РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Инженерный факультет

Кафедра Месторождений полезных ископаемых и их разведки им. В.М.Крейтера

На правах рукописи

Раимбеков Юсуф Худоназарович

Условия образования карбонатных отложений триаса и юры Юго-Восточного Памира

25.00.06. - литология

Диссертация на соискание ученой степени кандидата геолого-минералогических наук

Научный руководитель: доктор геолого-минералогических наук, профессор, Кузнецов Н.Б.

Оглавление	2
Введение	3
Глава I. Географо-экономический очерк	7
Глава II. Геологическое строение Памира	11
II.1. Краткий очерк истории геологического изучения Памира	11
II.2. Данные космической геодезии	13
II.3. Геологическая структура Памира	15
II.4. Геологическое строение Юго-Восточного Памира	21
II.5. Тектоника	25
Глава III. Методика проведения исследования карбонатных фации Юго-Восточного Памира	30
III.1. Фациальный анализ - история возникновения и становления понятия	31
III.2. Основные понятия и определения секвентной стратиграфии	36
Глава IV. Геологическая интерпретация условий образования карбонатных фаций триаса и юры Юго-	-
Восточного Памира	47
IV.1.Основные типы разрезов триасовых отложений Юго-Восточного Памира	48
IV.2. Фациальный анализ отложений триаса	52
IV.2.1. Осевая зона	52
IV.2.2. Переходная зона	58
IV.2.3. Промежуточная зона	61
IV.2.4. Окраинная зона	66
IV.3. Фациальная зональность триасовых отложений	70
IV.4. Основные типы разрезов юрских отложений Юго-Восточного Памира	73
IV.5. Фациальный анализ карбонатных отложений юры	77
IV.5.1. Истыкская зона (осевая- рифовая)	77
IV.5.2. Гурумдинская зона (склоновая - предриф)	101
IV.5.3. Мынхаджирская зона (зарифовая)	103
IV.6. Фациальная зональность карбонатных отложений юрского периода	111
IV.7. Секвенс-стратиграфическая интерпретация триасовых отложений Юго-Восточного Памира	115
IV.8. Секвенс-стратиграфическая интерпретация юрских отложений Юго-Восточного Памира	124
Глава V. Технологическая характеристика и химический состав карбонатных пород Юго-Восточного	
Памира	147
V.1. Оценка карбонатных пород Юго-Восточного Памира для производства цементного клинкера	147
V.2. Геологическое строение участка Мынходжир	149
V.3. Технологические свойства	158
V.4. Горно-технические и гидрогеологические условия разработки участка	159
V.5. Подсчет запасов	160
V.6. Геологическое строение месторождения и оценка прогнозных ресурсов месторождение угля	
Куртеке	165
V.7. Экономические показатели освоения месторождения	168
Заключение	170
Литература	174

,
,
,
,

· .

,

,

,

-

- .

,

:

•

. .

,

2012-2013 . . - 1500 - 35. - 20 - 700 57) - 13 (1. 2. 12 3. (J_2kc) . (J_1sh) (J_1kd)

•

·

,

,

« » – , . , 2012 2013 . .; – , . , 2014 .;

– , . , 2014 . XII

.

•

.- . ,

· -

.- . ,

·- · , - · · · -

```
I.
                                    43
                                                                                     (63,7
                  .1).
       1
                            ), 7
                                                 43
                      1000 .(
                                                   3800 .(
                                               )
                                                           210
        , 6.7 %
                                           ).
                                                            1000
                                                                                     5000
                200
                                                              [99].
                                                         4-
             36 000 .
                                                   1 500
                                                           (VII – VIII . .)
                                                                                   (III - I
         . ),
                                                                  7 134 ,
7 495 ,
               7439 ,
                                              (505 ).
(380 . .).
```

. .

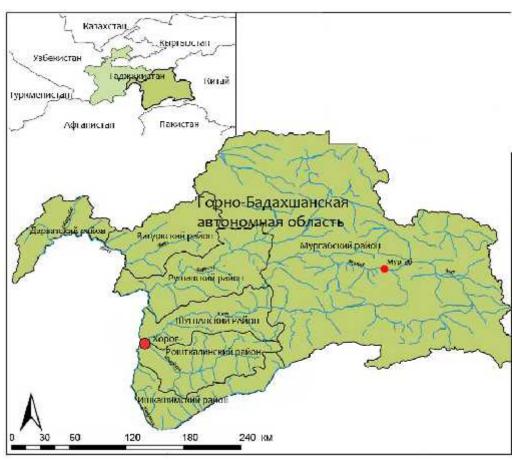


Рис.1. Административная карта Горно-Бадахшанской Автономной области. Карта взята из интернета.

9000 / , 70

,

. « » 10

« » 110 [99].

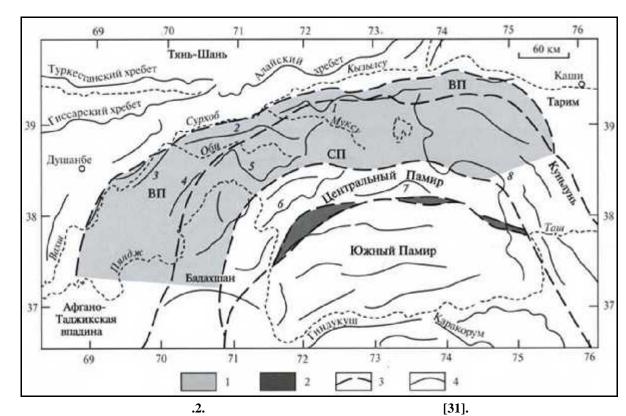
200

30-18,2 %, 7 575 / . 13 226 69).), **».** - 30 4,6 - 3,5 800 7,4 60 100

381 332 /; - 45 3,93%; -21,6 1,88%. 50). 11 950 181101

10

) [99].

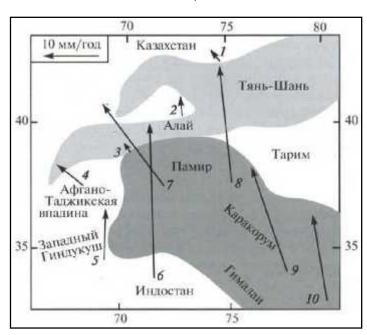

II. [54], . . ([26] [37], . [140]. [79,82,83,84], . . [78] II.1. 30-20-([21], [61], . . . [120] [80], [10], . . [74]. 40-60-

).

1:200 000,

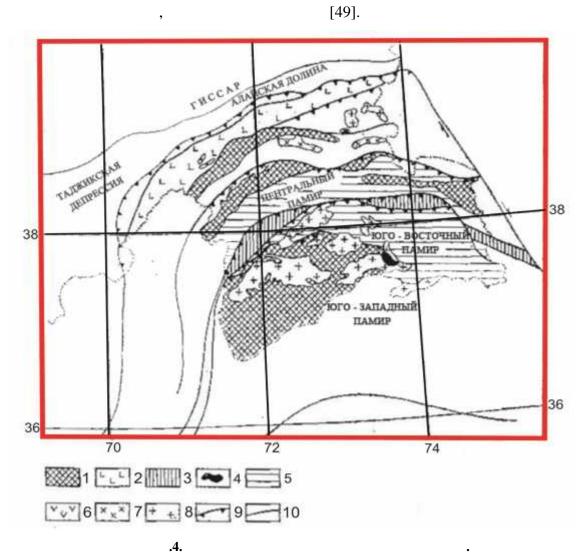
[36], . . [69] [22] [88,89], [66,67,68] [3], . . [58], [101], [104,105]. [22]. 50- – 60-[17,23,36],

```
)
                                                                                 60-
                                                         [48,68,71,90,91]
                                                                                [20,30,29,97]
                                                 [20,29,30].
                                  (,
                                                                300
600
         [31].
                                                        [20,67,70,74,77,87,97,101].
                                                            (
               [31].
                                                                            ( . 2).
                          II.2.
        GPS ( . 3,
                          . 1),
                                                                                       31.8{\pm}1.5
                                                                - 26.6
        [133],
  /
                                                                                            (
                                   )
                                                                    16.2± 1.6
                                                                                         [133],
                                                   13.4
                                                             / .
                                                            [31].
```



1 - ; 3 - ; 4 - ; 2 - ; 2 - ; 2 - ; 2 - ; 2 - ; 3 - ; 4 - ; 5 - ; 6 - ; 7 - ; 8 - ; 8 - ; 8 - ; 9 - ;

		vN,	vW,
	. 5.7	/	/
	7	2,1±0,8	1,8±1,6
	2	4,0±1,3	0,6±1,3
	3	2,4±1,2	1,2±1,2
	4	3,9±1,1	5,5±1,1
	5	10,0±1,1	0,1±1,1
	6	29,0+0,9	0,8±0,9
	7	15,8±1,1	10,7±1,1
	8	22,5±1,7	1,9±1,8
R	9	20,3±1,2	5,7±1,2
I	10	16,6±1,6	1,7±1,6


. 3. GPS [Mohadjer et al., 2010] (. . 5.1). GPS: 1 - . 2 - . 3 - . 4 - . 5 - . 6 - . 7 - . 8 - . 9 - R. 10 - I.

1. GPS
[Mohadjer et al., 2010]
. vN, vW — () () GPS


```
11.8±2 / [133].
GPS,
                                                     ~10
                                                                GPS)
                         ~15 / [52, 53], ~17,5±0,8 / [152].
      ~ 13±4 / [139],
                                                                         (
         6,2±1 / )
                            GPS
                                                              GPS
                                                                        GPS
                        8,8±2 / .
                                                                       GPS,
                              GPS,
                                            18,1+1
                                       GPS,
                  15 – 20 / [52, 53, 133].
              [16,17,30,29]
                                           GPS.
                  II.3.
                                             . 4,
         [24,60,87,117].
```

[98],

; 3 — ; 5 -

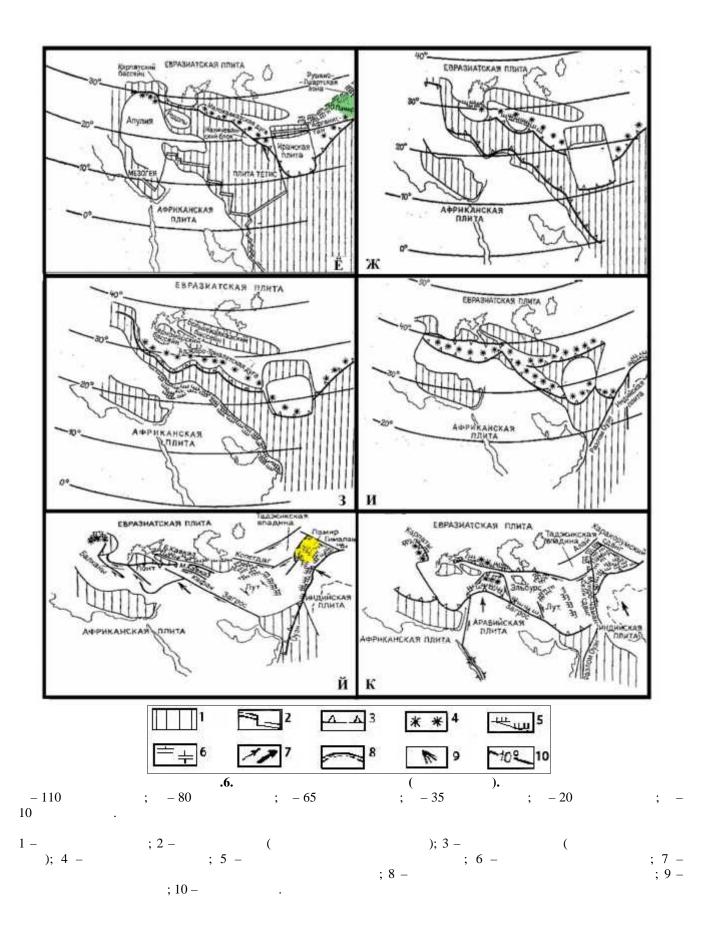
; 6 – ; 7 –

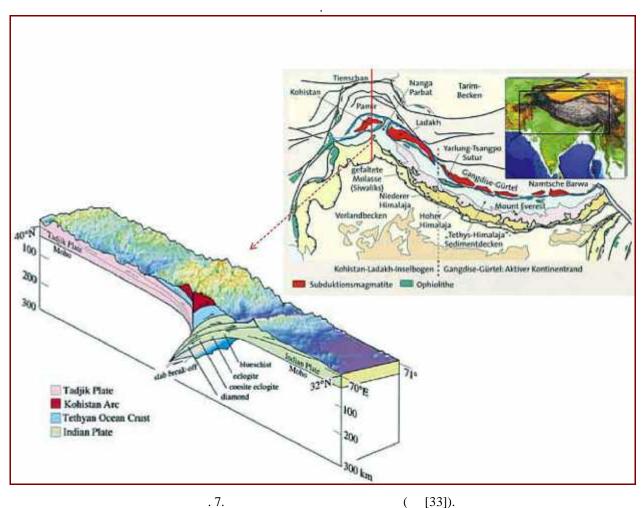
; 8 -

; 10 –

[49].

```
[49].
                                                   ).
           [49].
                                                                                     [49].
                                                     50
                                                                                ( 2 )
                       [49].
          )
[49].
                        [49], . .
                     [49].
```


[87],


[49]. 1000 2700 [49]. [117]. (100 130 [117],

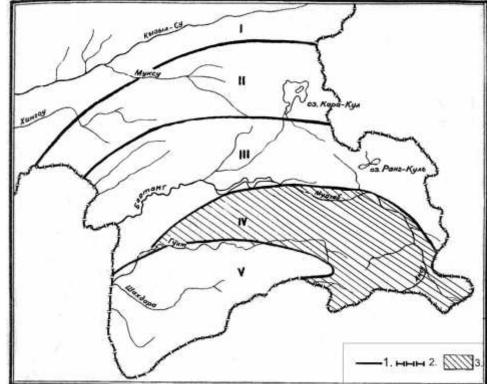
, [117].

Б ЛАВРАЗИАТСКАЯ ПЛИТА

-280 . ; -250 . ; -220 . ; -190 . ; -155 . ; -155 .

([33]).

[49].


II.4.

[36],

[83], [74], [32] [23]. [66]. [6,8,10,12,36,69,92],), [4].),

,

:1- - ,2-

. 8. -

I. - ; II. ; III. - ; IV. - ; 3 -

3 - - , 4 - 5 - - (. 8). [4].

, , [4].

,

,

.

). [4] [4].

[4].

II.5.

[3], (J-43-XXI) (?) pp. 2-3 .

,

10 25 – 30 (?) [3]. (4984.3) (20-40°) (70-80°).

```
[3],
   ),
                                                              5
«
 (?)
                                                            100 )
                                                               30°.
                                                                        ).
                                                                            4829,0
```

: 1) , 2) 3) 45°,).

,

-

- 400-500 -

(–)

.

, ,

III.

[63,64], [110,111],

[35].

, [55].

```
[100,127].
                                                [127].
                                               68 . ),
                                                . ),
9-10,5
                                      (0,5-9
                                                             ).
 III.1.
                                                                         XVII
     facies
                 (A.Gressly).
                                                                                      ),
```

[126].

: 1)); 2)); 3)); 4)) +). XIX -XX [35], . . [55] [18]. . (.9. .250) [62].

,

. . .

```
[116]
                        [72],
                                [102].
 . 9. ,
    , 1868)
                                    (M.Renevier,1884)
     10).
```

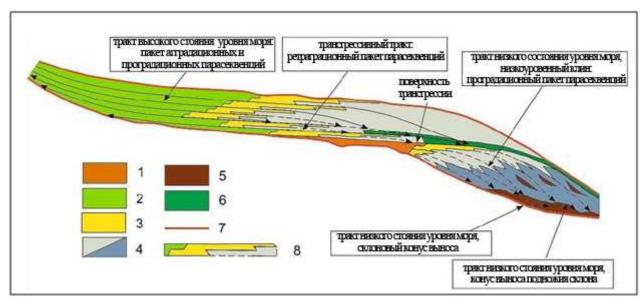
```
I—I)
. 10.
                                                   , 1872); — —
                ).
             [28]
              [81]
              [103]
                                                                    )".
                    [47]
             [107]
                                                       [112],
```

,

-

```
[73]:
                                                          ),
                       [85]
                                               [114].
),
           » [108].
                         [108]
```

[108], [108]. [108]. III.2. 70-XX .


[149]. » [149].

,

(depositional sequence)

(

()(.11.)

.11. (www.uga.edu/strata)

1 - ; 4 - ; 5 - ; 5 - ; 8 - ; 8 - .

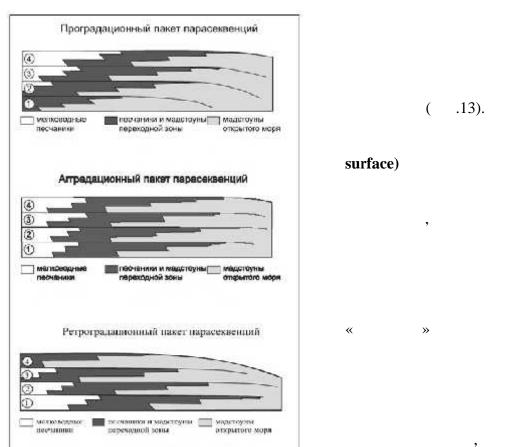
(parasequence)

(

, , , ,

--,

, –

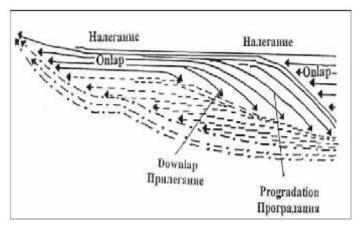

(parasequence set)

.12).

(unconformity)

(onlap

" [149, p.41].


. 12.

(Van Wagoner et al., 1990,

www.uga.edu/~strata/sequence/parasets.html) [149].

(coastal onlap) [132]. 1949

» [76].

(downlap surface)

. 13. (http://sepmstrata.org).

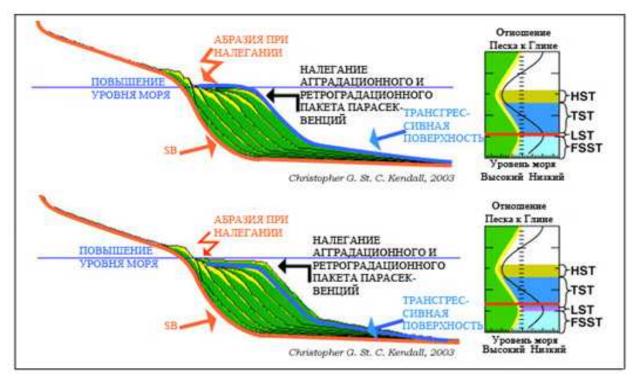
. . . [76]

", ", ",

(erosional truncation)

(toplap surface)

1-(Type 1 sequence boundary) 1-(Type 2 sequence boundary), 2-2-1-1-2-2-2-1-2-[149]. 1-2-

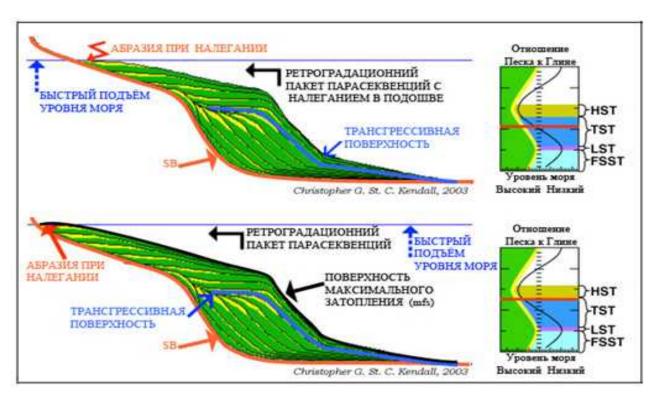

(H.Pusamentier,

" [115].

) [138].

) (lowstand systems tract) 1-(basin-floor fan) (slope fan) (lowstand wedge), .14.). (shelf-margin systems tract) 2-

, 2-



.14. (LST) (http://sepmstrata.org).

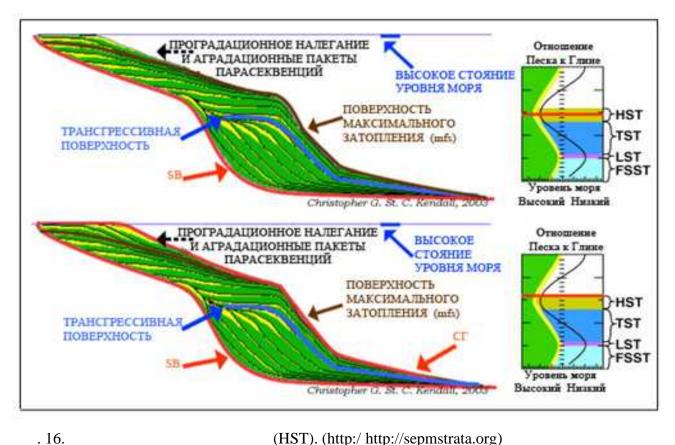
```
( ) (transgressive systems tract)
```

```
( ).
( .15.).
```

(transgressive surface)

.15. (TST) (http://sepmstrata.org)

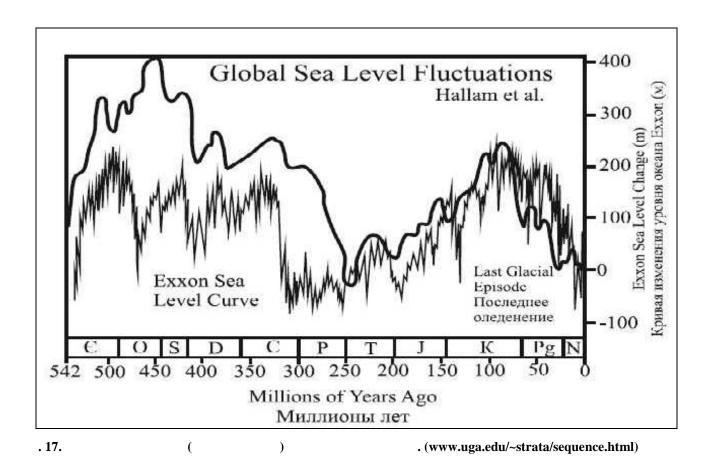
() (highstand systems tract)


1- , 2- (.16).

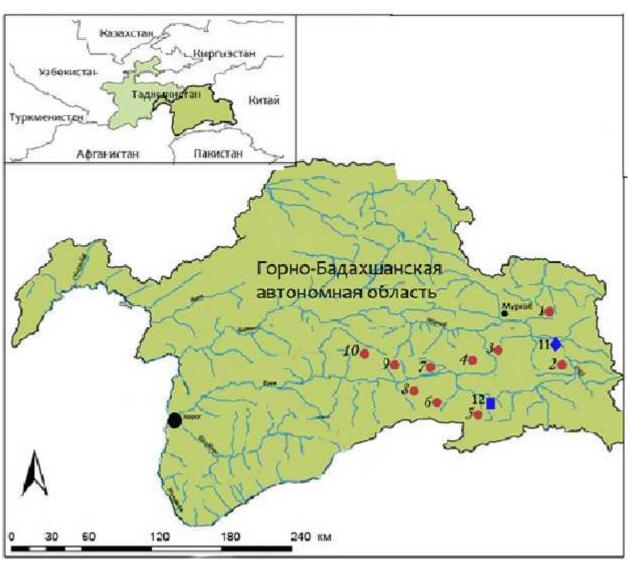
(downlape surface).

(surface of maximum flooding).

« »

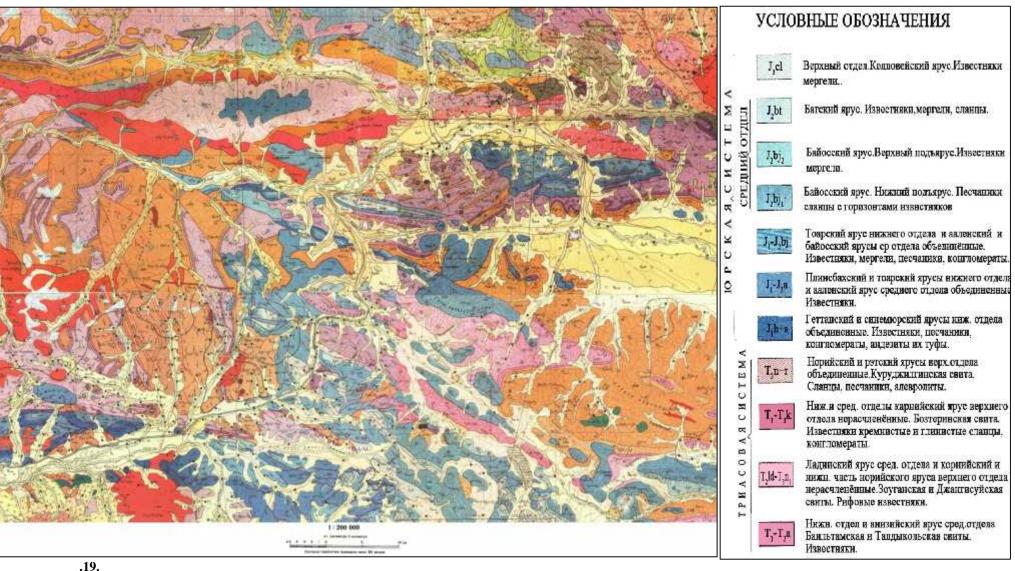

[138].

(HST). (http://sepmstrata.org)


),

```
[127] ( .17).
                                       65 . ),
                           (0.5-9)
9-10.5
                                    . ),
                                          ).
```


IV.


() (.18).

. 18.

IV.1. -

```
( . 19).
                                                                                    (
                                                                    3700-4200 ,
                  1000-1500 ).
                                                                                        . [3, 4,
5,43]
                                 60 - 80 .
                                                                                      J-43-XX)
                                        : Danubites aff. floriani js., Leiophyllites sp.
[11,45].
```


10-15 : Claraia aurita Hauer., CL. ex gr.stachel Bitt., Cl.aff. tridentina Bitt., Cl.cf.australasiatica Krumb., : Myophorlopsie (Pseudocorbula) gregaria Mstz. Promatilda bolina Munst., Katosira solitaria Phill., 145 - 220 [11,45]. [4] : Eumorphotis inaequlcoatata Ben., E.ex gr.venetiana Hauer, Pecten (Velopecten) albertll Goldf. ,Anodontophora canalensis 20 - 25 . Catullo, A.cf. fassaerials Wlssm., Myopherla laevigata Ziet. ((20-30)(12 - 15). : Posidonla cf.bosniaca Bltt., P. cf.pannonlca Mojs., P. wengensis Wlssm.

: Daonella reticulata Mojs., D.indica Bitt., D.pichleri Mojs.

40 - 50 .

. pa

12 ;

, 45 .

; H.auatrlaca Mojs., H.suessi Mojs.,

Halobia dictineta Mojs., Halobia of.auperba Mojs.,
. 60 .

120 – 180 [11,45].

.

,

50 - 60 .

.

Rhacophyllites debills (Hauer), Placites aff. polydactilus M js [11,45].

.

, , ,

·
.

· · [11,45].

1000 - 1500 .

IV.2.

, , ,

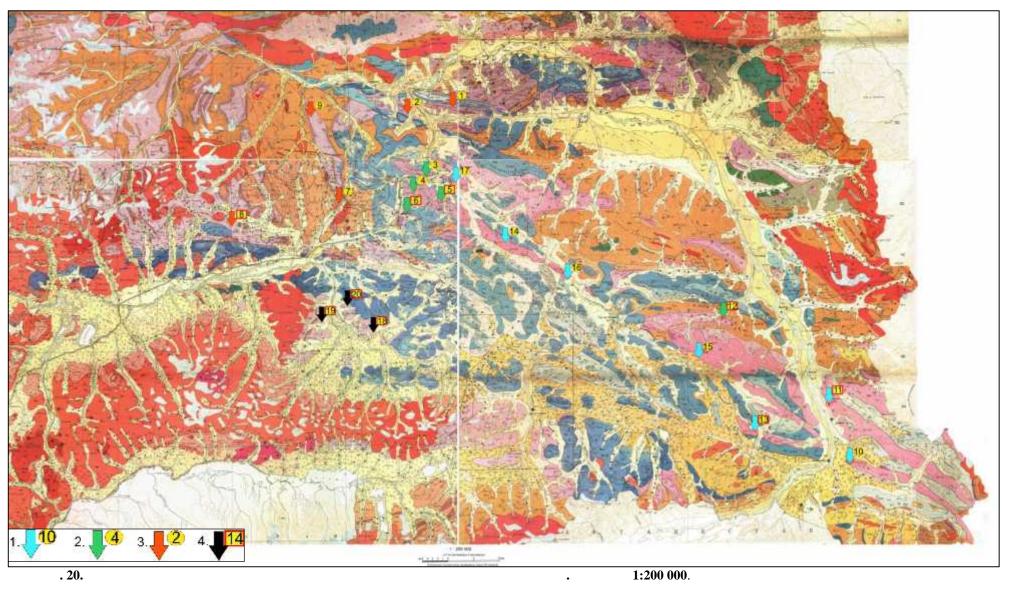
) [108]. , ()

. [108] ,

· ,

[108].

.


IV.2.1.

[95,44],

(<u>.20</u>, 15 16). -

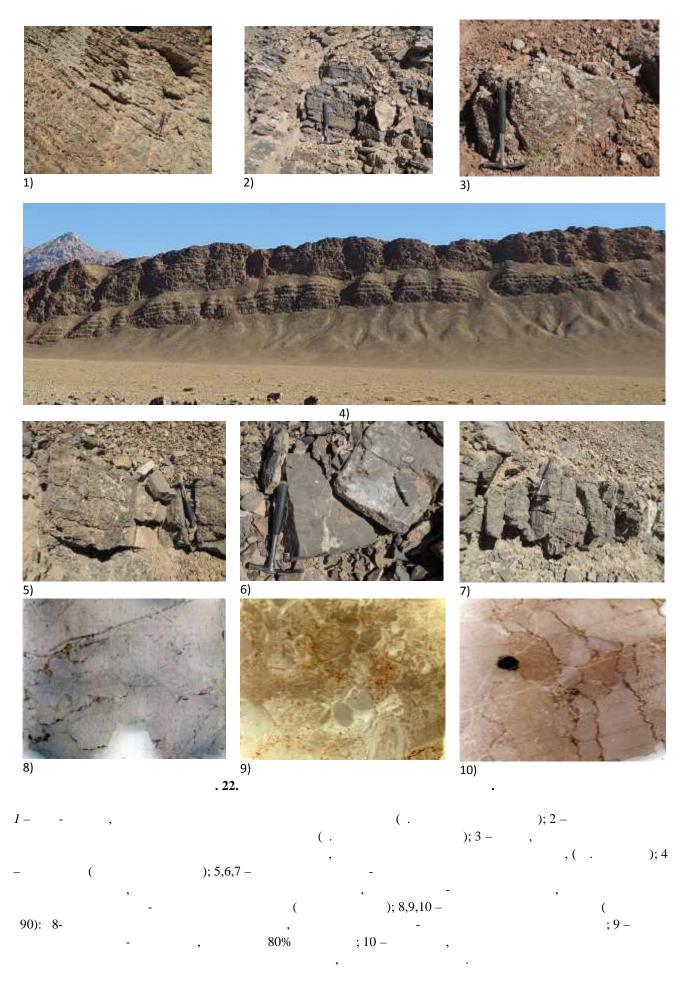
,

(<u>. 20</u>, 14)


```
1),
                                    2, 3)
                        .21,
                                                      [2, 38, 41, 27],
           (3);
                                                           -(30)
                                                                   Placites polydactilus Mojs.,
- Astraeomorpha major Vinassa de Regny;
Paracladiscites timorensis Arth., Arcestes(Arcestes) sp.
                                      1000
                                                       (0,1 - 0,7)
                                    Monotis salinaria (Schlotheim)
                                                                   - Placites polydactilus Mojs.,
Arcestes sp, - 15
                                                              - 30
                                                                                   (12
                                                               terastridium sp.,
Parathecosmilia wanneri (Vinassa de Regny), Retiophyllia oppeli (Reuss), Oedalmia cf. norica
(Frech), Pamiroseris meriani meriani (Stoppani);
```

- 4


```
(10
                                 );
                                                                           (30
                                                . 20,
                                                            17),
                                                                                      5).
                                                                        (100
                                                             - Halorelloidea cf. rectifrons (Bittn.)
              - Neomegalodon tofanae Hoern., N. damesi Hoern. (100 ).
                                                 - Monotis salinaria (Schlotheim);
                                                                        -Griphoporella cf.ourvata
            - Arcestes Sp.;
(Gtimbel), Diplopora cf. phanerospora Pia. (25).
                                         Monotis sailnaria (Schlotheim),
                (40 ).
```


--

(40). 99% 0,5 in situ 15 5 . 60 , 50 . .20, 13). (5); (20). 45 .

-

[4].

– Diplopora sp., Griphoporella sp. .20, 10). Monotis1000 . salinaria (Sohlotheim), (50) 15 - 20150 IV.2.2. <u>. 22</u>).

__

), . 20, 12) Halobla sp. (15), 612 . 3 <u>. 22</u>). 5). .20, 165 – Halorella amphitoma (Brorm.), . stoliczkai Suess. . 22). . 20, 6).

Daonella aff. indica Bittn. Halorella amphitoma (Bronn.). 400 . 15 - 20 .). 15 - 20[108]. IV.2.3. <u>. 23</u>.). **»**. [108],

,

).

),

_ .

). [9] 3 6 1. 2. 3. 4. 5. 6. -1968 . J-43-76-), (___.20, 8), (___.20, 9), () <u>23)</u>. 2 40 .

C 2

, , ,

, , , . .

. -).

C 2

(30), . 23). 6-7 . 23). 25 - 30 . 56 - 62 , .) [4,32]. [4]. 1968 . 74-80 . [41].

```
. 20,
                                              8)
                                                     1957
                             sidonia aff. pannonica Mojs, P. bosniaca Bitt, P.aff. wengensis Wissm
                  25 - 30
                       1957 .
                                                                                         - Daonella
indica Bitt., D. pichleri Mojs.
                                        2
                               8
            - Halobia cf. vixaurita Kittl., Daonella reticulata Mojs.
                                                                                     18
                                                                                       45 - 50 ,
                                                        1968
                7).
                               5-6 .
  . 20,
             : Tropites cf. estellae Mojs, Yovites aff. daci Mojs.
                                                           1958 .
                                          . 20,
                                                      8)
                            (5
                                ),
        (4).
                                              (5
                                                  ),
                                                                   (10).
              )
                                        1957 .
                        - Halobia cf. stiriaca Mojs.
                                                                   . f. circumsul catum Kittl.
                        15 ,
                                                                       24 .
```

_

Neohauerites ? sp., . . .

[4].

,

,

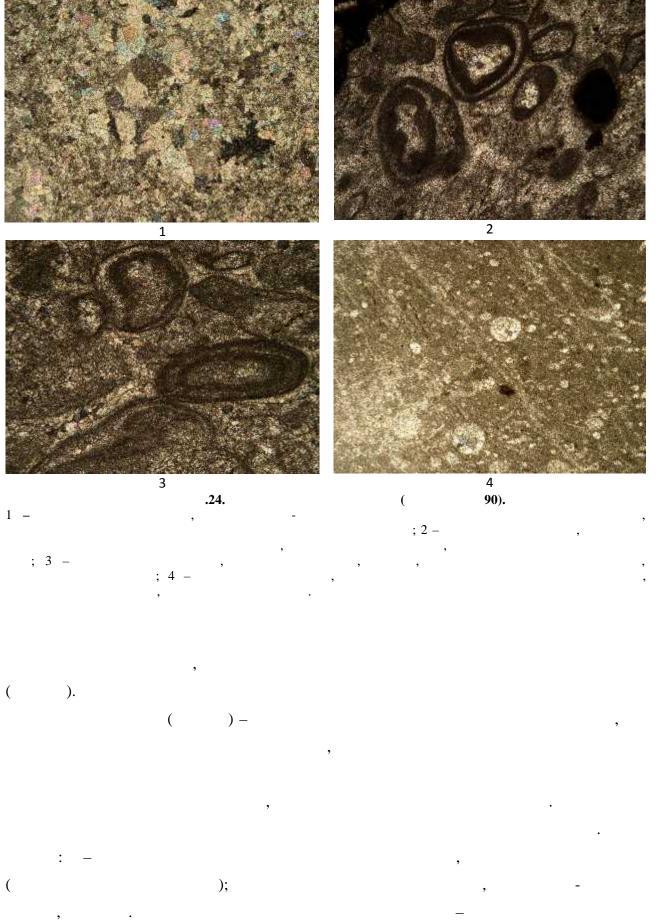
.

(.24). - (20 - 25%).

, 9 – 13 .

: 1) ?, 2)

--


- · ,

, – ,

,

[108].

IV.2.4.

__

), (?)(). (<u>.25</u>). (50). 0.3 - 1 . 0.3 - 0.5 . 1.5 20). <u>20</u>,

(___. 20, 21). (0.3 2 1 . 25. 1 –); 3 – - 0.7) 1:4 1:5. Halobia (

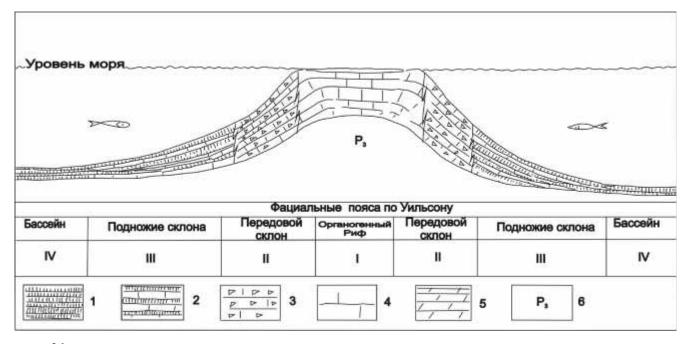
,

).

20% (10 -15%).) [9]. IV.3.

,

[108, .35] (<u>.26</u>).


, ·

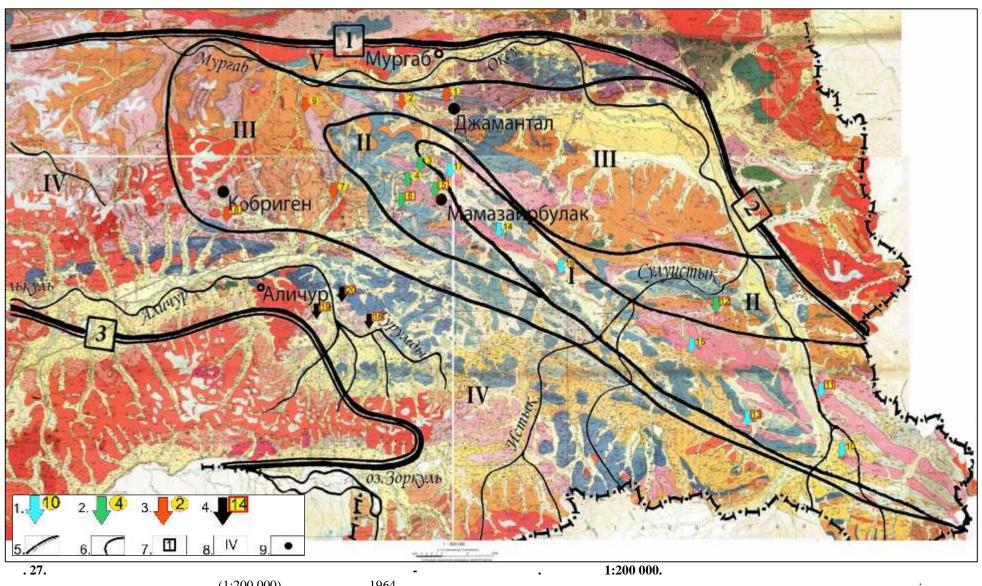
,

,

,

__

.26.


1 - ; 3 - ; 3 -

;4- ;5- ;6-

[43]

(<u>. 27</u>).

74

IV.4.

[11]. <u>. 20</u>). $15\ -\ 25$ 100 - 200200 .) (10 – 15) 150 - 200450 . 150 - 200 .

: rdinia cf.elliptica Quenst., C. cf. hydridus

Quenst. 350 – 650 .

·

ideroceras ex gr.

Roderti Hauer.,

. 80 – 150 .

.

- , , - - [11].

.

•

, - .

,

1 – 3 10 .

,

1,5-2 , -0,3-0,8 .

, .

. .

- -

60 - 120

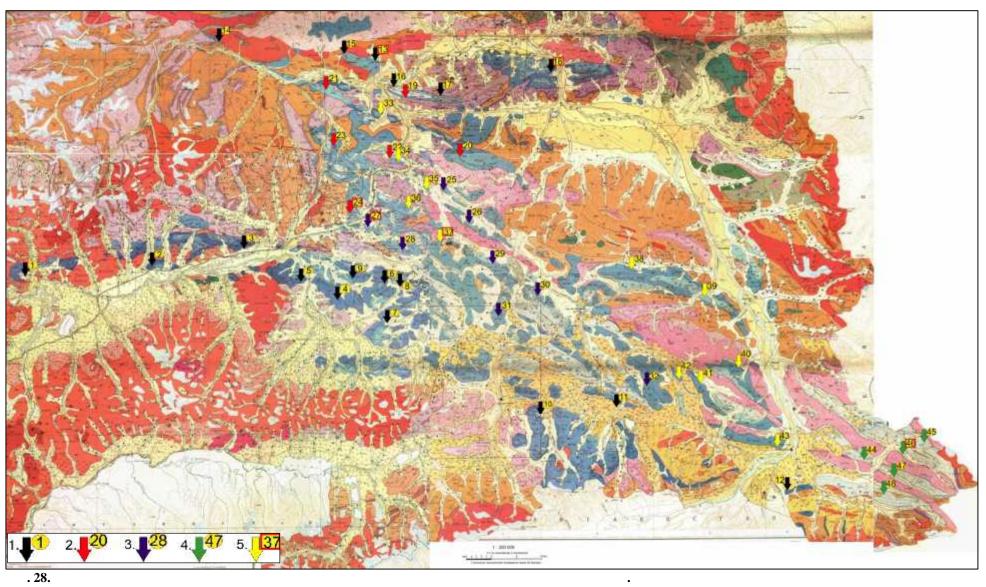
100 250 Variamussium undenarius Quents., V. paradoxus (Munst.). 160 - 370 . [11]. 15-20 2-3 15 . 200-330 .

60 – 70 .

--

3 – 10 50 -20 . 200 . 100 - 15060 - 70-40-50 . 20 - 3060 50 - 100250 30 - 50 .

subinaequicostatus Kas. . .


Hectiococeras sp.,

Aequipecten

IV.5.

[15]. [108], .28). .29 31). IV.5.1. 15 – 20 150

```
( . 28,
                                                  ( . 28,
                   18)
                                                               20),
                                                    ( .28, 22),
( .28,
            21.),
                      ( .28,
                                       24),
( .28,
             23.),
[14,15,42].
                                            .28,
                                                    24).
                                                                    (4843,6),
                                 ),
             pp.
                                                                  . pp.
                                                                        1 - 10
                                 0,5 - 5
                  30 - 42 .
                                                                            .).
7 - 10 ),
                                                        60
                                                              100 ,
                       90 - 140 .
```


. 28. (1:200 000), 1964 . , ; 3 - ; 4 - ; 5 - (, ; 5 - (, ; 3 -

3 3 (50 (20 – 50) (40 – 50) 40 – 150 . Amusaiopsis panirica Andreeva [15]. 25 - 50 . [15]. (40)

(100)

1) 50-140 : Entolium cingulatum Goldf., Camptonectes lens Sow. . pp. 3 (40 - 80)0,1-0,2 . (5) [15]. (15 - 30)(40 – 70) 100 - 300 . [15].

```
(40 – 60
Kutchithyris acutiplicata angulata Buckm.
                    (40 - 60 )
                      3
         )
                     (50 - 100
                   (140 )
                 3
                   (30)
```

_

(50) [15]. (100 75 120 180 .) pp. 100 . 100 , (.28, .28 , 25) 27)

.28,

.28,

30),

28),

.28,

32),

.28,

22),

```
( .28 ,
            27),
                                   ( .28,
                                                 29.),
                                                               ) (
   .28),
                                   ) [14,15].
                                             ( .28, 27).
                                                    5023, 7 .
                                                           (2 - 5 )
                                      10 - 50 .
                    15 - 20 .
                                                                      . pp.
                                  3
                            2
             (15-30)
                   0.5 - 10
               (40 - 80)
```

```
Amussiopsis paradoxa Muenst.,
                                                                                       50 -
110 .
                                   (0.2 - 0.5)
                                       20 - 40 .
                                                                           Pseudomytiloides
amygdaloides Goldf.,
        [15].
                          )
                (20)
                              20
                                      (10 ),
                                                                          (1 - 10)
                                                    0 - 30 .
                 (60 - 100)
                                                                   (10 - 15)
                  : Burmirhynchia inaequalis Buckm., . shanensis Buckm., . bawgyoensis Buckm
[15].
```

٥-

250

pp. 100 250 . 360 - 80 : Amussiopsis pamirica Andreeva, Camptonectes lens Sow., . pp. 30 100 .) [15]. Parkinsonia sp. Macrocephalites sp.

.

. pp. 45 240 . : Aequipecten fibrosus Sow., Heligmus rollandi Douv. . pp. 3 25 - 75[15]. 25 - 150Perisphinctidae : Aequipecten fibrosus Sow., Chlamys cf. viminea Sow. 225 4847.9 4721

4 .

.-

```
(20 )
            ( 0.2 )
( 1 - 2
                                      [15].
       (40)
       (20 )
                                                                   1 – 2
           (20
               )
                80 - 120 .
                                     100 .
                               50
                                                                 4656.0
                                                                    pp.
                                                             ).
```

40 90 . 15-[15]. : 33. (34), , pp. (.28, .28), (.28, (.28, 4), 37), (.28, 36), .28, (.28, 38), 43), (.28, 39), (.28, 4) (.28, 42) [15]. .28, 37). 3 0,5-3 . (0.1)20-100 .

10 - 30 .

Amussiopsis pamirica Andreeva, Veriamuassium personatum Ziet. [15]. 20 - 100 . 130 - 230pp. (30 - 60)(5 - 11)[15]. 20 - 70: Aequipecten vagans Sow., Goniomya literata Sow. : Sphaeroidothyris karauldyndalaensis Moiss., Burmirhynchia hsenwiensis Buchm. Aequipecten vagans Sow.,

, , pp.

3 (35 – 170)) (10 - 40) 0.3–0.7 . (50 - 220) 100 430 . [15]. 3 (40)

```
Cpe
                  (80 - 400)
                                     : Cidaridae, Holectypus sp [15].
                 (40)
   Pentacrinus cingulatus Sandb [15].
                                               80 - 480
                                 3
                                                                                      3
          10-
   110
                                                                                 (5
                                                                                (40)
                                                   45 .
```

(0-20), (2 - 15)(30 – 100). pp. 46), 45), (.28, .28,) (.28, 47), (.28, 48),) (.28, 44) [14,15]. . (.28, 46). (40 - 75)2-(10 - 25)(30 - 50)(30) (60)

(15) 130 – 180 . pp. 2 pp. (3) (40 43 - 50 . pp. (80), (100

35 250 .

. .

pp. , 30 – 80 , 200 . pp. [15]. 3 0.05 50 – 150 . 250 (50 –

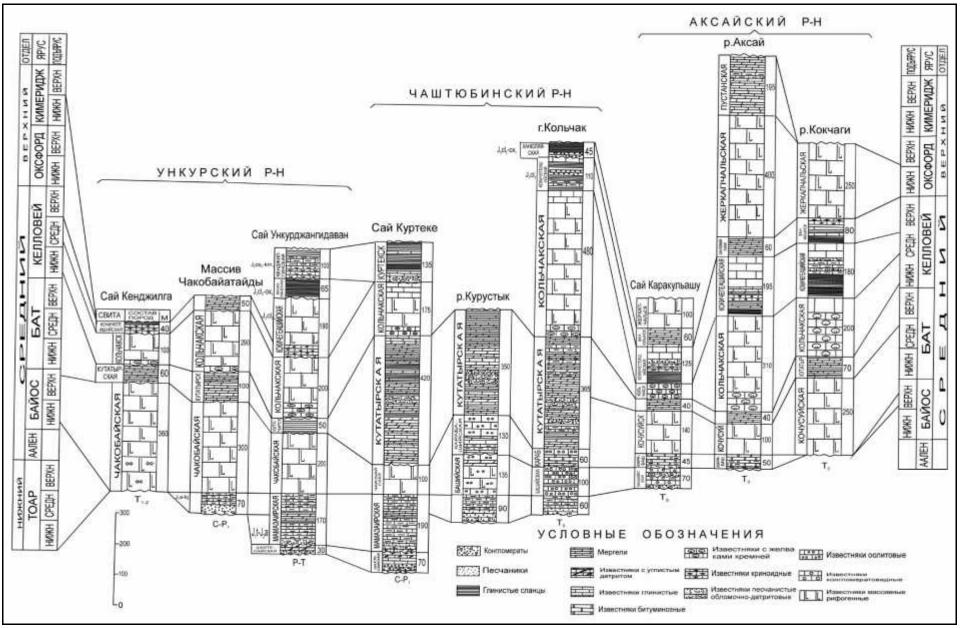
```
pp.
                                                                   3
                      (35 - 80)
                                        [15].
                       (53
                                                                     (0.5 - 3)
                                                              (4)
  1.
                                                     (5)
  2.
                                                                                  : Protocardia
borissjaki Pvel., Myacites cf. varicosum Sow.
  3.
                 (4,5)
                                                            (2).
  4.
  5.
                                                                          (15)
                                                             : Plagiostoma cf. astartina Thurm.,
Pseudolimea altrnicosta Buv., Ceratomya concentrica Sow.
  6.
                                   (2.5)
  7.
                  (20
                                                     ),
                       (20 - 100)
```

```
[15].
                                                    125 – 240 .
pp.
             2
                  (50
                 (30 )
                                               0.1
                                                      2-3
                      60-80 .
                                                 [15].
                   5162.9 )
                       pp.
                                                                         100
                                                                                400
                 (15)
```

(80 50 - 70% [15]. (70 (30) 200 . 1800 . .29. 1500 .

.

- -


). 1500 . 300 - 5001450 , [108].

00

.52.).

IV.2.

(

.29. - - [15].

```
IV.5.2.
                                                                                 )
28,
            1, 2, 3),
                                                                                 .28,
                                                                                             11,
12),
                                                                .28,
                                                                           12) [15].
                                                   .28,
                                                             4).
                              4735.7
                                                        pp.
              2
                    :
                   (0 - 250)
                                                                                    0,05-0,2 .
                                                                                   : Mytilua sp.,
Tancredia sp., Thracia sp.
                  (40 - 400 )
                          [15].
              - 400 - 580 ,
                                       pp.
                                -40 - 80 .
                                                                               ),
                                                                               ).
```

404

```
. 33,
                                                                   5).
                                                                0.4 - 0.7 ,
                  (0.05 - 0.1)
 200 - 300 .
                                                - Lobothyris punctata Sow [15].
.28,
          6).
                                                                      pp.
                                 150 - 300 .
                120 - 250 .
                          (50 – 80
                                       ),
                                                            (550
                                  .28,
                                            7).
                      4711
            [15].
                                        8).
                          .28,
                                                                                   pp.
```

```
5 - 30 .
   3
                                                                                    (30 - 40);
                                                                      (50 );
                                                     (20 - 50)
                                                                ).
                                     140 .
                                      pp.
                                                                                            . 33,
     .28,
                9).
                                                                                    2
                  (40 - 50)
                                                                                      (25-40
            Macrocephalites sp.
                                                                                 : Reineckeia cf.
ravana Spath, Hecticoceras sp., Perisphincfcidae.
                                                                           .28,
                                                                                        9).
                 pp.
                     25 - 40
                      1830 .
                      IV.5.3.
                                                                        )
                                                            .28,
                                                                        14),
                                                          [15,42].
                                            .28,
                                                       13).
```

100

. 40 – 50 .

60 - 100- Arieticeras sp. - Grammoceras sp. 100 - 150 . Stylosmilia cf. excelsa Tomes, Montlivaltia sp. . 28, 15). 200 - 500 . 800 , 2 .28, 18), .28, .28, 17), 16) [15]. .28, 18; .30). 4602 (

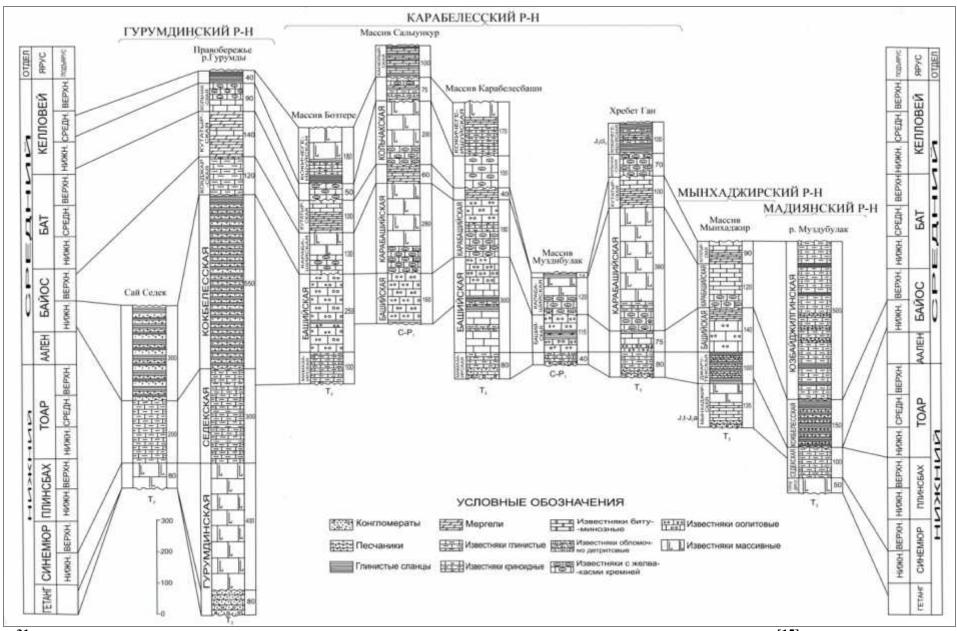
4

).

. 31). 2 (0 - 40)(55) (15). 60 . 100 - 155 . 4602). (0.5 - 2)40 - 100 . [15]. pp. 3

1) 3) 5) 4) ; 3 – 1 – 2 – ; 4 – ; 5 –

400

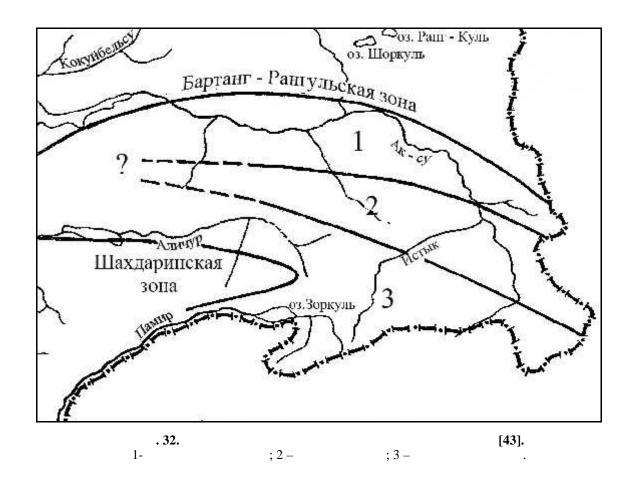

```
50 - 100 .
          10 - 40
                                    140 .
                                                                       . pp.
                                                                               3
                                        40 - 80
Pleuromya donacina Ag., Entolium rugosum Andreeva.
                  60 - 100 .
                                                                                       [15].
                                                            180
          4112.4
                                                [15].
                            60 - 100
```

```
[15].
                        85 - 140
                                  715 .
                                                     .31).
                                  (10 - 50),
                            (50 - 100).
                          (50 - 100),
           (50 - 100).
                                                                            (400 -
500 ).
                                                          800 .
                                                   (2 - 40),
                                                                             90°).
                                        100
                                  (40 –
                                                              (40 - 100 ),
                       (100 - 180).
                                                (145 - 240).
```

25 - 40 .

. . . .

715 .

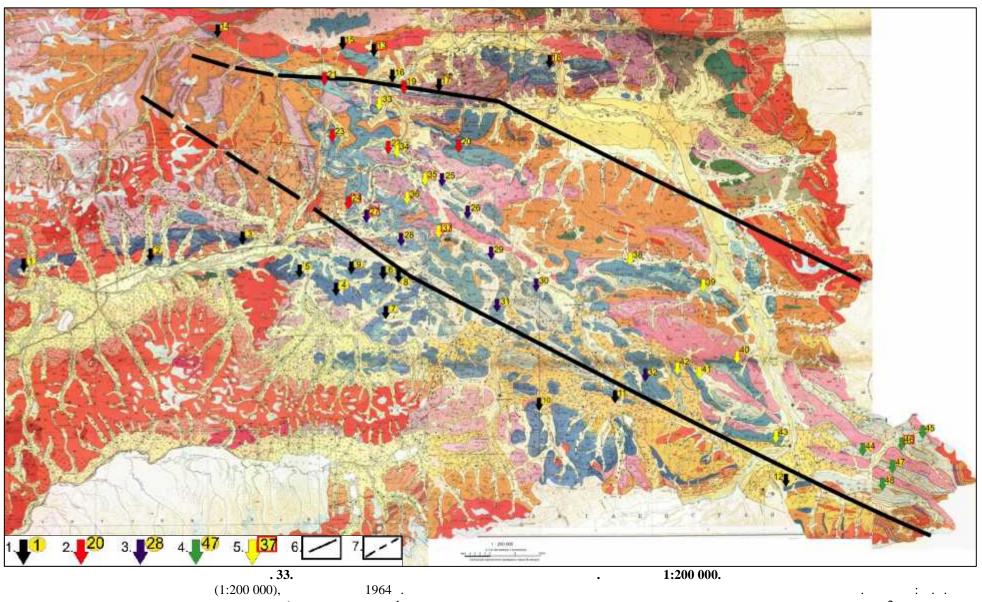


.31.

```
90°).
                             (2 - 250).
                                (40 - 400
                              (80 - 300).
              (50 - 200),
                                                           (70 - 150).
            (200 - 300).
      1830 .
                                       [108]
6 ( ) –
                      (winnowed)
                                    (offshore tidal bars)
           5
                  10
                         (
                                             ),
                              4 (
                                                        ),
   . C
```

IV.6.

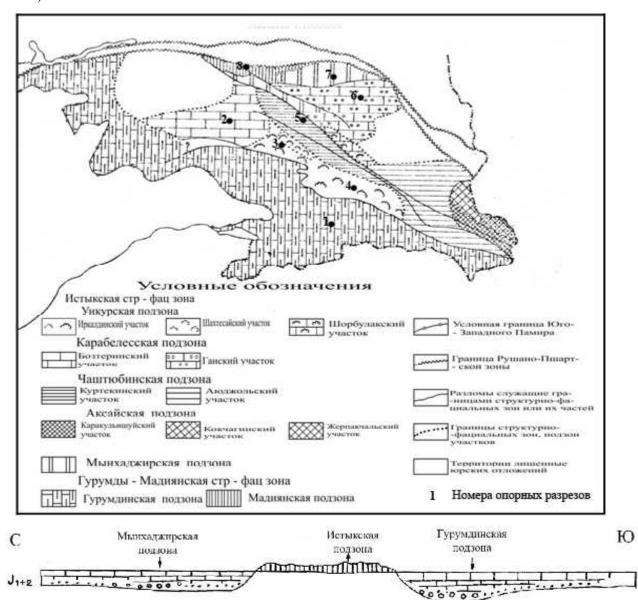
): (1), (2) (3) (. 32).



-

. . .

.33).),


. . .

[86],

(?)

(.34).

.34.

1:1000 000.

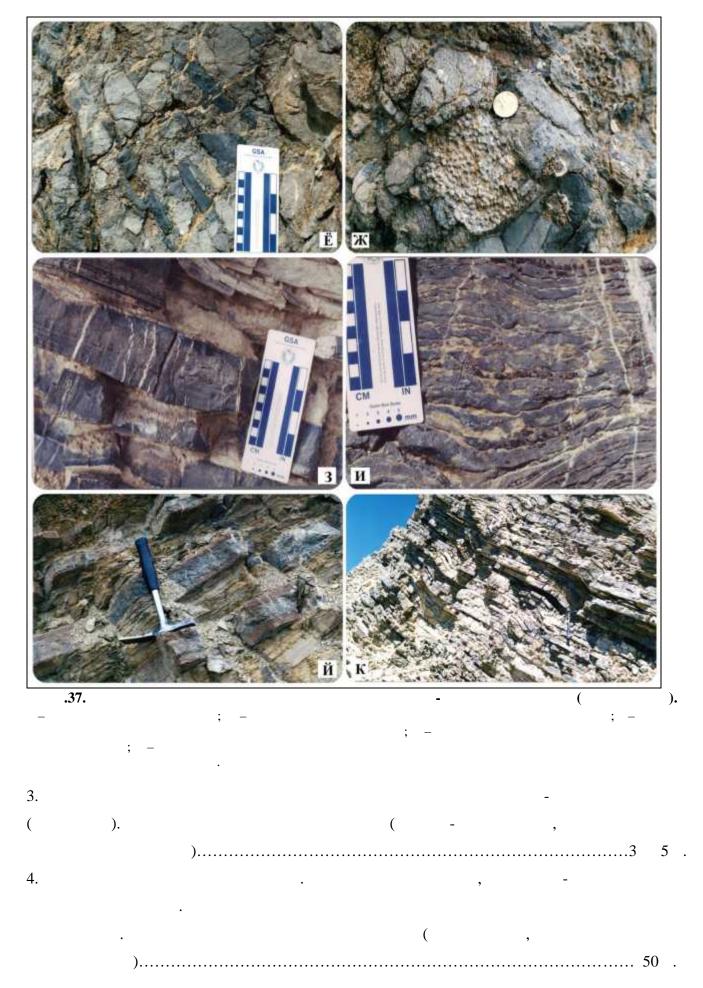
. [108]. : (1) , (2) , (3) , (1) , (3) , (3)

		WITH THE		
		T. **		
		'3		
	Фе	щиальные пояса по Уилсону		
			Пески на краю платформы (зариф)	
Подножие склона,сложенного карбонатными осадками	Передовой склон	Органогенный риф	Пески на краю платформы (зариф)	
Подножене силона, слаженного карбонатными осадками	Передсвой склон	Органогенный риф	Пески на краю платформы (зариф)	
карбонатными осадками	-11	риф	<u> </u>	

100 .

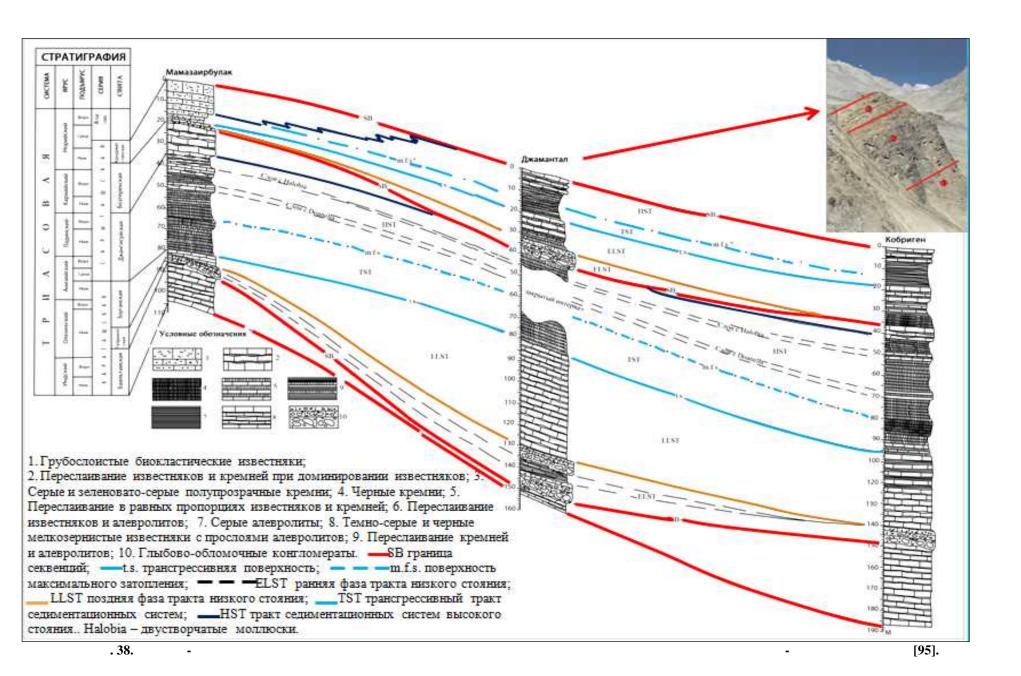
IV.7.

_


. III. 36). [19]. [124,128,135,149]. 10 .18). <u>.27</u>). .36 37): 1. 20 . 2. ()

. . _

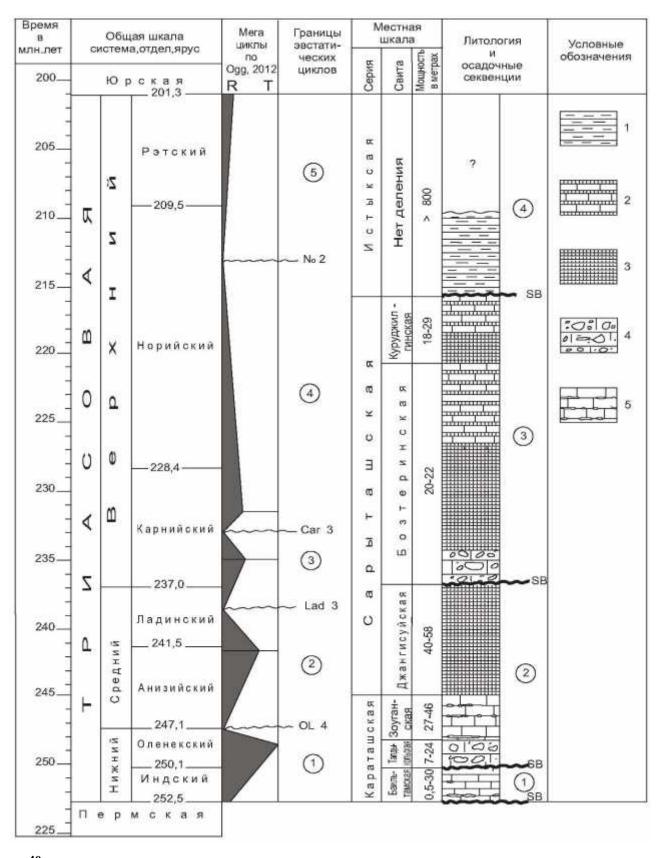
10 .


.36.
- ; - ; - ; - ; -

. . .

```
5.
                                                                   )..15 .
6.
                                      .36
                                          37).
1.
                                                                  )....3 .
2.
                                                             .....20 .
3.
                                                    ).....50 .
4.
                                             ......35 - 40 .
5.
                                                                 ) ... 20 .
6.
                                     ( . 36 37).
1.
2.
(
3.
                                                             ).....34 .
4.
                                                         )......59 .
5.
(
6.
                                                                 ) ..... 36 .
```

.38).


[5]. 3 II (). [108,149]. 11 Ш (). 21

I (

).

			(.39).
4				- [149],
		(I)	. ,	,
			(II)	, OL 4
			(III)	, Lad3
.39. 1, 2, 3, 4 –		(III)	No2	[149].
-	(, - 40).	,	
,	, [123].			Car3
,	, , ,			Cui
.[95	,			-

. . .

.40.
1 - ; 2 - ; 3 - ; 4 - ; 4 - ()

1. : (I) (II) (III) 2. (I) (II) OL4, (III) Lad3, No2. 3. IV.8. IV.5.1., IV.5.2., IV.5.3. 28.). 1 ().

,

-

: 1) 0 250 0,05-0,2 . 400 40 . 2) 250 350

.

250 250 . 400 640 2 (). [15]. 1-2), 10 - 50 : 1) 2) 15 - 20 . (2 - 5

70 . 3 (

[15].

- , , ,

·

(15).

,

.

•

.

150 . 4 (). [15]. 15-30 , [43]. 0.5 - 1040 - 80

(0.2 - 0.5)

20 - 40 .) (150 . 5 ().

),). 2 – 3 20 20 (10), 60 - 100 , (10 – 15) 100 . 250 .

40 – 150 . 25 - 50 50 - 140 .

) (610 . 5) 6 (). ([14]. 40 - 80

5 , .

0.1 - 0.2

. . . .

15 - 30 300), 40 - 70 , 100 - 300 . 15 – 30). 300

410 . 7 (). [15]. 2 (80). 170 .

30 - 170 10 - 40 , 0.3 - 0.7). 250 . 8 (). [15].

4

30 - 80 1 - 1.5 100 . 9 ().

[15].

, 140

·

.

, ,

•

, , ,

•

, 45 240 .

,

· ,

. , 40

,

, 80 - 400 . , 40

,

50 - 150 50 - 250 440 . 10 (). [15].

,

«

».

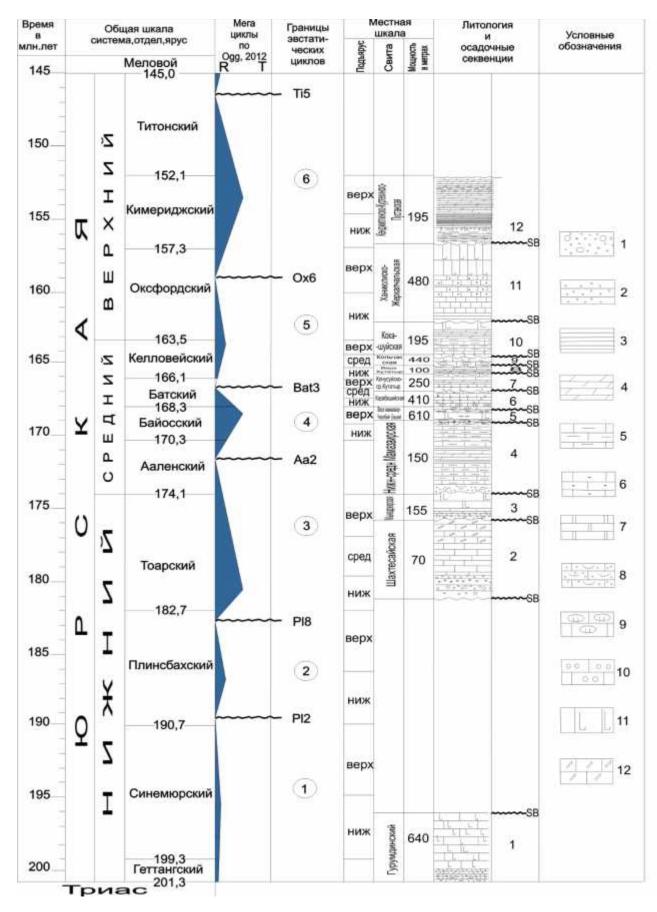
4.40

195 . 11 (). [15]. 2 – 3 5 40

.

50 , 30 100 400 .) 480 . 12 (). [15].

,


•

30

. . .

195 . 41): 1. (Vail 3-1977), et al., (1 1 2 (3 (),), 5), 6 (), 9 (10 (), 11), 12 (). 2. 7 (.41). (), Bat3, 150 , 640 3. 12 5

_

. 41.

1- ; 2- ; 3- ; 4- ; 5- ; 6-; 7- ; 8- - ; 9-; 10- ; 11- ; 12-

	1)		,				
();				
	2)			•		(,
);					
	3)				,		
().			

-

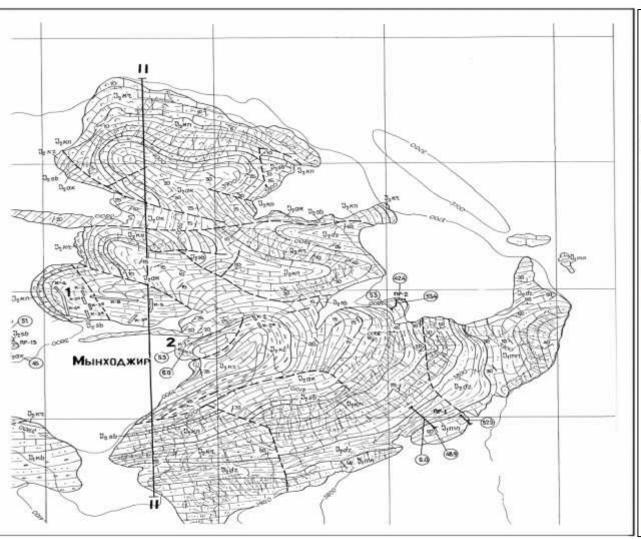
· ; 12 , ,

V.

V.1. IV. 38 3700-4200 , 1000-1500). .18. 4500 . 200-600 . 3850-3920 . +10-15° - 20° (- 40°-45°). +15°, (-1°). 100 - 120

0,5 - 1,5 ,

. , 3


```
17,3 <sup>3</sup>/ .
                           ) – 415 .
                                  38
                 33
                                                                   -40.
                                                   [7].
          8.529
                                                                   3.650
                                        30-40
                                  640
1.
2.
3.
4.
5.
1991–1995 . .
                                                                                        50-100
```

.) CaO 40-45 % 45 % **«** », I 15 % II 15-44 % (%): MgO - 4.0; $SO_3 - 1.3$; $K_2O + Na_2O - 1.0$; $P_2O_5 - 0.4$. 0,88-0,92, 1,90 - 2,60 0,90 - 1,60.

, , , ,

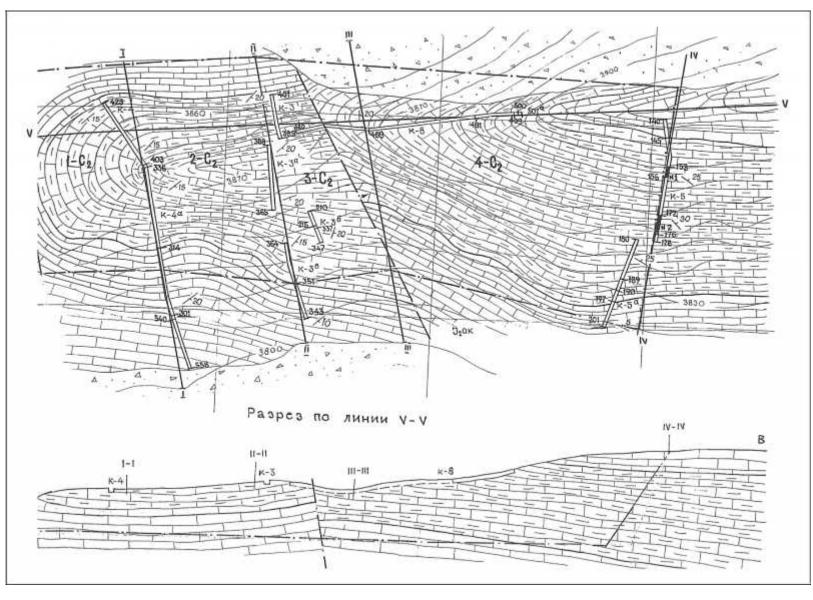
V.2.

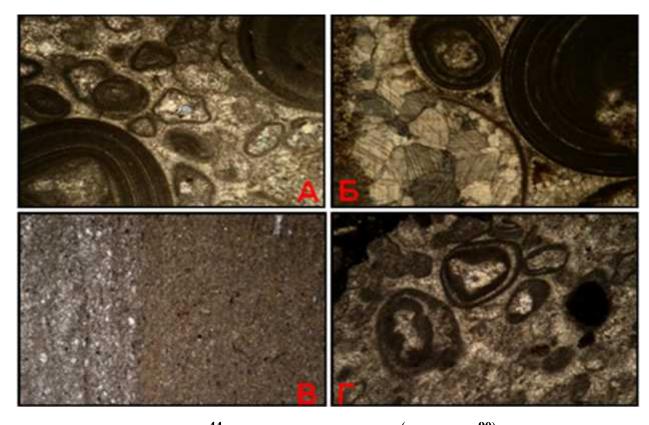
300 (.42).

ГЕОЛОГИЧЕСКИЙ РАЗРЕЗ

ПО ЛИНИИ II-II 4000 З₄₀₀₁ З₂ их З₂ их

Условные обозначения Джарутекская свита. Алевролиты, ПЕС-РИНИКИ, ИЗВЕСТНЯКИ HETBEPTIMH AS CICCIEMA. Рымые отложения различного генисеза. Мыниаджиго-ая свита. Известняки, **Зултп** доломитизированные известняни Палеоген неогеновая система. Векдижоская **Р. М. 1964** серуя. Нь жняя прикально-гламерать гравелиты. KNEW/BE/ECOKAR CENTAL Песнанини, конгложераты. Юченая система: Кызы илотайская свигодизавесниями. Виникаюжизюрайская свита Известняки Тектонические нарушения известковыстые сланиы. Аюкуэюсайская свита. Каназы, их номега. J, ok Известняки, мертели. Линии пинктирно-вороздового опровования. Субацийская свита, Содержание САС в породе, \$ Известняки, ментели. Участок "Метельный" Кономурганская свига. ИЗВЕСТНЯКИ, МЕРГЕЛИ. Учисток "Слинцевый" RAPATYMILIPHORAS CBUTA. Известнуки, известновые сланцы.


. 42.


1:10 000.

«

 $(5-25^{\circ})$ (Jak). 20 - 30 . 4,3,3,5,5 8 (.43). 80 - 92 . 1,2 (5. <u>43).</u> 5 8 <u>(.43).</u> 25,0 . 137- 140 . [7].

1

(. 1.

<u>. 4</u>5.)

		%								
SiO ₂		6,6	8,2	14,8	13,6					
TiO_2		0,1	0,1	0,2	0,2					
Al_2O_3		1,7	2,6	3,7	3,4					
Fe_2O_3		0,5	0,5	0,9	0,8					
MgO	4,0	1,0	1,7	1,7	1,6					
CaO		49,1	46,7	41,2	42,3					
Ka ₂ O+Na ₂ O	1,0	0,5	0,9	1,1	1,0					
P ₂ O ₅	0,4	0,06	0,05	0,06	0,06					
SO ₃	1,3	0,13	0,3	0,16	0,16					

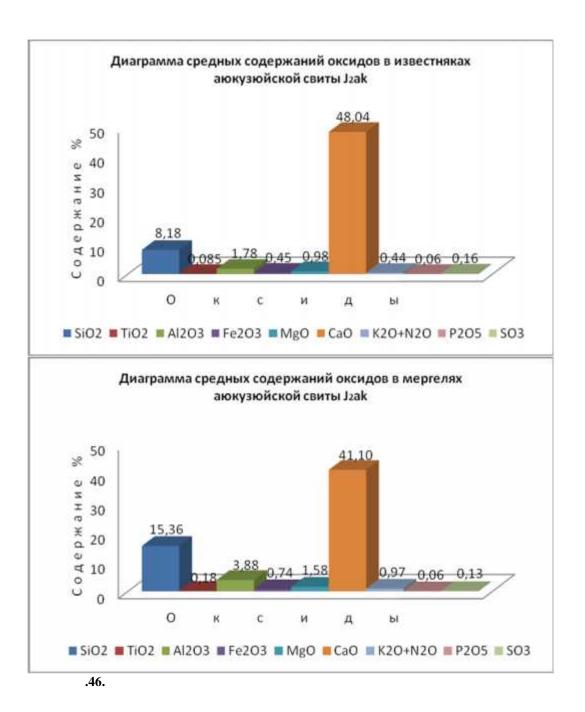
1.

,

«

». «

». 2007 [75].

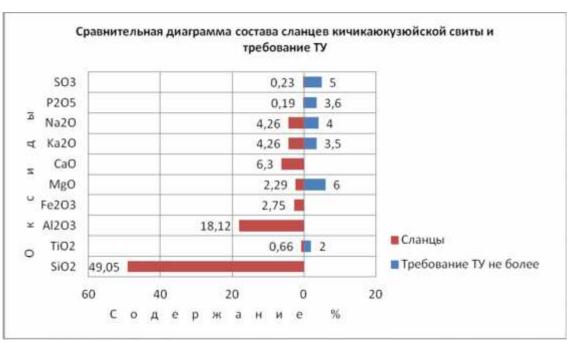

. 45.

1,9-2,6),(n = 3,24)(= (=0.85)0.9 - 1.64,08 0,88 -0,92 (88°) 20 -25 [7]. 300 41). 3 (J_2kc) . (J_2ak) . 45). 4 (Jkz) ($(10^{\circ} - 20^{\circ})$

<u>4</u>6),

 3 В нашей работе эта свита, описана как кутатырская свита, нижняя подсвита.

⁴ Это кутатырская свита, средняя подсвита.


 $(120^{\circ} - 160^{\circ}).$ (50 - 86). (1, 2 - 2)

(. 2) (.47.)

4--

		%
SiO ₂		49,05
TiO ₂	2	0,66
Al ₂ O ₃		18,12
Fe ₂ O ₃		2,75
MgO	6	2,29
CaO		6,3
Ka ₂ O+Na ₂ O	3,5-4,0	4,26
P ₂ O ₅	3,5-4,0 3,6	0,19
SO ₃	5,0	<0,25

. 2.



. 47.

0,26 %,

« », <u>48.</u>

. - -

.70.

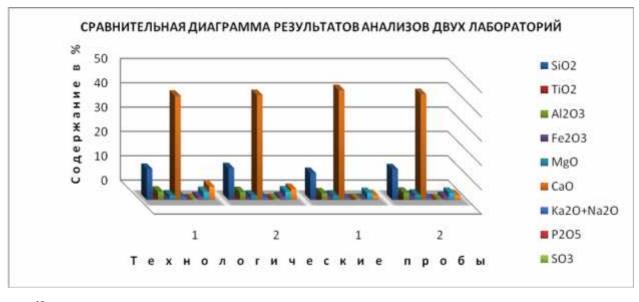
: ,

, , , , ().

,

,

. 3.


			%		
		. 1	. 2	•	•
				1	2
				« »	« »
		« »	« »		
SiO ₂	13,34	12,67	12,98	10,98	12,53
TiO ₂	0,18	0,17	0,17	_	_
Al ₂ O ₃	3,5	3,35	3,13	2,64	2,92
Fe ₂ O ₃	0,78	0,61	0,7	1,38	1,47
MgO	1,69	1,74	1,62	1,68	2,01
CaO	42,2	42,78	43,05	45,11	43,43
Ka ₂ O+Na ₂ O	1,08	1,12	0,95	0,65	0,78
P_2O_5	0,07	0,06	0,07	0,09	0,11
SO ₃	0,27	0,3	0,33	0,3	0,14
	0,98	1,06	1,05	0,31	1,09
()	3,12	3,19	3,39	2,73	2,85
()	4,49	5,5	4,47	1,91	1,99

3. 1 2.

1, 2 (. 3)

4 = =

3%.

V.3.

.

92 – 95 %, 1,1 – 1,4 %, 3 – 6 %.

 $1420 - 1450^{\circ}$. 5%

45.3 41.3 , 10178-85


"400".

1 :

1,45 - 1,480,098 - 0,05

0,02 1 2

<u>.</u>50.

=1,06; n=3,19; =5,5

=1,05; n=3,39; =4,47

.50.

« »

V.4.

```
- 6–8;
 - 6-8;
                  - 4-5;
                                                                     1,35–1,55;
                                                   2,7 / <sup>3</sup>.
                     9-18
I
                                                                    12-13 %,
        -49 %.
       (S 3, 2 5, i 2)
 S 3
                    < 0,33 %,
                                        0,1 %
                    < 0,007 %
                                        0,2 %
  2 5
  i0_2
                    0,17 %
                                        0,7 %
                    0,018 %
                                        0,012 %
                                                              50 - 100 ,
                                                             1-3
                                  2 .
                30
                                                    30
                                                    92
         60
                 "(15),
                                           (35
                                                                (38).
```

"

V.5.

: > 45 %

40 45 %

15 40 %

< 15%.

(4.).

4.

	g	S 3	$K_2O + Na_2O$	$i0_2$	2 5
(%)	4	1,3	1,0	2,0	0,4
(%)	6	3	3,5-4,0	2,0	9,6

, (

1- 2- «

», 11

2006 . 278.

,

(

) 2 ,

2- ,

,

« ». <u>. . 51.</u>

(. 5. 6.).

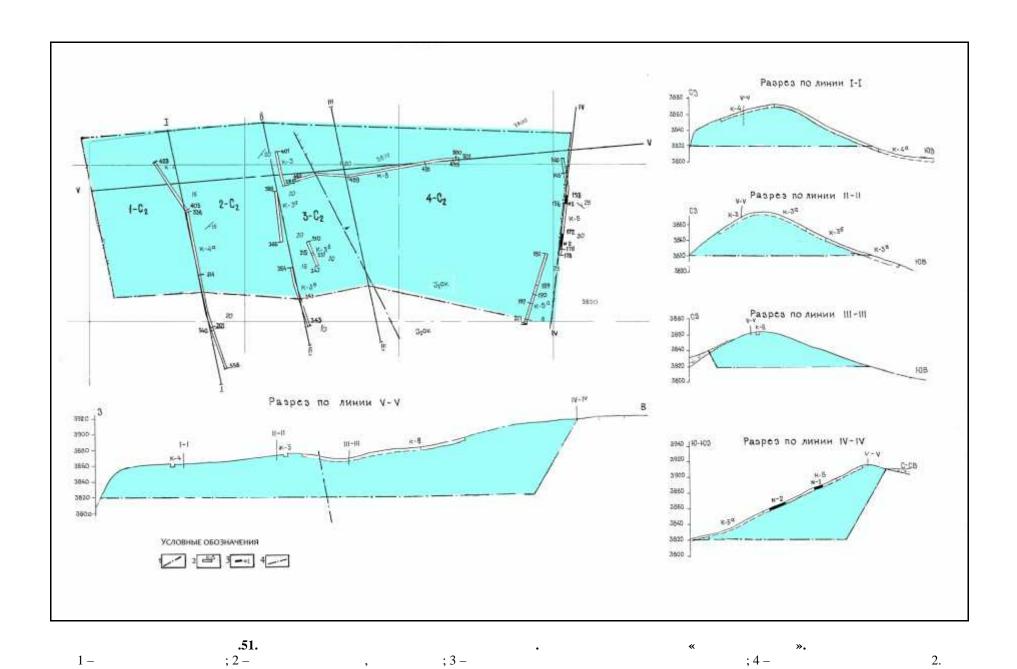
,

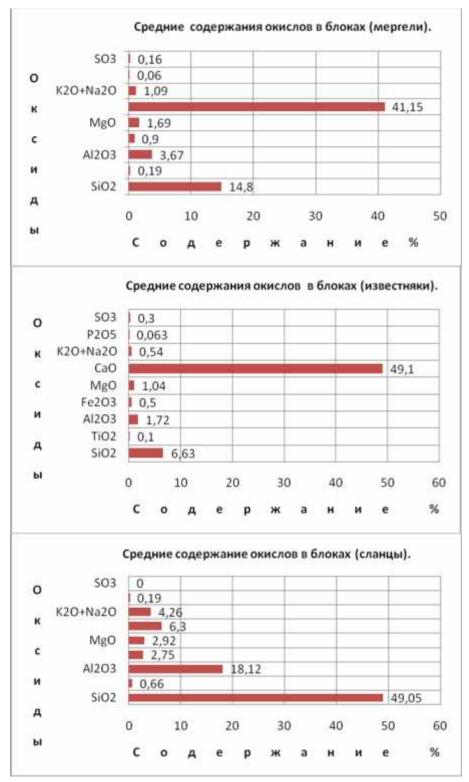
	, / 2	/ 2	%	- ,	
				%	
1.	2,59	2,67	2,2	0,54	-
2.	2,61	2,67	2,3	0,51	-
3.	2,52	2,70	6,9	-	48

5.

				-	-
		/ 3	%	, %	,%
1		2,709	6,87		
	1				
					48
2	2	2,671	2,28	0,38	
3	3	2,699	4,08	0,54	
4	4	2,676	2,20	0,51	
5	5	2,679	2,99	0,59	
		2,7	3,68	0,5	

.6.

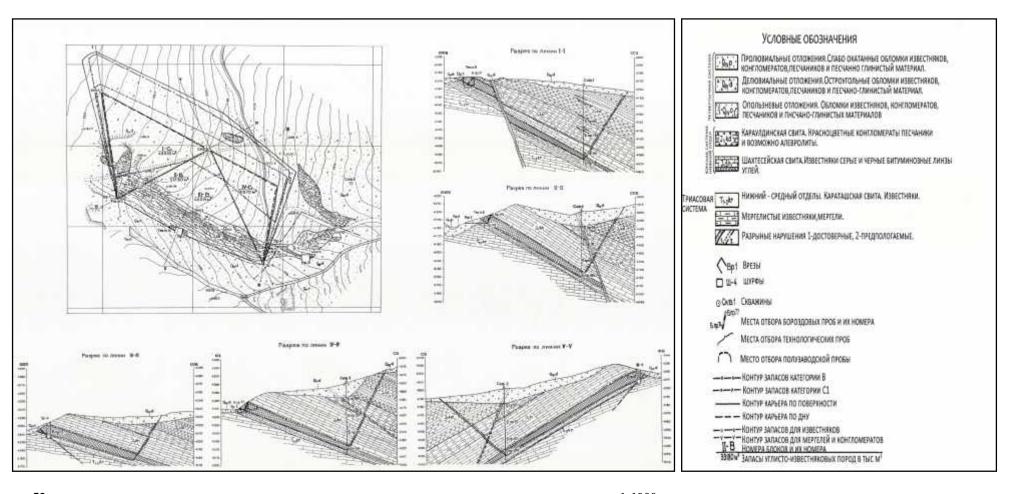

<u>5</u>2 7.


(J₂ak)

.

			1						
	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	K ₂ O+ Na ₂ O	P ₂ O ₅	SO ₃
					<u>,</u>				
I-C ₂	16,25	0,2	3,85	0,96	1,79	40,34	1,18	0,078	0,1
II-C ₂	15,72	0,2	3,89	0,96	1,77	40,17	1,19	0,069	0,13
III-C ₂	15,2	0,2	3,93	0,96	1,75	40,0	1,20	0,06	0,16
IV-C ₂	14,39	0,19	3,62	0,88	1,67	41,39	1,07	0,06	0,18
	14,8	0,19	3,67	0,9	1,69	41,15	1,09	0,06	0,16
I-C ₂	6,3	0,09	1,30	0,4	0,99	50,04	0,54	0,065	0,1
$II-C_2$	6,81	0,1	1,71	0,48	1,01	49,1	0,52	0,062	0,1
III-C ₂	7,32	0,11	2,12	0,56	1,03	48,17	0,50	0,06	0,1
IV-C ₂	6,9	0,11	2,16	0,62	1,1	48,1	0,53	0,062	0,15
	8,16	0,12	2,56	0,45	1,68	46,67	0,88	0,05	0,29
	6,63	0,1	1,72	0,50	1,04	49,1	0,54	0,063	0,3
I-C ₂	49,05	0,66	18,12	2,75	2,92	6,30	4,26	0,19	<0,2
									5

7. (%)



.52. $(\mathbf{J_2ak})$

V.6.

	(_	.53).	,
[13].			
, ,	,		
			10 .
,		,	4-6 .
20-50 .			, 5,4 - 11,0 .
, - ,	,		15-20 .
·		,	-
			15-22 .
			45-52 6-18 .
		,	8,5
11,0 . 1 2.			5,4
- 20° – 30°.			-
1998 – 2000			
,	+ 1	36 8200	1958 – I960
	8,07 .	,	+
C1 – 5,87			

.53. - . 1:1000. « »

- ,

,

10

, ·

- 8.

9.

	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	SO_3	K ₂ O	Na ₂ O	
10	4,08-	2,18-	2,12-	11,74-	0,41-	2,37-	0,25-		42,95-
	21,50	7,37	3,84	35,66	1,18	4,43	1,07	-0,14	53,40
-	12,07-	4,10-	1,60-	11,74-	0,72-	2,47-	0,70-		41,98-
	19,96	7,91	4,11	31,24	1,15	4,93	1,72	0,28	48,82
-									
	14,26	5,24	2,72	25,49		3,8	1,01	0,02	46,29

8. , %

-	10	-	
(W°),%	1,27-13,35	4,61-10,78	10,49
(),%	44,46-59,93	51,95-59,65	54,43
(Q^p) /	4,452-8,959	4,650-9,47	6,086
/	1064-2139,91	1112-2264,2	1455
(Q^p) /	3,934-8,138	4,024-9,202	5,365
/	940-1943,70	961-2199	1282
	0,134-0,28	0,137-0,134	0,183

9.

1,27-1,82%, 9,43 - 13,35%. 1 3 2,28-2,35 / 3 ($2,3 / ^3),$ $1,34 - 1,41 / ^3$. 1,66 - 1,70. $1,66 - 2,38 / ^3$ (15 1,95), 1,69 - 2,38.**V.7.** 38). (2 6.3 0.75 100 . / (50 2 266 "400". . 48–50%, » 0,5–0,54 %.) 14 (1,4) (3,4

).

-~42~%0,74 %. 5 40,8% > -0.52 %. ..." [106] (. 51).) (0,5–0,8 %%) », 7 34,6 %. 70\$ 1 90\$ 20 000\$. 1 178\$, 204\$. 2 226.0 ()

, ,

3 :

 $(J_2kc). \eqno(J_1sh)$ $(J_1kd) \eqno(J_1kd)$

,

; 1.

. 15-20 -150 ,

<u>-</u>

, [108].

3.

) [108]. 4. 5. (III) : (I) , (II) (I) 6. (II) OL4, (III) Lad3, No2. 7. 8.), 9. [108] 4 () – 6 ((winnowed) (offshore tidal bars)

171

10.

11. 1977), 3-(Vail et al., 1 4 1 (), 3 (2 (), 4 (), 5 (),), 6 7), 8 (9 ((10 (), 11), 12 (). 12. . 40). 7. (), Bat3, 150 , 640 . 13. 12 5 : 1)

> . 172

); 2)

); 3)). 14. 38 2 0,75 6, 100 . / (50) 15. 2 (266 .) 16. . 44) 17. (0,5-0,8 %%) 18. 19.

Фондовая

1.			1001					
2.			. ,1991.		-			
3.		«	•	 » (, 1975	5, 20 .		
4.			1968)	,	.], 1968.	(
			1956-1958).	. –	:[], 195	(56-1958.		
5.		· .,				, 198	38	I,
6.	12	813-817.					_	
		. 43, 1936.	• •			• •	•	•
7.		199	89-1991	J-43-65-		:[], 1991		•
8.		,	,	. 1934	 . 64.	1936.		-
9.	(V-43-	-76-A			V-43-76-	·B
10.	(- 19	71-73)./	1973.			./ .:	
11.	1932.					1:2000	000.	
		: .		« » 19	 62	,	,	
12.	•		. `	· // 1/	-			
13.	,	. 22, 1935.		-				,
			./	.: . 1991.				
			<u>Опубли</u>	<u>кованная</u>				
14.					./ .:	. 1968.		
15.	1977. «	 »				-		•
16. 17.			. 1935.	C. 193.				
18.			/ .	.: . 1964. C.	42-48.			
		, . XXV. 191	12.				•	
19. 20.		, B.C		:	, 2001. – 19		2, 4, .54	4-
21.	71.	, B.C.				. 1935 .		
		, 1936, .835-862.	•				• ••	
22.		. , . 10,. 1959	-).			. /.:		,
23.24.			/ .:	. 1963. C.	243.	. /	· .:	,.

```
1981..
25.
                                                                        , 1977, .6-29.
26.
                                                                               - . 1894. C. .374-
     400..
27.
                                    Hydrozoa
                                                                                    :
                                                                                            , 1979,
     113 .
                                                       .. 1935, . 9-32.
28.
29.
               B.C.
     1982,
              5, .56-63.
                                 . . 0
30.
                B.C.,
                                                                                                (
                               ).,/ .:
                                                          2. 1973. C. .190-195..
31.
                                                                            . / .:
                                      .603.. 2012. C. 124.
32.
                                                       , . III.
                                                                                 , 1958.
33.
              . 2001.
34.
                       , 2008.- 113 .
35.
               //
                                               . 1869. . 1. 144 .
36.
                                                                                            ). / .:
                                    2. 1943. C. 101-117.
37.
                                                                          . .. 1915.. C. 350.
                                                                            , 1963, 239
38.
39.
                              //
                                                         . 1999. . 74.
                                                                          . 4. . 39-47.
40.
                                                                                          . 2009.
       .84.
               .4.
41.
                                  ). -
                                          .:
                                                              , 1959, . 89-97
42.
                                                                            , 1962, .343-358.
43.
                                                                                          . / .:
                                               11. 1961.
44.
                                                                                      hycosiphon
                                                           //
                   . 2014.
                             3. . 87-92.
45.
                            3. 1958.
     /.:
46.
                                                    //
                          », 1993, .50-53.
47.
                                                 . ., 1, 1948. . 50-59
                                                                  . 1979. C. 168.
48.
                                                     ./ .:
49.
                        . 1990.
50.
                                                                           . 2010 . 2.
51.
                                                           , 1978.71.
```

175

«

```
52.
                                . /.:
                                                     9. 2004. C. 31-40.
53.
                               . 1. 2007. C. 16-29..
              . /.:
54.
                                                                             . / .: 1886. C. 388-
     421.
55.
                                                                          1869 1870 . - .,
     1872.- 179 .
56.
                                                           11
                                                                      2006 .
                                                                                278.
57.
                                                                                    , 1977, .124-
                           . «
                                              »,
     135.
58.
               .: . 1964. C. 37-42...
59.
                                        . - 1996. - . 37,
                                                           4. - . 3 - 12.
60.
                                                    . /.:
                                                                                 2. 1943. C. 171-
     177.
61.
              1932 .,
                         . 3, 1934.
62.
                                                                , 1971,363 .
63.
                                                                                     :2003.
      262 .
64.
                                              , 2012. -244 .
65.
                                    //
                  . . 13.
                         . 1. 2.
66.
                                                                                     - , . 2.
     1956.
67.
                  . . 0
                                                                                          . / .:
                                   . ; .1).. 1955. C. 5-12.
                                                 .1).. 1955. C. 5-12.
. 0 , . .1.. 1981. C. 3-15.
68.
                                         . /.:
69.
                                                                                       . / .: .
                                          ; . ). 1958. C. 99-123.
70.
                                                                                   . 1983. C. 78-
     86.
                                                                                        . / .:
71.
                                 3. 1964. C. 101-104.
72.
                                        . - .: -
                                                            , 1973. - .1. - 530 .; 1974. - . 2. -
     486 c.
73.
                                                                                  , 1962
74.
                                        (
                                                              ). / .:
                                                                                    . 1936. C.
     219-280.
75.
```

. «

2007

».

```
76.
                                        . 2. .; .:
                                                                    . 1949.
77.
                  . . 0
                                                  . 1919. C. 128.
                    .10). /
78.
                                                                   - 2- , . 1915. C. 558.
                                          1874
                                                   1880 ./ .:
79.
                                                           . /.:
                                                                   , . 182. 1932.
80.
                                              . XVII
     1939. C. 473-479.
81.
                                                                 , . 1, 1955, 534 .. . 2. 1956, 393
82.
                                                ./ .: . 1926. C. 192.
83.
                                                                 . 1936. C. 35-86.
                                               ). / .:
                                                                 1915 .
84.
                                       . 0 - , 1916, .52,
                                                                .3, .203-237.
85.
                                                                                          . 21
     (4), 1946. . 24-64.
86.
                                                                       .1. .: , 1967. 301 .
87.
                                                                           . /.:
     6. 1979. C. 42-57., 58-70...
88.
            A.B.
                                          eo
             5. 1945. C. 23-46.
89.
            A.B.
                                                                    . /.:
                                                                                I.
              .. 1956. C. 90-105.
90.
                                . ., 0
                                                              . /.:
                                                                     . . . 1984.
91.
                                                    , 1981, .261,
                                                                     I, .168-172.
92.
                 C.B.
                                                                        , 1968. - 204 . - (
                                 .192).
93.
                                                                        , 2012.
                                                                                  1. . 96-100.
                   ) //
94.
                                                                                           , 2013.
        2. . 70-73.
95.
                                                                                         1. . 87-
                                                                               . 2014.
     92.
96.
                                                                   //
                                 . 2014. 3. . 93-101.
97.
                                  . 1983. C. 167-175.
98.
                                               4. 1977. C. 68—80..
                        . /.:
99.
                                                                                           2014
100.
                                              », 1982.
```

```
101.
                                                            . 10. 1959. C. 85-101. .
                                                   268
102.
                                                        ., 1953.
103.
                                                                              ., 1963. 299 .
104.
                                     ,2007, .5-17
105.
                                 ), Lambert academic publishing, Gamburg, 2012, 258.
106.
                                                    ,1970.
107.
                , 1970.
108.
                                                                              », 1980. 463
109.
                   . 1945.
110.
                                                                           ,2005.-440.
111.
                               2000.-239
112. X
                                                                                                    , 25
     (6), 1950, . 3-28.
                                                  . 1973. - 511 .
113.
114.
                      .. 1966. 239 .
115.
                                                                  , 1965. - . . - 348 .
116.
                             , 1965.
117.
                                                   .302).. 1977. C. 160.
118.
                                                                                  , 1998. -144
                      . 512).
119.
                                               , 1964. - 887 .
120.
                                                                                             . 1928 . /
                                 .7. 1931. C. 89-106.
```

- 121. *Einsele, G., Seilacher, A.* (1991) Distinction of tempestites and turbidites. In: Einsele, G., Ricken, W. Seilacher, A. (eds.) Cycles and events in stratigraphy. Springer, Heidelberg New York, p. 377-382
- 122. *Einsele*, *G.*, *Seilacher*, *A. eds.* (1982) Cyclic and event stratification. Springer, Berlin, Heidelberg, New p. 1-536.
- 123. *Embry, A.F.* 1988. Triassic sea-level changes: Evidence from the Canadian Arctic Archipelago. In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C. (eds.), 1988. Sea-level changes: an integrated approach. Society of Economic Paleontologists and Mineralogists Special Publication No.42. Tulsa, p. 249-259.
- 124. *Enos*, *P.*, *Moore*, *C.H.*, 1983. Fore-reef slope. In: Scholle, P.A., Bebout, D.G., Moore, C.H. (eds.) Carbonate Depositional Environments. AAPG Memoir 33, p. 507-538.
- 125. *Galloway W.E.* Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units// AAPG Bull.- 1989.- v.73:- P. 125-142.
- 126. *Gressly A.* Observations geologiques sur le Jura Soleurois // Nouv. Mem_ Soc. helv. Sc. Nat. Vol. 2. Neuchatel, 1838. 349 p.
- 127. Haq ., Harclenbol J., Vail P. Mezozoic and Cenozoic hr nostratigraphy and cycles of sea-

- level change// Sea-level changes: an integrated approach. Tulsa. 1988. P.71-108.
- 128. Haq, B.U., Al-Qahtani, A.M., 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia 10 (2), p. 127-160.
- 129. *Holland S.M.* The New Stratigraphy and its promise for paleobiology// Paleobiology. 1999. Vol. 25. P. 409-416.
- 130. *Miall A.D.* Stratigraphic sequences and their chronostratigraphic correlation//J. Sed. Petrol. 1991. Vbl. 61. P. 497 505.
- 131. *Miall A.D.* The geology of stratigraphic sequences. Berlin; Heidelberg; N.Y.: Springer-Verlag, 1997.421 p.
- 132. *Mitchum R.M.*. *Jr.*, *Vail P.R.*. *Thompson S.,I*. The depositional sequence as a basic unit for stratigraphic analysis I I Pav- ton C.E. (ed.). Seismic stratigraphy application to hydrocarbon exploration. Amer. Assoc. Petrol. Geol. Mem. 1977. Vbl 26. P. 53-62.
- 133. Mohadjer S. . Bendick R., Lschuk A., Kuzikov S., Kostuk A., Saydullaev U., Lodi S., Kakar D.M., Wasy A., Khan M.A., Molnar P., Bilham R, Zubovich A. V. Partitioning of India-Eurasia convergence in the Pamir-Hindu Kush from GPS measurements. /.: Geophys...
- 134. North American Stratigraphic Code // Bull. Amer. Assoc. Petrol. Geol. 1983. Vbl. 67. P 841-875.
- 135. *Ogg, J.G.* Triassic. In: Gradstein F.M., Ogg, J.G., Schmitz M.D., Ogg, G.M. (eds.) The Geologic Time Scale 2012. Elsevier, 2012, p. 681-730.
- 136. *Payton C.* (ed.). Seismic stratigraphy application to hydrocarbon exploration // Amer. Assoc. Petrol. Geol. Mem. 1977. Vbl. 26.
- 137. *Perlmutter, M. A. & Matthews, M. D.* (1989) Global cyclostratigraphy a model. In: Quantitative Dynamic Stratigraphy (Ed. Cross, T. A.) Prentice Hall, New Jersey, p. 233-260.
- 138. Pusamentier H.W., James D.P. An overview of sequence- stratigraphic concepts: uses and abuses // Pbsamentier H.W., Summcrhayes C.P., llaq B.U., Allen G.P. (eds.). Sequence stratigraphy and facies associations. Oxford: Blackwell, 1993. P. 3-18.
- 139. Reigber C., Michel G. W, Galas R., Angermann D., Klotz J-, Chen J.Y., Papschev A., Arslanov R., Tzurkov V.E., Ishanov M.C., New space geodetic constraints on the distribution of deformation in Central Asia. /.: Earth Planet. Sci Lett.. 2001. C. 191.
- 140. *Richthofen F*. Uber Gestalt und Gliederung einer Grundliniein der Morphologie Ost-Asiens. / B.: 1900. C. 925.
- 141. *Seismic stratigraphy* application to hydrocarbon exploration. Amer. Assoc. Petrol. Geol. 1977. Memoir 26. 514 p.
- 142. *Seismic stratigraphy II*. An integrated approach to hydrocarbon exploration edited by Orville Roger Berg and Donald G. Woolverton. Amer. Assoc. Petrol. Geol. 1985. 276 p.
- 143. Slille H. Grundlragen der vergleichenden Tektonik. Berlin: Borntraeger, 1924.
- 144. *Sloss L. L.* Sequences in the cratonic interior of North America//Geol. Soc. Amer. Bull. 1963. Vbl. 74. P. 93 114.
- 145. *Sloss L.L.*, *Krumhein W.C.*, *Dapples E.C.* Integrated facies analysis// Longwell C.R. (chairman). Sedimentary facies in geologic history //Geol. Soc. Amcr. Mem. 1949. . . . 39. P. 91-124.
- 146. Suess E. Das Antlitz der Erde. Bd 1. Prague: F. Tempsky, 1885
- 147. *Vail P.R.*. *Miicfium R M. Jr. Thompson S.*, *I.* Relative changes of sea level from coastal onlapand Global cycles of relative changes of sea level // Payton C.E. (ed.). Seismic stratigraphy application to hydrocarbon exploration / Amer. Assoc. Petrol. Geol. Mem. 1977. Vbl. 26. P. 63-98.
- 148. *Van Wagoner J.C., Mitchum R.M., Campion K.M. and Rahmanian V.D.* Siliciclastic Sequence Stratigraphy. In: Well logs, Cores and Outcrops, American Association of Petroleum Geologists, Methods in Exploration Series. Tulsa. No 7. 1990. 55 pp.
- 149. Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M., Vail, P.R., Sarg, J.F., Loutit, T.S. & Hardenbol, J. 1988. An overview of the fundamentals of sequence stratigraphy and key definitions. in: Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C. (eds.), 1988. Sea-level changes: an integrated approach. Society of Economic

- Paleontologists and Mineralogists Special Publication No.42. Tulsa, p. 39-45.
- 150. Walliser O.H. (ed.), 1995, Global Events and Event Stratigraphy in the Phanerozoic.
- 151. Wilgus C.K.. Hastings B.S.. Kendall C.G.St.C- et al. (eds.). Sea-level changes: an integrated approach // Soc. Economic Paleontol. Mineral. Spec Publ. 1988. N 42. 407 p.
- 152. Yang S. Li J., Wang Q. The deformation pattern and fault rate in the Tian Shan Mountains inferred from GPS observations . / .: Sci in China. Ser. D: Earth Sci.. 2008.. C. 1064-1080.

Картографический материал

Интернет источники

- 156. www.uga.edu/strata
- 157. www.uga.edu/~strata/sequence/parasets.html
- 158. www.uga.edu/~strata/sequence.html
- 159. www.sepmstrata.org