges are: (a) perfect reflectors; (b)
absorbing reflections of high angles of incidence; and (c) using an improved absorbing
boundary condition.

of the function with respect to q can be approximated by a forward difference
operator

D+ f (q) = [ f (q + �q) − f (q)] /�q (9–1a)

or by a backward difference operator

D− f (q) = [ f (q) − f (q − �q)] /�q (9–1b)

The second derivative can be approximated by a second-order difference operator

D+ D − f (q) = D− D+ f (q) = [ f (q + �q) − 2 f (q) + f (q − �q)] /�q2 (9–2)

Along the q-axis the odd-ordered difference operators are off-centered by one-half of the
sample interval �q, and the even-ordered difference operators are centered properly.

For developers and users of FD methods, considerable attention is devoted toward three
issues: bookkeeping, absorbing boundary conditions, and numerical dispersion. The book-
keeping involves setup and management of various model parameters to facilitate the
FD computation. To convert a velocity model in the form of Figure 9.1e into the finite-
difference form of Figure 9.1f, for example, we need to map the layered model values into
a finite-difference grid and to keep track of the gridded values.

The unwanted reflections from the outer boundaries of the model are annoying artifacts.
As shown in panel (a) of Figure 9.6, the intended circular wavefronts from a point source are
masked by the unwanted reflections from the left and right edges of the model. Panels (b)
and (c) of this figure show the results of applying two types of analytical absorbing boundary
conditions. There are also practical ways to damp the unwanted boundary reflections, such
as padding arrays of small holes along model edges.
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Figure 9.7 Synthetic SH-wave seismograms for six 2D models of subducted lithospheric slabs
of different shapes. The receiver positions, as shown in (b), are the same for all six models. The
filled triangles in (b) and heavy seismograms denote the take-off angles of mantle P and S
waves that may be seen at seismologic stations. (After Zhou and Chen, 1995.)

Numerical dispersion is a computational artifact due to inadequate discretization of the
model in simulations like FD waveform modeling. For instance, when insufficiently fine
temporal or spatial sampling rates are used, the simulated wavefields will behave in more
anomalous ways as the propagating time increases. On the other hand, finer sampling will
require larger computational resources of memory and computing time. In practice we may
choose to use the coarsest sampling rate that produces a tolerable level of artifacts.

In addition to those due to model boundaries and numerical dispersion, many other
artifacts can be produced from seismic waveform modeling. For instance, a careful exam-
ination of panel (f) of Figure 9.5 will reveal some ringing waves below and to the right
of reflections R2s and R1s. You can find similar ringing waves in other snapshot panels of
this figure. These waves are artifacts with respect to the intended signals, the transmitted
and reflected waves that are labeled in this figure. They are caused by the step function
approximation of the lower dipping interface of the pinchout middle layer of the model.
The ringing waves will be reduced if we use a much finer grid step function to approximate
the dipping interface. On the other hand, if that interface is intended to be a coarse grid step
function, then the corresponding ringing waves will be signal rather than artifacts.

The finite-element or FE method of seismic waveform modeling solves for differential
equations of the propagating waves over some spatial elements designed according to the
targeted structures. The method is elegant but requires more theoretical devotion. A variant
of the FE method is the boundary element (BE) method, which can save much memory by
reducing the dimension of the problem by one. Figure 9.7 shows a study of the impacts
on SH-wave waveforms due to different morphologic shapes of the subducted lithospheric
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Figure 9.8 A shot gather from a seismic refraction study across the San Gabriel fault (Yan
et al., 2005). Traveltimes are reduced by 6 km/s. The first arrival picks are denoted by the black
line with apparent velocities at 2.4, 4.3, and 6 km/s for three segments. The AB segment has a
negative slope indicating an apparent velocity too large for the crust.

slabs (Zhou & Chen, 1995). One may take such a modeling approach to decipher the
possible fates of deeply subducted lithospheric slabs. A limitation of the BE method is its
difficulty in handling models with gradient variation of properties.

In recent years the desire for more efficient waveform modeling methods has attracted
much attention to the pseudo-spectral or PS method. In contrast to the FD methods which
approximate the derivatives by difference equations using local values, a PS method uses
global information in the spectral space. The PS method solves differential equations using
a combination of time-space and spectral domains. It effectively conducts finite-difference
operations in the spectral space. Figure 9.5 is a waveform modeling based on the PS method.

In Figure 9.5 the multiple reflections are not seen clearly, because they have smaller
amplitude with respect to the primary transmission and reflection waves in a relatively short
time span of wave propagation. As was illustrated in Box 9.1 Figure 1, as time increases
from the onset moment of the shot, the amplitude of multiple reflections increases gradually,
while the amplitude of primary waves decreases gradually. Observations like these have
motivated the development of various ways to ignore multiply scattered waves, such as the
Born approximation. In scattering theory and quantum mechanics, the Born approximation
applies the perturbation method to scattering by an extended body. It takes the incident
field in place of the total field as the driving field at each point in the medium. The Born
approximation is accurate if in the medium the scattered field is small in comparison with
the incident field.

9.1.3.3 Fitting refracted waveforms for crustal velocity structure

The value of waveform modeling is illustrated here using an example of seismic refraction
profiling that is often applied in crustal seismology and near-surface geophysics. This
example is based on seismic refraction data recorded over the north central Transverse
ranges and adjacent Mohave Desert in California (Yan et al., 2005). Figure 9.8 shows a
field shot gather in which the traveltime are reduced by 6 km/s. Though the data are very
noisy, we can pick the first arrival waves, and measure their apparent velocities as discussed
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Figure 9.9 Two finite-difference synthetic shot gathers at shot positions 101 and 116 that are
marked by ×s on the surf ace of a 2D velocity model shown in the lower panel (Yan et al.,
2005). In the synthetic shot gather of the upper panel, the CD segment of the first ar rivals
resembles the negative slope seen in the field shot gather shown in the previous figure.

in Section 8.1.4.3. A strange feature in the data is the negative slope of the AB segment
which indicates an apparent velocity too large for the crust.

Yan et al. (2005) took a waveform modeling approach to compute synthetic shot gathers
for a series of 2D crustal velocity models using a finite-difference method, and to improve
the models by monitoring the fitness between the field data and model-based waveform
predictions of the first arrival waves. For instance, Figure 9.9 shows two synthetic shot
gathers calculated for one of the 2D velocity models. In the synthetic shot gather of the
upper panel in Figure 9.9, the CD segment of the first arrivals resembles the negative slope
of the AB segment of the field data in Figure 9.8.

Figure 9.9 shows a clear correspondence between the lateral positions of the fault in the
2D velocity model and the corresponding changes in the moveout trend of the first arrivals
in the two synthetic shot gathers. Such correspondence represents the constraining power
of the waveform modeling approach. By requiring a good fit between the first arrival trends
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Figure 9.10 (Upper) Comparison of the first arrivals of the field data (solid curves) with
synthetic first arrivals (dashed curves) for several shots. (Lower) The 2D velocity model for the
synthetic modeling. The fit between the field data and predicted curves is reasonable,
especially at far offset.

of the field data and the model predictions of a number of shot gathers, as shown in Figure
9.10, Yan et al. (2005) derived a reasonable crustal velocity model for the region, as shown
in the lower panel of Figure 9.10.

9.1.4 Seismic physical modeling

Seismic physical modeling involves recording controlled shots in real-world physical mod-
els. The main advantage of physical modeling is that it is a true physical experiment with
real elements. Physical modeling is useful in cases when the theory, a prerequisite of
numerical modeling, is incomplete or unreliable. Since all physical modeling experiments
are conducted in the real world rather than in computers, the results include real-world
issues such as errors in the model building and acquisition processes as well as phenomena
such as seismic wave conversion, scattering, and attenuation. In fact, we may regard all
field data acquisitions as physical modeling experiments. In contrast, it is always a concern
for numerical modeling whether all of the waves and noises are computed properly. Data
acquisition in physical modeling is usually much cheaper than in numerical modeling. The



321 Data fitting and model inversion

(a)

(b)(c)

Water tank Physical 
 model

Sources mounting

Control 
system

Receivers mounting

Computer

Figure 9.11 Photographs of: (a) the seismic physical modeling lab at University of Houston.
(b) A spherical transducer for acoustic experiments. (c) A three-component transducer for
elastic experiments.

drawback of physical modeling is that it is much more difficult to make physical models
than numerical models. When the model gets complicated, it is not easy to find materials
of physical properties matching the study requirements.

Physical models can consist of statistical properties, such as porosity of sandstone,
but most physical models are deterministic, using synthetic materials such as rubber and
Plexiglas to meet the planned specifications in geometry, velocity, and density values. In
seismic physical modeling studies in the laboratory, the spatial sizes of the real structures
are scaled down by several thousand times. The spatial down-scaling is compensated by
frequency up-scaling using the same scaling factor. If the central frequency of a field dataset
is 40 Hz, and we use a scaling factor of 10 000, then the central frequency of the physical
experiment will be 400 kHz in the ultrasonic frequency range.

Figure 9.11a is a photograph of the acoustic physical modeling device at the Allied
Geophysical Laboratories in University of Houston. The device has produced many useful
datasets. During the modeling experiment, the physical model is submersed in a water
tank, and the sources and receivers are fixed on the two separated mounting devices whose
positions and motions are controlled by a control system through a computer. Under such
laboratory conditions most of the sources and receivers are piezoelectric transducers that
are able to convert electrical voltage changes into acoustic vibrations or vice versa. Figure
9.11b shows a spherical transducer to emit P waves for acoustic experiments. Figure 9.11c
shows a three-component transducer for elastic physical experiments.
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Figure 9.12 A CT-scan of a physical model with an interface between white rubber and
Plexiglas. Traces of fine brass power were added along the flat parts of the interface, as
indicated by two arrows, to enhance its image. The circle highlights a gap in the interface
without brass powder.
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Figure 9.13 A physical modeling example. (Left) Model setup for a VSP experiment. (Right) A
common receiver gather. Five events are labeled as A, B, C, D, and E.

While all physical models are produced based on designed parameters, it is often nec-
essary to determine the model geometry and interval velocities after building the model.
Figure 9.12 shows a CT scan of a physical model. In this case, two different kinds of
Plexiglas were used to make the model, but the two materials have the same appearance on
the CT scan. Fortunately, we have placed traces of brass powder along the interface between
the two Plexiglas materials, as indicated by the light-colored lines marked with two arrows
in Figure 9.12. The circle highlights a ramp in the interface, representing a fault.

In Figure 9.13 the model setup of a VSP survey and the result of a common receiver
gather from physical modeling are shown. Following the setup shown in the left panel,



323 Data fitting and model inversion

the physical model was created by placing two blocks of Plexiglas into a water tank, and
using two spherical transducers. A deep transducer placed between the two Plexiglas blocks
functioned as shot, and another shallow transducer placed above the two Plexiglas blocks
functioned as receiver. The recorded common receiver gather as shown in the right panel
resembles some characteristics of real data, such as the ringing of the wavelet due to narrow
bandwidth and complexity of the seismic events, though the model is relatively simple.
Some of the events are revealed by ray tracing modeling. Event A is the first arrival from
the shot to all receivers through the shallow flat block and water layers. Events B and C are
reflections from the top and bottom of the deep dipping block layer. Event D is reflection
from the bottom of the water tank. Most interestingly, Event E is a prismatic reflection that
is bounced twice in the deep dipping block, once from the bottom and another from the
lower left facet of the block.

Exercise 9.1

1. Under what conditions may data fitting be superior to model inversion? What are the
conditions for the reverse case?

2. How common is it in the Earth that the density is much more slowly varying than the
velocity, like that shown in the first two logs in Box 9.1 Figure 1? Given a slowly
varying function and a rapidly varying function, which one is easier to invert for and
why?

3. In Figure 9.8, if the velocity follows a layer-cake model, what is the value of the
velocity corresponding to the AB segment of the first arrivals?

9.2 Data fitting via regression
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In this section some basic information is introduced about fitting measured data to a simple
function representing the trend of the underlying physics; the process is generally called a
regression. We will first see some common ways to measure the misfits in the data fitting
process. Then, the process of regress is illustrated using a polynomial function. Because
we may better manage the misfits in the data fitting by treating them as random variables,
we will examine a couple of commonly occurring probabilistic treatments of misfits. The
statistical values of the data-fitting misfits can be assessed using a theory called maximum
likelihood estimate.

9.2.1 Misfit measures

Data fitting via regression is a statistical approach to minimize the misfit between data and
functions representing either general trends or model predictions. Geophysicists seem to
spend most of their time fitting predictions of models to data, like those shown in Figures 9.2
and 9.10. The misfit measures quantify the fitness between the data and model predictions.
One way to improve predictions from the model is to identify some trends in the data, and



324 Practical Seismic Data Analysis

then explain the causes of the trends by properties of the model. For example, a seismologist
may gather arrival times of various seismic waves recorded at stations at different distances
and azimuths from the sources; the trends of the traveltimes of seismic waves as functions
of source-to-receiver offset and azimuth may be used to constrain the underlying velocity
models.

Given a discrete dataset {di}, where the index i is from 1 to N, we may estimate the
trend of the data by fitting a function curve to the data. Here fitting means minimizing a
predefined error function that describes the difference between the data value {di} and the
corresponding values of the function, {pi}. The values of {pi} often represent predictions
based on a model. For instance, the predictions may be traveltimes of reflection waves in
a velocity model. In an N-dimensional Cartesian space, {di} and {pi} denote the locations
of two points. The misfit between these two points can be measured by the Euclidean
distance, or the L2 norm between the two points:

L2 norm ≡
[

N∑
i=1

(di − pi )

]1/2

(9–3)

The term “norm” means a measure of length as defined for a specific mathematical domain.
We may generalize the above equation so that, for a positive real value k (not necessarily
an integer), the Lk norm is defined as

Lk norm ≡
[

N∑
i=1

(di − pi )
k

]1/k

(9–4)

The concept of such an Lk norm is quite general, and the only requirement is that k be
positive. We often refer to ri = (di – pi) as a residue, indicating that it is one of the remains
that have not yet been fitted to the model predictions.

The most commonly used norm is the L2 norm. If the population of all residues {ri}
follows a Gaussian distribution, then we can prove that the L2 norm is the most suitable
way to measure the misfit level of the residues. Because the inverse formulation for the L2

norm exists analytically, it is easy to use the L2 norm in many applications to minimize
misfits. In general, smaller L-norms, such as L1 or L0.3, give nearly equal weight to all
residues regardless of their magnitudes, |ri|. In contrast, successively higher L-norms give
higher weight to residues of larger magnitudes. In the extreme case, L� = k |rmax|, where
|rmax| is the maximum magnitude of all residues, and k is the number of the residues of
the maximum magnitude. Those residues that have large magnitude and lie away from
their peers are called outliers. While some studies have tried to suppress them, outliers are
often important indicators that some fundamental aspects of the real world have not been
accommodated by the models.

9.2.2 Regression

Regression is the process of fitting a function to a discrete dataset. For example, the discrete
dataset may be denoted by {di = d(xi)}, and the prediction function may be a polynomial
of x with coefficients {ci}:

p(x) = c0 + c1x + c2x2 + · · · (9–5)
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Here the goal of regression is to determine the coefficients {ci} of the prediction function
p(x) that will minimize the residues. It is up to the user to decide how many terms of the
polynomial to use for a given problem. If we use a polynomial of order 1, for instance,
the function is a straight line with two coefficients, c0 and c1; this is a linear regression. If
we use a polynomial of order 2, which describes a parabola with three coefficients, then we
have a parabolic regression. Once we have decided the order of the polynomial, the number
of coefficients to be resolved is fixed. This number of the coefficients is also called the
degree of freedom of the regression. In general, the degree of freedom for an inversion is
the number of unknown model parameters to be determined.

9.2.2.1 Regression as an inverse problem

To solve an inverse problem, the first step is to specify the relationship between model
variables and the prediction function by parameterizing the model. In the regression case
here, this first step includes a decision on the type and order of polynomials to use. Because
most geophysical data are acquired and processed in discrete forms, the model is formulated
in a discrete form. Here, we may formulate a (M–1)th order polynomial regression with N
data points: ⎡

⎢⎢⎢⎢⎣
d1

d2

...

dN

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 X1 · · · X M−1
1

1 X2 · · · X M−1
2

...
...

...
...

1 X N · · · X M−1
N

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

c1

c2

...

cM

⎤
⎥⎥⎥⎥⎦ (9–6)

The above linear system may be written in matrix form

d = Am (9–7)

As we have discussed previously, matrix A consists of Fréchet differential kernels relating
the variations in the data to the variations in the model. The element in the ith row and
jth column of A is ai j = ∂di

∂c j
. Matrix A is also referred to as the kernel matrix or forward

modeling operator.
The next step in an inversion is to determine the parameters of the model vector m. If

the inverse of the matrix A exists, we simply have

m = A−1 d (9–8)

Unfortunately, this formula almost never works in geophysics because the exact inverse
A–1 generally does not exist, owing to the fact that A is usually rank defective. The causes
of the situation include:

1. Inaccuracies and inconsistencies in the data vector b;
2. Degrees of freedom of the model x being poorly constrained by the given data.

Consequently, geophysicists almost always deal with “probabilistic inversions” rather
than “exact inversions”. The probabilistic inverse theory assumes imprecise and incomplete
data, and proceeds with some assumptions on the statistic behaviors of the data and models.
For instance, we may be able to assume that the misfits are mostly due to the noise in the
data and follow a Gaussian probability distribution. Then, the least squares solution to be
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discussed in the next section is the proper answer to the inverse problem; and the solution
is

m = (ATA)−1ATd (9–9)

Let us try this solution for the linear regression case⎡
⎢⎢⎢⎣

d1

d2
...

dN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 X1

1 X2
...

...
1 X N

⎤
⎥⎥⎥⎦

[
C1

C2

]
(9–10)

Forming the matrix products

ATA =
[

N
∑

xi∑
xi

∑
xi

2

]
(9–11)

ATd =
[ ∑

di∑
di xi

]
(9–12)

Hence the least squares solution for this case is

m =
[

c1

c2

]
=

[
N

∑
Xi∑

Xi
∑

Xi
2

]−1 [ ∑
di∑

di xi

]
(9–13)

This means

c1 = d̄ − c2 x̄ (9–14a)

c2 = ldx/ lxx (9–14b)

For the above equations, the mean of the data vector is

d̄ = 1

N

N∑
i=1

di (9–15a)

The mean of the model vector is

x̄ = 1

N

N∑
i=1

xi (9–15b)

The auto-covariance coefficient is

lxx =
N∑

i=1

(xi − x̄)2 (9–15c)

And the cross-covariance coefficient is

ldx =
N∑

i=1

(d − d̄)(x − x̄) (9–15d)
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Figure 9.14 Filling a gap on a stack section from the Nor th Sea (Biondi, 2004). (a) and (b) are
based on a nearest neighborhood inter polation without and with weights, respectively. (c) and
(d) are based on a linear inter polation without and with weights, respectively.

9.2.2.2 Interpolation

As discussed in Section 3.5, interpolation is a widely applied method in geophysical data
processing, and it is par tially based on reg ression. One application of inter polation is to fill
the acquisition gaps in seismic imaging. Figure 9.14 shows examples of filling acquisition
gaps (Biondi, 2004) based on nearest neighborhood and linear inter polation schemes.

To see the process of inter polation, take a function f (x) as an example. We may have
measured its values at N sites {xn } with measured values {f (xn )}. Now we want to inter-
polate, or predict the function value at a general position x away from the measured sites.
This can be done in several steps. First, we choose a set of basis functions, like the powers
of x in the polynomial expansion of (9–5). We prefer orthogonal basis functions like that
shown in Section  3.5. Then the function is expanded into the basis functions {ψk(x)}:

f (x) =
∑
k∈K

ckψk(x) (9–16)

where ck are the coefficients. Second, we determine the coefficients using the measured
values through a regression or inversion process. Finally, we can predict the function values
using (9–16) and the determined coefficients.

Interpolation with convolutional bases is an interesting case when the basis function is
in form of a function of (x – k):

ψk(x) = β(x − k) (9–17)

Hence the original function is a convolution between the coefficient and the basis function:

f (x) =
∑
k∈K

ck β(x − k) (9–18)

Now when x = n, we have

f (n) =
∑
k∈K

ck β(n − k) (9–19)
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Figure 9.15 A schematic diagram illustrating relationship among different variables for
interpolation with convolutional bases (Fomel, 2001).

which is a discrete convolution. We can invert the above equation for the coefficients ck

using the measured values of f (n). This interpolation process is depicted in Figure 9.15 by
Fomel (2001).

9.2.3 Probabilistic distributions of misfits

When fitting data of large samples, we often treat the misfits as random variables so that
their behavior can be analyzed using statistics. Among many probabilistic distributions seen
in geophysical studies, the Gaussian or normal distribution is the most common. We will
discuss the Gaussian distribution and the double exponential distribution here. The latter is
a good characterization of the residues of many geophysical inverse applications.

9.2.3.1 Gaussian distribution

For each random variable, its chance of occurring is quantified by its probability density
function (PDF) over its value range. Tossing a dice, for instance, may result in one of the
integers from 1 to 6 shown on the top-facing side of the dice. Here the value range consists
of six integers from 1 to 6, and the PDF function is 1/6 for each of the six integers. The
PDF of such a random variable follows a uniform distribution with a boxcar shape.

Now suppose we have a number of random variables {αi}, each with a boxcar-shaped
PDF. The PDF of combining any two such variables is the convolution of two individual
boxcar-shaped PDFs

P(α1 + α2) = P(α1) ∗ P(α2) (9–20)

and its shape is a symmetric triangle. When we add more random variables of uniform
distributions, the combined PDF becomes

P(α1 + α2 + α3 + · · ·)
= P(α1) ∗ P(α2) ∗ P(α3) ∗ · · · => Gaussian distribution (9–21)

The above notion is a basic form of the central limit theorem that “linear operations
on random variables tend to produce a Gaussian distribution”. This theorem reveals the
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Figure 9.16 Sketch of the PDF of a Gaussian distribution.

fundamental reason that the Gaussian distrib ution is widely applicable. The Gaussian
distribution function of a variable x is

f ( x ) = 1√
2πσ  

ex p [−( x − m )2/σ 
2 ] (9–22)

where m is the mean and σ  2 is the variance. It is g raphically shown in Figure 9.16.
For two random variables x and y following a Gaussian distrib ution, if they are inde-

pendent or uncor related with each other, their combined PDF is a Gaussian distrib ution
in 2D:

f ( x, y ) = 1

2πσxσ y
ex p 

[−( 
x − x̄ 

)2
/
(
2σ 

2
x

) − ( y − ȳ )2 
(
2σ 

2
y

)]
(9–23)

If x and y are cor related, what happens to the PDF? Note that when x and y are uncor related
the exponent of the PDF is

− ( x − x̄ )2/(2σx 2 ) + ( y − ȳ )2/(2σ y 2 ) = −1

2
γ 

T

(
1/σ 2x 0

0 1/σ 2y

)
γ (9–24)

where γ = (x − x̄ ,  y − ȳ )T . Now the two random variables are cor related, we may expect
that the new exponent is

− 1

2
γ 

T C−1γ (9–25)

where C is the covariance matrix between the two random vectors. Then the new PDF
function f (x, y) is

f (x, y) = 1

2π
√|C|exp

[
−1

2
γ T C−1γ

]
(9–26)

The covariance matrix C is a positive definite matrix. We can decompose it using
eigenvalue–eigenvector decomposition (see Section 9.4.1):

C = UT
U (9–27)

where U is an orthogonal matrix (i.e., UTU = UUT = I) and


 =
(

λ1 0
0 λ2

)
(9–28)

with λ1, λ2 > 0. Now, from

γ T C−1γ = γ T UT
−1 Uγ = (Uγ )T
−1(Uγ )
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we have

f (x, y) = 1

2π
√|C| exp[−(Uγ )T�−1(Uγ )/2] (9–29)

The new variables in (Uγ ) are independent, or uncorrelated, with each other. The Gaussian
distribution is useful for methods such as the least squares, which minimizes the L2 norm.

9.2.3.2 Exponential distribution

For many processing methods in geophysics we need to use the L1 norm. The corresponding
PDF is closely related to the exponential distributions. For the exponential distribution of
one random variable x, its PDF is given by

f (x) = 1

2σ
exp [− |x − x̄ | /σ ] (9–30)

This function is sketched in Figure 9.17.
For n random variables following the exponential distribution, if these variables are

independent from each other, then their combined PDF is

f (xi ) = 1

2nσ n
exp

[
−

n∑
i=1

|xi − x̄i | /σ
]

(9–31)

When we compare the PDFs of Gaussian versus exponential distributions, we see that the
two distributions differ mostly when the variable x is within a short distance from the mean.
The exponential distribution is like overlapping the Gaussian distribution with extra data
around the mean value.

One well known case of the exponential distribution is the distribution of the errors
from picking the arrival times of phase arrivals in global seismologic networks. Figure 8.9
compared the observed arrival times compiled by the International Seismologic Centre
with predictions from the JB model. When we plot the misfits between such observed and
predicted traveltimes, we find that the misfit distribution is similar to that shown in Figure
9.17, with x denoting the traveltime misfit, and f (x) denoting the number of picks for each
misfit value. What are the causes for such behavior of the misfit distribution?

One explanation is that, because the global traveltimes of seismic phases can be explained
very well by a 1D depth-varying global model like the JB model or PREM model, some
operators may pick the phase arrivals with the guidance of traveltime tables based on a 1D
global model. It is understandable that we may need such guidance to identify a wide time
window for a careful hand picking. However, it would be terrible to use such theoretical

f(x)

σ

x

x–

Figure 9.17 Sketch of the PDF of an exponential distribution.
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guidance to choose the actual wave train to pick the arrivals. This issue will be addressed
again in one of the questions in Exercise 9.3.

9.2.4 Maximum likelihood estimate

In practice, different PDFs will result in different forms of common statistic parameters
such as mean and variance. The maximum likelihood estimate is a useful way to find
statistical values based on the given PDF; hence the key issue is to assess the PDF. Once
the PDF is found, we can find the formula for each statistical parameter by minimizing the
variation of the PDF with respect to the parameter.

Suppose we have N samples from a Gaussian distribution with a mean m and a variance
σ 2. The probability of these N observed values {xi} (i = 1, 2, . . . , N) is

P = 1

(2π )N/2σ N
exp

[
− 1

2σ 2

n∑
i=1

|xi − m|2
]

(9–32)

We can estimate the mean and the variance of the sampled dataset by maximizing the
above probability function. Define a likelihood function L = ln P:

L = − N

2
ln(2π) − N ln σ − 1

2σ 2

n∑
i=1

|xi − m|2 (9–33)

Now letting ∂L
∂m = 0, we have

∂L

∂m
= 1

σ 2

n∑
i=1

|xi − m| = 0 (9–34a)

or

m = 1

N

n∑
i=1

xi (9–34b)

This is the conventional definition of the average or mean. In addition, from ∂L
∂σ

= 0, we
have

∂L

∂σ
= −N/σ + 1

σ 3

n∑
i=1

|xi − m|2 = 0 (9–35a)

Therefore,

σ 2 = 1

N

n∑
i=1

|xi − m|2 (9–35b)

This is the conventional form of variance. Hence, the conventional forms of mean and
variance assume that the PDF follows a Gaussian distribution.

Now let us examine the maximum likelihood estimates for an exponential distribution.
Suppose we have n observations sampled from an exponential distribution, and we want
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to estimate the mean and the variance. This time based on (9–31) we find the likelihood
function L as

L = ln f (xi ) = −n ln 2 − n ln σ −
n∑

i=1

|xi − m| /σ ] (9–36)

Note that here we have used m as the mean for all variables. Setting ∂L
∂m = 0, we have

∂L

∂m
= 2

σ

n∑
i=1

sign(xi − m) = 0 (9–37)

where sign(x) is the sign function. The above formula means that

if n is odd, n = (2p + 1), m = x p+1 (9–38a)

and if n is even, n = (2p)m is any value between x p and x p+1. (9–38b)

Next, differentiating the likelihood function with respect to the variance

∂L

∂σ
= −n/σ + 1

σ 2

n∑
i=1

|xi − m| = 0 (9–39)

hence

σ = 1

n

n∑
i=1

|xi − m|

Then the variance is

σ = 1

n2

(
n∑

i=1

|xi − m|
)2

(9–40)

Exercise 9.2

1. Why is the definition of length measure or norm an important issue for inverse theory?
How does the issue connect with real signal and noise properties?

2. Discuss the benefits of expressing a function as the combination of basis functions like
that shown in (9–16). What are the preferred properties of the basis functions?

3. An experiment yielded the following measures of a function v(t):

t: 0 2 3 3 6 8 8 8 10
v(t): 5 2 3 1 2 5 3 4 6

(a) Graph the data;

(b) Write the forward system of a linear fit, and its L2 inverse system;

(c) If we want to force the linear trend to go through a point (t0, v0), what would be the
forward system?
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(d) Following (c) and for t0 = 0.0 and v0 = 3.0, find the L2 inverse system;

(e) Solve for the line in (d). Which data point is the largest outlier?

9.3 Least squares inversion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Since deriving images of the subsurface is a common goal of seismic data processing,
seismic inversion is synonymous with the process of inverse imaging. The inverse approach
has the advantage of objectively determining the model properties based on the given data
and model parameterization. A common approach of inversion, as described in Section
8.4.1.2, is to linearize the relationship between the variation of model variables and variation
of data variables, and to invert for model variables. For a number of geophysical applications
such as inverse filtering and tomographic velocity analysis, seismic inversion is a preferred
method owing to its objectiveness in obtaining the solutions.

9.3.1 The least squares (LS) solution

The least squares (LS) method is a traditional linear inversion approach that works by
minimizing the L2 norm of the predefined misfit or error function. This implies that we
have assumed that the misfit errors follow a Gaussian distribution. Previously in Section
6.1.2, we have seen applications of the LS method in deconvolution. The LS method is a
widely used inverse and deserves special attention.

9.3.1.1 Derivation of the least squares solution

Let us write (9–7) using x as the model vector

d = Ax (9–7ʹ)

From what we learned in the previous section, the square power of the L2 norm of misfits
(9–3) for the above system is

E = (d − Ax)T(d − Ax) =
∑

i

⎛
⎝di −

∑
j

ai j x j

⎞
⎠

2

(9–41)

where E stands for the misfit error function or objective function, which is a scalar that we
want to minimize. We can express E in different forms as

E = (d − Ax)T(d − Ax)

=
∑

i

⎛
⎝di −

∑
j

ai j x j

⎞
⎠ (

di −
∑

k

aik xk

)
(9–42)

=
∑

i

d2
i − 2

∑
i

di

∑
j

ai j x j +
∑

j

∑
k

x j xk

∑
i

ai j aik
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Since the coefficients {aij} and {di} are given, the LS misfit error E is a function of the
unknown model vector {xj}. Hence, our objective is to find a set of x that will minimize E.
Mathematically, the minimization can be achieved by setting the differentiation of E with
respect to the model x to zero: ∂ E

∂xm
→ 0, where m = 1, 2, . . . , M, and M is the dimension

of x. Notice here ∂x j

∂xm
= δ jm, an assumption that the model parameters are independent of

each other. Thus

∂ E

∂xm
= −2

∑
i

di

∑
j

ai jδ jm+
∑

j

∑
k

(δkm x j + δ jm xk)
∑

i

ai j aik

= −2
∑

i

di aim + 2
∑

k

xk

∑
i

aimaik = 0 (9–43)

The above equation can be written in vector form as

2ATAx − 2ATd = 0 (9–44)

Another way to derive the above equation is to differentiate the matrix form of (9–41)
with respect to the model variable vector

∂

∂x
E = ∂

∂x
[(d − Ax)T(d − Ax)]

= ∂

∂x
[(dT − xTAT)T(d − Ax)]

= ∂

∂x
(dTd − dTAx − xTATd + xTATAx)

Since E is a scalar, all terms in the above are scalars, hence dT A x = xT AT d. Thus

∂

∂x
E = ∂

∂x
(dTd − 2xTATd − xTATAx)

= −2

(
∂

∂x
xT

)
ATd +

(
∂

∂x
xT

)
ATAx + xTATA

(
∂

∂x
x

)
By the same scalar argument, the last two terms of the above equation equal, that is

∂

∂x
E = −2

(
∂

∂x
xT

)
ATd + 2

(
∂

∂x
xT

)
ATAx = 0

This verifies (9–44), which means

ATAx = ATd (9–45)

Even though this equation is the same as if we left-multiply AT to both sides of
(9–7′), we have derived the above relation through a process of minimizing the L2 norm.
Therefore

xLS = (ATA)−1ATd (9–46)

is the LS inversion, or LS inverse solution.
Here (ATA) is a symmetric matrix of dimension of the model space. In most cases the

size of the model space M is much smaller than the size of the data space N. For example,
in seismic tomography N is usually tens or hundreds times M. Therefore, the form of the
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LS solution in these cases uses a much smaller computer memor y than that for the straight
inverse x = A−1 d, making many inverse applications feasible.

9.3.1.2 Determinacy of the LS solution

The LS solution (9–46) regards misfits as noise, and assumes that the noise distrib ution
follows a Gaussian distrib ution. It is one choice among the solutions for inver ting the linear
system (9–7) when there is no exact inverse for A. Of course, if A has a unique inverse,
then (AT A)–1 AT = A–1 . When we use LS inversion, it implies that the exact inverse does
not exist, hence a unique inverse solution is not guaranteed. This gives rise to the topic of
the deter minacy of inverse solutions.

The deter minacy of inverse solutions depends on data coverage, data quality, and model
parameterization. Common practical situations include choosing among different model
parameterizations for a given dataset, or when the model parameterization has been decided
and we need to design a proper data acquisition scheme. Analysis of the deter minacy of the
system helps us to reach a reasonable decision in these situations.

Similar to the ter ms used for discrete Fourier transfor ms in Section 3.2.2, when there are
not enough data measures to constrain all model parameters uniquely, the inverse problem
is under-determined. This situation happens when the ker nel matrix in Equation (9–7)
has more rows than columns. In contrast, when the number of data constraints is g reater
than the model parameter, the model parameters cannot satisfy all the data constraints, and
then the system is over-determined. An even-determined system is a special case when
the number of data constraints is equal to the number of model parameters. The mixed-
determined systems belong to a subset of the under-deter mined class when par ts of the
model parameters are well constrained. The rest of the under-deter mined systems, where
the model parameters are totally unconstrained, are purely under-deter mined.

The LS solution is unique only for over-deter mined or even-deter mined systems. How-
ever, for most applications in geophysics this does not apply. In many practical cases, com-
mon intuition is insufficient to sense the determinacy of the system, and under-determinacy
will result in various ar tif acts like those discussed in Section 8.5.1, although the fitting er ror
could be zero. Detection of the inversion artifacts is not a simple matter in most cases. We
need to examine the data resolution matrix and model resolution matrix in order to verify
the artifacts.

There are commonly two ways to conduct inversions of under-determined of mixed-
determined systems. We may re-partition the model space so that we can conduct the
inversion in a subspace where the system is over-determined. Alternatively, we may use
a priori information to constrain the inversion. We will examine those situations in more
detail later. Box 9.2 illustrates the application of LS method in seismic migration.

9.3.2 Damped and weighted LS inversions

In practice the forward linear system (9–7) is often ill-conditioned owing to poor data
coverage; then it will be difficult to conduct the inversion for meaningful solutions. A
practical aid for the inversion is applying constraints based on a priori information. Here,
damped and weighted inversions are introduced as the two traditional ways of applying
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Box 9.2 The least squares (LS) migration and an approximate solution

The LS mig ration is a direct application of the LS inversion to seismic mig ration, and its
main benefit is obtaining adequate amplitudes of mig rated images, which is impor tant to
seismic attrib ute analyses. Following the discussion in Section 7.1.1, if we regard forward
modeling as a mapping from the model vector m to data vector d via equation (9–7), then
migration is the adjoint of the modeling operator A (Claerbout, 1985)

mmig = ATd (7–3ʹ)

where mmig is the migrated model. In contrast, the LS migrated model mLS is just the LS
solution (9–46), mLS = (ATA)−1ATd. This means

mLS = B0mmig (9–47)

where B0 = (ATA)−1. However, LS migration is an expensive proposition because the
dimensions of the data and model vectors are very large.

Guitton (2004) proposed a low-cost approximation to LS migration via adaptive filtering.
The idea is that the right-hand side of (9–47) may be viewed as a convolution. His procedure
is listed in the following, and it is illustrated in Box 9.2 Figure 1 using a dataset based on
the Marmousi model.

1. Migrate the original data to yield mmig, as shown in panel (a).
2. Forward modeling from the migrated model to create a new dataset d1 as in

d1 = Ammig (9–48)

3. Conduct a second migration using d1

m2 = ATd1 = ATAmmig (9–49)

which is shown in panel (b). The above equation means

mmig = B0m2 (9–50)

The similarity between equations (9–47) and (9–50) has motivated this method, and the
key is to solve for B0.

4. Form a matching filter system with respect to (9–50)

mmig = M2b (9–51)

where M2 is the matrix form of the non-stationary convolution with m2; and solve for
the adaptive filters b using a minimum-norm LS solution of (9–51). Panel (c) shows
the solution of the adaptive filters from the two migrated models in panels (a) and (b).

5. Approximating B0 with a bank of the adaptive filters b, convolve this B0 with mmig to
obtain the approximated LS solution according to (9–47). Panel (d) is such a solution.

In the figure, the four migration results from Guitton (2004) in panels (a), (b), (d) and
(e) differ mostly in amplitude rather than geometry; this underscores the notion that LS
migration is an effort to calibrate the amplitude distortion by the migration operator. If the
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Box 9.2 Figure 1 Illustration of an approximated LS migration via adaptive filters (Guitton,
2004). See captions of the panels and text for explanation. In (d) and (e) letters F denote fault
planes. In (e) CG stands for conjugate gradient inversion. Panel (f) is the result of a reverse
time pre-stack depth migration (Youn & Zhou, 2001).

migration operator has a biased effect on amplitude, this effect will be amplified by the
second migration in panel (b) relative to the first migration in panel (a). Their difference
is the base for the adaptive filters in panel (c) to estimate the adjustment for this biased
effect, and the resulting migration in panel (d) should have suppressed the effect. Here the
estimated LS migration from the adaptive filtering in (d) is compared with a LS migration
in (e) from five iterations of conjugate gradient (CG) inversion.

The quality of a LS migration depends on the quality of the migration operator. If the
operator is limited, then the LS migration will be limited. In the current case Guitton
(2004) used a pre-stack split-step double-square root migration method with one reference
velocity; this will not be able to handle sharp lateral velocity variations in the Marmousi
model. Panel (f) shows the result from a reverse time pre-stack depth migration (Youn &
Zhou, 2001) that is suitable for strong lateral velocity variations. Although there are some
artifacts near the shot locations near the surface due to the use of just 10% of the data (24
out of 240 shot gathers), this last migration result has very high quality in resolving the
reflector geometry and amplitude of the Marmousi model.
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a priori infor mation in LS inversions. The topic of constrained inversion will be elaborated
fur ther in Section 9.5.3.

The previous derivation of the LS solution in Section 9.3.1.1 aims to minimize the L2

nor m of misfits

min{(d − Ax)T (d − Ax)} (9–52)

The problem is that, when the connection between the data space and model space is
weak, the above minimization in the data space does not translate into pushing for a more
cor rect solution in the model space. Of course, the connection between the two spaces is the
ker nel matrix A. However, this matrix is usually unknown because it is typically a function
of the solution model. A common practice is to use the reference model to generate a ker nel
matrix as an approximation, and then car r y out the inversion iteratively. However, when the
initial reference model is f ar from the cor rect model, the iterative inversion process may
move towards an incor rect solution.

Hence it is impor tant to find a good initial reference model. In addition, we shall constrain
the difference between the solution model and the reference model. Since this difference is
just the model vector x that we inver t for, we can impose the constraint by minimizing the
following

min{(d − Ax)T (d − Ax) + ε  
2 xT x} (9–53)

where the second ter m is the L2 nor m of the model vector and ε 2 is the damping f actor
which gover ns the relative weights of the two ter ms to be minimized. For instance, if ε =
0, we are back to the simple LS inversion in (9–52).

The idea of the above damped LS inversion was introduced by Levenburg (1944). Similar
to the derivation of LS inversion in Section 9.3.1.1, we take the derivatives of (9–53) with
respect to the model vector and then set it to zero. This leads to the following damped LS
solution

xDLS = (ATA + ε2I)−1ATd (9–54)

where I is the identity matrix. Because such an inversion aims at minimizing the norm of
model perturbations, it is also called the minimum-norm LS solution or minimum-norm
inverse. The effect of damping allows it to suppress high-amplitude oscillations in the
solution model.

Often we have some ideas about the quality of the data and the relative influence on the
model from different pieces of the data. Thus we may want to impose variable weights on
data in the inverse formulation. We may weigh the ith data point by wi and introduce a
diagonal matrix W with wi as its ith element. Then we can carry out the minimization of a
new error function

E = (d − Ax)TW(d − Ax)

=
∑

i

wi

(
di −

∑
j

ai j x j

)(
di −

∑
k

aik xk

)
(9–55)

=
∑

i

wi d
2
i − 2

∑
i

di

∑
j

wi ai j x j +
∑

j

∑
k

x j xk

∑
i

wi ai j aik
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Following the same minimization procedure, we ar rive at the relation

AT W Ax = AT W d  (9–56)

Hence, the weighted LS solution is

xWLS = (AT WA )−1 AT Wd. (9–57)

We can easily see that the damped and weighted LS solution is

xDWLS = (AT WA + ε 
2 I)−1 AT Wd (9–58)

In practice, different versions of damped and weighted LS inversions might be used.

9.3.3 Resolution matrices

A question for any inverse solution is its resolution and er ror, or how good it is. Several
practical ways to evaluate the resolution and er ror of seismic imaging have been discussed
previously in Sections 4.4.2 and 4.4.3. Here we examine these issues again from the view
point of inversion. The error of processed solutions can be evaluated by re-sampling as
discussed in Section 4.4.3 and checking the consistency among solutions from different
data samples.

Constructing the resolution matrices is one way to estimate the soundness of the inverse
solutions. The first type is the data resolution matrix, which measures how sensitive a
model can affect the prediction; this is not used much in practice. The second is the model
resolution matrix, which measures how well the model can be resolved by the given data.
The model resolution matrix is often used and referred to as the “resolution matrix” in the
literature.

Rewriting (9–7) here

d = Am (9–7)

If we are able to find a practical inverse solution, we may denote it m̃, and express it as

m̃ = Ã−1d (9–59)

Then the prediction from this solution model is

d = Am̃ = (AÃ−1)d (9–60)

Hence the data resolution matrix is

N = AÃ−1 (9–61)

which indicates how well the predictions from the solution model match the data.
The dimension of the data resolution matrix is the square of the data space length. The

rows of the data resolution matrix describe how well neighboring data can be independently
predicted, while the diagonal elements indicate how much weight a datum has in its own
prediction. Clearly, the best data resolution matrix is a unit matrix I.

Similarly, we have

m̃ = Ã−1d = (Ã−1A)m (9–62)
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Figure 9.18 A checkerboard resolution test for a cross-well tomog raphic study of a shallow
unconsolidated oil reser voir in souther n Texas (Zhou et al., 1993). Comparison of the tr ue
velocity impulses (left panel) with the inver ted results (right panel) indicates the resolution
level. Areas of no ray coverage in the right panel are in black.

Thus the model resolution matrix is

R = Ã−1 A (9–63)

The dimension of the model resolution matrix is the square of the model space length.
Equations ( 9–62) and (9–63) indicate that R is a mapping matrix from the tr ue model to
the inver ted model. Although we do not know the tr ue model, the resolution matrix gives
us an estimate of how good the inver ted model is. The best resolution is achieved when
R = I. We often describe a good resolution matrix as being “spiky” in any par t of the model
space. The above equation indicates that the quality of the resolution is related to the ker nel
matrix which depends on data coverage.

The resolution matrices are impor tant means to QC the inverse solutions. In practice,
however, many ker nel matrices are too large for constr ucting the resolution matrices in
a meaningful way. Practically, the resolution of a given data coverage may be estimated
through an impulse resolution test at each model location. As shown in Section 4.2.2, a
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checkerboard resolution test with multiple impulses is often conducted to increase the
computation efficiency. A checkerboard resolution test consists of the following steps:

1. Making a synthetic “checkerboard” model with regularly distributed impulses of veloc-
ity perturbation with respect to a background velocity model that is usually laterally
homogeneous;

2. Generating traveltimes of the checkerboard model using real source and receiver loca-
tions;

3. Inverting the traveltimes to reconstruct the checkerboard model, and the solution displays
the resolution of the data kernel at each location with impulses of velocity perturbation.

Figure 9.18 shows a checkerboard resolution test from a cross-well tomography study
of a shallow unconsolidated oil reservoir in southern Texas (Zhou et al., 1993). Following
the above test procedure, the synthetic true model in the left panel consists of a series of
fast and slow velocity anomalies on a background 1D velocity model. The middle panel
shows an example of ray coverage. Using a set of synthetically generated traveltimes with
added noise, a tomographic inversion resulted in the model shown in the right panel. This
result amplifies the raypath smear artifacts, which are especially insidious because of the
tendency of researchers to interpret linear anomalies in seismic images as true features.
A simple rule of thumb is that all linear tomographic anomalies are questionable if the
anomalies show a geometric pattern similar to that of the raypaths.

9.3.4 Least squares inversion in hypocenter determination

9.3.4.1 LS inversion for hypocenter position and origin time

An earthquake hypocenter is the focus where the elastic energy radiation is initiated during
the quake. A hypocenter can be quantified as a model hypocentral vector

m = (T0, h, θ, φ) (9–64)

where the elements are the origin time, the depth, the colatitude, and the longitude, respec-
tively. Commonly the hypocenter of each earthquake is determined based on the traveltimes
of P-wave or S-wave arrivals through a LS inversion. Determining hypocenters is important
not only for solid Earth geophysics, but also for exploration geophysics where we want to
determine the hypocentral vectors of microseismics caused by injections, such as in the
unconventional shale gas plays today.

Using the time–distance relationship and assuming a simple velocity model, we can
obtain a rough estimate of the hypocenter quickly. This initial guess m0 can be regarded as
an initial reference model. Next we can search for an improved solution by minimizing the
residues between the observed traveltimes and modeled traveltimes, which can be expressed
as a traveltime residual vector

δT = A δm (9–65)

where A = {aiα} is a matrix of partial derivatives, i = 1, 2, . . . , N as the indices of traveltime
residues, and α = 1, 2, 3, 4 as the indices of the four hypocentral parameters.
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The LS solution of the above equation minimizes

E =
N∑

i=1

(
δTi −

4∑
α=1

aiαδmα

)2

(9–66)

The minimization is accomplished by differentiating E with respect to the model variables
and setting the result equal to zero. Following the argument for (9–54), we may use a damped
LS solution:

δm = (ATA + ε2I)−1ATδT (9–54ʹ)

Because the relationship (9–65) is valid only when δm is small, we may take an iterative
inversion approach and constrain the magnitude of δm during each step. During the kth
iteration, the new position m(k) = m(k+1) + δm will serve as the new reference model.
Iteration may be repeated until δm is sufficiently small and we need to verify that the
process is converging.

9.3.4.2 Equal differential time (EDT) surfaces

In applications of traveltime inversion for hypocenters, we have to account for velocity
model variations, picking errors, and data coverage. In particular, the effects on traveltimes
from the focal depth and the origin time may cancel each other in common cases when
most rays take off steeply from the source. This produces a depth and origin time tradeoff
in hypocentral determination. One remedy was suggested by Zhou (1994) to construct a
so-called equal differential time (EDT) surface in 3D model space.

An EDT surface is the collection of all spatial points satisfying the time difference
between a pair of arrivals from a hypocenter. Suppose there are two observed phase arrivals
Tj and Tk from a hypocenter at position r, then the hypocenter must satisfy the following
condition:

Tj − Tk = τr j − τrk (9–67)

where τr j and τrk are computed traveltimes from hypocenter r in a proper velocity model.
The above equation is the expression of the corresponding EDT surface. An EDT surface
can be constructed using any two phase arrivals such as the P-wave arrivals at two stations,
or P-wave and S-wave arrivals at one station.

Figure 9.19 shows 3D sliced views of some EDT surfaces in a 3D velocity model for
southern Californian crust. The model area is shown in the map view of Figure 4.21a.
The map view in Figure 9.19 is a horizontal slice at sea level. The positions of the two
vertical slices are indicated by the two dashed lines in the map view. The P-wave from this
ML = 1.11 event was recorded by four stations, shown as small triangles with numbers.
The variations in the EDT surfaces are due to the effects of the 3D velocity model on the
traveltimes.

9.3.4.3 Master station method of hypocenter determination

Zhou (1994) devised a master station method of hypocenter determination in two steps.
First, an initial hypocenter solution is found by searching all joint positions of the EDT
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Figure 9.19 3D sliced views of equal differential time (EDT) surfaces for determining a
hypocenter in southern California (Zhou, 1994). The area was shown in Figure 4.19a. An EDT
surface is constructed based on a pair of phase arrivals from an earthquake. The hypocenter
shall be positioned at the joint position of all EDP surfaces. Here the EDT surfaces plotted are
based on P-wave arrivals at four stations denoted by triangles. The circle is centered on the
bulletin hypocenter. The cross and square, respectively, are centered on the initial and final
master station solutions.

surfaces available. Because modeled traveltimes from all stations can be pre-computed and
stored as reference files, the search can be done very efficiently. Second, the final hypocenter
solution is determined by a joint minimization of the variance of traveltime residuals and
the origin time error. In Figure 9.19, the circle is centered on the hypocenter of a ML = 1.11
event as shown in the bulletin compiled by the southern California Earthquake Center. The
cross and square, respectively, are centered on the initial and final solutions of the master
station method.

Figure 9.20 compares the solutions for a ML = 1.77 event and confidence contours of
the inversion. The two pairs of 3D slices in this figure show the confidence ellipsoids of the
traveltime residual variance and origin time error of the master station method. Each of
the slices is centered on the final solution of the master station method. The circle is centered
at the bulletin hypocenter, and the cross is centered at the initial solution from searching
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Figure 9.20 3D slices of confidence ellipsoid for inverting a hypocenter in southern California:
(a) for the variance of traveltime residuals; (b) for the origin time error. Each slice is centered
on the inverted hypocenter. X, Y, and Z denote east–west, north–south, and depth directions,
respectively. The tick marks are at 1 km intervals. The circle and cross denote the positions of
the bulletin and initial hypocenters, respectively. Shaded areas have confidence higher than
90%, and the two contours in the shaded region are at 95% and 99%. Contours in the white
areas have an equal interval of 10%.

the EDT surfaces. Clearly the final solution is at the position of the highest confidence in
terms of traveltime residue variance and origin time error.

We can see that the EDT surface expressed by (9–67) is a difference between two
traveltime residuals. Interestingly, the idea of the EDT surfaces was later taken into the
double-difference hypocenter inversion method (Waldhauser & Ellsworth, 2000), which
has become the most popular way to determine hypocenters today.

Exercise 9.3

1. If you have a least squares algorithm already, how will you use this algorithm to solve
for the L1 solution? In other words, how will you minimize the L1 error using this least
squares algorithm?

2. When Sir Harold Jeffreys analyzed seismic traveltime residuals, he noticed that the
distribution of the residuals was not quite Gaussian. He expressed it as

f (t) = 1 − ε√
2πσ

exp

[
− (t − t̄)2

2σ 2

]
+ εg(t),

where g(t) is a smooth function representing a gradual decay in the traveltime
residuals. Now for a given dataset of observation ti (i = 1, 2, . . . , n), apply the

maximum likelihood method to show that the mean t̄ = wi ti
wi

. and σ 2 = wi (ti −t̄)2

wi
, where

1/wi = 1 + μ exp[(t − t̄)2/(2σ 2)] and μ is the ratio of the tail amplitude to the peak
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value of f (t). In practice we use iterations to solve for t̄ and σ 2 because they appear in
the expression for wi .

3. Why it is difficult to derive the focal depth of earthquakes? Can we use first arrivals at
three stations to determine four focal parameters (x, y, z, T0)?

9.4 Matrix decompositions and generalized inversion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The previous section has given plenty of illustrations of the importance of the kernel matrix
in the linear forward system (9–7). The quality of the inverse solution depends on how
well we can invert this matrix. In this section, several matrix decomposition techniques
are discussed. These techniques are useful not only for inverse problems, but also for
applications like principal decomposition that are used widely in seismic attribute studies.
Our goal is to understand the principles behind each method.

The matrix was introduced as an algebraic operator around the middle of the nineteenth
century by Cayley (Lanczos, 1961). Beyond being just a simplification of a set of algebraic
equations, matrix notation inspired interest in the structure of the equation set and its effect
on general solutions rather than a narrow interest in any particular solution values. When
a matrix is pre-multiplied to a vector, the resultant vector can be regarded as a linear
transformed version of the original vector. Therefore a multiplication of matrices is a linear
transformation. Any matrix can generally be decomposed into transformations of some
other matrices.

9.4.1 Eigenvalue–eigenvector decomposition (EED) of a square matrix

For any square matrix B of dimension N, we call the equation

B x = λx (9–68)

the eigenvalue problem associated with B. The prefix “eigen” means characteristic or
representing the essential properties of B. The non-zero scalars λ1, λ2, . . . , λN are called
the eigenvalues of B, each λ1 satisfying the characteristic equation

|B − λi I| = 0 (9–69)

Any vector xi satisfying equation (9–68) is an eigenvector or a principal axis of matrix
B. Each eigenvector xi has a corresponding eigenvalue λi . Putting all eigenvalues into a
diagonal matrix L and setting all the eigenvectors as the columns of a matrix U, we have
the eigenvalue–eigenvector decomposition (EED) of square matrix B:

B U = U 
 (9–70)

If a square matrix of dimension N can be decomposed into N independent eigenvectors,
the matrix is called a full-rank matrix.

We focus on a symmetric matrix here because many matrix inverse problems can be
converted into inverse of symmetric matrices. For instance, the LS inversion contains an
inverse of (ATA) which is symmetric. Let us consider the following proposition about the
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eigenvalue–eigenvector problem of a real symmetric matrix S. The eigenvectors of S form
an orthogonal matrix U, and the eigenvalues of S form a diagonal matrix �. Then

SU = U � (9–71a)

UT U = U UT = I (9–71b)

The above proposition can be proved using the so-called Schur’s canonical decomposi-
tion, which is beyond the scope of this book.

For a square matrix of small dimensions, the practical ways of conducting EED has two
steps:

1. Solve characteristic equation (9–69) for all eigenvalues of the matrix;
2. For each non-zero eigenvalue, solve (9–68) for the corresponding eigenvector.

9.4.2 Singular value decomposition (SVD) of a general matrix

The decomposition of a general rectangular matrix requires the use of singular value
decomposition, or SVD (Lanczos, 1961). The SVD decomposes any rectangular matrix A
of m rows and n columns into a multiplication of three matrices of useful properties:

Am×n = Um×m
m×nVT
n×n (9–72)

In the above equation 
m×n is a rectangular diagonal matrix containing p singular values
(or principal values), {si}, of the matrix A:


m×n = diag(s1, s1, . . . , sp, 0, . . . , 0)m×n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

s1

. . . all 0
sp

0

all 0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

m×n

(9–73)

and U and V are two square unitary matrices. The number of non-zero singular values, p,
is called the trace or rank of the matrix.

A unitary matrix means its inverse is simply its transpose conjugate. In other words,

U−1 = (UT)∗ (9–74a)

V−1 = (VT)∗ (9–74b)

If U and V are real matrices, we have

U−1 = (UT) (9–75a)

V−1 = (VT) (9–75b)

Figure 9.21 shows SVD in a traveltime inversion of a highly simplified crosswell seismic
experiment with five sources in the left well and five receivers in the right well. The forward
system is (9–65), in which the kernel matrix A is decomposed using SVD. The data vector
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Figure 9.21 Illustration of SVD in a simple crosswell setup (Michelena, 1993). (a) Straight
raypaths from five sources in the left well to five receivers in the right well. The model area
consists of 6 × 4 equal-sized cells. (b) Twenty-four singular values of SVD of the kernel
matrix for this setup. (c) Eigenvector matrices U and V of the SVD. The size of singular values
decreases as the amount of lateral variation in the model space increases.

has 25 elements corresponding to the 25 first arrivals from the five sources to five receivers.
The model vector has 24 variables as the slowness perturbations of the 24 model cells. So
the 25 by 24 kernel matrix has 24 singular values as shown in Figure 9.21b. Figure 9.21c
shows the 25 eigenvectors in U and 24 eigenvectors in V.

The SVD manifests the intrinsic properties of the matrix A. For instance, the trace of A
is simply the number of non-zero elements in �; and the inverse of A is

A−1 = (U · � · VT)−1 = (VT)−1�−1U−1 = V�−1U−1 (9–76)

The inverse of the diagonal matrix � in SVD is done by inversing its diagonal elements, or
replacing each singular value si by 1/si . This will cause overflow if si is zero or very small.
A generalized inverse of diagonal matrix has been suggested to leave the zero diagonal
value unchanged, and only the non-zero singular values are inversed:(


−1
g

)
n×m

= diag(1/s1, 1/s2, . . . , 1/sp, 0, . . . , 0)n×m (9–77)

For an arbitrary matrix A m×n, its SVD can be obtained from the EED result; this offers a
practical way to obtain SVD for matrices of small dimensions. Suppose the rank of matrix
A is p. Let us introduce a (m+n) × (m+n) matrix S:

S =
[

0 A
A∗ 0

]
(9–78)

When A is real, S is clearly symmetric. We can prove that the singular values of A are
also the eigenvalues of S.
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For the ith eigenvector wi and ith eigenvalue λi of S, we have

Swi = λi wi (9–79)

If we rewrite the conjugate vector w∗
i = (u∗

i v∗
i ) where ui is a n × 1 vector and vi is a

m × 1 vector, we have [
0 A

A∗ 0

] [
ui

vi

]
= λi

[
ui

vi

]
(9–80)

Therefore

Avi = λi ui (9–81a)

A∗ui = λi vi (9–81b)

It is easy to see that if λi and (u∗
i v∗

i ) are one eigenvalue–eigenvector pair of S, then (–λi )
and (−u∗

i v∗
i ) will be another pair. The orthogonality of all the eigenvectors means that,

when i � k, for the first eigenvalue–eigenvector pair of S

w∗
i wk = u∗

i uk + v∗
i vk = 0 (9–82a)

and for the second eigenvalue–eigenvector pair of S

− u∗
i uk + v∗

i vk = 0 (9–82b)

From the above two equations we have

u∗
i uk = 0 and v∗

i vk = 0 (9–83)

which means that the uis and vis independently form (n × n) and (m × m) orthogonal
sub-matrices in S.

Based on (9–81) we obtain

A∗ A vi = λi A∗ ui = λ2
i vi (9–84a)

AA∗ ui = λi A vi = λ2
i ui (9–84b)

Because both A*A and A A* are symmetric (hence squared) matrices, we have an m ×
m eigensystem

A∗A V = Vdiag
(
λ2

1, . . . , λ
2
p, 0, . . . , 0

)
, (9–85a)

and an n × n eigensystem

AA∗U = U diag
(
λ2

1, . . . , λ
2
p, 0, . . . , 0

)
(9–85b)

where V = (v1 v2 . . . vm) and U = (u1 u2 . . . un). Since the rank of A is p, the number of
zero eigenvalues for A*A and AA*, respectively, are (m – p) and (n – p).

In summary, when λi is the singular value of A, λ2
i will be an eigenvalue of A*A or

AA*. Therefore, the singular values of a matrix A are the non-negative square roots of the
eigenvalues of A*A or AA*, whichever has fewer rows and columns.
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Example

Decomposing an extremely simple 3 × 2 matrix A =
⎡
⎣ 0 0

1 0
0 0

⎤
⎦ .

Since AT A =
[

1 0
0 0

]
, from (9–84a) the eigenequation is

ATAvi =
[

1 0
0 0

]
vi = λ2

1vi

which can be solved to obtain two eigenvalue–eigenvector pairs:

λ1 = 1 v1 = (1 0)T

and

λ2 = 0 v2 = (0 1)T

This means V = (v1 v2) =
[

1 0
0 1

]
.

Similarly, since A AT =
⎡
⎣ 0 0 0

0 1 0
0 0 0

⎤
⎦, from (9–84b) the eigenequation is

AATui =
⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦ ui = λ2

i ui

which can be solved to obtain three eigenvalue–eigenvector pairs:

λ1 = 1, u1 = (0 1 0)T

λ2 = 0, u2 = (1 0 0)T

and

λ3 = 0, u3 = (0 0 1)T

This means

U = (u1u2u3) =
⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦

Putting things together, the SVD is

A = U
VT =
⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦

⎡
⎣1 0

0 0
0 0

⎤
⎦[

1 0
0 1

]
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9.4.3 Generalized inversion

We have considered modeling and inverse as two reverse mapping processes between data
space and model space through the kernel matrix A in (9–7) and its inverse. For a given
inverse problem with data, data kernel, and target model vector, there could be a part of the
data space that is unrelated to any part of the model space. Conversely, there could also be a
part of the model space that is unrelated to any part of the available data. Those subspaces
are called null spaces, because the corresponding information cannot be mapped between
the data space and model space.

We cannot obtain the exact inverse of most forward problems Gm = d, because the
inverse matrix G–1 does not exist. Then these problems become non-deterministic because
the inverse solution will be approximated and non-unique. The goal of inverse for such
non-deterministic problems is to find a “generalized” inverse, G−1

g , which maintains the
minimum misfit under some given criteria. Using the LS inversion of Ax = d as an example,
we know from (9–46) that

xLS = (ATA)−1ATd (9–46ʹ)

We can take G = ATA, and b = ATd, then the generalized inverse will be

xg = G−1
g b (9–86)

The term generalized inversion means, regardless of whether an exact inverse exists
or not, the one inverse form which can be adopted in general, and sometimes in ad hoc
fashion. The most common generalized inverse is the one drawn from the SVD:

G = U
VT (9–87)

Following the description of SVD in the previous section, if matrix G has a rank p, there
will be p non-zero diagonal elements in the singular value matrix �:

� = diag(s1, s2, . . . , sp, 0, . . . , 0) (9–88)

We devise a generalized inverse of � as

�−1
g = diag(1/s1, 1/s2, . . . , 1/sp, 0, . . . , 0) (9–89)

Note that only the non-zero elements are reversed, and zero elements are kept as zeros.
Then, the generalized inverse solution of G is

G−1
g = Vp�

−1
g UT

p (9–90)

where Vp and Up are the first p rows of matrices V and U, respectively. One can easily
extend the above idea to exclude very small singular values.

Based on what we have learnt in the last section on SVD, the two unitary matrices consist
of

U = [Up,U0] (9–91a)

V = [Vp,V0] (9–91b)
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Figure 9.22 A schematic illustration of the relationship between model space and data space
via singular value decomposition. Information corresponding to the null spaces U0 and V0

cannot be mapped into the opposite space.

where U0 and V0 are collections of eigenvectors corresponding to zero singular values.
This means

G = U
VT = [Up, U0]

[

p 0

0 0

] [
V T

p

V T
0

]
(9–92)

The null space matrices U0 and V0 are subspaces of the data space and model space,
respectively. The relationship between the model space and data space via the kernel matrix
A and its SVD is sketched in Figure 9.22. From model space to data space, the forward
modeling takes only information corresponding to Vp; the mapping of information from
those parts of the model space corresponding to V0 is blocked by the zero singular values.
Thus the existence of V0 is the cause of model non-uniqueness. Conversely, from data
space to model space, the inverse mapping is valid only for those data corresponding to Up;
the mapping of information from those data corresponding to U0 is blocked by the zero
singular values. Hence the existence of U0 is the cause of data inconsistency.

9.4.4 Conjugate gradient (CG) method

The conjugate gradient (CG) method, or conjugate direction (CD) method in general sense,
is an iterative method to solve the inverse of a linear system like (9–7). In many applications,
the matrix to be inverted is large and sparse. A direct inverse like that using SVD becomes
impossible because the storage of the whole matrix may be of the order of over 1010

elements in the computers’ randomly accessible memory. Iterative inversions such as the
CG method are good remedies in this situation because they require access to only one row
of the matrix at a time, hence the name of “row-action” methods.

The first detailed account of the CG method was by Hestenes and Stiefel (1952). The
iterations of this method terminate at most in M steps, where M is the number of model
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parameters. We want to examine the principle of the CG method in analogy with the LS
inversion. Let us use (x, y) to represent a dot product of two vectors x and y. As shown in
Section 9.3, the LS inversion aims to minimize the L2-norm of misfits

E = (Ax − d)∗(Ax − d)

= (x∗A∗ − d∗)(Ax − d)

= x∗A∗Ax − x∗A∗d − d∗Ax + d∗d

= (x∗, A∗Ax) − 2(x∗, A∗d) + (d, d∗) (9–93)

where the asterisk signs denote complex transpose of the matrix.
In the model space where the model parameters become axes of the coordinate, the above

expression represents a series of ellipsoids in data space with the fitting errors as the radii.
Of course, all ellipsoids must surround the prediction of the final model, xg, which will
have the minimum radius min(E).

For a linear operator G, two vectors p and q are said to have conjugate directions if

(p, Gq) = 0 (9–94)

If we take G as the forward modeling or mapping matrix from model space to data space,
then p is in the data space, q is in the model space. Hence the vectors are in conjugate
directions when p is perpendicular to the mapped direction of q in the data space.

If the kernel matrix G is a square matrix, the data space and model space have the same
dimension. Without a loss of generality, we can have a square matrix by taking the LS result
where A*A is the new matrix G and A*d is the new d. Now suppose that p in data space is
at the direction tangent to one solution ellipsoid for xi, then the conjugate direction q (the
direction in model space for the next solution xi+1) for the operator G will be in a direction
toward the center of this ellipsoid. This forms the base for the CG method.

Starting with an initial estimate model x0, the CG method is a way to determine suc-
cessively new estimates x0, x1, x2, . . . , each constructed such that xi is closer to the true
model x than xi–1. At each step the residual vector ri = d – G xi is computed. Normally
the residual vector can be used as a measure of the “goodness” of the estimate xi. However,
this measure is not reliable because it is possible to construct cases in which the squared
residual |ri|2 generally increases at each step while the length of the error vector |x – xi|
decreases monotonically (Hestenes & Stiefel, 1952).

For the symmetric and positive definite matrix G = A*A, the following are the CG
formulas to construct the estimates:

Initial step: Select an estimate x0 and compute the residual r0 and the direction p0 by

p0 = r0 = d − Gx0 (9–95)

General iterations: From the previous estimate xi, the residual ri, and the direction pi,
compute new estimate xi+1, residual ri+1, and direction pi+1 by

(in data space) ri+1 = ri − (pi ,ri )

(pi ,Gpi )
Gpi (9–96a)
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(in model space) xi+1 = xi + (pi ,ri )

(pi ,Gpi )
pi (9–96b)

(in model space) pi+1 = pi − (ri+1,Gpi)

(pi ,Gpi )
pi (9–96c)

The residues r0, r1, . . . are mutually orthogonal

(ri , r j ) = 0 (i �= j) (9–97a)

and the direction vectors p0, p1, . . are mutually conjugate

(pi , Gp j ) = 0 (i �= j) (9–97b)

To get the final model estimate and the inverse matrix, once we obtained the set of M
mutually conjugate vectors p0, . . . , p M–1 the model solution vector is

x =
M−1∑
i=0

(pi ,d)

(pi ,Gpi )
pi (9–98)

If we denote by pij the jth component of pi, then

g′
jk =

M−1∑
i=0

(pi j , pik)

(pi , Gpi )
(9–99)

is the element in the jth row and kth column of the inverse G–1. On the other hand, the
general formulas (9–98) and (9–99) are not used in actual machine computation because
they need to store all the vectors pi and they are much more influenced by rounding-off
errors. A step-by-step routine given by formulas (9–95) and (9–96) is actually used.

Exercise 9.4

1. Show that if λ is an eigenvalue of the problem Ax = λx, it is also an eigenvalue of the
“adjoint” problem ATy = λy.

2. For a 2 × 2 matrix A =
(

10 2
−10 2

)
(a) Take an eigenvalue–eigenvector decomposition, i.e., find X and � as in

A = X � X−1;

(b) Take a singular value decomposition, e.g., find U and �s and V as in A = U �s VT;

(c) Find the solution m in d = Am, where dT = (1, 2).

3. For a linear equation set

⎧⎨
⎩

x1 + x3 = 1
x2 = 2

−x2 = 1

(a) Form the least squares inverse;

(b) Compute the model parameters using the generalized inverse;

(c) Evaluate the resolution for the model in connection with the original equation set.
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9.5 Practical solutions in geophysical inversion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Geophysical inversion is still a research topic in many aspects, so practitioners are always
interested in practical solutions. The solutions discussed in this section are selected from
several classic deter ministic inversion approaches that are used widely today.

9.5.1 The Backus–Gilbert method

We have repeated that an inverse solution minimizes some measures of misfit or er ror
functions. Alter natively, we can minimize the spread of the resolution and model covariance.
In the late 1960s, George Backus and Freeman Gilber t ( 1967, 1968, and 1970) demonstrated
that the set of Ear th models that yield the physically obser ved values of any independent
set of g ross Ear th data is either empty or of infinite dimensions, meaning a high deg ree
of non-uniqueness in geophysical inverse problems. Consequently, they devised a new
approach to the inverse problem through optimizing the resolution matrices. Instead of
minimizing the difference between data and predictions from models, an inverse can be
derived by minimizing the spread function, the difference between the resolution matrix
and a function of desired shape. This Backus–Gilber t method is useful for solving under-
determined inversions, such as using surface wave data to map 3D velocity structures on a
global scale.

In Section 9.3 we have defined the data resolution matrix N = A Ã−1 and the model
resolution matrix R = Ã−1A, where A is the forward kernel matrix and Ã−1 is the practical
inverse matrix. If we wish the resolution matrix to be in the shape of a Dirichlet delta, the
spread function for data resolution matrix is

spread(N) = ‖N − I‖2 =
N∑

i=1

N∑
j=1

(Ni j − Ii j )
2 (9–100a)

and that for the model resolution matrix is

spread(R) = ‖R − I‖2 =
M∑

i=1

M∑
j=1

(Ri j − Ii j )
2 (9–100b)

where ‖·‖denotes the L2 norm; Ni j , Ri j , and Ii j are the elements on the ith row and jth
column of the corresponding matrices N, R, and I. Expressions in (9–100) are called the
Dirichlet spread functions.

When we minimize only the spread function of the data resolution matrix (9–100a),
we end up at exactly the same formula as the LS generalized inverse. In general, we may
minimize the following linear combination of three terms covering spreads in data space,
model space, and deviation from the reference model

α1 spread (N) + α2 spread (R) + α3 size (< mmT >) (9–101)

where α1, α2, and α3 are weighting coefficients for each term, and the third term is the
covariance size of the solution model, which can be defined as the sum of the square power
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of all diagonal elements of <m mT . A LS minimization of the above linear combination
results in an equation for a general inverse problem:

α1 [A
T A]A−1 + A−1{α2 A AT + α3 < d dT >} = [α1 + α2 ] A

T (9–102)

Most inverse solutions are specific cases of inver ting ( 9–102) for given weights on each
of the three components of ( 9–101). For example, if we have a complete weight on the data
resolution (α1 = 1), no weight on the model resolution (α 2 = 0), and a par tial weight on
the covariance size (α3 = ε  2 and <d dT >= I), we get

[
AT A

] 
A−1 + A−1ε  

2 I = AT

or (9–103)

A−1 = [
AT A + ε 

2 I
]−1 

AT

which is precisely the damped LS inverse matrix in ( 9–54).
For discrete cases, the Backus–Gilber t method is the inverse solution from minimizing

the following Backus–Gilber t spread function for model resolution:

spread (R ) =
M∑

i=1

M∑
j=1

w (i, j ) R 2i j  (9–104)

where the weighting f actor w (i, j ) is non-negative and symmetric in i and j. Specifi-
cally, w (i, i) = 0. The Dirichlet spread function (9–100b) is just a special case when
w (i, j) = 1. Other examples of the spread function include a “blur red” delta shape. The
objective in devising the variable weighting in this new spread function is to suppress
side-lobes in the resolution matrix, or high-amplitude areas away from the diagonal in the
matrix.

Typically the model resolution matrix R is self-nor malized, meaning

M∑
j=1

Ri j  = 1 (9–105)

Needless to say, the new resolution matrix for med by minimizing the new spread function
should also satisfy the above equation. Consequently, the derivation of the Backus–Gilbert
generalized inverse is to minimize (9–104) subject to the condition of (9–105), using the
method of Lag range multipliers (to be discussed in Section 9.5.3.2).

The kth Lagrange function corresponding to the kth model parameter is �κ :

�κ =
M∑

j=1

w(k, j)R2
k j − 2λ

M∑
j=1

Rk j (9–106)

where –2λ is the kth Lagrange multiplier.
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Using Rk j = ∑N
i=1 (A−1

g )ki Ai j where the subscript denotes that A−1
g is a generalized

inverse matrix, we have

�k =
M∑

j=1

w(k, j)

[
N∑

i=1

(A−1
g )ki Ai j

] [
N∑

l=1

(A−1
g )kl Al j

]
− 2λ

M∑
j=1

[
N∑

l=1

(A−1
g )kl Al j

]

=
N∑

i=1

(A−1
g )ki

N∑
l=1

(A−1
g )kl

⎡
⎣ M∑

j=1

w(k, j)Ai j Al j

⎤
⎦ − 2λ

N∑
j=1

(A−1
g )kl

⎡
⎣ M∑

j=1

Al j

⎤
⎦

=
N∑

i=1

(A−1
g )ki

[
N∑

l=1

(A−1
g )kl[Si j ]

(k)

]
− 2λ

N∑
l=1

(A−1
g )klul (9–107)

where [Si j ](k) = ∑M
l=1 w(k, 1)Ail Al j , which is a weighted (by the kth weighting factor) sum

of the ith row of A multiplying the jth column of A; and u1 = ∑M
j=1 Al j , which is the sum

of the lth row of A. The expression (9–107) can be written in matrix form

�k = vT
k S(k)vk − 2λvT

k u (9–108)

where vT
k is the kth row of A−1

g , S(k) is a matrix with elements [Sij](k), and u is a vector of
elements ul.

Differentiating the expression (9–108) with respect to the pth element of vk, vkp, and then
setting the result equal to zero, we yield

2

(
∂

∂vkp
vT

k

)
S(k)vk − 2λ

(
∂

∂vkp
vT

k

)
u = 0 (9–109)

Because there is only one non-zero element in vector ( ∂
∂vkp

vT
k ), the above leads to

S(k)vk − λu = 0 (9–110)

The above equation system needs to be solved in conjunction with the condition (9–105).
These two together are equivalent to a (N + 1)(N + 1) matrix equation[

S(k) u
uT 0

] [
vk

−λ

]
=

[
0
1

]
(9–111)

This equation set will be solved for the inverse expression contained in vk. Notice that
the matrix on the left contains only contributions from A and the weighting factors. The
final solution is in the form of

(
A−1

g

) =
(

N∑
i=1

[Sil ]
−1
k ui

)/⎛
⎝ N∑

i=1

N∑
j=1

ui u j [Sil ]
−1
k

⎞
⎠ (9–112)

Figure 9.23 shows an example of gravity inversion using the Backus–Gilbert method
(Green, 1975). The non-uniqueness in such inverse problems makes it important to use
prior information and to emphasize long-wavelength model components. In this case, the
initial model was constructed using the information that the batholith extends for 21 km
along the profile and its density contrast is –0.15 g/cm3.
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Figure 9.23 A Backus–Gilbert inversion of the gravity profile across the Guichon Creek
Batholith, British Columbia (Green, 1975). (Top) Observed gravity anomaly (solid curve) in
comparison with model predictions (dots). (Bottom) 2D model of density anomaly from the
inversion. The initial model used a priori information that batholith extends for 21 km along
the profile and its density contrast is –0.15 gm/cm3.

9.5.2 Iterative inversion

In practice an inversion is often applied iteratively, for several reasons. First, for inversion
systems with a large number of model variables, it is impractical to carry out their matrix
inversion. Usually, the inverse solutions are derived through iterations of “row-action”
methods like conjugate gradient or back-projection which have been applied extensively in
medical CT scans.

Second, a major challenge for seismic inversions is the fact that wave and raypaths vary
with velocity variations. This is referred to as the coupling between raypaths and velocities.
In fact, this is the fundamental difficulty making seismic tomography more difficult than its
counterpart in the medical field. The coupling makes the inverse non-linear and dependent
on the initial reference model. A common solution is to use a good reference model based
on a priori information. Hence, the problem is translated into using traveltime residues
to invert slowness perturbations with respect to the reference model. When the slowness
perturbation is small, or when the reference model is very good, this approach often results
in reasonable solutions. Furthermore, the whole inverse process can be reiterated so that
more realistic raypaths can be achieved based on slowness solutions from previous inversion
iterations.

In the 1970s, three types of iterative reconstruction algorithms were introduced in medical
CT scanning, namely back projection (BP), algebraic reconstruction technique (ART), and
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simultaneous iterative reconstruction technique (SIRT). In the 1980s, the LSQR algorithm
was invented. These methods will be introduced using a discrete form of traveltime
problem:

�tN×1 = LN×M�sM×1 (9–113)

where the subscripts denote the dimensionality, �tN×1 is traveltime residual vector of length
N, �sM×1 is slowness perturbation vector of length M, and the data kernel L contains the
portions of ray lengths traversing through the model cells.

9.5.2.1 Back-projection

Back-projection (BP) is an iterative method similar to the well-known Gauss–Seidel and
Jacobi methods of linear algebra. It begins by writing each element of the data kernel in
(9–113) as

Li j = hi Fi j (9–114)

where hi is the length of the ith ray and Fij is the fractional value of the ith ray in the
jth model cell. Using �t′ whose element is �t ′

i = �ti/hi , the linear system (9–113) is
converted to

�t′ = F�s (9–115)

The LS system of the above is

(FTF)�s = FT�t′ (9–116)

By an expansion of the matrix (FTF) = I – (I – FTF), we have the estimated solution

�sest = FT�t′ + (I − FTF)�sest (9–117)

The back-projection applies the above equation recursively by expressing the kth model
estimate �s(k) in terms of the (k–1)th model estimate �s(k−1):

�s(k) = FT�t′ + (I − FTF)�s(k−1) (9–118)

If the above iteration is started with �s(0) = 0, then the jth element of the first solution
is

�s(1)
j =

N∑
i=1

Fi j di

hi
(9–119)

The above expression earns the name of back-projection. If there is only one ray and
one model cell, the amount of the slowness perturbation is the traveltime residue divided
by the raypath length. If there are several model cells, then the traveltime residue is back-
projected equally among them; so those cells with the shorter raypath lengths are assigned
with larger slowness perturbations. If there are several rays, a given model cell’s total
slowness perturbation is just the sum of the estimates for the individual rays. This last step
is quite unphysical because it causes the estimates of the model parameters to grow with
the number of rays. Remarkably, this problem introduces only long-wavelength errors into
the image, so that a high-pass-filtered version of the image can often be useful.
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9.5.2.2 ART and SIRT

The algebraic reconstruction technique (ART) was introduced by Gordon et al. (1970),
and later was modified to the simultaneous iterative reconstruction technique (SIRT)
by Gilbert (1972). There is only a small difference between the two: ART updates the
new model values immediately after each row-action whereas SIRT updates the new model
values after each iteration when all row-actions are completed. As a result, ART depends on
the order of the equations while SIRT does not. The early application of SIRT to geophysical
problems was on cross-borehole seismic tomography (Dines & Lytle, 1979). A modified
SIRT inverse (Comer and Clayton, unpublished manuscript, 1984) is introduced in the
following.

In (9–118) replacing �t′ by �t and FT by LB, the kth iteration SIRT solution is

�s(k) = LB�t + ∣∣I − LBL
∣∣�s(k−1) (9–120)

In the above recursion the new matrix is

LB = SLTD (9–121a)

S = diag

∣∣∣∣∣ 1

μ + L M
j

∣∣∣∣∣
N×N

(9–121b)

where μ is a damping parameter, L M
j = ∑N

i=1 li j is the sum of all path lengths through the
jth model cell; and

D = diag

∣∣∣∣ 1

L N
i

∣∣∣∣
M×M

(9–121c)

where L N
i = ∑M

j=1 li j is the total path length of the ith ray.

We may again take the initial model as �s(0) = 0. In each iteration step the traveltime
residuals of all rays that pass through a model cell are accumulated and averaged with
respect to their path lengths to update the slowness perturbation of that cell. If a cell is
intersected by fewer than a certain number of rays, it may be counted as an uncovered cell
by setting its slowness perturbation to zero. A generalized scheme of SIRT inverse may be
multiplying in front of equation (9–120) by a normalization factor, and LB may be defined
as the complex conjugate transpose of L.

To adopt a method to accelerate the inversion’s convergence (Olson, 1987), a modification
on the matrix S is necessary. Comer and Clayton (unpublished) have shown that

�s(k) = LB
k−1∑
l=0

∣∣I − LBL
∣∣l
�t (9–122)

Now for a matrix A

k−1∑
l=0

|I − A|l A =
k−1∑
j=0

C j+1
k |−A| j A = I − |I − A|k (9–123)
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Figure 9.24 A map view and nine cross-sections of a mantle P-wave tomographic study in the Tonga, Kermadec, and New Hebrides region
using SIRT method (Zhou, 1990). The earthquake foci are denoted as small stars on the map and cross-sections.
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for a general matrix A we have

�s(n) = LB
n−1∑
m=0

∣∣I − LBL
∣∣m

L�s

= [I − (I − LBL)n]�s (9–124)

Hence, I – (I – LBL)n is the conventional resolution matrix, the mapping matrix between
the inverted solution and the real solution.

During the 1980s and 1990s SIRT was among the most popular inversion methods to
map mantle velocity anomalies associated with subduction zones and mantle plumes. As
an example, Figure 9.24 shows the result of applying a SIRT inversion to map 3D mantle
P-wave velocity structure in a large region containing the Tonga, Kermadec, and New
Hebrides arcs in the southwestern Pacific Ocean using traveltime data from earthquakes.
The deep subduction zones as indicated by the deep earthquake foci are often associated
with high velocity anomalies as shown in this figure. A prominent slow-velocity anomaly
often appears above the subduction zone at shallow mantle depths. This wedge-shaped slow
anomaly below the back-arc volcanoes is interpreted as the signature of the back-arc mantle
flow in association with the subduction of the lithospheric slab.

9.5.2.3 LSQR algorithm

The LSQR algorithm developed by Paige and Saunders (1982) is an efficient numerical
scheme to solve the minimum-norm LS inversion. To invert linear systems like (9–113) for
the solution vector, it is a conjugate gradient inversion that is somewhat similar to the LS
inversion using SVD. The SVD solution is constructed in a p-dimensional subspace of the
model space, spanned by the eigenvectors of G = LTL belonging to p non-zero singular
values. Since the variance of model parameters is inversely proportional to the magnitude
of the smallest singular values, often only large singular values are allowed in inversions.
This means that the inverse solutions are heavily smoothed.

The LSQR algorithm first tri-diagonalizes G into Tp with a simple scheme that works
as follows. First normalize the new data vector LT�t with the norm β1 = |LT�t|, and
take it as the first column v(1) of the transformation orthogonal matrix V. Thus v(1) is the
first ‘basis’ vector of a subspace to be constructed in the model space. The next basis
vectors are now essentially determined by repeated multiplications with G and subsequent
orthogonalization and normalization. To find the next vector we first construct w(1) = Gv(1)

– α1v(1) and choose α1 = v(1)T G v(1) so that w(1)T v(1) = 0, and then set v(2) = w(1) /|w(1)|.
To construct v(3) we must orthogonalize it to the first two vectors using

w(2) = Gv(2) − α1v(2) − β2v(1) (9–125a)

v(3) = w(2)/
∣∣w(2)

∣∣ (9–125b)

where α2 = v(2)TG v(2) and β2 = | w(1)|. One can show that a three-term recursion of this
kind suffices to orthogonalize the whole set of vectors v(1), . . . , v(p), constructed using

γ j+1v( j+1) = Gv( j) − α j v
(2) − β j v

( j−1) (9–126)
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Multiplying (9–126) by v(j+1)T easily shows that the normalizing factor γ j+1 = β j+1.
Reorganizing (9–126) and assembling v(1), . . . , v(p) as the columns of a matrix Vp we
obtain

GVp = Vp+1Tp (9–127)

where Tp is a tri-diagonal (p + 1) × p matrix with upper subdiagonal (β2, . . . , βp+1),
diagonal (α1, . . . , αp), and lower subdiagonal (β2, . . . , βp).

In analogy with the SVD inversion, the LSQR solution is found by expanding the pth
approximation x(p) to x in terms of the basis vectors v(1), . . . , v(p)

x(p) = Vpyp (9–128)

so that the LS system ATA�m = AT�t = β1v(1) is reduced to a system ATAVp yp =
Vp+1Tp yp = β1v(1). After pre-multiplication with VT

p+1, we get

Tp yp = β1ē1 (9–129)

which is a tri-diagonal system of (p+1) equations and p unknowns, where ē1= Vp+1
Tv(1).

The system (9–129) can be solved using the simple or damped LS with very little extra
computational effort. In the LSQR algorithm, Paige and Saunders (1982) avoid explicit use
of G = ATA and further reduce Tp to a bi-diagonal matrix.

Figure 9.25 shows horizontal slices of P- and S-wave velocity variations in the depth
range of 0–3 km from the sea level. These are slices of 3D crustal velocity models in
southern California from tomographic inversions employing the LSQR algorithm (Zhou,
1996). The model region as shown in panel (a) has an area of 300 × 480 km2. Each model
consists of 30 × 48 × 13 model cells, with a constant cell size of 10 × 10 × 3 km3. The 3D
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Figure 9.25 (a) Map view of major faults (black curves) and seismologic stations (triangles) in
southern California. (b), (c) P- and S-wave velocities in the depth range 0–3 km from
inversions using a LSQR algorithm (Zhou, 1996). Areas of insufficient data coverage are
blacked out. The correlation coefficient is 66% between the lateral variations of the P- and
S-velocities of this layer. Pink dots are earthquake foci. For color versions see plate section.
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velocity models are inver ted from over 1 000 000 P-wave first-ar rival times and over
130 000 S-wave first ar rivals from over 37 000 local ear thquakes and quar r y blasts from
1981 to 1995. 3D ray tracing is employed to deter mine hypocenters and 3D velocity vari-
ations. Considering the large undulation of the Moho in the region, first-ar rival times of
tur ning rays are used to g radually update the 3D velocities and raypaths. The near-surf ace
layers of the P and S velocity models show good cor relation with the surf ace geology. Major
sedimentar y basins exhibit slow velocities and mountainous areas of cr ystalline rocks show
fast velocities.

9.5.3 Constrained inversion

Previously, Section 6.1.2.3 showed the constrained LS method in deter mining the prediction
er ror operator. Section 8.5.5 fur ther demonstrated the benefits of applying constraints in
inversion problems. The damped and weighted LS inversions in Section 9.3.2 are also good
examples of constrained inversion. Here this topic is elaborated in two aspects, using a
priori information and Lagrangian multipliers.

9.5.3.1 A priori information

Information known prior to a geophysical inversion is one of the most influential factors
for the success of the inversion. One reason is that most inverse problems are imposed for
determining the most appropriate model values in pre-defined model setups; hence existing
information can be useful in designing model setups and value ranges prior to inversion.
Another reason is the widely existing non-uniqueness in geophysical inverse problems due
to limited data coverage; thus using prior information increases the chance of choosing
the geologically most plausible model among solutions that fit the data equally well. A
reasonable constraint based on a priori information may help stabilizing the inversion. For
instance, first-arrival tomography has limited ability to handle low-velocity anomalies (see
Box 9.3 later). Then we may constrain the inverse solutions by assuming that the velocity
only increases with depth in all parts of the model.

It is convenient to use prior information because it is widely available, ranging from
known physical relations between data and model variables, to reasonable ranges of data
and model values, and to smoothness of patterns in model solutions. Information about
things such as a non-zero mean of the solution or smoothness (flatness or roughness) of
solution patterns, can be included directly as weighting factors into the LS inverse. The
new scalar function to be minimized is

�(m) = E + ε2 L (9–130)

where the inner product E = eTe is the original error function, ε2as a weighting factor here
is the damping factor in (9–54), and L is the Euclidean length of model variables that we
want to constrain. L can be modified from its form in the minimum-norm inverse (9–54)
L = mTm, to

L = (m− < m >)T Wm (m− < m >) (9–131)

where <m> is the a priori expected value of the model parameters, and Wm is a weighting
factor that enters into the calculation for the length of the solution vector.
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For example, the flatness of a discrete model of M variables can be expressed by a vector
f of length (M – 1):

f = D (m− < m >) (9–132)

where D is a bi-diagonal matrix of dimension (M – 1) × M with a constant diag-
onal element –1 and a constant superdiagonal element 1. The kth element of f is
fk = (mk+1− < mk+1 >) − (mk− < mk >) for k = 0, 1, . . . , M–1. Then, to maximize
the flatness of the model solution we can minimize the additional solution norm:

L = fTf = (m− < m > )T DTD (m− < m > ). (9–133)

Comparing (9–133) with (9–131), the weight matrix Wm for this case is tri-diagonal
with a constant value –1 for both super- and subdiagonal elements, and 2 for all diagonal
elements except the first and last one which have a value of 1.

In another example, the roughness of a discrete model can be denoted by the second
derivative which, in a discrete sense, is the matrix D in (9–132) in the form of a tri-diagonal
matrix with subdiagonal, diagonal, and superdiagonal elements of values 1, –2, and 1,
respectively. Then the corresponding weighting matrix Wm is a penta-diagonal matrix with
a constant value of –4 for the first super- and first subdiagonal elements, a value of 1 for
both the second super- and second subdiagonal elements, and 6 for all diagonal elements
except the first and last, with a value of 5. Therefore, by suitably choosing the a priori model
vector <m> and the weighting matrix Wm, we can quantify a wide variety of measures of
simplicity for the model solution.

One may, of course, place a diagonal weighting matrix We on the data vector, according
to knowledge of the error in data. Thus, the general minimizing function can be expressed
as

�(m) = eTWee + ε2(m− < m >)TWm(m − < m >) (9–134)

There are three common types of inverse solutions corresponding to minimizing (9–134)
with different values of the damping factor ε2. If the forward equation G m = d is completely
over-determined, we do not need to constrain the model norm, so ε2 = 0 in (9–134). The
inverse solution is

m̃ = (GT We G)−1 GT We d (9–135)

Second, if the forward problem is completely under-determined, we only have to constrain
the model norm so ε2 = ∞ in (9–134 ). In other words, we can ignore the first right-hand
term of (9–134 ). The inverse solution in this case is

m̃ =< m > +WmGT (G Wm GT)−1 (d − G<m>) (9–136)

Finally, if the forward problem is mixed-determined, we only have to constrain the model
with a general (9–134 ) (i.e., ε2 is a finite non-zero value). The inverse solution in this case
is

m̃ =< m > +GT We G + ε2Wm)−1GT We (d − G<m>) (9–137)

which is equivalent to

m̃ =< m > +W−1
m GT (G W−1

m GT + ε2 W−1
e )−1 (d − G<m>) (9–138)
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In all cases, one must take care to ascertain whether the inverses actually exist. Depending
on the choice of the weighting matrices, sufficient a priori information may or may not
have been added to the problem to suppress the under-determinacy.

Another commonly seen form of a priori information is that of linear equality constraints
in the form of p new equations F m = h. This means that some linear functions of the
model parameters equal a constant. One way to think of this is as if we try to force a portion
of the equations with exact predictions. The inverse problem now becomes:

Solve m̃ from G − m = d

by minimizing

|d − G m̃|2 (9–139)

with conditions F m = h.
One approach to solve the above problem (Lawson & Hanson, 1974) is to include the

new p equations F m = h as additional rows to G m = d and then adjust the new weighting
matrix We of dimension (M + p) × (M + p) so that the new rows are given much more
weight than the original rows. The prediction errors of the new equations are therefore zero
at the expense of increasing the prediction error of the old equations. Another approach is
through the use of Lagrange multipliers: this is a classic method to deal with conditioned
extrema problems as discussed in the next section.

9.5.3.2 Constraining by Lagrangian multipliers

The method of the Lagrangian multipliers is illustrated in many books and papers. A simple
two-variable example is shown below:

Minimizing E(x, y), (9–140a)

with condition �(x, y) = 0. (9–140b)

One way to deal with this problem is to solve the conditional equation for an expression
of y as a function of x (or vice versa), and then substitute the expression y(x) into E(x, y).
So a function with a single variable E[x, y(x)] can then be minimized by setting dE/dx = 0.

The method of Lagrange multipliers deals with the constraints in their implicit forms,
and hence has advantages when the condition equation is hard to solve. At the values of x
and y where the function E is minimized, E is stationary with respect to x and y, i.e., small
changes in x and y lead to no change in the value of E:

d E = (∂ E/∂x)dx + (∂ E/∂y)dy = 0 (9–141)

The condition equation relates the perturbations dx and dy:

d� = (∂�/∂x)dx + (∂�/∂y)dy = 0 (9–142)

Notice that (9–141) equals zero owing to the original minimization, while (9–142) equals
zero because the original condition equation equals zero.

The Lagrange multipliers method uses a weighted sum of the above two equations

d E + λ d� = (∂ E/∂x + λ d�/∂x)dx + (∂ E/∂y + λ ∂�/∂y)dy = 0 (9–143)
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Box 9.3 Challenge of low-velocity layers to first-arrival tomography: the
Yilmaz model

The presence of low-velocity layers (LVLs) is a challenge to first-ar rival tomog raphy
because the raypaths stay above the LVLs. This point can be generalized to a notion that it
is challenging for seismic tomog raphy, especially traveltime tomog raphy, to resolve low-
velocity anomalies because raypaths tend to stay away from them. Following a study by Liu
et al. (2010), here we examine the impact of the LVLs on first-ar rival tomog raphic velocity
model b uilding of the near surf ace using a synthetic 2D near-surf ace velocity model from
Yilmaz (2001) as shown in Box 9.3 Figure 1. In panel (a), dotted cur ves in white indicate
four reversed-velocity interf aces (RVIs) across which the overlying velocity is higher than
the underlying velocity. In panel (b) there are no raypaths traversing along the RVIs, so in
the cor responding areas A, B and C the tomog raphic solutions may be cor r upted.

Two inversion methods have been applied to the first ar rival data generated from the
model in Box 9.3 Figure 1b, a commercial grid tomography and a deformable layer tomog-
raphy (DLT) discussed in Section 9.5.4. Box 9.3 Figure 2 compares three solutions and
their differences with respect to the true model in Figure 1. The first two solutions were
derived by applying the two methods to data without added noise, and the third solution
was from applying the DLT to data with added noise. Interestingly, the two LVLs below
areas A and B in Figure 1a are well resolved by the DLT method, probably because their
lateral extents are smaller than the source-to-receiver offset. In contrast, these LVLs cannot
be resolved at all by the grid tomography as used in the commercial software.

To see the impact of velocity errors on migration results, depth migrations of the two
deep reflectors in Figure 1a were conducted using three velocity models created by merging
the three solutions of the near-surface velocities shown in the left column of Figure 2 with
the deep part of the true velocity model in Figure 1a. The depth migration results are shown
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Box 9.3 Figure 1 (a) The Yilmaz 2D velocity model with four reverse-velocity interfaces
(RVIs) indicated by white dotted curves. The numbers indicate velocities in m/s. The plot is
vertically exaggerated by 12 times. (b) The near-surface portion of the Yilmaz model, serving
as the true model for the first-arrival tomography tests. The curves are first-arrival raypaths
from some sources to receivers along the surface. Areas A, B, and C are expected to have more
velocity errors due to the presence of RVIs.
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Box 9.3 Figure 2 Three tomographic solutions in the left column and their difference with
respect to the true model in the right column. (a) Solution from a commercial grid tomography
with noise-free data. (b) Solution from the DLT with noise-free data. (c) Solution from the
DLT with added random traveltime noise.
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Box 9.3 Figure 3 Migrated sections of two deep reflectors using models containing the
near-surface velocity solutions shown in Box 9.3 Figure 1 based on: (a) commercial
tomography on noise-free data; (b) DLT on noise-free data; (c) DLT on noise-added data.
White lines denote the true positions of the reflectors. Areas A, B, and C in (a) show that the
events are over-migrated because the near-surface velocities are too fast.
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in Box 9.3 Figure 3, in comparison with the correct positions of the two deep reflectors
denoted by white lines. Box 9.3 Figure 3a shows the migrated result using the near-surface
velocity model from grid-based tomography, in which, below areas A, B, and C, the events
are over-migrated owing to faster velocity at those areas in near-surface. Especially below
area C, where the RVI is wider, there is a significant impact of near-surface velocity error
on imaging the deep reflectors. Comparing with the results from a commercial grid-based
tomography, the DLT method delivers much better near-surface velocity solutions and less
error in the images of deep reflectors.

where the weighting factor λ is called the Lagrange multiplier. Since both perturbations dx
and dy are variables, the two expressions in the two parentheses of the above equation must
all be zero. We now have three simultaneous equations:

∂ E/∂x + λ ∂�/∂x = 0

∂ E/∂y + λ ∂�/∂y = 0

�(x, y) = 0 (9–144)

for three unknowns x, y, and λ.
Therefore, the method converts the conditional minimization problem into an uncondi-

tional minimization problem with one more unknown and one more equation. The method
can be easily extended to problems with more than two variables, such as (9–139), in the
last section, which can be rewritten as

Minimizing E(m) = (d − G m)T(d − G m) (9–145a)

with conditions �(m) = h − Fm = 0. (9–145b)

There are M minimizing equations with M unknowns mi (i = 0, 1, . . . , M), and q
conditional equations. By this method, there are M + q simultaneous equations for M
unknowns and q Lagrange multipliers:

∂ E/∂mi +
q∑

j=1

λ j ∂� j/∂mi = 0 and � j (m) = 0 (9–146)

The above M + q simultaneous equations can be put in matrix form as(
GTG FT

F 0

) (
m
λ

)
−

(
GTd

h

)
= 0 (9–147)

9.5.4 Joint inversion: an example for hypocenters and focal mechanisms

A joint inversion involves inverting two or more different types of data when there is
sufficient commonality linking the solutions together. A simultaneous joint inversion uses
different types of data simultaneously to determine the solution models, such as building
a salt velocity model using seismic and gravity data simultaneously. A progressive joint
inversion uses each type of data at each step in an iterative fashion, like an iterative process
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of hypocentral deter mination using the cur rent velocity model and velocity inversion using
the cur rent hypocenter positions. Here joint inversion is illustrated using a simultaneous
deter mination of ear thquake hypocenters and focal mechanisms.

Cur rently ear thquake hypocenters and focal mechanisms are deter mined separately. As
shown in Section 9.3.4, hypocentral deter mination is a process of constraining the hypocen-
ter and source origin time based on arrival times of seismic waves at stations. The deter-
mination of focal mechanisms is done traditionally by fitting first-motion polarity data or
fitting waveforms. A challenge for hypocentral determination using traveltimes is the trade-
off between focal depth and origin time, because most seismic rays take off downwards
from the source. In contrast, the first-motion polarity data on a focal sphere are dependent
on hypocentral position and velocity model but independent of the origin time. Hence, a
joint inversion of both hypocenter and focal mechanism may help to decouple the tradeoff
between focal depth and origin time, and the quality of focal mechanism solutions may be
improved by using more accurate hypocenters.

9.5.4.1 Impacts of velocity model and hypocenter position on focal mechanisms

First-motion polarities picked from waveforms are independent of traveltime readings.
However, different velocity models will result in different ray azimuth and takeoff angles
on the focal sphere and therefore different focal polarity patterns. Because most focal
mechanism studies are based on depth-dependent 1D velocity models, it is important to
analyze the dependency of focal polarity pattern on velocity models.

Figure 9.26 shows the focal polarity patterns and mechanism solutions of three earth-
quakes in two velocity models in southern California. The events in the upper row used a
3D velocity model, and the events in the lower row used a 1D model that is the average
velocities of the 3D model at each epicenter. The left, middle, and right columns, respec-
tively, are for an aftershock of the 1987 Whittier earthquake, an aftershock of the 1992
Landers earthquake, and an aftershock of the 1994 Northridge earthquake. The smaller
polarity symbols in the figure correspond to those stations that might be involved with
polarity reversals. The polarity patterns in 1D velocity models appear as circular girdles
on the focal sphere, indicating that many takeoff angles are insensitive to the epicentral
distance. In contrast, takeoff angles calculated from the 3D velocity model (upper row in
this figure) generally do not exhibit patterns of circular girdles. For each plot the stress axes
are for the focal mechanism determined from the polarity pattern.

Clearly, using different velocity models can cause significant angular rotations of the
stress axes, and determination of focal mechanisms using a layered 1D velocity model may
be hampered by the fact that many calculated takeoff angles are insensitive to the change
in epicentral distance. The insensitivity is due to the fact that most polarity data follow
refracted raypaths whose takeoff angles often become constant in a 1D velocity model. In
contrast, the lateral velocity variations in 3D velocity models tend to vary the azimuth and
takeoff angles even at the same epicentral distance.

Similar to the influence from changing the velocity models, when a hypocenter moves
its position, it may significantly alter the focal polarity pattern and hence the mechanism
solution, especially when 3D velocity models are used. Figure 9.27 demonstrates this point
by slightly moving the hypocenter of a magnitude 3.3 earthquake that occurred on August
6, 1996, on the Mission Creek fault near the San Gorgonio pass. The same 3D velocity
model used in Figure 9.26 is used. The focal mechanism in the center of Figure 9.27 uses
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Figure 9.26 Impact of changing velocity models on the focal polarity pattern of three events
shown in three columns. Plots in the upper row are based on a 3D velocity model, and those in
the second row are based on 1D layer averages of the 3D velocity model. Solid and open
symbols, respectively, denote compressions and dilatations. P and T denote stress axes. The
two values in parentheses in the lower row are the rotation angles of the P- and T-axes in
degrees relative to those of the upper row.

the catalog hypocenter, and the other four mechanisms have their hypocenters moved by
1 km in latitude, longitude, and depth from the catalog hypocenter. Though the absolute
hypocentral movement is only 1.73 km, considerable alterations on the focal polarity pattern
and mechanism are observed. The P- and T-axes rotate by more than 10° in two out of
the four cases. The relationship between the focal polarity pattern and hypocentral position
appears to be highly non-linear.

This synthetic experiment demonstrates the dependency of focal polarity pattern on
velocity model and hypocenter position. The sensitivity of the focal polarity pattern to the
small changes in hypocentral position is the main reason for conducting a joint determination
of hypocenters and focal mechanisms determined from first motion data. For instance, the
perturbed hypocenter in the lower-left case of Figure 9.27 gives a much better fit (r = 90%)
to the polarity data than the catalog hypocenter (r = 83%). If this perturbed hypocentral
position also delivers a better fit to the traveltime data, we should move the hypocentral
solution to this new position.

9.5.4.2 Joint determination of hypocenters and focal mechanisms

The objective now is to search for the hypocenter that will minimize the variance of
traveltime residues and also maximize the fitness between the focal polarity data and the
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Figure 9.27 Effect of slightly moving hypocenter on focal polarity pattern and focal
mechanisms. The center plot is at the catalog hypocenter. The date, magnitude (Mg), and
hypocentral coordinates are shown on the left and right sides. The other four plots are at
hypocenters that are moved by the amount shown above or below in latitude, longitude, and
depth directions. The two values in the lower-left parentheses for each sphere are the degrees
of rotation of the P- and T-axes from those of the catalog hypocenter in the center. The r value
to the lower right of each sphere is the correlation between each focal mechanism and the
polarity data.
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Figure 9.28 Focal mechanism and hypocenter solutions from synthetic tests of a magnitude 3.3
event in three cases (columns) of different noise levels. The number nrev is the number of
reversed polarity readings, and tsd is standard deviation of Gaussian traveltime noise added.
The top row shows the polarity data and focal mechanism solutions at the tr ue hypocenter. The
middle row shows solutions obtained at hypocenters deter mined using traveltime data alone.
The bottom row shows solutions deter mined jointly using traveltime and polarity data. The
hypocentral misfit vector, �h, contains misfits along (x, y, z) directions in km, and origin time
er ror in sec. dev is standard deviation of traveltime residues. Two numbers in the parenthesis
are the rotation of the P- and T-axes from the tr ue axes in deg rees.The r value is the cor relation
between the focal mechanism and polarity data.

focal mechanism solution. Considering the non-linear relationship between the data and
model variables, we conduct a joint determination by a forward search as used in the master
station method discussed in Section 9.3.4.3. In a forward search, it is easy to combine
two optimization objectives into a joint determination. The master station method has two
steps. In the first step all potential hypocenters are identified by searching for all potential
positions that will minimize the traveltime residues. In the second step, a local search is
conducted around each potential hypocenter following the misfit gradient in the reference
3D velocity model. Now a maximization of the focal polarity fitting is added to the second
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step. A new hypocenter is acceptable not only when it reduces the misfit of traveltime
residues and increases the first-motion polarity fitting.

The joint determination is illustrated in Figure 9.28 using synthetic simulations taking the
catalog hypocenter and the central focal mechanism shown in Figure 9.27 as the true model
solutions. Forty-six first-motion polarity readings and 62 P-wave traveltimes were generated
using a 3D velocity model. Noise was added by reversing some (nrev) randomly selected
polarity readings: four reversed readings for the first and third cases (the left and right
columns), and eight reversed readings for the second case (the middle column). Gaussian
random noise of zero mean was added to the model traveltimes; the standard deviation
of the noise is 0.3 s for the first two cases, and 0.6 s for the third case. The magnitude
of the added traveltime noise is greater than the estimated real noise level, because the
documented picking error is 0.02–0.05 s, and the standard deviation of over one million
first-break residues in the 3D velocity model is below 0.2 s.

The top row of Figure 9.28 shows the polarity data and focal mechanisms obtained at the
true model hypocenter, the middle row shows focal mechanisms obtained at hypocenters that
were determined using traveltime data alone, and the bottom row shows focal mechanisms
and hypocenters that were jointly determined using traveltime and polarity data. There are
two types of misfit measures. The first measure concerns the model fitness, including the
hypocentral misfit vector �h and the rotation degrees from the true strain axes. Such model
misfits can be gauged directly in a synthetic simulation, but cannot be measured in real
applications. The second measure concerns the data fitting level, including the standard
deviation of traveltime residues for hypocentral determination and the correlation between
the polarity data and the focal mechanism. We can always measure the fitting level in the
data space in real applications. However, we should keep in mind that the data fitting level is
not always proportional to the model fitness, owing to factors such as non-linearity between
the data and model, limitations of the theory, and presence of noise. For instance, the joint
determination in the first two cases obtained an erroneous hypocenter with a 0.9 s traveltime
deviation which is smaller than the 0.3 s deviation at the true hypocenter. Also in the third
case the joint determination gives a focal mechanism that differs from the true answer but
better fits the focal polarity data.

The simulations in Figure 9.28 show that the error in the hypocenter location is related
to the error in the focal mechanism. As a result, the joint determination performs better
than the separate determinations. Even with the high level of added noise in the traveltimes
and polarity data, the joint determination converges to focal mechanism solutions that are
close to the true answer. The joint determination also reduces the hypocentral misfit vector,
including errors in the origin time and focal depth. Considering the relative impact of noise
in real traveltime and polarity data, the joint inversion seems to be less affected by the
traveltime noise because of its small magnitude and relatively small influence on the focal
mechanism solutions. However, the joint inversion could be impaired if many first-motion
readings have polarity error.

Exercise 9.5

1. The Backus–Gilbert method has been applied to derive 3D phase or group velocity
structures based on surface wave data. Describe how this is done by searching out and
reading publications on this topic.



374 Practical Seismic Data Analysis

2. The damping f actor ε 2 in the minimum-nor m LS solution (9–54) appears again in
Section 9.5.3.1 on a priori infor mation. Explain why the damping f actor is able to
preferentially suppress high-amplitude oscillations in the solution model. You are
encouraged to explore this effect by creating a numerical simulation.

3. A joint inversion can be regarded as a constrained inversion, and vice versa. However,
not all joint inversions achieve better results than separated inversions. Make a list of
criteria for choosing a joint inversion over separated inversions.

9.6 Summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
� Data fitting and model inversion are two complementary approaches to relate the data

space to the model space in order to determine a model that best represents the reality.
Data fitting is based on forward modeling to search for models that fit well with the
observed data and satisfy our scientific intuition. Model inversion uses our scientific
intuition to set up rules about how the models should behave, and then determines the
model variations that fit best with the available data.

� Forward modeling methods set the foundation for all model inversion methods. Seismic
forward modeling methods include ray modeling, waveform modeling, and physical
modeling. Understanding of basic seismic modeling methods such as ray tracing and
finite-difference waveform modeling is necessary for all expert geophysicists.

� One way to carry out data fitting is regression, the process of fitting measured data to
a simple function representing the trends of the underlying physics. We may quantify
misfits in data or model spaces either using norm measures such as L1-norm, or using
statistical quantities such as standard deviation.

� The least squares method as a classic linear inversion is widely applicable in geophysics
and other disciplines. It assumes that the misfits follow a Gaussian distribution, and often
uses damping and weighting in practice.

� For many geophysical applications, inversion is preferred because of its objectiveness in
determining the values of model properties based on the given model parameterization
and data. For small inverse problems, a generalized inversion is applicable based on
singular value decomposition of the kernel matrix. Large inverse problems require “row-
action” solvers such as the LSQR method.

� The main challenges to geophysical inversion are the non-uniqueness of the solutions
due to poor data coverage, the non-linear relationship between data and model, and
dependency of that relationship on the solution. There are a number of practical ways
to constrain the solutions and the resolution, such as the Backus–Gilbert method and
various constrained inversions.

� A joint inversion may outperform separated inversion when the null spaces can be reduced
by complementary effects from the joint use of multiple data types.
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� Practical data fitting and model inversion often require a priori information to build rea-
sonable model parameterization and reference models, followed by iterative applications
of modeling or inversion, and careful QC of the solutions.

FURTHER READING

Kosloff, D. and E. Baysal, 1982, Forward modeling by a Fourier method, Geophysics, 47,
1402–1422.

Menke, W., 1989, Geophysical Data Analysis: Discrete Inverse Theory, Academic Press.
Moser, T. J., 1991, Shortest path calculation of seismic rays, Geophysics, 56, 59–67.
Ulrych, T. J., Sacchi, M. D. and Woodbury, A., 2001, A Bayes tour of inversion: A tutorial,

Geophysics 66, 55–69.
Zhou, H., 1994, Rapid 3-D hypocentral determination using a master station method, J. Geophys.

Res., 99, 15439–15455.



10 Special topics in seismic processing

Chapter contents

10.1 Some processing issues in seismic data acquisition

10.2 Suppression of multiple reflections

10.3 Processing for seismic velocity anisotropy

10.4 Multi-component seismic data processing

10.5 Processing for seismic attributes

10.6 Summary

Further reading

From the previous chapters the reader should have become acquainted with many of
the basic skills of seismic data analysis. Any practice of seismic data processing utilizes
some of these skills to solve particular problems, and uses special tools to address more
focused issues. Everyone in this field will encounter special issues in his/her career; hence
knowing the common features of some special topics is very useful. In this chapter several
special processing topics are reviewed to show the use of the basic data processing skills
that we have learned, and to expose the reader to some widely seen processing topics.
Each of these topics deals with issues associated with a particular problem or property.
The first section introduces the issues involved in four aspects of seismic data acquisition:
monitoring of source signals including fracking-induced micro-seismicity; monitoring
background noises; seismic illumination analysis; and preservation of low-frequency
signals. The second section is on suppression of multiple reflections, which is of service
to many conventional seismic imaging methods that use only primary reflections. After
defining common types of multiples, three classes of multiple suppression methods
are introduced. The first is based on the differential moveout between primaries and
multiples; the second exploits the periodicity of the multiples; and the third reduces all
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surface-related multiple energy via pre-stack inversion. The next section reviews the
basics in seismic anisotropy, a property of the medium that causes a variation of the
speed of seismic waves as a function of the traversing angle. Information on seismic
anisotropy helps in improving the fidelity of seismic imagery in fault imaging, and
in detecting the dominant orientations of fractures. The fourth section briefly covers
multi-component seismic data processing, with an analysis of its pros and cons and
with illustrations in wavefield separation, converted wave processing, and VSP data
processing. The final section introduces the processing aspect of seismic attributes,
including a variety of localized attributes, geometric attributes, and texture attributes,
plus related processing in seismic-to-well tie and impedance inversion. To become an
expert in the practice of these and other topics in seismic data processing, the reader
must learn the fundamentals of seismic wave and ray theory, common issues in seismic
data acquisition, processing and interpretation, and spend some time in processing and
utilizing field seismic data.

10.1 Some processing issues in seismic data acquisition
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In Chapter 1 of this book we observed some processing issues in seismic data acquisition.
This section exposes the reader to more processing-related issues in seismic acquisition
that dictate the quality of seismic data and imagery. These issues are important in designing
seismic surveys.

10.1.1 Monitoring of source signals

Seismic data consist of contributions from four chief factors: seismic sources, impacts of
media properties on propagating waves, receiver characteristics, and background noises of
various origins. While the purposes of most seismic studies are to understand aspects of
either media properties or seismic sources, we have to assess the impacts and characters
of all four factors. Considering that most seismic studies aim to map media properties
while seismic receivers can be characterized under controlled conditions, this and the next
subsections review some basic considerations in monitoring source signals and background
noises.

10.1.1.1 Basics of source monitoring

Seismic sources include natural events such as earthquakes due to fault breaks, land-
slides, and fluid movements, and man-made events such as explosions, fluid injections, and
other controlled sources like small dynamite arrays, weight drops, Vibroseis hammers, air-
guns, water-guns, and sparkers. Seismic studies are called passive if using natural sources,
and active if using man-made sources. For the majority of seismic studies to map sub-
surface structures as well as fluid and rock properties, we need to assess and suppress
inhomogeneities in the seismic data due to different sources, receivers, and noises. For
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such studies, the ideal signature of seismic sources will be consistent and homogeneous in
spatial, temporal, and frequency dimensions. At a given frequency range and time window,
a spatially consistent and homogenous source is a sphere of the same amplitude in different
azimuth and take-off angles. Such a source signal is called omnidirectional, meaning it
does not vary over different spatial angles.

Unfortunately, it is nearly impossible to make a perfectly omnidirectional source in the
real world. Hence we have to monitor source signals in all seismic experiments. We want to
measure the source signal in order to distinguish its signature in seismic data from the effects
of media properties. The radiation patterns of an airgun array, as shown in Figure 1.14,
for instance, indicate that an omnidirectional source signature can be approximated only
within a range of about 0 to 70° in the take-off angle at frequencies much lower than
60 Hz. At higher frequencies, such as the 90 Hz frequency panel in this figure, the signature
of an individual airgun emerges, and the notches or low-amplitude stripes in the total
source signature will show up in the seismic records. We can expect more artifacts in
seismic imagery if we leave these source inhomogeneities in the data.

Further reasons for monitoring source signals arise from the requirement for temporal
consistency. This means that the source signature needs to be repeatable during a seismic
survey, and that the variations in the source signature must be within a required range.
In those seismic surveys using a multitude of controlled sources, we have to make sure
that different sources have the “same” (or sufficiently similar) source signals during the
survey.

When a controlled seismic source such as an airgun or dynamite is fired, seismic waves
are excited in the Earth with significant energy over a frequency range. Suppose the central
frequency of the source waves is 30 Hz and the average media velocity around the source
is 1500 m/s, then the wavelength of the central frequency is 50 m. Since the physical
size of most controlled seismic sources is much smaller than 50 m, the equivalent source
dimension is usually much larger than that of the controlled seismic sources. Hence, Earth
materials around the controlled seismic source, or the near-field media, are part of this
equivalent seismic source. One of the reasons that offshore seismic data are generally of
higher quality than onshore seismic data is that the near-field medium has much more
uniform properties in offshore than onshore cases.

Consequently, at lower frequencies the source signals tend to be more omnidirectional, as
shown in Figure 1.14 for the offshore cases. However, the influence of the near-field media
increases at lower frequencies owing to the increase in the equivalent source dimension.
This notion is particularly relevant to onshore seismic surveys because of the inhomogeneity
of rocks. The level of the inhomogeneity is usually at a maximum near the surface, or near
major lithological boundaries such as sediments versus salt and igneous rocks. In onshore
seismic surveys, we prefer source sites consisting of rocks of high integrity, and it is highly
desirable to minimize the difference in the rock properties and conditions between different
source sites in a survey.

Data processing for monitoring seismic sources requires effective ways to quantify the
source signatures over the spatial, temporal, and frequency ranges of the survey. The main
objective is to capture the source functions and analyze their variations. Monitoring seismic
source signals requires the deployment of a near-field array of receivers in order to record
the source signal over as wide a spatial angle as possible. At the data processing stage,
a practically useful way is to study a number of common shot gathers over the survey
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Figure 10.1 Four time slices through a square cross-spread of a common shot gather (Vermeer,
1998). The number above each panel is the two-way time of the time slice.

area, such as the time slices of a common shot gather shown in Figure 10.1. Although the
situation here is complicated by factors such as velocity variation and interactions between
different wave modes in the subsurface structure, the circular wavefronts can be easily seen
in the shallow time slices. At places of reasonably homogeneous media, such time slices at
near-field distance offer good assessments of the quality of the source signal, particularly
about biases in its spatial radiation pattern.

10.1.1.2 Monitoring microseismicity induced by fracking

One hot topic in recent years is microseismicity induced by hydraulic fracturing and
stimulations, or fracking and frac for short, owing to fluid injections in tight petroleum
reservoirs as well as to naturally occurring fault and fracture activations. This is of particular
importance for reservoir characterization in brittle rocks such as carbonates and has become
very popular recently in shales and tight sands of unconventional oil and gas reservoirs.
Like the earthquakes induced by impoundments of water reservoirs, the main triggers
of the induced microseismicity are changes in stress regime and rigidity due to fluid
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movements. Therefore, the positions, occur rence times, and mechanisms of the induced
seismicity become potential indicators of reser voir conditions in response to the fluid
injection prog rams.

The positions and the origin times of microseismicity are routinely deter mined using
the ar rival times of P and S waves, and some common techniques were introduced in
Section 9.3.4. The accuracy of such methods has two requirements: a suitable spatial
distrib ution of stations with respect to the event locations, and a rob ust way to pick the P-
and S-wave ar rival times. While many microseismicity monitoring prog rams using sensors
placed in wellbores offer high SNR, surf ace sensors provide much better spatial coverage
b ut much lower SNR than the wellbore data. Picking body-wave ar rival times from micro-
ear thquakes is a labor-intensive job owing to the low signal amplitude and the likelihood of
multiple events occur ring in the same temporal and spatial windows. A feasible way is to
verify the hypocentral solutions by comparing obser ved wavefor ms with forward modeling
results.

The focal mechanisms of large ear thquakes (typically magnitude 4.0 or larger) are
routinely deter mined via centroid moment tensor inversions of wavefor m data. Most of the
mechanisms are of shear-f aulting or double-couple (DC) nature. For micro-ear thquakes we
may determine focal mechanisms in a similar fashion if we have good-quality waveform
data and sufficient station coverage. As illustrated in Section 9.5.4, we may be able to
determine the DC mechanisms when we have first-motion polarity data of sufficient spatial
coverage over the focal sphere. In cases when a cluster of microseismic events are likely to
have similar mechanisms, DC mechanism solutions may be obtained based on composite
first-motion data of events in the same group. An example of such focal mechanism solutions
is shown in Figure 10.2.

Figure 10.3 demonstrates the results of a focal mechanism study using a star-like surface
geophone array over the horizontal section of a treatment well that is about 1.8 km below
the surface (Duncan & Eisner, 2010; Eisner et al., 2010). The DC solutions of induced
microseismic events near the horizontal section of the treatment well are shown in a map
view and a vertical-section view. The solutions show two main sets of fault planes of different
mechanisms: a steeply dipping set that demonstrates normal or reverse dip-slip motion and
a less steeply dipping set that seems to fail only with reverse motion. Because normal and
reverse motion are unlikely in the same tectonic setting, the authors postulate that the events
associated with dip-slip mechanisms are most likely caused by hydraulic-fracture loading,
whereas the reverse faulting along the less steeply dipping planes is more likely the result
of reactivation of pre-existing faults. This work shows that focal mechanisms may be used
to differentiate microseismic events due to new fracturing from other events induced on
pre-existing fractures and faults.

While over 90% of large earthquakes have shear-faulting or double-couple (DC) mech-
anisms, many other earthquakes, especially small events, have non-DC mechanisms. For
example, the event shown in Figure 9.2 due to the tragic collapse of a coal mine has a
closing-crack mechanism. Besides collapsing events, other examples of non-DC mech-
anisms include non-planar faulting, tensile failure under high fluid pressure, explosion,
volcanic eruption, and landslides. Seismologists typically use moment tensor to represent
focal mechanisms, and use moment tensor inversion to determine focal mechanisms based
on seismic waveform data. Agencies such as the US Geological Survey routinely publish
moment tensor solutions of earthquakes of magnitude greater than 4.0.
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Figure 10.2 Perspective view of fracture planes defined by microseismic event locations in
Clinton County, Kentucky (Rutledge et al., 1998). The two fault plane solutions displayed at
the top indicate that the seismically active fractures correspond to reverse faulting. The
mechanisms were solved as composites by grouping the events from common planes. The
dashed curves on the focal hemispheres show the orientations of the planes determined from
the respective source locations.

10.1.2 Monitoring of background noises

Even in the absence of known seismic sources, seismic sensors are able to record incoming
energies known as the background noises or ambient noises. These are Earth waves of
unidentified origin. While we can expect that movements of any part of the Earth produce
seismic waves, a chief component of the background noise is cultural noise due to human
activities, such as traffic and machinery. Studies (e.g., McNamara & Buland, 2004) indicate
that cultural noise propagates mainly as surface waves of high frequencies (more than several
hertz) that attenuate within several kilometers in distance and depth. Usually cultural noise
is significantly reduced in boreholes, deep caves, and tunnels. A good indication of cultural
noise is its strong diurnal variations and its frequency dependence on the source of the
disturbance. In addition to earthquakes, other natural sources of background noise include
ocean waves and wind noises.

Since background noises are always present, they can be quantified as functions of
spatial location and frequency. We can even extract signals from the ambient noise, as
shown in Box 10.1. Figure 10.4 shows the USGS New Low Noise Model, or NLNM,
which defines the lowest observed vertical seismic noise levels throughout the seismic
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Figure 10.3 (Left) Map view and (right) vertical-section view of microseismic events in a focal
mechanism study. The induced events are predominantly located west of the treatment well.
Light spheres are the shallow-dipping, reverse-faulting events, showing significant vertical
growth, and likely representing the reactivation of pre-existing faults. Dark spheres are dip-slip
events that are more confined in depth to be near the treatment well, and are probably newly
created by the fracking process (Duncan & Eisner, 2010).
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Figure 10.4 The USGS New Low Noise Model (NLNM), expressed as the effective amplitudes
of ground acceleration in a constant relative bandwidth of one-sixth decade.

frequency band (Peterson, 1993). The NLNM is very valuable for assessing the quality of
seismic stations/sensors and the detectability of small signals. This figure is one of several
possible representations of the NLNM. The amplitudes in this figure may also be interpreted
as average peak amplitudes in a bandwidth of one-third octave. For instance, the minimum
vertical ground noise between the periods of 10 and 20 s is at –180 dB.

By definition of the low noise model, nearly all sites have noise levels above the NLNM,
such as at the two sites shown in Figure 10.5. The noise level in a borehole such as at
Station ANMO is clearly much lower than that at the surface as at Station HLID, especially
at high frequencies. At high frequencies, a noise level no more than 20 dB above the NLNM
may be considered as very good in most areas. The marine noise level between 2 and 20 s
has large seasonal variations and may be 50 dB above the NLNM during times of winter
storms. At longer periods, the vertical ground noise is often within 10 or 20 dB of the
NLNM even at noisy stations. The horizontal component of the noise is usually worse than
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Box 10.1 Ambient-noise seismology

Although the ambient noise recorded at each seismologic station behaves more or less
randomly, cross-correlation of ambient-noise records between a pair of seismologic stations
will result in a waveform that resembles the Green function between the receivers. The
reason is that the only coherent signal in the cross-correlation function between the ambient-
noise records of the two stations is the Green function, which is the impulse response
between the two stations. A similar idea is explored in Exercise 5.4.3.

(a)

35°N

  120°W                                      115°W 

1.4                  2.5                   2.9                   4.0 2.0                   2.65               2.95                  3.4
Group velocity (km/s) Group velocity (km/s)

35°N

  120°W                                      115°W 

(b)

Box 10.1 Figure 1 Maps of Rayleigh-wave group velocities at (a) 7.5 s period and (b) 15 s
period in southern California, based on cross-correlating 30 days of ambient noise between
USArray stations denoted by triangles (Shapiro et al., 2005). Black curves are major faults. For
color versions see plate section.

Box 10.1 Figure 1 shows two maps of Rayleigh-wave group velocities at periods of 7.5
and 15 seconds, respectively, based on cross-correlating 30 days of ambient seismic noise
recorded at some USArray stations in southern California. The patterns of these velocity
maps are geologically plausible, such as the low-velocity sedimentary basins and high-
velocity igneous mountains, similar to the patterns of the bodywave tomography maps
of near-surface depths in Figure 9.25 using earthquake sources. The map on the left has
shorter period, hence shallower sampling depths, than the map on the right. The examples
here verify the feasibility of using ambient noise records to conduct seismic mapping of
the subsurface structures, a useful solution for situations when few seismic sources are
available. However, the records need to be long enough to ensure their randomness.

the vertical component owing to tilt-gravity coupling. The horizontal noise level can be
considered good when it is within 20 dB above the vertical noise level at the same station.

A major advance in seismic data acquisition during the last century was the use of arrayed
sensors to suppress noise and enhance coherent signal at each survey node. Consequently
a common practice of industry onshore seismic surveys employs a group of about 10
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Figure 10.5 Background noise levels at two sites (McNamara & Buland, 2004). (A) Station
HLID where the automobile traffic along a dirt road 20 m from the station creates a 20–30 dB
increase in power around 0.3 s in period. (B) Station ANMO in a borehole with very low noise
level. HNM and LNM are the high and low noise models, respectively, by Peterson (1993).

3.0

3.4 (a) (b)

3.0

3.4

Tim
e (s)

Tim
e (s)

CMP CMP

Figure 10.6 Comparison between stacks based on: (a) a simulated 20-m array; and (b)
single-sensors with 5 m interval (Strobbia et al., 2009). Improvement in (b) is due to its better
accounting for the large and rapidly varying statics in the survey area, using a finer spatial
sample interval than that in (a).

geophones at each station location, and the stacked trace of the group is the record of the
station. In recent years the demand for better resolution and the much-improved quality
of modern sensors has generated a debate between the acquisitions using single sensors
versus arrayed sensors. With a fixed number of sensors, single-sensor surveys offer denser
spacing between the receivers than the arrayed surveys, but the latter usually provide more
effective noise suppression. In practice, a chief criterion is which arrangement better serves
the business and scientific objectives.

While seismic surveys with arrayed sensors work well in perhaps most cases, single-
sensor surveys can be superior when the quality of individual sensors can be maintained.
The single-sensor surveys are especially attractive when denser receiver interval is a key
objective. Figure 10.6 compares the stack sections from two types of surveys in a permafrost
area (Strobbia et al., 2009). In this case, the strong and short-wavelength static variations
due to the permafrost variations deteriorated the 20 m array solution shown in Figure 10.6a.
In contrast, the single-sensor solution with 5 m intervals shown in Figure 10.6b shows good
improvements. In practice we must justify the extra cost in time and money for denser
arrays against the improvements they provide in imaging quality.
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10.1.3 Seismic illumination analysis

10.1.3.1 Factors behind seismic illumination

The illumination analysis of seismic data is a quantification of the spatial coverage of the
traversing seismic waves through the subsurface target. It is a valuable tool for assessing
the resolution and biases of the imaging solutions for the given data. There are five chief
factors influencing the illumination: (1) data wave type and SNR; (2) acquisition geometry;
(3) overburden structure; (4) complexity of target; and (5) analysis method. For the first
factor, the propagation of different wave types may follow different physical principles that
govern their wavepaths and therefore the illumination and SNR. Seismic reflection waves,
which constitute the majority of seismic data in petroleum exploration, require the presence
of coherent reflectors which are equivalent to alignments of seismic impedance contrasts.
Nearly all industry reflection seismic imaging studies use subcritical reflections and shots
and receivers along the surface, meaning that the reflection angles are generally within
30–40° from the vertical orientation.

The second factor, the acquisition geometry, defines the distributions of and spacing
between shots and receivers. Here a key parameter is the range of shot-to-receiver off-
set, which dictates the range of reflection angles for reflection waves, or depth range of
wavepaths or raypaths for turning waves. Another key parameter is the azimuthal range
of shot-to-receiver directions for 3D surveys. For 2D seismic surveys, we prefer to align
the shot-to-receiver direction along the regional dip direction of the overburden and target,
assuming that they have a consistent regional dip direction. When either the topography,
or the overburden, or the target is of three-dimensional nature, a consistent regional dip
direction will not exist. In this situation, we have to use a 3D seismic survey rather than
a 2D survey. In 3D seismic surveys, we prefer the range of the azimuthal angle of the
shot-to-receiver direction to be as wide as possible. The shot spacing and receiver spacing
dictate whether we can have enough multiplicity of data coverage to perform adequate
statics analysis, velocity analysis, and imaging.

The third factor, the overburden structure, refers to the impact of the heterogeneity of the
overburden on the illumination. Because seismic waves tend to spend a minimum amount
of their traveltime in places of locally slower velocities, wavefronts bend backward over
slow velocities and forward over fast velocities. The backward and forward bendings of
wavefronts produce convergence and divergence in wave amplitudes, respectively. If there
is a flat reflector of uniform reflectivity below an overburden of high- and low-velocity
anomalies, the imaged result of the flat reflector may have time pull-ups of low-amplitude
reflections beneath high-velocity anomalies in the overburden, and time sags of high-
amplitude reflections beneath low-velocity anomalies in the overburden. The kinetics of
the situation is similar to the case of fault shadow as portrayed in Figures 7.29 and 7.30.
In addition, the reflectivity in the overburden will partition the traversing wave energy and
limit the angular range of reflection waves passing through the overburden.

Figure 10.7 shows an example of evaluating the effect of overburden on seismic illumina-
tion by Rickett (2003). Panel (a) is a synthetic velocity model, which is part of the so-called
“Canadian foothills over-thrusting onto the North Sea” model. The model contains a flat
reflector of uniform amplitude at 3.9 km depth, with an overburden structure of significant
complexity. This “true” velocity model is used to derive the depth migration results shown
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Figure 10.7 (a) Velocity model. (b) Shot-profile migration. (c) Result of modeling and
migration with a flat-reflector model. (d) Least squares migration. (From Rickett, 2003.)

in the remaining panels of this figure. Panel (b) is the result of a shot-profile migration using
numerically modeled waveforms as the data. We can see the variations in the amplitude and
geometry of the flat reflector at 3.9 km depth, indicating the influence of the overburden.
Panel (c) is the migration result using forward modeled data based on a reflectivity model
consisting of many flat and uniform reflectors. This panel shows an increase in distortions
of the geometry and amplitude of the flat reflectors with increasing depth. Finally, panel (d)
is the solution after 10 iterations of a least squares (LS) migration using the same data as
for (b). As discussed in Box 9.2, LS migration is a direct application of the LS inversion
to seismic migration. From the point of view of seismic illumination, the amplitude and
geometry of the flat reflector at 3.9 km depth are much improved in panel (d) with respect
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Figure 10.8 Two synthetic shot gathers at a surface shot location of 18.2 km in the velocity
model shown in Box 10.1 Figure 1a (Rickett, 2003) using: (a) full 3D two-way finite-difference
modeling, (b) 2D linear one-way modeling.

to (b). Interestingly, the migrated result with better accounting for the illumination gives a
clearer picture of both the signal (reflectors) and various imaging artifacts. A problem of
the inverted result in panel (d) is that the phase angle of the reflectors has been altered to
nearly being reversed.

The fourth factor, the complexity of target, refers to the geometrical complexity of
reflectors when the data are reflection waves. Since the majority of seismic surveys use
shots and receivers deployed along the surface of the Earth, the complexity of the reflectors
means the dipping angle, number of reflectors, and variations in the geometry and reflectivity
of the reflectors. Due to the unknown nature of the complexity of reflectors in the real world,
simplified reflectors such as flat and linear reflectors are often used to assess the general
trend. As an example, flat reflectors of uniform reflectivity are used in Figure 10.7 so that
we can easily evaluate the impact of different factors on the illumination.

The last factor, the analysis method, often plays a vital role in the quality of the seismic
illumination analysis. Figure 10.8 compares two synthetic shot gathers (Rickett, 2003)
using two different 3D finite-difference modeling algorithms. Panel (a) is from full 3D two-
way finite-difference modeling, and (b) is from 2D linear one-way modeling. Although the
timing of most events is similar, they differ significantly in amplitude and phase angle. Panel
(a) shows more ringing patterns which may be accurate reflections due to digitizing dipping
reflectors as step functions. Panel (b) contains more artifacts in its upper-right portion before
the first breaks. We should keep in mind that none of the numerical modeling methods can
include all the wave propagation effects contained in the field data. Hence an expert in
seismic illumination also needs to be an expert in seismic wave propagation.
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Figure 10.9 Azimuthal distribution of ray hit counts at 500–550 km depth range in a
tomographic study of the Tonga, Kermadec, and New Hebrides region (Zhou, 1990). For each
model cell, all traversing rays are denoted as short lines from the center of the cell.

10.1.3.2 Quantification of seismic illumination

Quantification of seismic illumination typically involves forward modeling using actual
survey geometry in a realistic velocity model. The assessment of the illumination may be
done kinematically using ray theory, or dynamically using the wave equation. Owing to
practical constraints such as the project time, computational resources available, and lack of
accurate velocity models, simplifications in the computation methods and models are often
taken. The most aggressive simplification uses ray theory in a homogeneous or a layer-cake
velocity model, which leads to the use of source-to-receiver midpoints to assess the hit
counts over the target reflectors. Following this approach we count the folds of reflections
as the numbers of midpoints in CMP bins.

Figure 10.9 shows an example of using ray theory to map hit counts in a 3D traveltime
tomography study of the subducted lithospheric slabs beneath the Tonga, Kermadec, and
New Hebrides region. The model volume consists of a 3D mesh of cubic cells. After 3D
ray tracing, the ray segments in each cell can be collected to show the number of rays and
their distributions over the azimuthal and dip angles. In this figure, the ray hit counts of a
layer of the cells at a depth range of 500–550 km are shown. All ray segments in each cell
are shown as short lines from the center of the cell along the directions of the raypaths. We
have seen in Chapter 8 that the quality of traveltime tomography depends on the ray hit
counts and crisscrossing level of the rays. Maps of ray hit counts like the one shown here
give a good indication of whether the targets can be mapped with sufficient resolution.

To evaluate the resolution of waveform images such as the solutions of seismic migra-
tion, we shall take a wave-equation approach in the illumination analysis. Xie et al. (2006)
suggested a local plane-wave analysis of the target illumination using an illumination
matrix based on localized, directional energy fluxes for both source and receiver wave-
fields. Figure 10.10 is a sketch showing the structure of a 2D local illumination matrix.
Each element in the matrix corresponds to an independent scattering observation of the
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Figure 10.10 Structure diagram of a 2D local illumination matrix. The horizontal and vertical
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wavenumbers, or the incidence and scattering angles. The main and auxiliary diagonal
directions are horizontal-reflection wavenumber Kr and dipping wavenumber Kd, respectively.
Different angle gathers are shown as strips with different orientations.

target. Such an approach can handle forward multiple-scattering phenomena such as focus-
ing/defocusing, diffraction, and interference effects in complex velocity models.

Figure 10.11 shows local illumination matrices at four locations in the 2D SEG/EAGE
salt model using normalized values of the energy fluxes. The end-on spread of the data
acquisition (e.g., Figure 1.2b) results in a shift of the illumination toward the upper-left
direction in all locations, and a greater shift at the shallowest location (a). The model is
illuminated by wider effective apertures at shallow depth, and the illumination spans a
relatively narrow aperture at deeper depth, particularly in the subsalt location (c). Owing
to the shadowing effect of the salt overburden, the illumination level in the subsalt region
like location (c) is weak and apparently missing for some dipping and reflection directions.

10.1.4 Preservation of low-frequency signals

We have seen in Chapter 4 that the resolution and fidelity of seismic data depend largely
on the data bandwidth, which is the range of the data frequencies that are of sufficiently
high SNR. Nearly all seismic processing and imaging projects require data to have broad
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(Xie et al., 2006). For color version see plate section.
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Figure 10.12 Current cost ranges versus marked frequencies of three types of portable
seismometers. The lower the frequency the higher price of the seismometers.

enough bandwidth, such as two or higher octaves. Though in theory the bandwidth can
be maintained by expanding either the higher or lower frequencies of the data, the way
that rocks and fluids attentuate the propagation of seismic waves means the high-frequency
signals quickly lose their SNR. Hence, to preserve the resolution and fidelity of seismic
data, it is more practical to preserve the low-frequency signals.

In the early days of exploration seismology, a rule of thumb is that the SNR will decrease
to below the acceptable level after 100 cycles of wave oscillations in young or weathered
sedimentary rocks that are often called “soft rocks”. For instance, if we want to map an oil
reservoir that is buried below soft rocks of 2 km in thickness, the two-way traveling distance
of the reflection waves is over 4 km, so the shortest data wavelength is 4 km / 100 = 40 m, if
the SNR is unacceptable beyond 100 cycles. If the average velocity is 2 km/s, then reflection
data of frequencies higher than 20 Hz will not have sufficient SNR in this case. Although
modern acquisition instruments and signal-enhancement technology have increased the
range of wave propagation with sufficient SNR beyond 100 cycles, there is a physical limit
for the achievable SNR at high frequencies.

Hence for highly attenuating media such as most soft sedimentary strata, the only practical
means to maintain the bandwidth of seismic data is to acquire and retrieve the low-frequency
signals whose SNR decreases much more slowly than that of the high frequencies. After
some of the largest earthquakes, for example, long-period Rayleigh waves can maintain good
SNR for many months after each occurrence. However, the cost of seismometers increases
exponentially with their ability to record lower frequencies. Recording lower-frequency
seismic waves requires instruments with larger dimensions and/or higher sensitivity; either
way will increase the cost of the instruments. Consequently, the marked frequency of a
seismometer is typically its low-corner frequency below which the SNR starts to decrease.
The spectral response of a digital seismograph is typically flat from its marked frequency
to the high-corner frequency. The high-frequency limit of a digital sensor is set by its
highest sampling rate.

A practical limit for acquiring low-frequency seismic signals is the cost of the instru-
ments. Figure 10.12 shows the relationship between the current costs and marked frequen-
cies of three types of portable seismometers. Clearly, the cost of seismic sensors rises
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Figure 10.13 Comparison between seismic imageries in an area with basalt layers. (a) Based on
conventional data and (b) based on low-frequency data (Ziolkowski et al., 2003).

exponentially with the increase in their low-frequency sensitivity. The broadband portable
seismometers, such as those manufactured by Guralp Systems in Britain, and Nanometrics
Seismological Instruments in Canada, routinely acquire data of good SNR over the fre-
quency range of 0.01 to 50 Hz. The drawback, however, is their high cost. Currently each
such broadband seismometer costs more than $10 000, which is impractical for seismic sur-
veys for petroleum reservoirs that require tens of thousands of sensors. Consequently, only
the low-cost short-period seismic sensors such as geophones and hydrophones are used in
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exploration seismology. Short-period seismometers are those whose marked frequencies
are higher than 1 Hz. The TEXAN shown in Figure 10.12 is a seismic recorder manufac-
tured by Refraction Technology. Such an instrument is often used in crustal seismology
where each TEXAN is hooked with a low-frequency geophone.

Retrieving low-frequency signals from the short-period seismic data is of critical value for
many areas of exploration seismology and crustal seismology. As an example, Figure 10.13
compares two images in an area with basalt layers whose high interval velocities and
irregular surfaces make it one of the most challenging places for seismic imaging. Because
most lava basalts are in thin layers, the low-frequency seismic waves will penetrate through
them much more effectively than the high-frequency waves. In this figure the image from
the low-frequency data shows substantial improvement over that based on the conventional
data.

Exercise 10.1

1. Explain or refute a notion that in early days of reflection seismology people took –70
dB as the noise level when there were no other references available.

2. Conduct a literature search to summarize the principles of ambient-noise seismology
discussed in Box 10.1. What are the pros and cons?

3. There are possible errors in the phase angle of the reflectors shown in panels (b) and
(d) of Figure 10.7. How will you evaluate errors in the phase angle? What are your
estimates of phase angle errors for these two panels?

10.2 Suppression of multiple reflections
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.2.1 Definition of multiples

Multiple reflections or multiples are seismic waves that have been bounced more than
once from subsurface reflectors or scatters, in contrast to the primary reflection waves, or
primaries, which have been bounced only once. Suppression of multiples is motivated by
the fact that most traditional reflection seismic methods use only the primary reflections
to map the temporal and spatial distributions of subsurface reflectors. It is a practical
decision to use only primaries because they are the easiest to recognize and process for
subsurface imagery, and they typically have much higher amplitudes and SNR than the
multiples. However, this decision requires the suppression of all non-primary reflection
waves, including first breaks, surface waves, converted waves, and of course multiples. Of
all waves other than the primaries, multiples stand out as the most difficult to suppress
because they usually overlap with and are often indistinguishable from the primaries.
Multiples left in the data will generate artifacts that mask the images supposedly based on
primaries, making interpretation difficult.

All seismic reflection waves are bounced from reflectors that are interfaces character-
ized by a discontinuity in seismic impedance, the product of seismic velocity and density.
Seismic impedance becomes acoustic when only the P-wave is involved, but elastic when
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both P- and S-waves are concerned. For sedimentary rocks, reflectors often correspond to
unconformities owing to consistent changes in the alignment of rock fabrics across the hia-
tuses. A reflector of primary reflections is also a reflector of multiple reflections. Although
multiples have lower amplitude and typically longer traveltimes than the corresponding
primaries (e.g., see Box 9.1 Figure 1), they are colored noise that may be mistaken for
primaries. The multiples are particularly strong at coherent and strong reflection interfaces
such as the top and bottom surfaces of water bodies, salt bodies, basalt layers, and carbonate
platforms, as well as major unconformities and lithological boundaries. Because the top and
bottom of a sea water body are coherent and strong reflectors, multiples in marine seismic
data are classified into surface multiples and internal multiples. The former have at least
one downward reflection initiated at the water surface which is among the most reflective
interfaces in nature, and the latter have all of their downward reflections occurring at the
water bottom or below.

The naming of multiples considers their raypaths, as shown in the examples in
Figure 10.14 from Dragoset and Jeričević (1998). The order of the multiples refers to the
number of downgoing reflections (or refractions), particularly when the reflection occurs at
the water surface in marine data owing to the strong amplitude of such multiples. For exam-
ple, panels (a), (c), (d), (g) in this figure show first-order multiples, and the remaining panels
show second-order multiples. Water-bottom multiples are those reflected either upwards
or downwards from the bottom of the water body. Refracted multiples have at least one
segment of their raypaths traveling along one of the interfaces. The surface multiples, those
reflected downwards from the water top or ground surfaces, may be reflected upwards from
water bottom or other interfaces. The strength of the multiples from each reflector depends
mainly on two factors: the reflectivity of the reflector giving rise to the amplitude of all
reflections, and the lateral continuity of the reflector giving rise to the coherency of both
the primary and multiple reflections. Hence, the most easily recognizable multiples are
reflected from laterally coherent and generally smooth interfaces such as water bottom and
smooth salt–sediment boundaries.

We will be able to remove multiples if we can identify them, or at least recognize the
difference between the primary and multiple reflections. We usually cannot do much for
those multiples that follow the same behaviors as the primaries. One consistent pattern of
field seismic data is the differences in the characteristics and patterns of different seismic
events such as primaries and multiples. Hence, the word “demultiple” usually does not
mean the complete removal of all multiples, particularly for field data. Practically, words
like demultiple and multiple elimination mean the same as attenuating or suppressing the
multiples.

10.2.2 Demultiple via transforms

10.2.2.1 Demultiple via moveout differences

A traditional approach to separate multiples from primaries exploits the difference between
their moveout patterns. This approach uses methods such as NMO stacking and f–k filtering.
In the situation of using NMO stacking, we want to choose a stacking velocity corresponding
to the primary reflections, which will become flattened after the NMO. Because velocity
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Figure 10.14 Raypaths of common multiples (Dragoset & Jeričević, 1998). (a) First-order
surface multiple. (b) Second-order surface multiple. (c) Water-bottom multiple. (d) Refracted
first-order surface multiple. (e) Refracted second-order surface multiple. (f) Second-order
surface multiple. (g) Internal multiple. (h) Surface multiple that includes an internal multiple.

usually increases with depth, multiples tend to have lower NMO stacking velocity than the
primaries, because the latter traverse much deeper (e.g., Figure 2.8). Hence, the multiple
reflection events will not be flattened after the NMO that flattens the primary events.
Thus a stacking after the NMO will constructively enhance the primaries and destructively
suppress the multiples. The advantages of demultiple using NMO stacking are its simplicity
and efficiency; the disadvantages are that the process produces only post-stack data and it
does not work for multiples with moveout velocities similar to that of the primaries, such
as in the near-offset traces.

To use f–k filtering to suppress multiples, a CMP gather is first NMO corrected, and then
2D Fourier transformed into the f–k domain. The primary and multiple energies ideally
occupy different portions in the f–k space due to their different moveout patterns. Hence,
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some for m of muting of the por tions containing the multiples can be applied, followed by
inversion 2D Fourier transfor mation to yield a new CMP gather in the t–x domain with
multiples suppressed. We need to apply taper(s) between the pass and reject zones in the
f–k space to reduce the ar tif acts due to Gibb’s ringing. One may extend the f–k filtering
approach to suppress multiples in other pre-stack and post-stack domains, as long as the
multiples and primaries f all in different areas after the f–k transfor m.

10.2.2.2 Demultiple via Radon transform

The idea of separating the primaries from the multiples using a specific transfor m is pursued
by many workers, and one of the improved methods is via Radon transfor m. The idea
was introduced by Thorson and Claerbout (1985) and Hampson (1986), using parabolic
Radon transfor m. As outlined in Section 2.4, the Radon transfor m is a quasi-reversible
transformation that sums data events exhibiting a linear, parabolic, or hyperbolic trajectory
in one domain to a single event in the transformed domain. Consequently, filters can be
designed in the Radon domain to remove much of the energy associated with primaries,
leaving behind the multiples. After inverse transformation of the filtered data back to the
input domain, the multiple reflections remain and can be subtracted from the original
data.

Figure 10.15 compares the effectiveness of multiple suppressions by the f–k approach and
by the parabolic Radon transform (Alvarez & Larner, 2004). In this case, the f–k approach
is not very effective, particularly for the near-offset traces. In contrast, the parabolic Radon
transform approach works more effectively, especially for shallow multiples when the
multiple and primary have enough differential moveout; it is less effective for multiples at
later zero-offset times.

Figure 10.16 shows an example of Radon demultiple by Foster and Mosher (1992). In
practice, after the Radon transform, the primary energy region in the τ–p domain is sup-
pressed first so the inverse Radon transform actually recovers the multiples, like that shown
in Figure 10.16c. Subtracting the multiples-only events from the original data in the t–x
domain (Figure 10.16a) finally produces the primaries-only solution (Figure 10.16b). This
procedure is used to minimize an artificial appearance in the solution of the primary reflec-
tions. Since the Radon transform is quasi-reversible, the inversely Radon transformed image
has an artificial appearance. Hence the subtraction of the multiples-only inverse Radon
transformed events from the original data may retain more characteristics of the original
data.

The use of the parabolic Radon transform to remove multiples from seismic data has
difficulties with the peg-leg multiples from the water bottom and the top of salt in deep
water settings (Ver West, 2002). This is a result of the underlying assumption of the Radon
transform that the model can be represented by parabolas of various curvatures centered
at zero offset. It has been shown that this assumption results in a significant near-offset
remnant of the peg-leg multiple in the data after Radon demultiple. One effective way
to attack this multiple using Radon-like techniques is to expand the underlying model to
include parabolas that are shifted away from zero offset as well as those centered on it. This
necessitates the expansion of the Radon transform domain from 2D to 3D, and a careful
choice of the parameterization of the shift component.
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Figure 10.15 Synthetic tests of two demultiple methods (Alvarez & Larner, 2004). (a)
Synthetic NMO-corrected CMP gather. The peak amplitude of the multiples (M) is four times
that of the primaries (P), and both are invariant with offset. (b) The f–k multiple suppression
leaves considerable residual multiple energy, particularly on the near-offset traces. (c) The
parabolic Radon transform approach works well when the multiple and primary have enough
differential moveout, such as for the earliest multiple. The approach is less effective for
multiples at later zero-offset times.

10.2.3 Demultiple via predictive deconvolution

10.2.3.1 Predictive deconvolution and the demultiple flow

The deconvolution approach explores the periodicity of the multiples in order to suppress
them. A good example is shown in Box 6.1 Figure 1 where the records of an ocean bottom
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Figure 10.16 A field data example of multiple suppression using Radon transform (Foster &
Mosher, 1992). (a) A NMO-corrected gather. (b) The gather after multiples subtraction. (c)
Estimated multiples.

seismometer (OBS) show extremely strong water bottom multiples. In places like offshore
California and Florida, the water bottom consists of crystalline rocks or carbonates whose
density and velocity are significantly higher than that of water. Over ten orders of multiple
reflections have been reported in such places, as shown in the input panel of Box 6.1 Figure 1.
There are also many vertical stripes on this input panel, suggesting that the multiples have a
trace-by-trace behavior; hence a trace-by-trace processing may be suitable. After removing
the periodic component of the records, the output panel in Box 6.1 Figure 1 appears to be
much more plausible geologically.

The predictive deconvolution approach is effective for suppressing multiples for zero-
offset data and for non-zero-offset data acquired in water depths less than 100 m. It usually
takes a trace-by-trace operation in the processing that implicitly assumes a 1D layer-cake
Earth model. However, differences clearly exist in the source signature, receiver response,
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Figure 10.17 A predictive deconvolution procedure (Morley & Claerbout, 1983) for processing
the input seismic trace dsg recorded at sth shot and gth geophone location. For each trace dsg

the model spectrum is formed by adding the log-amplitude spectra of the shot and geophone,
Ss(ω) and Gg(ω), and exponentiating the sum. The inverse Fourier transform yields an
autocorrelation. A Weiner–Levinson (W–L) predictive deconvolution then obtains a causal
inverse filter asg, which convolves with the input trace dsg to produce the multiple-suppressed
output trace.

and changes in the media properties for different locations and offsets. Hence, efforts have
been made to account for these variations.

As an example, a processing flow devised by Morley and Claerbout (1983) is shown in
Figure 10.17. These authors account for the variations in the reflectivity and water depths
at source and receiver locations by taking each seismic trace as a convolution of an average
frequency response with specific shot, geophone, midpoint, and offset responses. The
log-amplitude spectra of each shot and geophone, Ss(ω) and Gg(ω), are solved by linear
least-squares using all traces in “shot–receiver” space. Then the multiple reverberation
response for each shot–receiver pair is identified with the product of the shot and geophone
responses, and the corresponding causal inverse filter is solved using a standard Weiner–
Levinson (W–L) predictive deconvolution algorithm. The multiple-suppressed output trace
is the result of convolving the inverse filter with the input trace.

An important issue in the use of predictive deconvolution is the choice of prediction
distance and the filter length, or time gate. In the above example, the time gate was chosen
to be slightly less than the minimum seafloor time across the section, in order to leave
the phase of the bubble pulse unchanged. The filter length was chosen to be just long
enough to include the maximum seafloor time across the section. Note in the right panel of
Figure 10.18 that the primary near 3 s stands out very clearly after suppressing the multiples.
A weaker primary some 200 ms below the strongest primary is also visible. In the previous
example shown in Box 6.1 Figure 1, a time gate nearly 1600 ms long was used.
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Figure 10.18 The CDP stacks of data from the Flemish Cap area of the Labrador Sea before
(left) and after (right) the processing sequence of Figure 10.4 (Morley and Claerbout, 1983).
The multiples around 3 s are mostly eliminated.

10.2.3.2 Offset effect on demultiple via predictive deconvolution

The efficacy of demultiple via predictive deconvolution degrades rapidly with offset owing
to the non-stationarity of the primary-to-multiple traveltime separation, which becomes
comparable with the main data period at far offset. To overcome this problem, we can
design some types of data transformation that will maintain the periodicity in time between
the primary and multiple reflections. A well-known example is discussed in Yilmaz (1987)
using the tau–p transform.

Another approach, devised by Schoenberger and Houston (1998), is to apply a stationarity
transform that will make the separation time between the primary and multiple invariant
with offset, thus enabling the predictive deconvolution to large offset. Figure 10.19a shows
their synthetic CMP gather with shallow, mid-depth, and deep primary reflections and first-
order peg-leg multiples following simple hyperbolic traveltime trajectories. The predictive
deconvolution as shown in Figure 10.19b is effective only for small offset. The stationarity
transform has allowed successful suppression of the multiples at far offset by predictive
deconvolution (Figure 10.19c).

Figure 10.20 shows the application of the deconvolution methods to field data in terms of
far-offset stacks. Panel (a) is a zoom-in window of the stack without demultiple, on which
the primary (P) and multiple (M) are denoted. Panel (b) is the stack after applying the
conventional predictive deconvolution. Though the amplitude of the multiple is attenuated,
much of the multiple remains in place. Panel (c) is the stack after the joint use of stationarity
transform and predictive deconvolution, which resulted in the highest level of multiple
suppression in this case.

To minimize the impact of random noise on the predictive deconvolution, Hornbostel
(1999) proposed a noise-optimized objective (NOO) function. The filter is optimized
through the application of the filter. The NOO operators have the property of maximizing
the amplitude of the multiples or minimizing that of the primary or random noise in the data.
Examples of linear operators with such a property include stacking, band-pass filtering,
dip filtering, muting, and scaling. Stacking is useful to minimize the predictable energy on
a stacked trace, and the pre-stack filters are less affected by random noise. NOO stacking
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Figure 10.19 (a) A synthetic CMP gather containing three primary reflections and first-order
peg-leg multiples that follow simple hyperbolic traveltime trajectories. (b) Data after predictive
deconvolution. (c) Data after stationarity-transform, predictive deconvolution, and reverse
stationarity-transform (Schoenberger & Houston, 1998).
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Figure 10.20 Comparison of the far-offset stacks (Schoenberger & Houston, 1998). (a) Stack
without demultiple. (b) Predictive deconvolution before stack. (c) Stationarity transformation,
predictive deconvolution, inverse stationarity transformation, NMO, and stack.
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Figure 10.21 Comparison of stacks of a portion of North Sea field data (Hornbostel, 1999). (a)
Without demultiple. (b) With standard gap predictive deconvolution. (c) With time-varying gap
predictive deconvolution. (d) With time-varying gap stack-minimization NOO filter.

differs from the traditional ones because the filter is designed for pre-stack data. It differs
from the standard pre-stack prediction filter because it minimizes the predictable energy
on the stacked traces. Figure 10.21 provides a field data comparison between standard gap
predictive deconvolution, time-varying gap predictive deconvolution, and time-varying gap
stack-minimization NOO filter.

10.2.4 Surface-related multiple elimination (SRME)

There is a group of so-called surface-related multiple elimination (SRME) methods aim-
ing to remove all surface-related multiple energy via pre-stack inversion. Many traditional
multiple suppression methods rely on velocity discrimination, and therefore are less effec-
tive in cases of small moveout differences between primaries and multiples. This challenge
motivated the SRME method to take advantage of the idea that each surface-related multiple
is a superposition of several primary reflections from some surfaces and interfaces. When
the above idea holds true as in most cases, the SRME takes part of recorded seismic data
to predict other parts via inversion, and the predicted portions can be regarded as multiples
and removed. The approach is particularly advantageous in the sense that no subsurface
information and velocity model are required at all.
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X(z0, z0)

P–(z0)

R–(z0)

Figure 10.22 Two block-diagram models of the upgoing wavefield P¯(z0) as convolution of the
source wavefields S+(z0) with two subsurface responses: (a) X0(z0, z0) only; and (b) X(z0, z0), a
combination of X0(z0, z0) and surface-related multiples R¯(z0). (After Verschuur et al., 1992.)

Implementation of the SRME considers the multiple elimination process as a seismic
inversion by minimizing the energy in the data after the elimination. The input data of the
method are upgoing reflected waves related to downgoing source waves. It first calculates a
field of predicted multiples, and later subtracts the predicted multiples from the input data.
In this prediction-and-subtraction process, the subtraction step supposedly compensates for
the prediction errors. The SRME processing is effective as long as all relevant data are
recorded within the aperture and offset ranges of the seismic survey. This means a well
sampled dataset is required.

10.2.4.1 The process of SRME

The SRME method is introduced here following the description by Verschuur et al. (1992).
The SRME and related multiple removal methods rely on a simple but powerful concept:
every surface-predictable multiple consists of segments that, from a surface perspective,
are primary events such as direct waves and primary reflections. If ignoring surface-related
multiples, the upgoing pressure wavefield P¯0(z0) at the surface z0 can be expressed as a
convolution

P−
0 (z0) = X0(z0, z0)S+(z0) (10–1)

where S+(z0) is the downgoing source wavefields from the surface, and X0(z0, z0) is the
response matrix of the subsurface without surface-related multiples. Note that X0(z0, z0)
contains all primary reflections and internal multiples of the subsurface. As we have seen in
Chapter 5, the convolution can be expressed in a block diagram like that in Figure 10.22a.

In the presence of a free surface, any upgoing wave arriving at the surface will be reflected
into a downgoing wave. Taking R¯(z0) as the reflectivity matrix of the free surface, equation
(10–1) should be modified to

P−(z0) = X0(z0, z0)[S+(z0) + R−(z0)P−(z0)] (10–2)

Moving the two upgoing wavefield terms to the left side, we have

P−(z0) = [I − X0(z0, z0)R−(z0)]−1X0(z0, z0)S0(z0) (10–3)

Alternatively, we can define a new response matrix of the subsurface X(z0, z0) that includes
the surface-related multiples. Then the upgoing wavefield is a new convolution

P−(z0) = X(z0, z0)S+(z0) (10–4)
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Comparing (10–3) with (10–4), we find

X(z0, z0) = X0(z0, z0)/[I − X0(z0, z0)R−(z0)] (10–5)

Recalling the recursive filters that we studied in Chapter 5, the new response matrix has
the form of a recursive filter. In the block diagram shown in Figure 10.22b, the surface
reflectivity matrix constitutes the recursive feedback loop. Such a recursive feedback loop
describes the continuous process of generating multiple reflections by the free surface.

The inverse matrix in (10–3) can be expanded into a series

[I − X0(z0, z0)R−(z0)]−1 = I + [X0(z0, z0)R−(z0)] + [X0(z0, z0)R−(z0)]2

+ [X0(z0, z0)R−(z0)]3 + · · · (10–6)

Hence,

P−(z0) = P−
0 (z0) + [X0(z0, z0)R−(z0)]X0(z0, z0)S+(z0)

+ [X0(z0, z0)R−(z0)]2X0(z0, z0)S+(z0) + · · · (10–7)

Comparing with (10–1) reveals that the extra terms in (10–7) generate all surface-related
multiples.

The objective of SRME is to turn the input data P¯(z0) into P¯0(z0) which is free from
surface-related multiples. This can be achieved by inverting (10–2) for X0(z0, z0)

X0(z0, z0) = P−(z0)[S+(z0) + R−(z0)P−(z0)]−1 (10–8)

or, using (10–4)

X0(z0, z0) = X(z0, z0)[I + R−(z0)X(z0, z0)]−1 (10–9)

Similar to the expansion of (10–6), we can expand the above inverse matrix as

X0(z0, z0) = X(z0, z0){I − R−(z0)X(z0, z0)

+[R−(z0)X(z0, z0)]2 − [R−(z0)X(z0, z0)]3 + · · ·} (10–10)

In the presence of strong multiple reflections such as water reverberations at post-critical
angles, straightforward inversion as described by (10–9) is unstable. Hence, the practice of
SRME takes only a limited number of terms in (10–10) to stabilize the inversion. It is clear
that the above two equations do not use any model of the subsurface. Only X(z0, z0), the
seismic data after deconvolution for the source wavefield, and the free surface reflectivity
matrix R¯(z0) are used. The data are taken as a multiple prediction operator, containing all
necessary information about the subsurface in order to predict the multiples. This notion
requires data be the true unit-valued impulse response of the medium, a requirement that is
too strict in practice where the source wavefield is not available. This motivated an adaptive
procedure suggested by Verschuur et al. (1992) to let the predicted multiples adaptively
match in amplitude and phase with the multiples presented in the data. By minimizing
the energy in the data after the multiple suppression procedure, an estimate of the source
signature is obtained as well.

10.2.4.2 Examples of SRME

A field data example of SRME is shown in Figures 10.23 and 10.24, comparing the stack
sections and shot records before and after the multiple suppression process. In practice, a
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Figure 10.23 Comparison of pre-stack depth mig rations of 25-km-long 2D data from the Gulf
of Mexico (Dragoset & Jeri čevi ć, 1998). (a) No treatment of strong surf ace multiples due to
the water bottom and a salt layer lying between depths of 1.8 and 2.8 km. (b) After SRME. The
small triangles mark the location of the shot records shown in the next figure.

number of practical issues have to be solved for the implementation of SRME. For instance,
the input for the procedure was supposed to be the upgoing pressure wavefield P¯ (z0 ) at the
free surf ace, b ut this is not the actual measured data. In the case of marine data, the total
pressure is measured below the free surf ace, while for land data the ver tical component
of the total par ticle velocity is measured at the free surf ace. Hence, before star ting the
SRME, a “deghosting” process of decomposition should be applied to ar rive at upgoing
reflected wavefields. Of course, real-world situations never match our theories exactly. As
an example, some remnant multiples are present in Figure 10.24b, suggesting that field data
imperfections such as 3D effects may reduce the perfor mance of the method.

Figure 10.25 shows another comparison between time stacks of a 2D data from the
Nor th Sea before and after SRME. As a data-driven procedure, SRME does not make
any assumptions about the subsurf ace. It suppresses both surf ace-related multiples as well
as the source signature. By taking the output of the SRME method as the input data
again, we can re-apply SRME to suppress inter nal multiples by extrapolating the “surf ace”
and iteratively applying the multiple suppression procedure. However, the SRME method
requires a complete inter nal physical consistency between primar y and multiple events. Its
3D implementation requires dense sampling of the wavefield on the surf ace, meaning in
theor y the deployment of a shot and a receiver at ever y surf ace location. Typical marine
acquisition geometries deliver much sparser surf ace coverage, which results in severe shot-
and receiver-domain aliasing in the crossline direction.

10.2.5 Imaging with multiples

We may improve the quality of velocity model and seismic imaging by using multiples.
Clearly multiple reflections contain a wealth of information that can used to improve the
resolution of subsurf ace images. In f act, this idea has been proven effective in Section
7.4.3, where the multiples were used together with the primary reflections to generate
the imageries of the subsurface via the reverse time migration method. Two-way wave
equation migration methods consider the whole seismic wavefield as the input, without
distinguishing the primaries from the multiples. The challenge to this approach is its high
sensitivity to the accuracy of the velocity models. On the other hand, we should be able
to take advantage of this sensitivity to create a new way of velocity model building using
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Figure 10.24 A common shot gather from the data shown in previous figure (Dragoset &
Jeričević, 1998). (a) At zero-offset time the events starting at 3.5 s are water-bottom multiples,
at 4.0 s is a multiple that reflects upward at the top of salt and at the water bottom, at 4.5 s is a
multiple that reflects upward twice from the top of salt, and at 5.75, 6.25, and 6.75 s are
second-order surface multiples. (b) The demultiple method has removed many of the surface
multiples, but some remnants are present (arrows), suggesting that field data imperfections
may reduce the performance of the method.
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Figure 10.25 Comparison of time stacks of a 30-km-long 2D data from the North Sea (Dragoset
& Jeričević, 1998). (a) No treatment of the multiples. Four orders of surface multiples are
visible, beginning with the first water-bottom multiple indicated by an arrow. (b) After SRME.
The primary events around 3.5 s (arrow) are unaffected by the multiple suppression.
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multiple reflections. Par ticularly for moveout-based velocity model b uilding such as those
based on NMO and CIG, multiple reflections offer extra spatial coverage and constraining
power.

A different way of imaging multiple reflections was suggested by Berkhout and Verschuur
(2006) to transfor m multiples in primar y reflections. They refer to the approach of removal
of surf ace-related multiples by weighted convolution, described in the previous subsection,
as SRME1. If regarding SRME1 as a forward prediction, then a backward prediction process
can be realized as a weighted cross-cor relation (WCC) between primaries and multiples.
This backward prediction process results in an alter native for multiples removal called
SRME2, as well as a mechanism to transfor m multiples into primaries. Then imaging of
multiple reflections is achieved in three steps. First, separate the primaries into multiples
using a combination of the SRME1 and SRME2. Second, transfor m the multiples into
primaries using WCC. Finally, image the transfor med multiples using traditional one-way
imaging methods.

10.2.5 Exercise 10.2

1. Make a table to summarize major attributes of three groups of multiple suppression
methods in Sections 10.2.2 to 10.2.4. The attrib ute list should include assumptions,
principles, main method(s), applicable situations, and limitations.

2. Come up with three different ways to quantify the effectiveness of the two multiple
suppression methods shown in Figure 10.20, panels (b) and (c).

3. Devise a way to construct a common image gather (CIG) using multiple reflections.
What type of migration operator should be used? How will such a CIG differ from a
CIG based on primaries?

10.3 Processing for seismic velocity anisotropy
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.3.1 Basics of seismic velocity anisotropy

Anisotropy is the variation of a material property with the observational angle. According
to Anderson (1989) the concept of anisotropy was documented originally in studying
the acoustic speed and heat conduction of mineral crystals. In seismic data analysis it is
velocity anisotropy that is of concern, as discussed in Chapters 1 and 8. Processing for
seismic velocity anisotropy involves detecting its presence, compensating for its effects in
the data, and building velocity models to account for velocity anisotropy.

Following “the principle of parsimony”, we always want to use the simplest set of
parameters and models in the practice of seismic data analysis in order to achieve the
most plausible solutions. In exploration geophysics, seismic velocity anisotropy has been
regarded as one of the “necessary devils” that could be important but difficult to handle.
Hence, although it is common in nature and has been studied for many years, seismic
velocity anisotropy has not been included in routine seismic data processing flows. On the
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Figure 10.26 (a) An olivine crystal showing intrinsic velocity anisotropy. (b) A scanning
electron microphotography of shale (Hornby et al., 1994) showing extrinsic velocity
anisotropy at the microscale. (c) A photograph of layered sediments in San Lorenzo Canyon,
New Mexico, suggesting extrinsic velocity anisotropy at the macroscale.

other hand, azimuthally varying velocity anisotropy is routinely analyzed in solid Earth
geophysics to infer the flow directions of crustal and mantle rocks over geologic time.
Such analyses are typically based on the orientation and traveltime difference of shear
wave splitting, the occurrence of two shear waves through an anisotropic medium, a fast
traveling shear wave oscillating along the main orientation of rock beddings or fractures,
and a slow traveling shear wave oscillating perpendicular to the main orientation of rock
beddings or fractures.

10.3.1.1 Intrinsic and extrinsic anisotropy

In recent years the topic of seismic velocity anisotropy has been gaining attention in
exploration geophysics due to the need to account for it in several situations. For instance,
where the velocity anisotropy is significant, failure to account for it in velocity model
building may result in serious error in the positions of the hydrocarbon reservoirs. In
searching for the presence and orientation of fractures in brittle rocks, geophysicists often
rely on clues about anisotropic behavior of the data. Strictly speaking, seismic velocity
anisotropy is divided into that which is intrinsic or extrinsic in nature. As shown in Figure
10.26a, intrinsic anisotropy is due to the mineralogical structure, and it exists at all length
scales. In contrast, extrinsic anisotropy is created by the alignment of rock grains at the
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microscale (Figure 10.26b) or rock bedding at the macroscale (Figure 10.26c). Extrinsic
anisotropy varies with length scale.

In the practice of exploration seismology today, it is typically unclear how much of the
observed velocity anisotropy is due to intrinsic anisotropy of rocks versus the extrinsic
anisotropy of aligned rock strata. However, considering the fact that the wavelength of
seismic data is usually much greater than the grain size of minerals in the upper crust, it is
safe to say that we mostly deal with extrinsic velocity anisotropy in exploration geophysics
and crustal seismology. The presence of extrinsic velocity anisotropy requires the presence
and alignment of anisotropic crystals, and/or alignment of rock layers of different velocities.
In this section, the readers are exposed to some basic issues on the processing of seismic
data in the presence of seismic velocity anisotropy.

A first concern here is about uniqueness in dealing with indications of velocity anisotropy.
When we encounter an observed indication or evidence of velocity anisotropy, how sure
are we that it is really due to velocity anisotropy? What other factors could have caused the
observation? How can we distinguish between the effects of different causes? The answers
requires us to characterize and quantify the cause–effect relationship for each factor and its
effects. Currently the exploration geophysics community as a whole has not been able to
answer these questions in most cases. This means that anisotropy in seismic velocity will
remain a research topic for many years.

One of the pioneer papers on seismic anisotropy was published by Nur and Simmons
(1969), who studied stress-induced anisotropy in laboratory experiments. They showed
clear evidence of velocity anisotropy when anisotropic stresses were applied to a granite
rock sample. Their paper explains the physical process behind stress-induced anisotropy.
As exemplified by this paper, the first approach to understanding velocity anisotropy is to
conduct an experimental study.

10.3.1.2 Transverse isotropy and effective medium theories

In 1981, two important papers on the subject of seismic velocity anisotropy were pub-
lished, one based on observation and the other on theory. First, Helbig (1981) categorized
anisotropic models according to crystal structures. This work developed the geometric the-
ory of seismic anisotropy as the foundation for layer-induced transverse isotropy, or TI.
As exemplified by this paper, a second approach to study velocity anisotropy is to compile
and analyze observed data. Second, Hudson (1981) evaluated the transverse isotropy model
with effective stiffness parameters. This is one of the original theoretical treatments of
velocity anisotropy and attenuation of elastic waves in cracked media. As exemplified by
Hudson’s paper, a third approach to velocity anisotropy is to conduct a theoretical study or
numerical modeling.

From years of studying velocity anisotropy, several concepts or models were proposed
and proven to be important. As a classic example, Hsu and Schoenberg (1993) introduced
the linear slip fracture model to deal with complex fracture structure. Using this conceptual
model, media with different fractures can be described by a single matrix. Another important
concept is a whole set of effective medium theories. Such medium-average or equivalent
medium concepts are among the most common ways for geophysicists to simplify the real
phenomena. An example is the use of stacking velocity to represent the average velocity
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Heterogeneous material Equivalent medium

Figure 10.27 An illustration of effective medium theories: finding the elastic properties of a
homogenous solid having the equivalent elastic properties of a heterogeneous solid with a
complex microstructure (from Hornby et al., 1994).

(a) (b)

Figure 10.28 (a) Rocks with nearly vertical fractures. (b) A model of vertically aligned
fractures as a medium of horizontal transverse isotropy, or HTI. Such a model may explain the
main characteristics of seismic responses to the real rock formation shown in (a).

above a time horizon in semblance velocity analysis. Figures 10.27 and 10.28 give two
examples of effective medium theories. In Figure 10.27 the heterogeneous properties of
shales are modeled by a homogeneous equivalent medium model.

Figure 10.28 shows a rock formation with nearly vertical fractures, and a model with
vertically aligned fractures of regular spacing. If the simplified model of horizontal trans-
verse isotropy (HTI) can predict much of the seismic response of the fractured rocks
in the real world, we can use such a simplified model to assess real situations. Hornby
et al. (1994) demonstrated the differential effective medium theory and the self-consistent
theory. Their paper is a good reference on shale anisotropy and how to model it. It gives
detailed mathematical formulations to calculate shale anisotropy, and shows elastic wave
propagation in anisotropic media.

Another classical paper on velocity anisotropy was by Rathore et al. (1995) who studied
P- and S-wave anisotropy of synthetic sandstone with controlled crack geometry. Their
paper demonstrates elastic wave propagation in a poro-elastic medium based on laboratory
measurements and theoretical modeling. It shows how fluid flow in pore space with pore
pressure in equilibrium affects seismic anisotropy. The poro-elasticity concept is extremely
important for the petroleum industry and is an exciting and challenging research topic.

In practice, most workers focus on transverse isotropy (TI) which is the simplest type
of velocity anisotropy with a single symmetry axis. According to the orientation of the
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(a) VTI (b) HTI                                     (c) TTI

Figure 10.29 Three common transverse isotropy models: (a) vertical transverse isotropy (VTI);
(b) horizontal transverse isotropy (HTI); and (c) tilt transverse isotropy (TTI).

symmetry axis, three types of TI models are shown in Figure 10.29: vertical transverse
isotropy (VTI), horizontal transverse isotropy (HTI), and tilt transverse isotropy (TTI).
The VTI is representative of the most common geophysical model, the layer-cake model. A
more realistic situation with dipping beds is represented by the TTI model. The HTI shown
in Figure 10.28 is representative of vertically fractured rock formations.

10.3.2 Thomsen’s description of weak anisotropic media

Among the rich literature on seismic anisotropy, the paper by Thomsen (1986) has played
a pivotal role in disseminating the general aspects of velocity anisotropy to the exploration
geophysics community. Rather than bring new ideas to researchers on seismic velocity
anisotropy, Thomsen delivered a useful and elegant expression of the anisotropic behavior
using the so-called Thomsen parameters, epsilon ε, delta δ, and gamma γ . These parameters
are widely used in the geophysics community today. Thomsen’s paper focuses on TI media
with a weak level of isotropy, meaning the values of the Thomsen parameters are within
about 20% in their magnitudes.

Following Thomsen’s paper, the following is a mathematic description of the VTI model.
The generalized Hook’s law relates the stress σi j to the strain εkl of a medium:

σi j =
3∑

k=1

3∑
l=1

Ci jklεkl (10–11)

where i, j = 1, 2, 3, and Ci jkl is the 3 × 3 × 3 × 3 elastic modulus tensor, which completely
characterizes the elasticity of the medium. Using symmetry of the stress and strain tensors,
a more compact form due to Voigt is

i j or kl = 11 22 33 32 = 23 31 = 13 12 = 21

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ (10–12)

α β 1 2 3 4 5 6

Hence, the modulus tensor can be expressed by the 6 × 6 elastic modulus matrix Cαβ .
Notice that in the compact form, the first three indices, 1, 2, and 3, denote the three axial
components of the stress and strain tensors, and indices 4, 5, and 6 denote the three deviatoric
components of the stress and strain tensors. Bear in mind that an axial component describes
extensional or compressional change of the stress or strain along one of the three coordinate
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directions, while a deviatoric component describes rotational change of the stress or strain
with respect to one of the three coordinate directions.

With the above notions, each element of the elastic modulus Cαβ simply relates a stress
component to its corresponding strain component. For instance, C11 relates the axial stress
and axial strain in the first coordinate direction; C33 relates the axial stress and axial strain
in the third coordinate direction; C44 relates the deviatoric stress and deviatoric strain with
respect to the first coordinate direction; and C66 relates the deviatoric stress and deviatoric
strain with respect to the third coordinate direction.

Using the modulus matrix, we can now describe VTI, the most common type of velocity
anisotropy (Figure 10.29a). A VTI medium can be described by five elastic parameters:

VP 0 ≡
√

C33/ρ (10–13a)

VSH 0 ≡
√

C44/ρ (10–13b)

ε ≡ C11 − C33

2C33
(10–13c)

γ ≡ C11 − C44

2C44
(10–13d)

δ∗ ≡ 2(C13 + C44)2 − (C33 − C44)(C11 + C33 − 2C44)

2C2
33

(10–13e)

where VP 0 and VSH 0 are the P-wave and SH-wave velocities along the symmetry axis,
and the remaining three equations describe the three dimensionless Thomsen anisotropy
parameters.

Based on the means of the corresponding elastic modulus, ε and γ can be viewed as the
elliptic coefficients of the P-wave and SH-wave velocities. In other words, they describe
the fractional difference between velocities along the vertical direction (slow or along
the symmetry axis) and horizontal direction (fast or perpendicular to the symmetry axis).
The two equations associated with the SH-wave are dropped in many applications that
assume the existence of only P-waves, leaving only three parameters VP0, ε, and δ∗. It is
important to note that the last two dimensionless parameters are derived without the weak
anisotropy assumption.

The final Thomsen parameter, δ∗, is much more complicated because it involves cross-
terms in the elastic modulus. Simplification of this and other parameters using weak
anisotropy, or small magnitudes (under �20%) of the three anisotropy parameters, is one
of the objectives of Thomsen’s 1986 paper. Such a simplification leads to the following
expression for the second Thomsen anisotropy parameter:

δ ≡ (C13 + C44)2 − (C33 − C44)2

2C33(C33 − C44)
(10–14)

In addition, it leads to the following phase velocities as functions of the phase angle θ ,
which is the angle between the symmetry axis of the VTI medium and normal direction to
the wavefront:

VP(θ ) = VP0(1 + δ sin2 θ cos2 θ + ε sin4 θ ) (10–15a)
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Figure 10.30 For a seismic wave traveling in an anisotropic medium, the group (ray) vector is
from the origin of the wavefront, while the phase vector (dashed line) is perpendicular to the
wavefront.

VSV(θ ) = VSH 0

[
1 + V 2

P0

V 2
SH 0

(ε − δ) sin2 θ cos2 θ

]
(10–15b)

VSH(θ ) = VSH 0(1 + γ sin2 θ) (10–15c)

As shown in Figure 10.30, the phase angle generally differs from the group angle of
seismic waves originating from the source at the center. Notice that, based on Equation
(10–15a), when δ = ε, the P-wave velocity is elliptical to the second order with respect to
the phase angle θ ; when δ = 0, the P-wave velocity is elliptical to the fourth order with
respect to the phase angle θ .

Thomsen’s paper serves another important purpose: it is an example of a good scientific
paper. This paper was written with a balance of background information, motivational rea-
soning, and a new view on velocity anisotropy in terms of the Thomsen parameters. Though
the paper is quite succinct, it did a great job of covering the theoretical background and the
main assumptions associated with weak anisotropic media. Above all, his assumptions and
theoretical development are based on observational data analyzed in the paper.

10.3.3 Time-domain estimates of velocity anisotropy

The main objective of seismic data processing in anisotropic media is to estimate anisotropic
velocities from surface reflection data. For data processing in the time-domain, work on
velocity anisotropy has traditionally been associated with NMO velocity analysis as well as
different ways of time migration imaging. One of the original reasons to introduce velocity
anisotropy is the observation of “hockey-stick” patterns in NMO analysis and in the CIG
migration velocity analysis in Chapter 8. Much of the past effort has gone into expressing
stacking velocities using anisotropic parameters. Assuming straight-ray reflections from a
flat reflector below a VTI overburden medium, Thomsen (1986) gives the NMO velocity
of the reflected P-wave as

V P
NMO(0) = VP0

√
1 + 2δ (10–16)

and the NMO velocity of the reflected SH-wave as

V SH
NMO(0) = VSH 0

√
1 + 2γ (10–17)

where VP0 and VSH 0 are vertical P-wave and S-wave velocities, respectively.
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Figure 10.31 Estimated Thomsen parameters ε and δ from synthetic tests in VTI media
(Alkhalifah & Tsvankin, 1995). (a) Inverted values as function of VP0 from NMO velocities for
a horizontal reflector with a ray parameter of 0.23 s/km at 50° dip. The model parameters are
VP0 = 3 km/s, ε = 0.2, and δ = 0.1. (b) Inverted values as function of VP0 for the model with
VP0 = 3 km/s, ε = 0.3, and δ = –0.1.

Equation (10–16) means that the influence of the VTI anisotropy on the P-wave NMO
is due entirely to the parameter δ. Assuming the validity of straight raypaths in a layer-
cake model with VTI anisotropy, we can extract the vertical P-wave velocity VP0 from a
check shot survey, and then determine the dimensionless parameter δ from the P-wave
NMO velocity V P

NM 0(0). Using the derived VP0 and δ parameters, we can then proceed to
determine ε from pre-stack data with different incidence angles.

Similarly, if we have multi-component data that allow us to conduct NMO velocity
analysis for a pure SH wave, we can then follow the same procedure using Equation
(10–17). In other words, we can first extract VSH 0 from a check shot survey, and then
use the SH-wave NMO velocity V SH

NMO(0) and the equation to determine γ for different
reflection times.

A more rigorous study on NMO velocity analysis in the presence of VTI anisotropy
but dipping reflectors was conducted by Alkhalifah and Tsvankin (1995). Their sensitivity
study showed that the three parameters in P-wave velocity anisotropy,VP0, ε, and δ, cannot
be determined uniquely from the surface reflection data alone. As an alternative solution,
they introduced the anellipticity parameter η in order to relate the horizontal velocity to the
NMO velocity:

Vh = VNM 0(0)
√

1 + 2η (10–18)

The similarity between the expressions in equations (10–16), (10–17), and (10–18) was
one of the motivations to introduce the new parameter. This anellipticity parameter was
introduced as a normalized difference between the two Thomsen parameters δ and ε in
media with weakly limited anisotropy:

η = ε − δ

1 + 2δ
(10–19)

If η = 0, or δ = ε, the P-wave velocity is elliptical to the second order with respect to the
phase angle, then the horizontal velocity is the same as the NMO velocity, and the moveout
curves become hyperbolic. This is why we call η the anellipticity parameter. In the isotropic
case, we have δ = ε = 0. Figure 10.31 shows two graphs of two Thomsen parameters as a
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Figure 10.32 Moveout cur ves (left) and τ –p cur ves (right) of a three-layer model for (a)
P-waves and (b) SV-waves (van der Baan & Kendall, 2002). Only the middle layer is
anisotropic. Solid line: exact cur ves; long dashes: τ –p method using reduced-parameter
expression; shor t dashes: Taylor series approximation.

function of the nor mal velocity. In both g raphs the cur ves of the inver ted values pass the
model values, b ut the non-uniqueness of the inversion is clearly seen. Note in both cases
the cur ves of δ and ε are somewhat parallel with each other, meaning a slow change in the
value of η.

Taking advantage of the τ–p transform to separate events of different slowness values
(see Section 2.4.2), many workers extract anisotropic parameters in the τ –p domain. As
an example, Figure 10.32 shows the moveout curves on the traveltime-offset (left) plots
and the associated τ–p (right) plots for a three-layer model having an anisotropic middle
layer of shale sandwiched by two isotropic layers (van der Baan & Kendall, 2002). These
authors developed a τ–p ransform method to compute P and SV reflection moveout curves
in stratified, laterally homogeneous, anisotropic media. Hyperbolic curves in the traveltime-
offset domain map onto ellipses in the τ–p domain by summing the contributions of the
individual layers. The impact of the anisotropy is clearly indicated by the deviation from
the two lower ellipses in the τ–p domain.

To combat the non-uniqueness in inverting for interval anisotropic parameters, a layer
stripping approach is often taken to estimate the effective or interval anisotropic parameters.
For the modeled data shown in Figure 10.32, a layer stripping of the SV-wave reflections
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Figure 10.33 Layer stripping in the τ–p domain (after van der Baan & Kendall, 2002). (a) τ–p
curves of all three SV-waves, as in the lower-right panel of the previous figure. (b) First layer
removed. (c) Top two layers removed. The strong deviation of the moveout of the middle
reflector in (a) and (b) is caused by the anisotropic middle layer, whereas the other two layers
are isotropic.
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Figure 10.34 A 2D line from West Africa after (a) isotropic and (b) VTI time imaging
(Tsvankin et al., 2010). The processing sequence includes NMO and DMO corrections and
post-stack phase-shift time migration. Both time sections were converted to depth. The arrows
point to the main improvements made by the anisotropic processing.

in the τ–p domain is shown in Figure 10.33 (van der Baan & Kendall, 2002). From the top
layer downwards in the τ–p domain, the traveltime difference between every two adjacent
reflection curves is calculated and then removed. In panels (b) and (c) of Figure 10.33, each
of the stripped reflectors is flattened to the corresponding zero-offset time. At each step in
the stripping process, the moveout curve of the reflector right below the flattened one is
used to estimate the interval parameters of the layer.

A recent review by Tsvankin et al. (2010) pointed out that anisotropic migration with
the estimated Thomsen parameters typically improves the fidelity of seismic imagery, with
better focusing and positioning of reflectors of different dips, including steep interfaces
such as salt flanks. Figure 10.34 from their review was used by Alkhalifah et al. (1996) to
illustrate the improvement achieved by anisotropic time processing of data from offshore
West Africa, where thick TI shale formations cause series imaging problems. As highlighted
by the right arrow in this figure, the fault plane at midpoint 7.5 km and depth 3 km is nearly
absent on the isotropic section but imaged well by the VTI time imaging. The fault plane
highlighted by the middle arrow is much more coherent on the VTI section than on the
isotropic section. Accurate imaging of faults beneath the shales has played a major role in
prospect identification in the area.
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Figure 10.35 Comparison between imaging solutions: (a) the same as in Figure 10.34b from
VTI time processing and (b) VTI migration velocity analysis and pre-stack depth migration.
The arrows point to the main differences (Sarkar & Tsvankin, 2006).

10.3.4 Depth-domain estimates of velocity anisotropy

10.3.4.1 Impact of velocity anisotropy on depth imaging

Seismic velocity anisotropy is a property of the medium; hence we will ultimately express
it in depth models. This is a challenging task because, as shown in the previous section,
the problem is highly non-unique and far from being solved even in the time domain.
Nevertheless, it is important to study the problem in the depth domain for several reasons.
First, the depth domain is much more “physical” than the time domain; hence it will
increase the chance of understanding the physical meaning of velocity anisotropy. Second,
even when we achieve a perfect fit in the time domain, the data space, there is no guarantee
that the solution parameters are unique in the model space. Tackling the problem in the
depth domain may give us a much better chance to apply extra constraints to narrow down
the solutions in a geologically plausible manner.

In the presence of velocity anisotropy, proper accounting for it may result in more
significant improvement in depth imaging than in time imaging; this is because depth
imaging is much more sensitive to velocity variation than time imaging. This notion is
especially true in the case of lateral velocity variation, which cannot be handled by time-
domain techniques. Using the same 2D field data from West Africa shown in Figure 10.34,
Sarkar and Tsvankin (2006) made a comparison between VTI time imaging and depth
imaging shown in Figure 10.35. In the depth processing, migration velocity analysis was
carried out using a factorized VTI block model. Comparing the two images shown in
Figure 10.35b reveals a significant improvement in the geologic plausibility of the imaged
structures from the depth imaging with respect to the time imaging. The depth imaging
result has more continuous fault planes, and a reduction in the cross-over events associated
with kinked or joining points in the structure.

The factorized VTI block model for the depth imaging in the previous figure is shown in
Figure 10.36. Each of the model blocks has constant δ and ε, and the velocity VP0 is a linear
function of the spatial coordinates. Sarkar and Tsvankin (2006) suggested that factorized
VTI is the simplest model to include both anisotropy and heterogeneity, and such a model
requires minimal a priori information to constrain the relevant parameters. These authors
argue that, in the absence of pronounced velocity jumps across layer boundaries, knowledge
of the vertical velocity at the top of a piecewise-factorized VTI medium is sufficient to



418 Practical Seismic Data Analysis

0          2        Distance (km)   8          10
0

2

4

D
epth (km

)

4

2

0.15

0.05

0          2        Distance (km)   8          10

0         2        Distance (km)    8         10

0          2        Distance (km)   8         10
0

2

4

D
epth (km

)

0

2

4

D
epth (km

)

0

2

4

D
epth (km

)

0.1

0.01

0.05

0.00

(a) Vp0
(b) η

(c) ε (d) δ

Figure 10.36 Estimated parameters (a) VP0, (b) η, (c) ε, and (d) δ used to generate the depth
migrated section in Figure 10.35b. (After Sarkar & Tsvankin, 2006.)

estimate the parameters δ, ε, VP0 and the velocity gradient throughout the cross-section
using only P-wave data.

Because most variables in anisotropic media are dependent on each other, we need to
develop ways to untangle such dependency when estimating the anisotropic parameters.
Box 10.2 shows an order for determining layered anisotropic parameters in TTI models
based on analyzing the sensitivity of traveltime data with respect to anisotropic para-
meters.

10.3.4.2 Assessing velocity anisotropy in depth domain

The challenges to depth-domain estimates of velocity anisotropy force us to be very cautious
in estimating the anisotropic model parameters. In such processing works, we need to keep
the model as simple as possible, and check the quality of the model from as many different
angles as possible. In conducting tomographic inversion for anisotropic depth models, it is
popular to adopt the layer-stripping approach to use layered models and update the model
parameters in an interactive and constrained manner.

Let us see an example of residual velocity analysis for layered VTI models (Koren et al.,
2008). This software updates interval anisotropic parameters by applying local tomography
to residual values picked from common image gathers (CIGs) generated by anisotropic
curved-ray Kirchhoff time migration. The model consists of locally 1D, spatially varying
VTI with the interval vertical VP0 and the two Thomsen anisotropy parameters δ and ε.
The interval velocity δ is updated from short-offset reflection events, and ε is updated from
available long-offset data. The model parameters are updated from the top down vertically
and layer by layer, one parameter at a time.
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Box 10.2 Sensitivity of traveltime to anisotropic parameters

Because the information for velocity anisotropy comes chiefly from traveltimes of seismic
waves, it is useful to compare the relative influence of different anisotropic parameters on
the traveltime of a traversing wave. We can quantify this sensitivity using the derivative of
the traveltime with respect to each model parameter. For a simple model of a homogeneous
tilted transverse isotropy (TTI), Box 10.2 Figure 1 shows the sensitivity of P-wave traveltime
for four model parameters, the normal slowness SWP0 = 1/VP0, ε, δ, and sin φ, where φ is
the tilt angle of the symmetry angle of the TI from vertical.
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Box 10.2 Figure 1 Magnitudes of traveltime derivatives with respect to four TTI parameters
as functions of ray angle (Jiang & Zhou, 2011). SWP0 is the normal P-wave slowness; φ is
the tilt angle of the TI symmetry axis from vertical. In this case ε = 15%, δ = 10%, and
φ = 45°.

The traveltime derivatives are kernels for tomographic inversion, because they relate
the data space and model space. The relative magnitude of these kernels measures the
level of connection between the data and the corresponding model variables. In this case,
although the derivatives are computed using a specific set of model values (ε = 15%, δ =
10%, and φ = 45°), the relative trends of the derivatives do not change much for different
model values. The figure shows that the kernel for slowness has a high level throughout
the ray angle range, meaning slowness of velocity can be determined from traveltimes of
rays from all angles. The amplitude of the kernels for ε and sin φ raises toward higher ray
angle,
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meaning it can be better constrained using rays perpendicular to the TI symmetry axis. The
kernel for δ reaches its peak value at 45° in ray angle and decreases to zero at 0° and 90°,
meaning it can only be determined using rays of incidence angle around 45° from the TI
symmetry axis.

The amplitude level of each kernel and its variation with ray angle depict the traveltime
sensitivity of the model parameter. The above figure indicates that, from high to low
sensitivity, the parameters are in the order: SWP0 (or VP0), ε, φ, and δ. After analyzing
the relationships and influences of errors between the TTI model parameters in synthetic
inversion tests in VSP and cross-well setups, Jiang and Zhou (2011) suggested the order
of ease of determining layered anisotropic parameters was: VP0, layer geometry, ε, δ, and
φ (Box 10.2 Figure 2). Following this order to extract the anisotropic parameters may
minimize the influence of the errors. For each model setup in practice, we should conduct
tests to quantify a priority order like this, to guide the anisotropic process flow.

Layer
velocity

Vp0

Layer
Geometry

z

Elliptical Anisotropy 
ε

(Crosswell)

Tilt Angle of 
Symmetry Axis

φ

(first) Priority as inversion variables

45° Anisotropy
δ

(VSP)

(last)

(minimum)             Sensitivity to traveltime errors             (maximum)

Box 10.2 Figure 2 From analyzing the influences of errors between anisotropic parameters in
synthetic VSP and cross-well tests, the order of ease in determining anisotropic parameters is:
VP0, layer geometry, ε, δ, and φ (Jiang & Zhou, 2011).

Figure 10.37 displays the interactive panels of this software for updating the value of ε

which varies linearly in each model layer. Panel (a) shows the migrated section in which
the reflection rays from a horizon under examination are highlighted. Panel (b) shows the
vertical variation of ε at the examination location (#10400), as well as the vertical profiles
of VP0 and δ at the same location. Panel (c) shows the offset CIG at the location. A user may
edit the interval values interactively, and the panel displays will be updated correspondingly.
Panel (d) shows the semblance across the horizon as a function of the lateral location and
the value of ε, on which the background, residual, and updated values of ε are plotted. Panel
(e) shows the semblance variation percentage (horizontal axis) versus residual ε (vertical
axis) at the model point under examination, enabling interactive picking of the residual
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(a) Time-migrated section

(d) Horizon velocity-active attribute: residual ε 

(b) Residual ε (c) Time-migrated gather (offset) #10400

(e) Interactive picking (f) QC time-migrated gate

Figure 10.37 Interactive panels of residual analysis for ε in a software package (Koren et al.,
2008). Here the value of ε varies linearly in each model layer. The multiple-panel setting can
be used to build the model from the top and layer by layer. (a) Migrated stack showing
reflection rays at the CIG under analysis. (b) Model layer parameters that are editable by the
user. (c) The CIG under analysis. (d) Semblance of velocity versus residual ε. (e) Interactive
picking of residual ε. (f) A gate of time-migrated traces.

ε. Panel (f) shows a zoom window of the time-migrated CIG around the horizon under
examination, allowing quality control of the detail in the moveout pattern.

Using the interactive panels, a user can pick residual-anisotropy parameters correspond-
ing to the residual-moveout curves that best fit the migrated reflection events. This software
treats the residual moveout at a given model point as two contributions, one from the over-
burden residual parameters and the other from the actual picked residual parameters. Such
local tomography allows a layer-stripping and interactive estimation of the long-wavelength
trends of the anisotropy parameters, and the reliable portions of the results can be used as
the background model for a global tomography to update all model parameters with all data
available. Figure 10.38 compares time-migrated sections at two locations before and after
updating ε (Koren et al., 2008). The inclusion of the anisotropy improves the continuity
and amplitude of reflectors on these sections. The imaging of faults is also improved, as
shown in the highlighted areas on the lower panels.

Exercise 10.3

1. Name several geologic settings that are suitable for HTI and VTI models, respectively.
What are the impacts of HTI and VTI media on surface seismic reflection data?
Comment on the effectiveness of using wellbore measurements to estimate HTI and
VTI media.
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Figure 10.38 Time-migrated sections at two locations (upper and lower panels) before (left)
and after (right) updating ε (Koren et al., 2008). The horizontal axis shows the CRP numbers.
Vertical time is in milliseconds. The ellipses highlight areas of significant change.

2. Use a spreadsheet to compile a list of diagnostics for distinguishing velocity anisotropy
from velocity heterogeneity using seismic and other geophysical and geologic
information.

3. Prove via theoretical derivation or numerical calculation that a raypath in a
homogeneous TI medium follows a straight line.

10.4 Multi-component seismic data processing
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.4.1 Benefits and challenges of multi-component seismic data

In all types of media, seismic waves propagate with particle motions in all directions. Thus,
from the birth of the science of seismology, nearly all seismographs have recorded three-
component seismograms of both scalar fields such as pressure waves and vector fields such
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as particle-motion waves. For practical and economic reasons, however, most exploration
seismic surveys record only single-component data, examples being the water pressure field
recorded by hydrophones offshore and the vertical component of the velocity of particle
motion recorded by geophones onshore. Such single-component data may simplify data
acquisition and processing, but often severely limit the usage of data. Multi-component
seismology aims to acquire, process, and interpret data acquired using multi-component
sensors and/or multi-component sources. This section discusses the benefits and limitation
of multi-component seismic data processing.

With reliable multi-component data, we can access shear waves that will greatly widen
the scope of information carried by the seismic data. Since the speed of S-waves is lower
than that of P-waves, S-wave data offer higher resolution than P-wave data of equivalent
frequencies. Because fluids cannot carry shear motion, S-wave data will not be influenced
much by the presence of gas clouds or gas chimneys. More importantly, S-waves form a
vector field, in contrast to P-waves which form a scalar field. The vector nature allows the
use of S-wave data to detect vectorized or angular-dependent properties of the subsurface,
such as the presence and orientation of fractures and velocity anisotropy. A joint use of
P-wave and S-wave data enables us to reveal the elastic properties of the subsurface, such
as detecting the presence and type of fluids, a core issue for the petroleum industry. In fact,
as discussed in a previous section, studies of seismic anisotropy can be more effectively
conducted using multi-component data.

In most cases, seismic imaging of subsurface structures, or structural imaging, can be
done using single-component P-wave data. However, in many cases, imaging of subsurface
stratigraphy requires joint use of P-wave and S-wave data. In other words, stratigraphic seis-
mic imaging can be better achieved using multi-component rather than single-component
data. Many studies have demonstrated the benefits of this. For instance, Figure 10.39 shows
two horizontal slices at the top of the Gessoso Solfifera formation of the Emilio field in
the Adriatic Sea (Gaiser et al., 2002). The left slice displays the polarization azimuth of
the PS1-wave, a converted wave, and the right slice displays the percentage of shear-wave
splitting coefficient above the formation. The trends of both types of data follow closely the
trend of the anticlines and other structural features in the field. Both types of data contain
information on the fractures and lithology, and were derived by processing multi-component
seismic data.

Mode conversions between P- and SV-waves commonly occur across interfaces, pro-
ducing converted waves that are useful in many studies. Even when using acoustic shots
and receivers, such as in marine surveys, we can use converted waves propagating as shear
waves in some solid portions of the raypath. Using multi-component data rather than single-
component data will make it much easier to recognize and extract the converted waves. A
special case is when the mode conversion takes place crossing a salt–sediment boundary
where the VS value of the salt (around 2.7 km/s) is comparable with the VP values of the
sediments surrounding the salt body. The raypath of such a converted wave, traveling at
speed VP outside the salt and VS inside the salt, does not bend much across the top interfaces
of salt bodies (see the PSSP raypaths in Figure 10.40) and carries high amplitude. Such
converted waves are useful in imaging the bottom interfaces of salt bodies, as illustrated
in Figure 10.40 where the energy of PSPP, PPSP, and PSSP waves will become artifacts
when they are imaged using P-wave velocities. The lower panel of Figure 10.41 shows an
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Figure 10.39 (a) Polarization azimuth of the PS1-wave and (b) percentage of shear-wave
splitting coefficient above the Gessoso Solfifera formation of the Emilio field in the Adriatic
Sea (after Gaiser et al., 2002). The PS1-wave is polarized parallel to the crest of a doubly
plunging anticline (thick black arrows), where anisotropy is generally higher. For color
versions see plate section.
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Figure 10.40 A cross-sectional diagram showing how the arrival times of the converted-wave
reflections track the PPPP base-of-salt reflection after migration. Reflection raypaths of PPPP
and PSSP waves are shown with dashed lines for P-wave and dotted lines for S-wave. (After
Ogilvie & Purnell, 1996.)
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Figure 10.41 A cross-section of 3D pre-stack depth mig rated cubes for a salt sheet after
(upper) and before (lower) muting the PS, SP, and SS conver ted-wave reflection from the
bottom of salt (BOS). (After Lu et al., 2003.)

example of the imaging ar tif acts created by the conver ted waves. More detail on processing
conver ted waves will be given in Section 10.4.3.

On the other hand, there are challenges for multi-component seismology in terms of
high costs for equipment and field acquisitions, as well as a need for improving acquisition
and processing technologies. From the perspective of data processing, the challenges of
handling multi-component data may be highlighted by the following “how-to” questions:

� How should we estimate and account for non-omnidirectional sources, whose radiation
varies with spatial angle?

� How should we assess and adjust the imbalance and inconsistency between different data
components?

� How should we decompose or separate different wavefields, such as P-waves versus
S-waves, upgoing waves versus downgoing waves?

� How should we adapt various data processing and imaging techniques to multi-component
data and take advantage of the connection between different components?

� How should we process and analyze specialized multi-component acquisition setups,
such as VSP and OBS?

Although the number of the challenges goes far beyond the above list, most issues
in the processing of multi-component seismic data can be remedied by focusing on the
fundamental principles of seismic wave propagation. Often a simple technique may produce
significant improvement, such as the use of hodograms to identify the rotation angles of
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multi-component VSP data described in Section 2.1.5. In the following subsections, several
of the issues are taken as examples of applying the fundamental principles.

10.4.2 Wavefield separation techniques

Most seismic imaging methods use a par ticular type of seismic wave, such as the surf ace-
recorded primar y reflections in exploration geophysics. In order to use a desired wave
type, we need to extract it from data containing all wave types which may overlap with each
other. A common practice is to constr uct decomposition filters via plane-wave analysis. For
instance, decomposition of multi-component measurements into upgoing and downgoing
P- and S-waves can be done using f–k filtering or median filtering, based on differential
moveout between different wave types. An example of such separation for a 2D VSP dataset
wa s s h ow n i n Figure 3.5 in Section 3.2.4.

Because multi-component data should be treated as a vector field in order to take advan-
tage of the connection between different components, we may design the separation of P-
and S-waves based on the first principles. If the par ticle motion histor y at ever y model
position is available, we can apply divergence to obtain P-waves and curl to obtain S-waves.
Recall that in seismic mig ration the obser ved wavefor ms at the surf ace are downward-
continued to populate the entire model volume in the subsurf ace. Since such extrapolated
wavefields contain the par ticle motion histor y of the wave propagation processes, we should
be able to use the histor y to separate P- and S-waves at ever y model position.

Based on the above idea, Sun et al. (2004) demonstrated a separation of reflected P- and
S-waves that are superimposed in 3D, three-component elastic seismog rams. Using a finite-
difference extrapolation algorithm, they compute the divergence of a single-component
seismog ram (P-waves) and curl of three-component seismog rams (S-waves) of the extrap-
olated wavefield and record them independently at a fixed model depth. The P- and S-
velocities in the elastic model are split into two independent models. Then the divergence
seismog ram, which contains P-waves only, is upward-extrapolated through the P velocity
model to the original receiver locations at the surf ace to yield the separated P-waves. Next,
the three-component seismog rams of the curl, which contain S-waves only, are upward-
extrapolated through the S velocity model to the surf ace receiver locations to yield the
separated S-waves.

The separation process is illustrated using a simple 3D elastic model shown in Figure
10.42. The modeled multi-component seismog rams along three profiles X, Y, and AB are
shown as three rows of panels in Figure 10.43. Here the desired signals are reflections
from the two planer interf aces of the model, hence the surf ace waves and direct waves were
removed. Notice in this figure along profile Y the y-component has vir tually zero amplitude.
The reason is that profile Y is a dip profile, and the source did not generate oscillation in
the offline or y-direction of this profile.

Figure 10.44 shows the results of the wavefield separation process. Because the diver-
gence and curl involve spatial derivatives that generate a π /2 phase shift, the separated
P- and S-waves need to be phase corrected, for instance by using the Hilbert transform
discussed in Section 1.4 with respect to time. The first column of this figure shows the
divergence or the retrieved P-waves along X, Y, and AB profiles. You can see the corre-
sponding P-waves in the first column of Figure 10.43, although the amplitudes of the signal
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Figure 10.42 Perspective view of a 3D elastic model (Sun et al., 2004). Distances are in
kilometers. The velocities of three model layers are shown on the right, with VP and Vs values
outside and inside the parentheses. On the top surface of the model, S is the source, X, Y, and
AB are three receiver profiles. The ends of AB are at A(0.4, 0.2, 0) and B(1.6, 1.8, 0).

in Figure 10.44 are apparently stronger owing to the amplitude normalization and the phase
rotation of the separated P-waves.

The separated S-waves in the remaining three columns of Figure 10.44 are directly
comparable with the corresponding panels in Figure 10.43. Along each profile, the three
components of the S-waves in Figure 10.44 have similar traveltimes but differ in amplitude
and phase angle. The z-component of the separated S-waves is weaker than the maximum
amplitude of the two horizontal components. Along profile Y the x- and z-components of
the curl are zero, because the S-waves here are generated from P-to-S mode conversion and
the reflector dip is in the inline or x-direction of this profile.

10.4.3 Converted wave processing

10.4.3.1 Basics of converted wave and processing

In both earthquake seismology and exploration seismology the most common type of
converted waves are generated by P-to-SV mode conversion at a subsurface interface such
as the Moho discontinuity or the salt–sediment boundary. In exploration seismology the
P–SV converted wave is commonly seen because manmade sources mostly emit P-waves,
such as from the airguns offshore and dynamites onshore. There are three chief reasons to
use converted waves. First, the raypaths and therefore seismic illumination of the converted
waves differ from that of the pure-mode P-wave reflections. The extra illumination brought
by the converted waves is extremely useful for imaging salt boundaries and other features
of large velocity contrast. Second, the converted waves contain S-waves traversing through
rock matrix, so the extracted S-waves can be used to image special targets such as gas clouds
and chimneys where the P-wave images are severely blurred by the highly attenuating gas
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Figure 10.43 Synthetic multi-component seismograms for the model in the last figure after
removing the surface waves and direct waves. The three columns are the x-, y-, and
z-components, respectively. The three rows are along the X, Y, and AB profiles. The distance in
the bottom row are from point A. The reflected P- and S-waves are marked. (After Sun et al.,
2004.)

pockets. Third, when strong converted waves exist and are untreated, they will generate
artifacts in seismic imageries.

However, it is challenging to process converted waves owing to their overlapping with
other wave types and the asymmetrical reflection raypaths of the converted waves, as
shown in the schematic cross-sections in Figure 10.45. In laterally inhomogeneous media,
the asymmetric raypath of converted-waves leads to the phenomenon of diodic velocity
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Figure 10.44 The P- and S-wave separated seismograms from the divergence and curl
operations during finite-difference extrapolation plus a phase correction. The four columns are
the divergence (P-waves) and the x-, y-, and z-components of the curl (S-waves), respective.
The three rows from top down are along the X, Y, and AB profiles. The distance in the bottom
row are from point A. (After Sun et al., 2004.)

(Thomsen, 1999), which is an apparent violation of the reciprocity theorem. As shown
in panel (b) of this figure, the traveltimes and ray coverage are no longer invariant when
switching the source and receiver positions in a layer-cake medium. The name “diodic
velocity” arises from the situation of an electronic diode, which operates differently in the
forward and reverse cases.
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Figure 10.45 (a) Asymmetrical reflection raypath of a P-to-S converted wave from shot S to a
receiver at distance x. The offset of the conversion point at xc is much greater than that of the
midpoint at x/2, and the reflection angle of the P-wave θp is greater than the reflection angle of
S-wave θ s. (b) Diodic velocity occurs for converted waves whenever there is a lateral variation
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Velocity (m/s)

5

1000                            3000  -3000                               0                             3000

source-receiver offset (m)

7

Tim
e (s)

Figure 10.46 (Right) An asymmetric split-spread CMP super-gather of the inline
horizontal-component data at the target level from the Valhall field in the North Sea (Thomsen,
1999). (Left) The velocity spectrum showing the diodic velocity character.

Figure 10.46 shows an asymmetric split-spread CMP super-gather of inline horizontal
component data and the corresponding velocity spectrum from the Valhall field in the North
Sea (Thomsen, 1999). The vertically aligned, double clusters in the velocity spectrum are
diagnostic of the diodic velocity resulting from the split-spread of the acquisition setup.
Such diagnostics are very valuable in processing converted waves where the first challenge
is how to identify converted waves effectively.

Processing of converted wave data has been focused on identification, wavefield sepa-
ration, and imaging with converted waves. Figure 10.47 shows an example flowchart of
converted wave processing in six steps, focusing on S-waves since information on P-waves
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1. Geometry processing

Spherical divergence correction

Surface-consistent scaling

Rotation of source-receiver orientation

Source-side statics from P-wave

Attenuation of noise and ground rolls

Surface-consistent deconvolution

2. Initial S-wave refraction statics

3. Velocity analysis

Vp/Vs analysis PS NMO Receiver-side statics Apply statics

Vp/Vs analysis

Surface-consistent reflection statics Random noise attenuation Trim statics

4. S-wave reflection statics

5. Transform to PS conversion points

Depth-varing CCP binning & stack Velocity analysis on CCP Post-stack migration

6. Anisotropy analysis

Polarization angle, ε and δ or η Interval Vp/Vs

Asymptotic binning with Vp/Vs

Figure 10.47 A flowchart of data processing for converted waves.

can be obtained from conventional processing. The first step of geometry processing, sim-
ilar to that of processing conventional P-wave data, carries out the tasks of geometry QC,
noise suppression, amplitude correction, source statics, and deconvolution to reduce the
effects of source signature, narrow bandwidth, and multiples for marine data. The next
three steps aim to correct for S-wave statics and velocity analysis. The long- and short-
wavelength statics, respectively, are treated by the S-wave refraction statics and reflection
plus trim statics. Embedded in the S-wave statics flow is the velocity analysis based on the
VP/VS ratio. In Step 5 the common-conversion point (CCP) gathers are formed using the
P-wave and S-wave stacking velocities from the previous steps. The last step is the analysis
for layer interval anisotropic parameters and interval values of the VP/VS ratio.

10.4.3.2 Conversion point determination

It is not a trivial task to determine accurately the lateral position of the conversion point
xc and the reflection angles for P- and S-waves, αP and αS, respectively. Recently Yuan
et al. (2006) derived exact solutions for calculating the P–SV conversion point in a dipping
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Figure 10.48 Computing P–SV conversion point for a dipping reflector below a
constant-velocity layer (Yuan et al., 2006). (a) Geometr y for a reflector of dipping angle ϕ . S
and R are the shot and receiver positions, respectively, and the origin is at S. The
source–receiver offset is r. The P–SV wave conversion point is at F, which has a nor mal depth
of QF = h. (b) Conversion-point cur ves as functions of nor mal depth. Cur ves labeled L1, L2,
and L3 are computed for dip angle ϕ = 0°, 30°, and 60°, respectively, for the offset r = 2.5 km,
VP = 2 km/s, and VS = 1 km/s.

reflector below a medium of constant velocity values. A schematic cross-section for their
computation and the resultant conversion-point cur ves for three different dip angles of the
reflector are shown in Figure 10.48. For a model with given inter val velocities of P- and
S-waves, we can generate a reference table of the conversion-point cur ves for different
combination of the velocities and reflector geometr y. Then we can use this reference table
to estimate the positions of the P–S conversion points.

Based on the CCP gathers we can conduct semblance velocity analysis for VP and VS

stacking velocities, and produce subsurf ace images using stack or post-stack mig ration.
Figure 10.49 shows CCP stacks using VTI and isotropic velocity models. Here traveltimes
of SS reflections were computed using a PP + PS = SS method. At the top of the Balder
for mation the VTI image is significantly improved with respect to the isotropic image. In
multi-component data analysis, the issue of conver ted wave processing is linked closely
with the issue of anisotropy, as shown in the last step of the data processing flowchar t in
Figure 10.47.

10.4.4 VSP data processing

One of the earliest applications of multi-component semiology in exploration geophysics
is the ver tical seismic profile (VSP) using a suite of borehole three-component receivers
and surf ace shots. As introduced in Section 2.1.5, the records at different depths by VSP
f acilitate time-to-depth conversion for surf ace recorded seismic data and recognition of
multiple reflections. Another impor tant application of VSP data is to estimate seismic
attenuation quantified by the Q f actor (see Section 4.5.3, for example). VSP data assist the
seismic–well tie process by taking advantage of their recording depth range and typically
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Figure 10.49 CCP stacks of P–SV waves in the Siri reservoir of the North Sea with VTI (left)
and isotropic (right) models (Grechka et al., 2002). Traveltimes of SS reflections were
computed using a PP + PS = SS method. Resolution is improved in the VTI section, such as at
the top of the Balder formation.

higher frequency content than the surface seismic data. The multi-component nature of VSP
data provides information on shear waves and mode-converted waves. For different targets
and acquisition conditions, a VSP survey can be designed using different arrangements
of shots and receivers. Common setups include offset VSP using a fixed shot-to-receiver
offset, walkaway VSP using shots of different offsets for each receiver, azimuthal VSP
using different shot-to-receiver azimuths in 3D, and reverse VSP (RVSP) using surface
receivers and wellbore sources. Sometimes RVSP are deployed to take the drilling head as
the source, especially for so-called look-ahead VSP which tries to image rock strata below
the drilling tool.

10.4.4.1 VSP imaging

The main limitation of VSP imaging is in the spatial range of seismic illumination, owing to
its particular shot and receiver distributions in space. For a walkaway VSP using receivers
deployed in a nearly vertical recording well, the illumination space provided by all available
crisscrossing reflection waves form a spatial area called the VSP corridor. The images
in the two right panels in Figure 7.27 are examples of the VSP corridor. Attempts to map
targets far beyond the VSP corridor may result in severe smearing artifacts (e.g., Figure
7.30). Figure 10.50 shows an early comparison between migrated images based on a surface
reflection dataset and a deviated-well VSP. Both images were produced using Kirchhoff
migration of the vertical-component data. The two images are generally comparable.
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Figure 10.50 (Left) Migrated image of surface-seismic data. (Right) The surface-data image
with an overlay of migrated image of a deviated-well VSP (Dillon, 1988). White lines outline
the boundaries of the overlay.

As in the situation of processing surface seismic data, VSP data processing consists of
signal enhancement such as extracting a particular wave mode, velocity model building,
and seismic migration. Figure 10.51 shows a far-offset VSP common shot gather which
recorded a source of vertical-motion vibrator in a study to image tight-gas sands in the East
Texas Basin (O’Brien & Harris, 2006). We can tell the trends of downgoing and upgoing
waves by first recognizing the trend of the first arrivals (labeled “P down” in this figure),
downgoing in this case of a deep segment of receivers recording a surface source. The
multi-component data were subjected to model-based rotation to optimize upgoing P–P
reflections (labeled “P up” in panel (a) and, separately, upgoing P–S reflections (labeled
“P-S down”’ in (d)). Notice the difference between the alignments of the waves of panels
(a) and (d). In this case the P–S mode conversion generated strong reflections. The rest
of the panels in this figure show the results of further processing using a median filter to
suppress waves of the opposite trends.

Figure 10.52 compares the Kirchhoff depth-migrated images using far-offset P–P versus
P–S reflections. A successful separation of different wave modes as shown in the previous
figure allows depth migration of the upgoing reflections of each wave mode. Because the
S-wave velocities are lower than the P-wave velocities, the P–S imaging corridor is shifted
toward the well relative to the P–P imaging corridor. Key geologic units, in reference to the
gamma log inset in the upper left portion of Figure 10.52a, are highlighted in these seismic
images. Patterns in the two types of reflection images are quite similar, especially in the
shallow portion of the images. The resolution of the P–S image appears to be slightly higher
than that of the P–P image, probably because of the shorter wavelengths of S-waves than
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Figure 10.51 Far-offset VSP data recorded with a vertical-motion Vibroseis source after
model-based rotation, with time ramp and trace balance applied (O’Brien & Harris, 2006). (a)
Model-based rotation to optimize upgoing P–P reflections, followed by (b) median filter to
suppress downgoing P-waves, and (c) additional median filter to suppress downgoing S-waves.
Panels (d), (e), and (f ) show the corresponding steps for model-based rotations to enhance
upgoing P–S converted waves.

P-waves at the same frequencies. The amplitude of converted-wave reflectors is stronger
than that of the P-wave reflectors above the Bossier Shale marker, but the amplitude trend
is reversed below the marker. Before interpreting the geologic meaning of such amplitude
variations, we need to make sure that the effect of AVO of different wave types is calibrated
properly.
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Figure 10.52 Far-offset VSP Kirchhoff depth-migration images (O’Brien & Harris, 2006). (a)
P–P reflection image. (b) P–S mode conversion image. Insert shows the gamma log plotted at
the same vertical scale. VSP and log data have been adjusted for datum differences. CVS
denotes Cotton Valley Sand.

10.4.4.2 VSP versus surface data images

Figure 10.53 compares some P–P reflection images of an extracted line from the surface
3D data with the near-offset and far-offset VSP data. The near-offset VSP corridor stack
matches very well with the surface imaged reflectors. With respect to the surface seismic
data, the VSP data provide not only higher resolution, but also the proper depth-to-time
conversion velocity. However, I suspect that some of the curved reflectors below 3 seconds
on the far-offset VSP image may be contaminated by spearing artifacts due to the limited
crisscrossing level of reflection waves available.

In order to take full advantage of multi-component seismic data, we should ideally treat
each such dataset as a vector wavefield rather than a set of scalar fields. As an example,
Hokstad (2000) developed an elastic multi-component Kirchhoff migration scheme that
operates directly on vector traction and displacement or velocity data. The method is
equivalent to a model-based separation of quasi P- and S-waves followed by a weighted
diffraction stack. This way avoids the need for separating P- and S-waves in the pre-
processing when the relative amplitudes of the various vector components are properly
preserved or restored during pre-processing. In Figure 10.54, overlays of a VSP image
solution from the elastic multi-component migration are embedded into surface seismic
images. The VSP corridor of the P–S waves is much narrower than that of the P–P waves.

Although exploration seismology has advanced a long way since its birth, processing
multi-component seismic data today still requires much more effort than processing con-
ventional single-component data. In fact, most commercial seismic processing software
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Figure 10.53 Comparison between P–P reflection images (O’Brien & Harris, 2006). (a)
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Figure 10.54 Anisotropic elastic multi-component Kirchhoff migration of a marine walkaway
VSP, time-converted and embedded into surface seismics (Hokstad, 2000). (Left) P–P image
and (right) P–SV image.
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Box 10.3 Multi-component versus dense single-component surveys

Let us consider a situation encountered in a recent study using a mobile low-frequency
geophone ar rays. We have a fixed number (3N) of por table digital recorders that can be
paired with either single- or three-component geophones. If we choose three-component
geophones we will have N receivers, and if we choose single-component geophones we will
have 3N receivers. Then which choice is better?

This question compares the benefits between the configuration of multi-component b ut
fewer stations versus the configuration of ver tical-component and more stations. In prac-
tice, we should first consider the scientific and/or b usiness objectives. For instance, does the
planned imaging target demand more multi-component data or denser station coverage?
Next, we need to consider feasibility issues, such as whether the three-component data
acquired can meet the required imaging quality. In onshore sur veys, the horizontal com-
ponents of seismic data can be of ver y poor quality in heavily weathered ter rines. Another
critical f actor is the cost. For example, if it is ver y costly to access the station sites, such
as in OBS as well as station sites in wellbores and caver ns, we want to install as many
recording components as possible. Since time is often wor th more than money, we always
prefer to use those acquisitions that can be done f ast with sufficient quality.

packages do not offer a complete set of multi-component data processing modules. To
make the multi-component seismic data much more useful, one needs to be f amiliar with
the fundamentals of multi-component seismic acquisition, processing, and seismic wave
theor y, and ideally be able to code computer prog rams in order to test new ideas on pro-
cessing multi-component data. Box 10.3 illustrates a situation that we have encountered.

Exercise 10.4

1. Compile in a table the criterion and diagnostics for recognizing a converted wave.
Please specify the type of data, data domain, and principles of the recognition.

2. Conduct a literature search and summarize the idea and procedure of median filters that
were used in Figure 10.51 to enhance upgoing reflections.

3. Section 8.4.2 described a simple case of tomog raphic inversion using first ar rivals of
VSP data. Prepare a data processing flowchart to build velocity model using first
arrivals and traveltimes of different of reflection waves for a 2D walkaway VSP setup.

10.5 Processing for seismic attributes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A seismic attribute is a quantitative measure of a seismic characteristic of interest (Chopra
& Marfurt, 2005). As the main products of seismic data processing, seismic images in
the forms of sections and volumes are produced in order to detect subsurface targets for
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scientific or b usiness interests. The targets may be the mor phology of rock strata or f aults,
and the distrib ution of various types of fluids in rocks. However, it is challenging to inter pret
seismic images because they are merely responses to impedance variations of the subsurf ace,
and these responses are band-limited, ar tif act-bearing, noisy, and related non-uniquely to
the targeted proper ties. Such challenges are among the main reasons for developing seismic
attrib utes, which are infor mation about the targets drawn from computerized analysis of
seismic imager y. Processing for seismic attrib utes involves various ways to make the seismic
data more inter pretable, or to reduce the negative impacts of the bandwidth, ar tif acts, noises,
and non-uniqueness of seismic images.

Over the years, hundreds of seismic attrib utes have been generated to help understand
and extract geologic infor mation from reflection seismic data at a high level of objectivity
and automation. Chopra and Marfur t (2005) advised that a good seismic attrib ute either is
directly sensitive to the desired geologic feature or reser voir proper ty of interest, or allows
us to define the str uctural or depositional environment and thereby to infer some proper ties
of interest. Thus, the highest priority in choosing a seismic attrib ute is to maximize its
response to the targeted geologic or reser voir proper ties. Seismologically, we may define
and quantify seismic attrib utes as par ticular quantities of geometric, kinematic, dynamic,
or statistical features derived from seismic data (Liner et al., 2004). Obviously, the quality
of all seismic attrib utes relies on the quality of seismic data and their processing impacts.
Interested readers can refer to a rich list of publications on this subject (e.g., Chopra &
Marfur t, 2007).

10.5.1 Extraction of localized seismic attributes

10.5.1.1 Amplitude estimation

Since amplitude and timing are the two most fundamental elements of a time series, we may
say that all seismic attrib utes are derived from amplitude and phase of the data, as introduced
in Sections 1.3 and 1.4, respectively. In the early days of exploration geophysics, many bright
spots of high reflection amplitude were identified at str uctural highs as promising prospects.
The argument is that sands containing significant amount of hydrocarbons, especially natural
gas, have anomalously lower values in density and velocity than the ambient rock strata,
hence for ming high-amplitude reflections. Figure 10.55 shows one of the examples of bright
spots in which the darkest color denote events of the highest amplitude.

However, it is not a straightforward task to estimate amplitude directly because, as dis-
cussed in Section 1.3, the amplitude of seismic data is affected by many f actors throughout
the processes of wavefield generation, propagation, and acquisition, to processing. In fact,
since seismographs record the voltage variations of the sensors, it is difficult to use absolute
amplitude of seismic data at a fixed location alone. The practical value of seismic data lies
in the variations of amplitude with respect to position, angle, frequency, and other variables.
An example is a Section 10.5.1.3 on AVO, the variation of reflection amplitude with respect
to the reflection angle at a fixed position, which is used to infer the presence and character
of fluids at the position.

The two main tasks of data processing for amplitude estimation are noise suppression
and corrections for all known systematic variations in amplitude. For the first task, we
need to choose effective noise suppression methods based on the behavior of the given
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Figure 10.55 A section from the Nor th Sea with bright spots (areas of high seismic reflectivity)
identified. (After Anstey, 2005.) For color version see plate section.

data and expected signal behaviors. An emphasis here is on minimizing the impact of the
processing on the original data amplitude. For the second task, as discussed in Section 1.3,
we usually need to cor rect for source radiation patter n and geometrical spreading, and we
may want to avoid the use of automatic gain control (AGC). Near-surf ace inhomogeneities
often produce significant lateral variation in the amplitude of seismic data that has to be
compensated using Q models or empirical relationships.

10.5.1.2 Instantaneous and local attributes

Instantaneous attrib utes are quantities defined at a time instance of seismic data, and
thus are functions of local media proper ties. In Section 1.4.4 we have seen some original
instantaneous attributes defined based on the analytical signal using the Hilbert transform,
including instantaneous amplitude (envelope), instantaneous phase, and instantaneous fre-
quency. Figure 10.56 displays these attributes for a seismic trace and a sketch of its complex
trace. Envelope as a measure of local energy level of seismic traces has been related to
the interval thickness of the corresponding geologic unit. Instantaneous phase is useful in
stratigraphic interpretation to quantify unit boundaries of different scales. Instantaneous
frequency is often related to seismic wave attenuators including hydrocarbon reservoirs.

A common practice in interpreting seismic data is to combine several attributes to
form more specialized attributes to narrow down the non-uniqueness in interpretation. For
instance, practitioners have created response attributes by specifying some instantaneous
attributes at the peaks of the envelope function. As an example, response phase is the
instantaneous phase at the point at which the envelope is at the maximum. One value of
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Figure 10.56 Displays of four basic instantaneous attributes in (a) to (d), and a 3D sketch of the
complex trace in (e). Dotted curves in (a) and (b) are the envelopes and (e) is the radius of the
complex trace from the time axis. Dashed curve in (d) is the weighted average frequency.
(After Taner et al., 1979.)

response phase is computed for each envelope peak and is assigned to the whole time interval
covered by the envelope peak. Similarly, response frequency is the value of instantaneous
frequency at each peak point of the envelope, and this single value is assigned to the time
interval covered by the envelope peak.

From the perspective of seismic data processing, attributes generated from a single data
point can be severely influenced by noise, while the commonality between neighboring
points or traces may carry much higher level of signal. Stemmed from this notion, the
concept of local seismic attributes has been introduced (Fomel, 2007) to specify local
similarity and frequency. An example of the local frequency attribute is shown in Figure
10.57. The three panels on the left are test signals consisting of a synthetic chirp function,
a synthetic trace from convolving a 40-Hz Ricker wavelet with a reflectivity profile, and
a field data trace. Their local frequency traces are shown in the right panels of this figure.
The frequency of the chirp signal in the top row is recovered. The dominant frequency of
the synthetic signal in the middle row is correctly estimated at 40 Hz. The local frequency
of the field data trace in the bottom row varies with time. We may regard such local seismic
attributes as smoothed instantaneous attributes, which may be more tolerant to noise.

10.5.1.3 Amplitude versus offset (AVO)

AVO analysis quantifies seismic amplitude and phase across a NMO-corrected CMP gather
from near trace to far trace. After the groundbreaking work of Shuey (1985) to simplify the
Zoeppritz equations relating reflected P-wave AVO to elastic parameters of the reflector,
AVO analysis has become a necessary step of seismic interpretation for fluid properties.
Currently, a common objective of most AVO studies is to detect the presence and properties
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Figure 10.57 Three test signals (left panels) and the local frequency traces (right panels).
(After Fomel, 2007.)

of various fluids including hydrocarbons in reservoir rock strata. Because the analysis
focuses on a fixed reflector position, the effects from the overburden and source signature
are minimized. This subsection follows a tutorial review of Ross (2000).

The objective of the AVO analysis is to identify those AVO responses that are char-
acteristic of lithologies or fluid-filled reservoirs. For example, in high-porosity clastics,
the anomalous AVO response is often associated with hydrocarbon saturation, whereas in
lower porosity clastics and in some carbonates, the responses are more often associated with
lithology and porosity. Figure 10.58 shows an example of measuring AVO attributes for a
CMP record from Gulf of Mexico play. Shuey (1985) expressed the reflection coefficient
as a function of average incidence angle θ :

R(θ ) = A + B sin2(θ ) (10–20)

where A and B terms are two AVO attributes, the intercept and gradient coefficients.
The intercept is related to the normal incidence reflection coefficient, and the gradient is
related to density and velocity contrasts around the position under examination. Other AVO
attributes can be derived using different formulations and higher-order terms, or combining
the basic attributes. The lower plot of this figure shows the best fitting AVO curve and the
amplitude readings; the intercept is the zero-offset amplitude, and the gradient is the linear
rate of change of the amplitude data.

One way to make joint use of two or more seismic attributes is to cross-plot them as
the axes of the plotting coordinates. This is particularly useful for classification purposes.
Figure 10.59 shows an example of cross-plotting two AVO parameters, the intercept and
gradient, for an anomalous bright spot (high-amplitude event) of a gas sand in the Gulf of
Mexico. The plot on the left has the AVO intercept along the abscissa and AVO gradient
along the ordinate. Each point in the cross plot is taken from analyzing one location in the
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Figure 10.59 (a) Intercept-gradient cross plot using a 200 ms window centered on a bright spot
anomaly from a gas sand in the Gulf of Mexico. (b) Color-coded seismic section using the
cross-plotted zones in (a). (After Ross, 2000.) For color version see plate section.



444 Practical Seismic Data Analysis

relative amplitude processed seismic profile shown on the right, using the A and B values
derived from processing the cor responding CMP gather as shown in the previous figure.
The points in different trends or g roups can be color-coded on the cross-plot as well as
on the seismic profiles. The ability to cross-plot seismic attributes from a 3D data volume
allows users to identify the most prosperous subsets that war rant detailed inspection.

Although there are noticeable trends in the cross-plot of Figure 10.59, their meaning
is unclear before AVO modeling of synthetic seismog rams of all incident angles based
on well logs. The AVO modeling per mits direct cor relation of lithology and pore fluid
measurements in wells with obser ved seismic data. AVO modeling is an impor tant tool
for assessing which AVO responses are indicative of hydrocarbon-charged pore fluids or
per tinent lithologies. A typical AVO modeling flow has the following steps:

1. Edit and prepare the well logs for AVO modeling;
2. Create fluid/lithology replacement well logs;
3. Generate an in situ and a fluid/lithology replacement AVO model;
4. Generate the appropriate AVO attrib utes (such as AVO g radient and intercept) for both

models of Step 3;
5. Cross-plot the attributes from each model simultaneously.

10.5.2 Extraction of geometric attributes

10.5.2.1 Seismic coherence

Seismic coherence is a measure of the lateral continuity between adjacent seismic traces.
By mapping a nor malized cross-cor relation between neighboring traces, Bahorich and
Fa r m e r ( 1995) demonstrated the ability of seismic coherence to reveal f ault surf aces in a
3D data volume without f ault reflections. Since the cross-cor relation process will suppress
the influences from the source signature and the overb urden, coherence images are able
to capture stratig raphic features such as b uried fluvial channels, deltas, and reefs that are
not easily recognizable by inter preters. For instance, the coherence slice in Figure 10.60
reveals f aults as alignments of incoherency, with a much higher level of clarity than the
seismic time slice. A highly fractured region is also revealed in the upper right portion
on the coherence slice. The data are from offshore East Coast of Canada where NW–SE
trending faults and fractures are difficult to interpret before using the coherence attribute.

Although the computation of cross-cor relation as defined in Section 2.3.2 is simple, the
input data need to go through pre-processing to enhance the SNR and to recognize potential
artifacts. We can alter the vertical and lateral scales of the processing windows to optimize
the effectiveness of the coherence computation for the targets of interest. Figure 10.61
shows two time slices at 1.1 s and 1.2 s, respectively, through a coherence volume from
the Fort Worth Basin. These slices reveal a complex system of lineaments and collapse
features in the carbonate rocks, and a west–east oriented fault through the middle area.
The circular collapse features are more pronounced at the deeper Ellenburger level than
at the level of the Marbel Falls formation. The collapse features are aligned in conjugate
with the NE–SW and NW–SE trends along the arrows in the figure, and some of the
collapses are elongated rather than circular.
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Figure 10.60 Time slices from (left) a seismic data volume and (right) the coherence volume.
(After Chopra, 2002.)

5 km 5 km

(a) (b)

Figure 10.61 Collapse chimneys in carbonates of the Fort Worth Basin in two time slices of a
coherence volume at: (a) 1.1 s at the Marble Falls; and (b) 1.2 s at the Ellenburger. Black
arrows point to some of the collapse features. In the right panel an open diamond with an
arrow denotes a cored Ellenburger well. (After Sullivan et al., 2006.)

10.5.2.2 Curvature and lateral variations

Curvature is a 3D seismic attribute quantifying the degree to which the local reflector
surface deviates from being planar. Curvature attributes have been used to map subtle fea-
tures and predict fractures or small-scale faults. To extract curvature attributes, a quadratic
surface is used to fit all plausible reflector trends at each position in the 3D seismic volume,
and the best fitting quadratic surface is used to measure the curvature. In data processing the
input seismic volume is subjected to a scanning operation; at each step a small cube of the
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Figure 10.62 Time slices of curvature volumes at 1.2 s of the same data in Figure 10.61. (a)
Most-positive curvature slice showing bowls with negative values. (b) Most-negative curvature
slice showing domes as positive values. (After Sullivan et al., 2006.)

input data surrounding the evaluation position is extracted to compute the optimal curvature
values for the position. The above process is typical of feature extraction operators, which
are data processing procedures to extract geologic features from seismic data. In Chapter 1
an example of feature extraction is given in Box 1.3 for detecting paleo-channels.

Figure 10.62 shows time slices of two types of curvature attributes for the same data
shown in Figure 10.61 from the Fort Worth Basin (Sullivan et al., 2006). The left-hand one
is the most positive curvature, which depicts bowl-like features among the reflectors, and
the righthand one is the most negative curvature, which depicts dome-like features among
the reflectors. These slices are taken at 1.2 s in two-way time at the Ellenburger formation.
Hence Figure 10.62 is compatible with the coherence slice shown in Figure 10.61b. In this
case, the bowls in Figure 10.62a are interpreted as tectonic collapse features, linked by a
complex system of faults and joints.

To verify the lateral variations revealed by different types of seismic attributes, it is often
necessary to combine them into one display in comparative analyses. Figure 10.63 shows
a map view of the fracture azimuths (ticks) estimated from the azimuthally varying AVO
gradient for the top-chalk horizon, and some fault traces interpreted from 3D coherency
analysis. Note the general alignment of fractures with large-scale faulting, especially near
the faults trending from NW to SE. In the SE corner, fractures also appear to be perpendic-
ular to the surface curvature defined by the time contours plotted at 20 ms intervals.

10.5.2.3 Texture attributes

Texture attributes are morphological features captured from seismic data mimicking the
expertise of an experienced interpreter. In seismic stratigraphic interpretation, texture is
often referred to fabrics of a stratigraphic facies such as a turbidite unit, or characteristic
pattern of a geologic feature such as a salt body or a fractured siltstone layer. The processing
for texture attributes is typically a feature extraction, like that for curvature attributes
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Figure 10.64 (a) Cross-section of synthetic velocity variation model with added random
artifacts. (b) After spatial-coherency filtering. (After Zhou, 1993.)

discussed in the previous subsection. A filtering process is involved to scan, quantify, and
extract the desired texture features. Obviously, we need to know some characteristics of the
features in order to identify and extract them. Figure 10.64 shows a synthetic example in
which three layers of distinguishable velocity variations are extracted from a synthetic input
cross-section containing the layers and artifacts of random velocity anomalies. Here the
feature extraction operator is a spatial coherency filter (Zhou, 1993) which searches through
data for connectivity between neighboring pixels of similar values defined by connection
matrices.

Gao (2003) gave the name of texel to a locally connected group of pixels or voxels
for texture extraction. Like the idea of the connection matrices in the previous example,
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Figure 10.65 A salt body detected from a “seed” in a texture homogeneity cube (Gao, 2003).
Since the texture homogeneity of salt is significantly higher than that in the surrounding areas,
the whole salt body can be mapped by finding all “seeds”, the attributes of the salt. Detecting
and mapping such geological features are fundamental for constructing an accurate geologic
model and for exploring hydrocarbons and other resources or subsurface features.

the texture extraction here was carried out based on evaluating the voxel co-occurrence
matrix for each cubic texel in the data volume. The texture extraction method helped in
detecting structural and stratigraphic features that are significant to seismic interpretation
and hydrocarbon exploration. Figure 10.65 shows an example of extracting a salt body
from a reflection amplitude volume. In an offshore depositional setting, the response of
a salt body in seismic data volume has the characteristics of a dome-shaped feature with
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homogeneously low amplitude and low frequency, and its top surf ace has high reflection
amplitude.

Two key f actors for seismic attrib ute processing are the geologic plausibility of the
extracted attrib utes and the associated computation cost. It is generally time-consuming
to define the 3D geometr y of stratig raphic features such as a salt body directly from
the amplitude volume. Because amplitude samples within the salt body are similar to
and connected with those in the sur rounding areas, a seed-based propagation may cause
“bleeding” across the salt boundar y and thus is not effective for automatic salt detection.
Similar problems exist for mapping geological features using amplitude data alone.

Figure 10.66 shows, based on the same seismic time slice, the texture contrasts along
three or thogonal directions and the geologic inter pretation (Gao, 2003). Here the texture
contrasts in different directions help in illuminating f aults and fractures along per pendicular
orientations. Both high-angle nor mal and wrench f aults as well as low-angle detachment
and listric f aults may be analyzed using multiple viewing directions. The texture attrib utes
may better capture the inter nal f acies variations than the coherence algorithm. We may see
in Figure 10.66c that there are at least two stages of channel development. The channels
to the east were developed prior to the f ault displacement and were subsequently tr uncated
and offset left laterally by the f ault. The channels to the west were developed after the
major f ault displacement and ran across the f ault. These inter pretations are shown in Figure
10.66d based on obser vations from the texture data shown in the three texture panels and
the regional geology of the study area.

10.5.3 Extraction of spectral attributes

Spectral attributes are frequency-dependent amplitude, phase, and other quantities
extracted from reflection seismic data. Such attrib utes can be ver y useful in exploration
geophysics, par ticularly for infer ring relative thickness variation and other subtle geometric
features from seismic data. For example, the amplitude and frequency of the spectral peak
can be used to quantify thickness and even the presence of fluids in thin-bed reser voirs. By
comparing reflection data with water and gas saturations, researchers have seen phase shifts
and energy redistrib utions between different frequencies (e.g., Goloshubin et al., 1996).
Such studies indicated that reflections from a fluid-saturated layer have increased amplitude
and delayed traveltime at low frequencies relative to reflections from a gas-saturated layer.
Consequently, geophysicists have been searching for spectral attrib utes as possible direct
hydrocarbon indicators.

10.5.3.1 Limitations of windowed Fourier decomposition

In ter ms of processing, extraction of some spectral attrib utes can be car ried out using
instantaneous and local attrib utes analysis (see Section 10.5.1.2). A more effective extrac-
tion can be f acilitated via spectral decomposition, which was done traditionally via discrete
Fourier transfor m (Section 3.2) using time windows suitable for the given data. However,
the sample window is usually very short in order to detect local acoustic properties and
layer thicknesses. A notion shown in Box 5.3 is that the spectrum of a seismic trace is
nearly the same as the spectrum of the wavelet. However, this notion is no longer true
for a short-window seismic trace. As illustrated in Figure 10.67 (Partyka et al., 1999), the
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Figure 10.66 For a seismic time slice, (a) to (c) are texture contrasts along the x direction
(E–W), y direction (N–S), and z direction (vertical), respectively. (d) Interpretation. The
contrast along the x direction highlights the N–S trending fractures, whereas contrast evaluated
along the y direction highlights the primary E–W trending fault and fractures, and contrast
evaluated along the z direction (c) helps to identify depositional features such as channels. The
geometric relationship between the major fault (F) and the two conjugate fractures suggests
left-lateral displacement along the fault. Such an interpretation is consistent with the offset of
the pre-fault depositional facies across the fault. (After Gao, 2003.)
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Figure 10.67 Shor t-window spectral decomposition and its relationship to the convolution
model. The shaded traces are of the long-window spectral decomposition. The spectr um of the
long-window reflectivity is white. In contrast, a shor t temporal window samples a small
por tion of the reflectivity, hence coloring the amplitude spectr um. (After Par tyka et al., 1999.)

spectr um of a shor t-window trace is colored or has notches, car r ying infor mation on the
strata sampled by the window.

Deriving spectral attrib utes using windowed Fourier decomposition is also limited by
the proper ties of the Fourier transfor m as a global decomposition using har monics as
base functions. Global decomposition is useful for extracting global proper ties such as
amplitude spectr um over the whole space. In exploration geophysics, however, we are
usually interested in the spectral attrib utes over targeted depth ranges that are of local rather
than global scales.

10.5.3.2 Extracting spectral attributes via wavelet decomposition

Today, spectral decomposition is mostly done using wavelet transform to better describe
local proper ties. We have seen in Sections 3.4.3 and 3.4.4 that wavelet transfor m is an



452 Practical Seismic Data Analysis

effective way to decompose seismic traces into wavelet(s) of fixed shape but varying
amplitude and lateral stretching scales. The idea here is to separate the seismic records
at each given position into two parts: one is the wavelet, which represents properties
independent of the given position such as the source signal, receiver’s response, and wave
propagation factors; and the other is the local scaling factors of the wavelet, which depend
on physical properties of the given position, such as the spectral properties.

Several techniques are available in carrying out the wavelet decomposition. One intu-
itive way is the matching-pursuit technique, and an example flowchart is shown in Fig-
ure 10.68. In this case the input real seismic data trace is first paired up with its complex
trace, which is taken as the data complex trace to be matched by the model complex traces
of the chosen wavelet of different scales in an iterative loop. Each iteration step of the loop
aims at determining the best-matching parameters of the wavelet at one scale, pursued from
large to small scales sequentially. In the first iteration step the model complex wavelet of
the largest scale is matched with the data complex trace to determine the best-fitting time
positions and coefficients of the model complex trace. In each iteration step the residual
trace between the data and model complex traces becomes the data complex trace of the next
iteration step using a wavelet of the next scale. In this way the complex spectral parameters
of all wavelet scales are determined sequentially.

10.5.3.3 Examples of applying spectral attributes

Figure 10.69 shows far-angle seismic stack sections from a deep-water West Africa reservoir
at central frequencies of 15 Hz and 35 Hz. The vertical span of each section is 600 ms. We
see some sand and shale layers up-dip against a growth fault on the right side. Comparing
the two sections at positions above and below the oil–water contact (OWC), we see that
the amplitude contrast between the oil sand and down-dip brine sand is higher at low
frequencies in the left. A low-frequency shadow phenomenon like this is often explained
as due to the dispersive effect of hydrocarbons. While the main factors for the spectral
response of a reservoir include layer thickness, effective attenuation, reflectivity series and
fluid type, the last two factors are of greatest importance in this case.

However, the spectral response of a hydrocarbon reservoir may not always be obvious
at low frequencies, as often seen in shallow and unconsolidated sediments. Figure 10.70
shows an example of high-frequency anomalies for deep and tight carbonate reservoirs in
the Central Tarim Basin, NW China (Li et al., 2011). Here the dominant frequency of the
seismic data is only about 18 Hz at the target level, which has a burial depth of nearly
6 km. In this case the researchers found that the 40 Hz iso-frequency volume shows good
correspondence with the oil and gas production levels from eight wells in the area, as shown
in the horizon slice along the production zone in Figure 10.70a. The three prolific oil and
gas wells are located in the anomalous area in the attribute map, while the remaining five
dry wells are located outside the anomalous area in the map.

The low- and high-frequency responses from the above two case studies demonstrate the
non-uniqueness in using spectral attributes to infer the whereabouts of hydrocarbon reser-
voirs. In practice, detailed modeling and calibration between seismic and well observations
are necessary to verify the value of different attributes as indicators.
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Figure 10.68 Flowchart of a wavelet-based spectral-decomposition algorithm using a
matching-pursuit technique. The frequency interval is 0.5 Hz for the complex wavelet
dictionary. (After Liu & Marfurt, 2007.)
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Figure 10.69 Two spectral decomposed sections showing interval average absolution
amplitude, with central frequencies at 15 Hz and 35 Hz, from a deep-water West Africa
reservoir. An oil sand shows as a brighter region on the 15 Hz section relative to the brine sand
below the OWC. (After Chen et al., 2008.)
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Figure 10.70 Two slices of a 40 Hz iso-frequency volume from the Central Tarim Basin in NW
China as (a) horizon slice along the oil and gas zone between the maximum flooding surface
(MFS) and sequence boundary 3 (SB3), and (b) vertical slice C–C′ whose location is shown in
the mapview (a). In (a) the three solid black circles are oil- and gas-producing wells, and the
five open circles are wells without a good reservoir. (c) Original seismic amplitude on vertical
slice C–C′ across an oil and gas well C1. (After Li et al., 2011.) For color versions see plate
section.

10.5.4 Processing in seismic-to-well tie and impedance inversion

Sheriff (1991) describes well tie as running a seismic line by a well so that seismic events
become correlated with subsurface (well-log) information. Seismic-to-well tie, or seismic–
well tie and well-to-seismic tie, is a suite of techniques to match seismic data with wellbore
measurements. It follows a major exploration geophysics strategy of combining two lines
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of complementary data: seismic imagery with broad spatial coverage but relatively low
resolution and low fidelity, plus well logs with sparse spatial coverage but high resolution
and high fidelity. Seismic-to-well tie is fundamental to seismic interpretation owing to its
two key functions: (1) it enables horizons picked by an interpreter to be related directly to
a well log; and (2) it provides a way to estimate the wavelet needed for inverting seismic
data to impedance and other rock property indicators.

As its first function, the well tying process relates seismic imageries to wellbore mea-
surements so that the rich and high-resolution information from all wellbore measurements
can be extrapolated from the isolated 1D well(s) into the 2D and 3D seismic profiles and
volumes. The well tying process is facilitated by matching the reflection seismic traces near
each wellbore with log-based synthetic seismograms, which are produced by convolving
a wavelet with calibrated reflectivity function based on well logs, as shown previously in
Box 6.3.

For the second function of well tying, processed seismic reflection data are commonly
regarded as band-limited versions of the subsurface reflectivity. This means that each
seismic reflection trace is taken as the convolution of the reflectivity function at the location
with a wavelet. Hence, a high-quality well tie provides a high-quality estimate of the wavelet
that links the seismic trace with the wellbore-measured reflectivity at the same position.

10.5.4.1 Elements of seismic-to-well tie processing

With the given scientific objectives and data from seismic imaging and wellbore mea-
surements, the processing for seismic-to-well tie is an iterative procedure to gradually
improve the matching between processed seismic data and synthetic seismograms based on
calibrated well logs. A typical processing flow includes the following elements:

1. Processing and QC of seismic data, choosing proper well-tie locations and intervals
based on positions of the target zone, characteristics of the key horizons to tie, and
properties of the available well logs; the output is a processed seismic section that can
best represent the reflectivity in seismic bandwidth near the well.

2. Estimating wavelet using seismic data in conjunction with all available VSP and check-
shot data, resulting in a suite of possible wavelets of different bandwidths and phase
angles.

3. QC and calibrating the chosen sonic and density logs to produce the impedance trace,
whose depth derivative is the broadband reflectivity; suppressing all noise unrelated to
the in situ reflectivity, and “blocking” or smoothing the reflectivity to an optimal level
for the given data.

4. Conducting depth-to-time conversion to produce a suite of calibrated reflectivity traces
using velocity functions based on well-log, VSP, and checkshot data, with special atten-
tion to the timing, amplitude, and phase angle of key horizons.

5. Making synthetic seismograms by convolving each of the calibrated reflectivity traces
with different blocking and velocity parameters from Step 4 with each of the wavelets
from Step 2.

6. Quantifying well-tie by correlating the synthetic seismograms from Step 5 with the
processed seismic section from Step 1, focusing on tying the key horizons.

7. Checking and fixing all possible causes of mis-ties, and reiterating the entire process.
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Figure 10.71 An example of seismic-to-well ties (White, 2003). These seven traces are
functions along the same time scale. 1: Acoustic impedance based well-logs. 2: Reflectivity
from 1. 3: Wavelet, with a horizontal bar denoting time zero. 5: Synthetic seismogram from
convolving 2 with 3. 4 and 6: Seismic data trace at the wellbore location. 7: Residue or
difference between Traces 4 and 5.

If we regard the geosciences as a combination of art and engineering, then the process
of seismic-to-well tie may require more art than engineering. In the beginning stages of the
process, people sometimes conduct “stretching and squeezing” of the wiggles of either the
synthetic seismograms or the seismic data in order to match the key horizons. However, this
practice is acceptable only after recognizing good correspondence between key horizons
on the seismic section and the synthetic seismogram, and only a small amount of stretching
and squeezing is acceptable. As much as possible, the stretching and squeezing should be
constrained by some physical guidance, such as by varying the velocity functions used in
the depth-to-time conversion in the above Step 4. Such constraints may help us identify the
causes of the mis-tie.

Once we have identified possible causes of the mis-tie, we need to quantify the effects
of each cause for the given situation, and hence find effective ways to improve the well-tie
quality with the minimum amount of processing. For beginners in the subject, the best way
to learn is to see examples and to put theory into practice. After understanding the principle
and key steps, we need to look at more seismic-to-well tie examples from the literature and
see what the data are telling us. One such example is shown in Figure 10.71.
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Figure 10.72 Three synthetic seismogram traces are spliced into a migrated seismic section
after re-processing using whitened zero-phase (White & Hu, 1998).

10.5.4.2 Major challenges to seismic-to-well tie

Seismic–well tie is one of the most important processes in petroleum reservoir charac-
terization. With a high level of well tie, such as the example shown in Figure 10.72, we
suddenly gain a high level of confidence in all the matched seismic horizons with their
geologic meanings and petrophysical information inferred from the well logs. In the case
shown in this figure, the authors have carried out a careful re-processing with high-quality
seismic and well-log data; the correlation coefficient for the well tie here is more than 95%
over a long time window of 1600 ms. Unfortunately, such an excellent well tie is very rare.
In most real applications, the correlation level is below 80% over a time window greater
than 500 ms.

The common occurrence of mis-tie can be produced by a number of practical factors.
Hence, at the heart of seismic-to-well tie is identifying the causes of mis-tie, and devel-
oping effective ways to improve the tie and quantify the uncertainty. Practically, searching
for the causes of mis-tie needs to focus on the key factors for seismic-to-well tie. They
include:

� Well-log QC
� Well tie location
� Timing and log calibration
� Accuracy of wavelet estimated
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Figure 10.73 A case of adequate seismic-to-well tie at near offsets, but poor tie in the far
offsets (after Gratwick & Finn, 2005). The left six traces are based on well logs: 1 = VP, 2 =
density, 3 = impedance, 4 = resistivity, 5 = gamma ray, 6 = synthetic seismogram at near
offset. The right two panels are seismic-to-well tie results for near and far offsets, with their
synthetic seismograms shown as the middle traces. The cross-correlations are 63% and 6% for
the near- and far-offset ties, respectively. The vertical axis is along traveltime, and the interval
between the dashed lines is assumed to be 100 ms.

� Bandwidth of seismic data
� SNR of seismic data (e.g. multiples)
� Quality of velocity model (e.g. anisotropy)
� Methodology for complex imaging environments

As an example, Figure 10.73 demonstrates a case of seismic-to-well tie study of deep
water reservoirs in West Africa, where the correlation coefficient of the well tie is 63%
at near offsets (Panel 7) but only 6% in the far offsets (Panel 8). The seismic-to-well tie
process is commonly applied to near-offset seismic data near the wellbore. Nevertheless,
people have attempted to tie far-offset synthetic seismograms with far-offset seismic data
in order to constrain certain reservoir properties that can be manifested in far-offset data. In
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this example case, Gratwick and Finn (2005) used far-offset seismic-to-well tie to prove the
presence of velocity anisotropy in their mixed impedance reservoirs with unconsolidated
clastics. By modeling with velocity anisotropy based on shear logs, they were able to
improve the far-offset well tie to over 50% in the correlation coefficient.

There are situations in which, after many attempts, the quality of well tie is still poor. This
can be for a number of possible reasons. For instance, in the case of a deviated wellbore
or in the presence of steeply dipping rock layers, we cannot expect the convolution model
to be appropriately applied. We may need to conduct elastic waveform modeling in order
to generate the synthetic seismograms. Another physical limitation for seismic-to-well tie
is that the seismic responses of many physical properties are not scalable; in other words,
we cannot use their responses at one scale to predict the responses at a different scale.
Examples of such properties include viscosity and permeability. The scalability of the
seismic responses to different reservoir properties can often be evaluated by rock physics
studies.

10.5.4.3 Inversion for seismic impedances

While an imaged seismic section is indicative of subsurface structures because seis-
mic reflectors are most sensitive to geologic unconformities, the corresponding seismic
impedance section is useful to infer petrophysical parameters and in situ conditions such
as density, velocity, and pressure. The objective of seismic impedance inversion is to
derive seismic impedance models based on seismic images and/or synthetic seismograms
from seismic-to-well tie. Taking Figure 10.71 as an example, seismic impedance inver-
sion takes the imaged seismic trace (Traces 4 or 6) to invert for the impedance trace
(Trace 1). Since seismic impedance is a product of density and velocity, we have acoustic
impedance for acoustic or P-wave velocities, and elastic impedance for both P- and S-wave
velocities. In the presence of velocity anisotropy, the impedance becomes anisotropic as
well. Following the general view of seismic imaging that is portrayed in Figure 8.1, seismic
velocity models describe the long-wavelength and absolute values of the subsurface seismic
responses, while the reflection imagery describes the short-wavelength and relative variation
of seismic reflectivity. Therefore, we should jointly use seismic impedance and reflection
profiles.

Figure 10.74 shows an example of using a velocity profile to assist in interpreting a
crustal reflection profile in southern California. In large-scale studies there are often good
correlations between P-wave velocity models and seismic impedance models. However,
the data quality is often poor in crustal studies because of uneven and insufficient shot and
receiver coverage, and, in the case of this figure, the limitation of 2D seismic lines in the
presence of strong 3D inhomogeneities. Here, on the depth-migrated reflection profile in
panel (c), it is difficult to tell the positions of the Moho discontinuity and the bottoms of
sedimentary basins from the large number of reflectors distributed throughout the image.
In panel (b), some velocity contours from a tomographic velocity model shown in panel
(a) are projected as dashed curves on the reflection profile. These velocity contours help
in identifying the position of the Moho, which by definition is along the top of the deepest
velocity layer with 8 km/s in P-wave velocity. The basement boundary of the sedimentary
basins along this profile is interpreted as along the velocity layer with 5.5 km/s in P-wave
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Figure 10.74 Use of absolute velocities to interpret a crustal reflection seismic profile in
southern California. (a) A portion of the tomographic velocity profile shown in Figure 4.14b.
Three faults are Santa Susana (SSF), San Gabriel (SGF), and San Andreas (SAF). The
numbers are layer velocities in km/s. Panels (b) and (c), respectively, are depth-migrated
reflection profile shown in Figure 4.15b with and without velocity contours from (a). The gray
dots denote earthquake foci.
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velocity. Considering that the velocity model is just a low-resolution approximation of the
real velocity str ucture, we can inter pret these major cr ustal boundaries based on the velocity
model, seismic reflection profile, and geologic infor mation for the area.

As we have seen in the introduction to Section 10.5.4, seismic sections based on reflec-
tion data are commonly regarded as band-limited versions of the reflectivity str ucture. A
depth-var ying reflectivity function is just the ver tical derivatives of the cor responding seis-
mic impedance function, as demonstrated in the first two traces of Figure 10.71. Hence in
principle we should be able to produce a seismic impedance section by integ rating each
of the seismic traces along the ver tical axis. Indeed, we can car r y out seismic impedance
inversion following an integ ration approach. This is based on the nor mal-incidence assump-
tion that the reflectors in seismic section define the positions and reflection coefficients of
a set of layers of constant seismic impedance Zn = ρ n Vn , where ρ n and Vn , respectively,
are the density and velocity of the nth layer. This approach car ries a layer-stripping process
using a recursive for mula from the nth layer to the (n + 1)th layer:

Zn+1 = Z n
1 + Rn

1 − Rn
(10–21)

where Rn is the nor mal-incidence reflection coefficient between the nth and (n+1)th layers.
As shown in Figure 10.71, a good estimate of the reflection coefficient requires a good
estimation of the wavelet used for deconvolving the seismic data.

The advantage of the aforementioned integ ration approach is its simplicity and appli-
cability with reflection seismic profiles alone. In practice, however, this approach f aces a
number of challenges that must be dealt with properly, as summarized in the following.

� Lack of low frequencies in seismic data will pose a major problem if there are no wellbore
data, because the low-frequency signal cannot be estimated properly by integ rating band-
limited seismic data.

� Another challenge is the presence of noise, par ticularly colored noise such as multiple
reflections and ar tif acts due to poor seismic illumination; integ rating data of low SNR
will produce messy and unreliable results.

� Detections of wavelet and data polarity are two non-trivial tasks without well-logs and
seismic-to-well tie. Another associated challenge is in deter mining the phase of the
wavelet.

� Since the recursive for mula (10-21) is based on the nor mal incidence assumption, we
have to make sure that all non-zero-offset effects, such as the AVO effect, are minimized
satisf actorily. These effects often demand cor responding calibrations and assessments on
the uncer tainties.

If we have well-log data and are able to achieve a reasonable level of seismic-to-well tie,
then we are in an advantageous position to derive high-quality seismic impedance profiles
using the well tie and wavelet. In fact when we have well logs available, we should first
attempt to achieve an optimal level of well tie, before inverting for seismic impedance
profiles using both the reflection seismic data and well-tie solutions. There are different
methods to carry out the inversion, such as the deterministic deconvolution discussed in
Section 6.5. As an illustration, Figure 10.75 compares the characteristics of the inter preted
and true impedance profiles. Even with the best data quality, an inverted impedance curve
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Figure 10.75 Sketch of seismic impedance inversion. (a) Migrated seismic trace or synthetic
seismogram based on well logs. (b) Inverted seismic impedance, with the true impedance as a
dashed curve. (c) True impedance.

tends to follow the average values of the true impedance curve; many details of the true
impedance curve, such as first-order discontinuities or steps, will be smoothed out and
produce artifacts in the inverted solution. There are also many non-linear and statistical
inversion methods which are beyond the scope of this book.

Exercise 10.5

1. Discuss the sensitivity of the AVO attribute with respect to noise. List the measures
that may help reduce the influences of various types of noise.

2. The amplitude of two time series S1 and S2 can be matched to a similar level by
multiplying one of them by a constant a. How would you determine the value of a in
order to optimize the misfit between the two time series?

3. Describe two ways to quantify the seismic-to-well tie level. Write computer code to
quantify the “similarity” between Trace 5 and Trace 6 in Figure 10.71 (Hint: this can
be done in Excel.) Would you apply a variable weighting for different events?



463 Special topics in seismic processing

10.6 Summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
� In practice, we use the basic skills of seismic data processing to solve most problems,

but we may need special tools to address certain issues. It is useful to see how basic data
processing skills can be used in some special data processing topics.

� Seismic data acquisition plays a key role in maintaining seismic data quality to better
serve the intended objectives, as shown in monitoring different types of sources such as
background noise and microseismicity induced by fracking.

� Seismic illumination analysis is a valuable tool for assessing seismic resolution by
quantifying the spatial coverage of the traversing seismic waves through the subsurface
targets. Since data resolution and fidelity depend on the data bandwidth, it is critical to
preserve low-frequency signals.

� Because many seismic imaging methods use only primary reflection data, suppressing
multiple reflections is necessary before interpreting the images. Demultiple via Radon
transform relies on the differential moveout between primaries and multiples. Demultiple
via deconvolution exploits the periodicity of the multiples. SRME suppresses all surface-
related multiple energy via pre-stack inversion.

� Seismic anisotropy is a medium property which causes a variation of seismic veloci-
ties as a function of the traversing angle. Information in seismic anisotropy helps us
in improving the fidelity of seismic images, fault imaging, and detecting the dom-
inant orientations of fractures. Processing of P-wave data often uses the transverse
isotropy (TI) models described by the axial velocity VP0 and two Thomsen parameters ε

and δ.
� Although it is costly in time and money, multi-component seismic data offers infor-

mation on elastic properties that will be necessary for certain studies. Processing of
multi-component data is illustrated using wavefield separation methods, converted wave
processing, and VSP data processing and imaging.

� A seismic attribute is a quantitative measure of a seismic characteristic of interest.
Interpretations of seismic data use various seismic attributes based on trace properties
such as AVO, geometric properties such as coherence and curvature, and morphological
features that can be extracted in either the spatial or spectral domains. Processing of
seismic attributes relies largely on how much we know about their geologic characteristics
and seismic expressions.

� Seismic-to-well tie follows a major exploration geophysics strategy by combining seismic
imaging with well logs. It enables reflecting horizons picked by an interpreter to be related
directly to a well log, and provides a way to estimate the wavelet needed for inverting
seismic data to impedance and other indicators of rock and fluid properties.

� Seismic impedance inversion derives models of seismic velocity and density based on
seismic images and/or synthetic seismograms from seismic-to-well tie. While seismic
sections are indicative of reflection structures such as unconformities, seismic impedance
models are useful to inferring petrophysical parameters and in situ conditions of the
subsurface.
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conjugate gradient, CG, 337, 351
constraints

hard, 303
soft, 303

continuation
downward, 206

converted wave processing, 427
convolution, 45
correlation, 47

auto-, 86
cross-, 235

covariance, 47
cross-, 47

coverage
data, 123, 205
raypath, 123

criterion
Rayleigh, 108
Ricker, 108

curvature, 445

data
format, 26
inaccuracy, 280
inconsistency, 351
seismic, 2

datum, 59
flat, 59
floating, 59

datuming
wavefield, 62

dB, 90
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decomposition
eigenvalue–eigenvector, EED, 329, 345
global, 94
local, 94
plane-wave, 221
singular value, SVD, 346
spectral, 449, 451

decomposition and superposition, 67, 69, 70
deconvolution, 172, 173

adaptive, 186
frequency domain, 182
minimum entropy, MED, 192, 193
predictive, 172, 175, 398, 399, 400
spiking, 180
water level, 183

degree of freedom, 325
demean, 255, 293, 297
demultiple

via moveout differences, 394
via predictive deconvolution, 397
via Radon transform, 396

demultiplexing, 32
depth conversion, 8, 35, 248, 432
determined

even-, 72, 335
mixed-, 335
over-, 72, 335
under-, 72, 335

DFT
forward, 72
inverse, 72

differential semblance optimization, DSO, 44
dip move-out, DMO, 270
direct hydrocarbon indicator, DHI, 19
dispersion

inverse, 131
normal, 131
numerical, 317
seismic, 131

distribution
exponential, 330
Gaussian, 329
uniform, 328

Dix formula, 269
double square root, DSR, 229
double-couple, DC, 380
doubling operation, 75, 77
downward continuation, 220

effective medium theories, 409
eigenvalues, 345
eigenvector, 345
entropy, 190
envelope, 24
equal differential time, EDT, 342
estimate

maximum likelihood, 323, 331

estimating velocity anisotropy
depth domain, 418
time domain, 413

evanescent waves, 230
expansion

Fourier, 101
Taylor, 102

exploding reflector model, 208
extension

spectral, 184
extrapolation by deterministic deconvolution, EDD,

195

factorization
spectral, 161

fault shadow, 243
feature extraction, 446
feedback loops, 138
fidelity

seismic, 105, 118
filter

causal digital, 138
f–k, 156, 157, 158
Hanning, 141
inverse, 160
invertible, 148
matched, 35, 50
non-recursive, 138
Ormsby, 93
poles of, 143
quadrature, 22
rational form, 138
spatial coherency, 447
Wiener, 153
zeros of, 143

filtering
dip, 156
medium, 158

first arrival, 59
fold, 5, 7
forward modeling, 278, 306, 351
fracking, 379
frequency

low-corner, 391

gain control, 17
gather

common image, CIG, 4, 275
common midpoint, CMP, 4
common receiver, 322
common receiver, CRG, 4
common shot, CSG, 4, 379
seismic, 4

generalized inverse, 350
Gibbs

ears, 154
oscillations, 101



479 Index

Hanning
function, 141

header
file, 28
trace, 28

hodogram, 36
horizons, 33
horizontal transverse isotropy, HTI, 410

illumination
seismic, 123, 386
shadow, 293, 294

imaging
conditioning, 206, 223, 229, 234
seismic, 205, 249
with multiples, 405

impedance
acoustic, 114
elastic, 17
seismic, 393

impedance inversion
seismic, 459, 461

impulse response, 92, 137, 213
inhomogeneity

seismic, 17
instantaneous

attributes, 440
frequency, 24, 440
phase, 24, 440

interferences
constructive, 106
destructive, 106

interpolation
linear, 101, 327

inverse imaging, 278, 307
inversion

iterative, 280
joint, 368, 373
minimum-norm, 197
seismic, 205, 306

jackknifing, 127, 129

kernel
Frechet differential, 103, 279
matrix, 325

Kirchhoff integral, 215

Lagrangian multipliers, 365
least squares, LS, 55, 60, 127, 153, 169, 333
Levinson recursion, 164
linearity, 11
low velocity layer, LVL, 250
low-frequency

shadow, 452
signals, 391

LS

damped and weighted, 339
minimum-norm, 338
weighted, 339

LSQR algorithm, 361, 362

Marmousi model, 197, 336
master station method, 342
matching pursuit, 97, 452
midpoint, 7
migrated

shot gather, 214
trace gather, 214

migration
aperture, 211
assumptions, 206
depth, 207
f–k, 219
Kirchhoff, 211, 217
over-, 242, 272
phase-shift, 219, 230
prestack, 208, 225
reverse time, RTM, 233, 236
seismic, 206
split-step, 232
Stolt, 224, 226
time, 207
under-, 242, 272

migration, prestack, 208
minimum phase, 139, 147, 166, 167
misfit, 323
model

layer-cake, 7
non-uniqueness, 280, 351

model parameterization
global, 282
local, 282
wavelet, 283

modeling
convolutional, 310, 313
finite-difference, FD, 315
finite-element, FE, 317
forward, 205
physical, 18, 49, 320, 321
pseudo-spectral, PS, 318
seismic, 205, 306
seismic ray, 309
waveform, 312, 315, 318

moment
kth, 190

moveout
linear, LMO, 54
non-linear, 55

multiples
internal, 394
refracted, 394
surface, 394

multiplexing, 32
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mute, 53
inner, 53
outer, 53
polygon, 53

navigation merge, 33
new low noise model, NLNM, 381
NMO stretch, 41
noise, 6
non-double-couple, non-DC, 380
non-stationary, 174
norm

L2, 324
Lk. 324

normal moveout, NMO, 37
null spaces, 350
Nyquist

condition, 13
frequency, 13

obliquity factor, 216
octave, 89, 113
omni-directional, 15
orthogonal

function, 100
wavelet, 99

outliers, 324
overburden, 385

partial stacks, 215
perturbation theory, 102
phase

lag, 20
rotation, 34

phase-shift plus interpolation, PSPI, 219, 230
PmP waves, 120
poststack, 8
prediction error operator, PEO, 175, 178
pre-processing, 3, 31, 32, 216
prestack, 7

depth migration, 216
pre-whitening, 197
principle of parsimony, 407
probability density function, PDF, 47, 190,

328
processing

depth, 417
flow, 8
time, 118, 416

Q estimating, 132
quality (Q) factor, 16
quality control, QC, 3, 26, 28

radiation pattern, 14
ray tracing

dynamic, 261
kinematical, 261

rays
turning, 255, 363

recursive formula, 139
reduced time, 54
reduction slowness, 54
reflection

multiples, 393
primaries, 393
prismatic, 310

reflection point dispersal, 38
regression, 323, 324
re-sampling, 126
resolution

Fresnel, 109
horizontal, 107, 109
seismic, 106, 118, 124
vertical, 107, 301

resolution matrix
data, 339
model, 340

resolution test
checkerboard, 124, 341

restoration test, 124
reverse VSP, 35
rock texture, 250
rugosity, 240

sampling rate, 11
scalability, 459
section

common offset, 5
migrated, 214

seismic
coherence, 444
discontinuities, 259
illumination, 5, 385
imaging, 3
modeling, 3

semblance, 42
shear wave splitting, 408
signal, 6

analytical, 22
signal to noise ratio, SNR, 6
simultaneous iterative reconstruction technique,

SIRT, 358, 359
skewness, 191
smearing, 242

along-raypath, 293, 294
spectrum

amplitude, 83
phase, 20, 83
power, 84

spherical spreading factor, 216
spread

acquisition, 3
end-on, 4
reflection, 4, 38
split, 3
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spreading
geometrical, 16, 153

stack
slant, 55

stacking, 53
amplitude, 67
migration, 38
NMO, 38, 68
slant, 38
vertical, 38, 67
weighted, 69

statics
near-surface, 58
reflection, 61
refraction, 60, 431
tomo-, 61
trim, 61, 431

stationary, 90, 174
superposition

plane-wave, 221
surface-consistent, 18, 57
surface-related multiple elimination, SRME, 402
survey-sink, 225
swath, 6
sweep signal, 180
sweeping, 92
synthetic seismogram, 45, 200, 455

texel, 447
Thomsen parameters, 412
tie

seismic-to-well, 454, 455, 457
tilt transverse isotropy, TTI, 411
time series, 10

sampled, 10
Toeplitz matrices, 46, 163
tomography

cell, 124, 282, 299, 301
deformable-layer, DLT, 299
multi-scale, MST, 283
reflection, 291
single-scale, SST, 282

transform
discrete Fourier, DFT, 66, 72, 73
discrete wavelet, DWT, 94, 99
fast Fourier, FFT, 75
Fourier, FT, 70, 71
Haar wavelet, 95, 96
Hilbert, 22
Radon, 55
tau-p, (τ -p), 55
wavelet, 100

transverse isotropy, TI, 409
tuning, 111

limit, 108
thickness, 111

unbiasedness condition, 284

uncertainty principle, 89
unit circle, 12
unitary matrix, 346

Varimax, 191
velocity

1D model, 256
apparent, 52
diodic, 428
group, 248
interval, 261, 266, 418
inversion, 256
lateral variation, 33, 124, 209, 240, 255, 271
Moho distribution, 262
phase, 248
pull-downs, 243
pull-ups, 243
RMS, 266
stacking, 265
trend, 252
variation, 250

velocity analysis
migration, 271, 275, 417
NMO, 413
residual, 418
semblance, 41, 265, 277, 304
tomographic, 277, 283

velocity model building, VMB, 44, 122, 209, 247,
249

velocity-depth ambiguity, 272, 291
vertical seismic profile, VSP, 35, 432
vertical transverse isotropy, VTI, 411
VSP

corridor, 433
imaging, 433

wavefield
downgoing, 81
separation, 426
upgoing, 81

wavefront
healing, 123

wavelet, 21, 91
Klauder, 93
maximum-phase, 22
minimum-phase, 22
Ormsby, 93, 113
Ricker, 92
seismic, 92
transform, 94, 451
zero-phase, 21, 115

wavelet shaping factor, 216
white noises, 51
Wiener–Khinchin theorem, 84

Yule–Walker method, 175

z-transform, 11, 12
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