Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кузбасский государственный технический университет имени Т.Ф. Горбачева»

На правах рукописи

Борисов Андрей Юрьевич

РАЗРАБОТКА ДВУХКОРОНЧАТЫХ СТРЕЛОВИДНЫХ ИСПОЛНИТЕЛЬНЫХ ОРГАНОВ ПРОХОДЧЕСКИХ КОМБАЙНОВ С ДИСКОВЫМ ИНСТРУМЕНТОМ

Специальность 05.05.06 - «Горные машины»

Диссертация на соискание ученой степени

кандидата технических наук

Научный руководитель: Хорешок Алексей Алексеевич, доктор технических наук, профессор

Кемерово – 2016

СОДЕРЖАНИЕ

ВВЕДЕНИЕ4
1 СОСТОЯНИЕ ВОПРОСА СОВЕРШЕНСТВОВАНИЯ КОНСТРУКЦИЙ
ИСПОЛНИТЕЛЬНЫХ ОРГАНОВ ПРОХОДЧЕСКИХ КОМБАЙНОВ
ИЗБИРАТЕЛЬНОГО ДЕЙСТВИЯ11
1.1 Условия эксплуатации и объемы проведения вскрывающих и
подготавливающих горных выработок проходческими комбайнами11
1.2 Тенденции формирования парка проходческих комбайнов на шахтах
Кузбасса15
1.3 Оценка функциональных возможностей существующих конструкций
исполнительных органов проходческих комбайнов избирательного действия18
1.4 Анализ результатов исследований параметров разрушения горных пород
дисковым инструментом25
1.5 Выводы
2 НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ УЗЛОВ КРЕПЛЕНИЯ
ДИСКОВОГО ИНСТРУМЕНТА НА КОРОНКАХ СТРЕЛОВИДНЫХ
ИСПОЛНИТЕЛЬНЫХ ОРГАНОВ И МОДЕЛИРОВАНИЕ НАГРУЗОК
2.1 Обоснование технических решений по совершенствованию узлов
крепления дискового инструмента на стреловидных исполнительных
органах
2.2 Анализ методик исследований напряженно-деформированного состояния
породоразрушающего инструмента горных выемочных машин
2.3 Разработка конечно-элементных моделей дискового инструмента с
консольными узлами крепления к многогранным призмам
2.4. December 2.4.

Напряженно-деформированное состояние вариантов консольных узлов 3.1 3.2 Напряженно-деформированное состояние вариантов консольных узлов крепления раздельных дисковых инструментов к четырехгранным призмам.....75 3.3 Напряженно-деформированное состояние вариантов консольных узлов крепления спаренных дисковых инструментов к четырехгранным призмам......83 4 ОБОСНОВАНИЕ НАГРУЖЕННОСТИ ДВУХКОРОНЧАТЫХ СТРЕЛОВИДНЫХ ИСПОЛНИТЕЛЬНЫХ ΟΡΓΑΗΟΒ ПРОХОДЧЕСКИХ КОМБАЙНОВ C 4.1 Формирование суммарных усилий на реверсивной коронке с дисковыми на трехгранных призмах при разрушении инструментами забойных Суммарные усилия на реверсивном двухкорончатом стреловидном 4.2 исполнительном органе с дисковым инструментом......103 4.3 Формирование суммарных крутящих моментов реверсивном на двухкорончатом стреловидном исполнительном с органе дисковым инструментом......107 ЗАКЛЮЧЕНИЕ......115 СПИСОК ЛИТЕРАТУРЫ......117 Приложение А......135 Приложение Б.....167

ВВЕДЕНИЕ

Актуальность темы исследования

В Кузбассе за последние десять лет (с 2006 по 2015 гг.) добыча угля ежегодно наращивается от 174,3 до 215,6 млн т.

Важнейшим звеном в технологическом процессе горнодобывающего предприятия является проведение подготовительных горных выработок, от темпов проходки и качества которых в значительной мере зависит эффективная работа всего добывающего комплекса. Поэтому соответствие конструктивных и режимных параметров исполнительных органов проходческих комбайнов горногеологическим условиям эксплуатации является основным фактором, влияющим на показатели процесса проходки подземных горных выработок.

Прочность пород Кузнецкого угольного бассейна изменяется в очень широких пределах, как по площади, так и по глубине залегания. Предел прочности на сжатие песчаников составляет 10–200 МПа, алевролитов 8–140 МПа, аргиллитов – 6–70 МПа, каменного угля – 8–24 МПа.

Процесс разрушения горного массива проходческими комбайнами избирательного действия, несмотря на неоспоримые достоинства комбайновой технологии проведения подготовительных выработок, имеет следующие существенные недостатки: большой выход мелких фракций разрушенного угля вследствие его переизмельчения; за счет этого высокая запыленность воздуха в выработке, в десятки раз превышающая допустимые санитарные нормы; высокая энергоемкость процесса разрушения и большой расход режущего инструмента при разрушении абразивных и крепких включений.

Практика проведения подземных горных работ показала, что породы с крепостью $f \le 10$ и высокой абразивностью целесообразно разрушать с помощью дисковых инструментов, имеющих по сравнению с резцами более высокие прочностные, износостойкие показатели и меньшее пылеобразование.

Использование дисковых инструментов на исполнительных органах проходческих комбайнов избирательного действия является малоизученным вопросом и требует специальных исследований по разрушению, дроблению и погрузке горных пород при реверсивных режимах работы.

Поэтому работа, направленная на разработку двухкорончатых стреловидных исполнительных органов проходческих комбайнов с дисковым инструментом является актуальной научной задачей.

Работа выполнена в рамках базовой части государственного задания Министерства образования и науки Российской Федерации по проекту № 632 с рег. № 01201456209 на тему «Исследование параметров технологий и техники для выбора и разработки инновационных технических решений по повышению эффективности эксплуатации выемочно-проходческих горных машин в Кузбассе».

Степень разработанности.

Исследованиями процессов разрушения горных пород и углей дисковыми инструментами, синтезом добычных и проходческих комплексов, обоснованием и разработкой параметров исполнительных органов проходческих комбайнов занимались отечественные и зарубежные ученые: Л.И. Барон, А.И. Берон, Л.Б. Глатман, М.Г. Крапивин, Г.Ш. Хазанович, В.А. Бреннер, А.Б. Жабин, М.С. Сафохин, А.Н. Коршунов, В.И. Нестеров, А.Б. Логов, Б.Л. Герике, А.А. Хорешок, В.В. Аксенов, Л.Е. Маметьев, А.М. Цехин, В.В. Кузнецов, В.М. Лизункин, А.П. Безгубов, В.Г. Мерзляков, И.А. Леванковский, В.А. Ганжа, Д.А. Юнгмейстер, В.В. Габов, С.А. Лавренко, В. Maidl, L. Schmid, W. Ritz, M. Entacher, G. Winter, T. Bumberger, K. Decker, I. Godor, R. Galler, R. Gertsch, L. Gertsch, J. Rostami, J. Roby, T. Sandell, J. Kocab, L. Lindbergh, A.E. Samuel, L.P. Seow, Y. Zhang, X.W. Wang, H.F. Liu и другие.

Установлено, что в известных научных исследованиях и конструкторских проработках отсутствует информация о конструктивных блоках с дисковыми инструментами для совмещения процессов разрушения, дробления и погрузки горных пород при реверсивных режимах работы коронок исполнительных органов проходческих комбайнов избирательного действия.

Цель работы: разработка двухкорончатых стреловидных исполнительных органов проходческих комбайнов с дисковым инструментом.

5

Идея работы: заключается в анализе и сравнении параметров разрушения горных пород дисковым инструментом с консольными узлами крепления к многогранным призмам на двухкорончатых исполнительных органах в реверсивных режимах работы.

Задачи работы:

1. Обосновать область применения и разработать технические решения для совершенствования конструкций стреловидных исполнительных органов с узлами крепления дисковых инструментов.

2. Разработать конечно-элементные модели отдельных дисковых инструментов с консольными узлами крепления к многогранным призмам двухкорончатых стреловидных исполнительных органов и определить усилия разрушения горных пород.

3. Исследовать напряженно-деформированное состояние отдельных дисковых инструментов с консольными узлами крепления к многогранным призмам двухкорончатых стреловидных исполнительных органов при разрушении горных пород.

4. Оценить суммарные усилия и крутящие моменты на отдельных коронках двухкорончатого стреловидного исполнительного органа с дисковым инструментом при реверсивных режимах работы.

Методология и методы исследований включают: анализ научнотехнической информации по разработке и эксплуатации исполнительных органов проходческих комбайнов избирательного действия, обоснование технических решений по совершенствованию узлов крепления дискового инструмента, теоретические исследования нагруженности консольных узлов крепления дискового инструмента к многогранным призмам при разрушении горных пород с использованием конечно-элементных моделей и 3D-моделирования программным комплексом SolidWorks Simulation.

Научные положения, выносимые на защиту:

1. Усилия статического нагружения и напряженное состояние отдельных дисковых инструментов с консольными узлами крепления к многогранным призмам на двухкорончатых стреловидных исполнительных органах проходческих комбайнов определяются параметрами прочности горных пород, углами биконичности дисков и углами наклона продольных осей дисков к осям вращения коронок.

2. Усилия разрушения и крутящие моменты на отдельных коронках двухкорончатого стреловидного исполнительного органа зависят от их кинематических и конструктивных параметров, радиуса кривизны траектории движения, формы и характера изменения глубины внедрения на угловом секторе контакта с забоем лезвий дискового инструмента с учетом количества фиксированных углов положения дискового инструмента на трехгранных призмах в процессе вращения и подачи, и параметров прочности горных пород.

3. В режиме совмещения процессов разрушения, дробления и погрузки горной массы, включая прибортовые коридоры, суммарные усилия и крутящие моменты на отдельных коронках двухкорончатого стреловидного исполнительного органа с консольными узлами крепления дисков к трехгранным призмам зависят от направлений их взаимного вращения с бесконтактным пересечением траекторий движения в центральной зоне и перемещения стрелы в призабойном пространстве проходческой горной выработки.

Научная новизна:

- выявлено, что усилия статического нагружения отдельных дисковых инструментов с консольными узлами крепления к многогранным призмам на двухкорончатых стреловидных исполнительных органах проходческих комбайнов прямо пропорционально зависят от прочности горных пород и имеют минимальные значения на биконическом дисковом инструменте с углом заострения ($\phi = 15^{\circ}+15^{\circ}$), а максимальные – на коническом ($\phi = 0^{\circ}+30^{\circ}$) при углах наклона продольных осей дисков к осям вращения коронок ($\phi_{\kappa} = 0^{\circ}, 10^{\circ}, 18^{\circ}$);

- впервые установлены зависимости эквивалентных напряжений на дисковом инструменте с консольными узлами крепления к многогранным призмам от прочности горных пород, которые описываются полиномами шестой степени для трехгранных и четырехгранных призм с раздельными дисками, и четвертой степени для спаренных дисков на четырехгранных призмах, при этом зоны концентрации максимальных эквивалентных напряжений смещены к лезвию дискового

7

инструмента с минимальным объемом и значением для всех типов биконических дисковых инструментов.

- определены зависимости усилий разрушения и крутящих моментов на отдельных коронках двухкорончатого стреловидного исполнительного органа от прочности горных пород, которые описываются полиномами пятой степени и отличаются тем, что учтена периодичность входа и выхода дисков из контакта с породой при фиксированных угловых положениях поворота коронок.

Достоверность и обоснованность научных положений, выводов и рекомендаций, сформулированных в диссертационной работе, обеспечиваются корректностью принятых допущений при моделировании напряженно-деформированного состояния с использованием метода конечных элементов с параболической формой (параметры сетки: размер КЭ – 10 мм; допуск – 0,5 мм) и положений механики разрушения хрупких сред, наличием патентов РФ.

Личный вклад автора заключается: в обосновании и разработке технических решений узлов крепления дисковых инструментов на многогранных призмах стреловидных исполнительных органов проходческих комбайнов избирательного действия; в определении зависимости усилий на дисковом инструменте от прочности разрушаемых горных пород при изменении угла наклона продольной оси узла крепления диска к оси вращения рабочего органа; в исследованиях напряженнодеформированного состояния узлов крепления дисковых инструментов на многогранных призмах; в оценке суммарных усилий и крутящих моментов на двухкорончатом стреловидном исполнительном органе с дисковым инструментом при разрушении горных пород с учетом реверсивных режимов работы.

Теоретическая и практическая значимость работы.

Результаты исследования параметров напряженно-деформированного состояния конструктивных элементов консольных узлов крепления дискового инструмента к многогранным призмам позволяют установить зависимости суммарных усилий и крутящих моментов на двухкорончатом стреловидном исполнительном органе от прочности горных пород и могут быть использованы на этапе проектирования. Практическая значимость заключается в использовании группы патентов РФ из одного изобретения и девяти полезных моделей в проектноконструкторских организациях и заводах горного машиностроения при создании исполнительных органов проходческих комбайнов, адаптированных к широкому спектру условий эксплуатации с возможностью импортозамещения продукции.

Реализация выводов и рекомендаций работы.

Полученные результаты диссертационной работы рекомендованы к использованию на предприятиях ОАО «СУЭК-Кузбасс» в виде технических решений, защищенных патентами РФ, а также внедрены в учебный процесс по дисциплине «Горные машины и оборудование» ФГБОУ ВО Кузбасский государственный технический университет им. Т.Ф. Горбачёва (КузГТУ) г. Кемерово.

Апробация работы.

Основные положения и содержание диссертационной работы докладывались и обсуждались на: ежегодных научно-практических конференциях студентов, аспирантов, докторантов и преподавателей КузГТУ (г. Кемерово, 2001–2003, 2006–2016 гг.); II Междунар. науч. конф. «Динамика и прочность горных машин» (г. Новосибирск, 2003 г.); Всерос. и Междунар. науч.-практич. конф. «Инновационные технологии и экономика в машиностроении» (г. Юрга, 2007, 2008, 2010, 2012, 2014 гг.); I Всерос. науч.-техн. конф. «Современные пути развития машиностроения и автотранспорта Кузбасса» (г. Кемерово, 2007 г.); Междунар. науч. -практич. конф. «Природные и интеллектуальные ресурсы Сибири». СИБРЕСУРС (г. Кемерово, 2008–2016 гг.); XIII Междунар. науч. симпозиум «Проблемы геологии и освоения недр» (г. Томск, 2009 г.); Всерос. конф. с участием иностранных ученых «Фундаментальные проблемы формирования техногенной геосреды» (г. Новосибирск, 2010, 2012 гг); Всерос. научно-практич. конф. «Россия молодая» (г. Кемерово, 2009–2016 гг.); Междунар. науч.-практ. конф. "Энергетическая безопасность России. Новые подходы к развитию угольной промышленности" (г. Кемерово, 2009–2014 гг); Междунар. науч.практ. конф.: «Инновации – основа комплексного развития угольной отрасли в реи странах СНГ»; «Перспектива гионах России развития Прокопьевско-Киселевского угольного района, как составная часть комплексного инновационного плана моногородов»; «Перспективы инновационного развития угольных регионов России» (г. Прокопьевск, 2009; 2011; 2014, 2016 гг); Междунар. науч.-практ. конф. «Инновации в технологиях и образовании» (г. Белово, 2014–2016 гг); Междунар. науч.-практ. конф. «Современные тенденции и инновации в науке и производстве» (г. Междуреченск, 2014, 2015 гг); Междунар. науч.-практ. конф. «Повышение качества образования, современные инновации в науке и производстве» (г. Экибастуз, 2015 г.); Всерос. науч.-практ. конф. «Фундаментальные и прикладные проблемы в горном деле» (г. Междуреченск, 2016 г.); Междунар. науч.-практ. конф. «Актуальные проблемы современного машиностроения» (г. Юрга, 2014, 2015 гг); Междунар. науч.-практ. конф. "Инновации в машиностроении" (г. Кемерово, 2011, 2015 гг); Междунар. науч.-практ. конф. «Западно-Сибирского научного центра» (г. Кемерово 2015, 2016 гг.); Междунар. науч.-практ. конф. «Перспективы развития горнотранспортного оборудования» (г. Москва, 2013 г.); Междунар. науч.-практ. конф. «Инновации на транспорте и в машиностроении» (г. Санкт-Петербург, 2015 г.); Междунар. научном симпозиуме «Неделя горняка» (г. Москва, 2008, 2010–2016 гг); Китайско-российском форуме «Taishan academic forum - project on mine disaster prevention and control» (Qingdao, China, 2014); Российско-китайском симпозиуме «Уголь в XXI веке: добыча, переработка, безопасность» (г. Кемерово, 2016 г.).

Публикации. Основные научные результаты опубликованы в 48 печатных работах, из них 28 в рецензируемых изданиях, рекомендованных ВАК РФ, 1 патент РФ на изобретение, 9 патентов РФ на полезные модели, 3 монографии и 7 публикаций в прочих изданиях.

Структура и объем работы. Диссертация состоит из введения, 4 глав, заключения, содержит 167 страниц печатного текста, включая 71 рисунок, 37 таблиц, список литературы из 173 наименований и 2 приложения на 33 страницах.

СОСТОЯНИЕ ВОПРОСА СОВЕРШЕНСТВОВАНИЯ КОНСТРУКЦИЙ ИСПОЛНИТЕЛЬНЫХ ОРГАНОВ ПРОХОДЧЕСКИХ КОМБАЙНОВ ИЗБИРАТЕЛЬНОГО ДЕЙСТВИЯ

1.1 Условия эксплуатации и объемы проведения вскрывающих и подготавливающих горных выработок проходческими комбайнами

Анализ статистических данных [1–10] о развитии угледобывающей отрасли в России и Кузбассе представлен в таблицах 1.1–1.5. Добыча угля в России за 2015 г составила 373,3 млн т, включая подземную добычу – 103,6 млн т угля (таблица 1.1). Проведено 344 км горных выработок, в том числе вскрывающих и подготавливающих выработок – 274 км (таблица 1.2). Уровень комбайновой проходки составляет 93% общего объема проведенных выработок. Доля углей для коксования в общей добыче составила 23 % (87 млн т). Основной объем добычи этих углей пришелся на предприятия Кузбасса – 73 %. Здесь было добыто 63,2 млн т угля для коксования. При этом общая добыча угля в Кузбассе составила 215,6 млн т (таблица 1.3). Наиболее крупным производителем угля в России является АО "СУЭК" – 97,756 млн. т., в состав которого входит ОАО "СУЭК-Кузбасс" – 30,052 млн. т. (таблица 1.4). Объем проходки на шахтах ОАО "СУЭК-Кузбасс" представлен в таблице 1.5.

Таблица 1.1 – Добыча угля в России (млн. т) подземным способом

Годы	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Добыча	109	109,2	104,9	107,4	102,1	100,9	105,9	101,3	105,3	103,6

Таблица 1.2 – П	роведение подземных горны	іх выработок (км) в России

Годы	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Всего	480,2	441	587	512,2	496	479,5	458	395,5	359	344
Вскрыв. и подгот.	374,8	347	449,9	407,4	384	378,6	363	319,5	292	274

Таблица 1.3 – Добыча угля (млн. т) в Кузбассе

Годы	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Добыча	174,3	181,8	184,5	180,4	185	192	201,5	202,7	210,8	215,6

Годы	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
СУЭК- Кузбасс	27,7	29	30,292	32,006	27,056	28,658	31,065	32,615	33,094	30,052
СУЭК	89,7	90,9	92,691	87,82	86,797	92,218	97,512	96,452	98,86	97,756

Таблица 1.4 – Динамика добычи угля (млн. т) ОАО "СУЭК-Кузбасс"

Таблица 1.5 – Объем проходки (км) на шахтах ОАО "СУЭК-Кузбасс"

Годы	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Проходка	67	74	74	86	81,5	82	69,89	61	77,3	60

В 2015 году среднесуточная добыча угля из одного действующего очистного забоя в среднем по отрасли составила 4326 т, а среднесуточная нагрузка на комплексно-механизированный очистной забой в среднем по отрасли составила 4504 т. [10]. Наиболее высокая среднесуточная добыча из действующего очистного забоя достигнута на ОАО "СУЭК-Кузбасс" – 9998 т. В Кузнецком бассейне среднесуточная добыча угля из одного действующего очистного забоя составила 4952 т (из комплексно-механизированного забоя – 5283 т).

Дальнейшее наращивание объемов добычи полезных ископаемых подземным способом влечет за собой необходимость увеличения темпов и эффективности проведения подготовительных выработок. А это, в свою очередь, требует расширения области применения и повышения надежности при эксплуатации проходческих комбайнов в структурно-неоднородных забойных массивах [11–14].

Углевмещающие породы Кузнецкого бассейна почти повсеместно представлены песчаниками, алевролитами, аргиллитами и переслаиваниями песчаников и алевролитов. В небольших объемах встречаются углистые алевролиты и другие разновидности пород. Около 50% углевмещающих пород составляют песчаники, 40% – алевролиты, 6% – переслаивания песчаников и алевролитов, 4% – аргиллиты, углистые аргиллиты и другие разновидности пород [11].

Прочность пород Кузнецкого бассейна изменяется в очень широких пределах, как по площади, так и по глубине залегания. Предел прочности при одноосном сжатии песчаников составляет 10–200 МПа, алевролитов 8–140 МПа, аргиллитов - 6–70 МПа, каменного угля - 8–24 МПа. Предел прочности при сжатии пород непосредственной почвы подавляющего большинства рабочих пластов угля на 20–30% больше, чем пород непосредственной кровли.

Контактная прочность пород бассейна изменяется от 250 до 3800 МПа. Весьма редко встречаются в бассейне породы с контактной прочностью $P_{\kappa} = 3000-4500$ МПа. Распределение горных пород по контактной прочности представлено в таблице 1.6 [11].

	Кл	асс п	ороды	по ко	онтакт	ной п	рочнос	ти Р _к ·	10^{-1} , N	∕Па	
	1	2	3	4	5	6	7	8	9	10	
Породы	слабые		ниже средней крепости		средней крепости		крепкие		очень крепкие		Ито- го, %
	~30	30-	40-	50-	65-	90-	125-	175-	245-	340-	
	<50	40	50	65	90	125	175	245	340	450	
Песчаники	-	1,5	4,6	4,4	12	16	27,4	30,2	3,5	0,4	100
Алевролиты	1,2	4,6	7,3	4,6	28	33,4	9	10,6	1,2	0,1	100
Переслаивания											
песчаников и алевролитов	0,9	2,9	6,1	4,3	16,6	30,2	17	19,5	2,4	0,2	100
Аргиллиты	18	27	31,1	19	4,9	_	-	-	-	-	100
Гравелиты и конгломераты	_	_	_	_	5	14	42	18	16	5	100
Всего	1,3	3,9	6,4	4,5	19,6	26	15,4	19,9	2,8	0,2	100

Таблица 1.6 – Распределение горных пород по контактной прочности

Абразивность пород бассейна, как и других механических параметров, изменяется в широком диапазоне по величине коэффициента абразивности (а) от 0,43 до 1,63.

При разработке полезных ископаемых появляются сложности, связанные с низкими показателями проведения горных выработок из-за насыщенности твердыми включениями в разрабатываемых пластах.

В процессе эксплуатации резцы выходят из строя из-за поломок твердосплавных вставок, а также поломок и деформации державок, что приводит к потере резцов. В большинстве случаев резцы выходят из строя в результате износа [15–19]. Важнейшим показателем, характеризующим эффективность работы проходческих комбайнов, является расход режущего инструмента, так как он влияет на себестоимость проходки и на производительность комбайна, поскольку для замены изношенного рабочего инструмента приходится останавливать комбайн, что снижает коэффициент готовности машины [12]. С увеличением удельного расхода резцов возрастает вероятность работы исполнительного органа с частично изношенным инструментом, что приводит к увеличению удельной энергоемкости процесса разрушения, увеличению динамических нагрузок и аварийности оборудования. Это особенно сказывается при работе по твердым включениям [12, 17, 20, 21].

Таким образом, в связи с низкой прочностью и износостойкостью резцов работа проходческих комбайнов, оснащенных рабочими органами с резцовым инструментом при отработке пластов с твердыми включениями имеет ряд недостатков: большой износ и расход резцов; высокая динамичность работы; малая эффективность или невозможность применения комбайнов для проходки выработок в пластах с наличием большого количества твердых включений с высокой абразивностью [12].

В качестве альтернативного варианта повышение производительности и расширения области применения проходческих комбайнов на породы повышенной крепости предложен гидромеханический способ разрушения, заключающийся в комбинированном воздействии на породный массив высокоскоростных струй воды и механического инструмента [22–25].

Другим направлением создания эффективного породоразрушающего инструмента является использование дискового инструмента, нашедшего применение на рабочих органах буровых, очистных и проходческих горных машин и расширяющего область применения механического способа разрушения угольных пластов и присекаемых горных пород в диапазоне предела прочности на одноосное сжатие σ_{cx} от 12 до 100 МПа и выше [12, 26–37].

Информация об условиях эксплуатации, свойствах и структуре забойных массивов формирует исходные данные для расчета нагрузок на породоразрушающем инструменте, рабочих органах и выборе типов исполнительных органов проходческих комбайнов избирательного действия.

14

1.2 Тенденции формирования парка проходческих комбайнов на шахтах Кузбасса

Проходческим комбайном (ПК) называется комбинированная горная машины для механизированного проведения горных выработок. Применение проходческих комбайнов дает возможность совместить во времени основные технологические операции проходческого цикла: отделение горной породы от массива, ее погрузку в транспортные средства, крепление выработанного пространства и пылегашение в призабойной зоне.

Исполнительные органы проходческих комбайнов по конструктивным признакам подразделяются на избирательные (стреловидные), непрерывного действия (качающиеся) и буровые (роторные и планетарные). Отличительный признак этих трех групп заключается в различии схем разрушения забоя.

Избирательные исполнительные органы одновременно обрабатывают только часть забоя, которая предопределяется конструктивными размерами коронки. Стреловидный исполнительный орган выполняется в виде подвижной консольной рукояти с резцовой коронкой на конце, имеющей возможность перемещаться в двух взаимно перпендикулярных направлениях. В зависимости от типа коронки стреловидные исполнительные органы подразделяются на органы с коронками коническими, барабанными, сферическими, лучевыми, дисковыми [38, 39].

Качающиеся исполнительные органы представляют собой органы, отбойная часть которых в одном из направлений (по высоте или ширине) соответствует размеру проводимой выработки и имеет возможность совершать качательные движения в вертикальной или горизонтальной плоскостях для обработки всей площади забоя. Эти исполнительные органы подразделяются на: баровые, корончатые и комбинированные.

Горно-подготовительные работы должны обеспечивать своевременную подготовку выемочных столбов при раскройке полей шахт. Интенсификация проходческих работ на шахтах Кузбасса осуществляется путем использования проходческих комбайнов непрерывного и избирательного действия. Темпы проведения выработок этими комбайнами составляет от 390 до 907 м/мес. Проходческие комбайны избирательного действия со стреловидными исполнительными органами, проигрывая по скорости проведения горных выработок комбайнам непрерывного действия, обладают, вместе с этим, способностью адаптироваться к разрушению структурно-неоднородных забойных массивов и к изменению формы, размеров сечения выработок [40].

На шахтах ОАО "СУЭК-Кузбасс" в эксплуатации в период с 2007 по 2012 годы находились комбайны 1ГПКС, П110, КП21, СМ-130, DBT Bucyrus, MD-1100, Bolter Miner MB670, Sandvik MR340, Joy 12CM30, Joy 12CM18, Joy 12CM15 [13]. С течением времени структура парка комбайнов существенно изменилась. За этот же период, например, количество комбайнов 1ГПКС в объединении уменьшилось в 12,5 раз, а темпы проходки ими выработок снизились с 357 м/мес до 160 м/мес [40].

Динамика изменения парка проходческих комбайнов свидетельствует о том, что с 2007 по 2012 годы количество комбайнов КП-21 производства АО «Копейский машзавод» возросло с 14,5% до 52%. Анализ парка комбайнов в объединениях Кузбасса показывает, что техническая политика этих угольных компаний ориентирована на широкое применение проходческих комбайнов КП21.

За период с 2007 по 2012 годы бригады ОАО "СУЭК-Кузбасс" интенсифицировали горно-подготовительные работы с 228 м/мес до 599 м/мес. На рисунке 1.1 представлены темпы проходки бригадами ОАО "СУЭК-Кузбасс": 1 – Фоминых В.Н. ш. Котинская; 2 – Виноградов А.В. ш. №7; 3 – Овдин И.И. ш. им. С.М. Кирова; 4 – Мукин Н.В. ш. Талдинская-Западная-1; 5 – Красуцкий М.И. ш. Талдинская-Западная-1; 6 – Авхимович А.М. ш. Красноярская.

С октября 2011 по март 2012 г. проходчики провели 2322 м горных выработок, что явилось рекордом СУЭК для комбайнов такого типа [41]. В апреле 2012 года пройдено 450 м комбайном КП-21 на шахте Листвяжная ХК "СДС-Уголь" [42].

В 2001 году предприятием АО «Копейский машзавод» был выпущен первый опытный образец проходческого комбайна среднего класса КП21. Всего с 2001 по 2011 года предприятием АО «Копейский машзавод» реализовано 191 машина (ри-

сунок 1.2). В программе АО «Копейский машзавод» предусмотрен выпуск более мощных комбайнов: КП200, КП200Т (таблица 1.7) [43].

Таблица 1.7 – Область применения комбайнов АО «Копейский машзавод»

Комбайн	Угол на- клона выработ- ки, град	Сечение про- водимых выра- боток с одной установки, м ²	Прочность разрушаемой породы $\sigma_{cж,}$ МПа	Производитель- ность по породе- углю, м ³ /мин	Macca, T
1ГПКС	от +20 до -25	7–17	70	0,1–1,42	26–28
КП21	±12	10–28	100	0,3–2,0	46
КП200	±12	14–39	120	0,32–1,8	75
КП200Т	± 12	18–52	120	0,3–1,8	105

Таким образом, анализ тенденций формирования парка проходческих комбайнов и опыт их эксплуатации на шахтах ОАО "СУЭК-Кузбасс" показывает, что наиболее перспективным базовым вариантом отечественного исполнения является проходческий комбайн избирательного действия КП21 для проходки выработки в угольных пластах с неоднородной структурой. Ожидаемые темпы проходки в ближайшей перспективе могут составить 600–800 м/мес., что соответствует требованиям конкурентоспособности с зарубежной техникой [40, 44]. 1.3 Оценка функциональных возможностей существующих конструкций исполнительных органов проходческих комбайнов избирательного действия

От совершенства конструкции исполнительного органа существенно зависят производительность и эффективность проходческих комбайнов. Именно процесс взаимодействия исполнительного органа с разрушаемым массивом определяет удельные энергозатраты разрушения, характер и величину внешних нагрузок, действующих от разрушаемого массива на комбайн, а, следовательно, оказывает значительное влияние на производительность и надежность проходческого комбайна.

Основными классификационными признаками исполнительных органов являются схемы обработки и разрушения забоя, а также конструктивное исполнение рабочего органа [32, 45]. Проходческие комбайны избирательного действия разрушают угольный массив сплошным фрезерованием резцами, установленными на исполнительном органе, выполненном в виде коронки, расположенной вдоль продольной или поперечной оси комбайна (рисунок 1.3) [46, 47].

Рисунок 1.3 – Конструктивные формы исполнительных органов проходческих комбайнов: а – продольно-осевая (радиальная); б – поперечно-осевая (аксиальная); в – аксиальная (комбинированная); г, д – варианты промышленных образцов радиальных коронок

В Кузбассе ведутся работы по проектированию новых конструкций коронок для комбайнов со стреловидным исполнительным органом. На заводе ООО «Гидромаш-НК», г. Новокузнецк разработаны коронки типа КЛГ 58.000 (рисунок 1.3, г) и КЛГ 72.000 (рисунок 1.3, д) в которых можно устанавливать одновременно два тангенциальных поворотных резца, что позволяет регулировать шаг расстановки инструмента на коронке в зависимости от прочности разрушаемой породы. Это позволит совместить в одной конструкции две коронки: угольную и породную [47].

Характерной особенностью работы проходческих комбайнов избирательного действия является невозможность точного воспроизведения заданного профиля выработки и, как следствие, значительные переборы породы (до 20 % от площади проходимой выработки) даже при наличии автоматизированной системы управления проходческим комбайном [48, 49].

Выбор схемы отработки забоя определяется многими факторами: крепостью породы, наличием в ней равнопрочных включений, углом наклона выработки, состоянием ее бортов и пород кровли, водопритоком в забое и прочими горногеологическими особенностями. Возможные варианты схем отработки, опробованные при работе комбайнов избирательного действия в угольной промышленности, могут быть условно поделены на две группы: обработка сечения по контуру, а затем разрушение оставшейся центральной части (керна) и последовательное разрушение проходами резцовой коронки (горизонтальные и вертикальные, восходящие и нисходящие резы) [49–51].

В процессе обработки поверхности выработки исполнительным органом с продольно-осевой коронкой можно обеспечить довольно ровный (по сравнению с аксиальной коронкой) профиль выработки. Такой исполнительный орган в принципе может с одной позиции создавать приемлемый пространственный рельеф боковых поверхностей выработки, если коронка и центр поворота стрелы соответствуют профилю выработки. Конусность коронки подбирается, как правило, исходя из условия обеспечения ровной поверхности почвы выработки. При этом возникают переборы породы при обработке кровли и боковых поверхностей выработки, поскольку размеры и форма выработок могут быть самыми различными [51]. Обработка забоя стреловидным исполнительным органом с продольноосевой коронкой горизонтальными слоями предпочтительнее с точки зрения равномерности поступления горной массы по фронту погрузки, однако при разрушении крепких пород на продольно-осевую коронку действует значительная внешняя нагрузка. При этом основная компонента главного вектора внешней нагрузки направлена противоположно направлению подачи коронки, вследствие чего принимается обработка забоя вертикальными слоями как наилучшая с точки зрения устойчивости проходческого комбайна.

Работа комбайна по горизонтальным и вертикальным слоям обуславливает два режима работы продольно-осевой коронки – режим попутного и встречного фрезерования. В первом режиме резец входит в контакт с горным массивом с нулевой толщиной стружки. При встречном фрезеровании момент входа резца в контакт с горным массивом характеризуется наличием значительной по величине толщины стружки, что сопровождается дополнительными динамическими нагрузками. Практика показывает, что при очень крепких породах работа коронок в режиме встречного фрезерования практически невозможна из-за высокой динамической нагруженности комбайна.

Обработка забоя стреловидными исполнительными органами с поперечноосевой коронкой предусматривает следующий порядок действий. Сначала производится вруб в нижней части сечения выработки на глубину Н, кратную вылету коронки относительно корпуса редуктора. Вруб осуществляется двумя-тремя переменными перемещениями коронки вдоль оси стрелы с боковым сдвигом между перемещениями. Затем подачей стрелы в горизонтальной плоскости создается рассечка у основания забоя глубиной Н. Далее следуют попеременные перемещения коронок в направлении снизу вверх на величину 0,06–0,15 м в зависимости от конструкции коронки и в горизонтальной плоскости.

Для проходческих комбайнов с аксиальными коронками (сферической формы), полный цикл обработки забоя арочной формы включает значительное количество последовательных операций: фронтальная зарубка; вертикальная зарубка; боковой рез. Возможна также схема обработки забоя вертикальными полосами. Очевидно, что ввиду конструктивных особенностей стреловидного исполнительного органа с поперечно-осевой коронкой качество обработки забоя хуже, чем при работе исполнительного органа с продольно-осевой коронкой, наблюдается характерная волнистость профиля продольного сечения выработки.

Следует отметить, что исполнительный орган с поперечно-осевой коронкой предпочтительнее с точки зрения обеспечения устойчивости проходческого комбайна, чем исполнительный орган с продольно-осевой коронкой, так как усилие поворота, которое необходимо приложить к стреле для ее перемещения, в первом случае значительно меньше, чем во втором. Это вызвано тем, что при горизонтальной подаче поперечно-осевой коронки на усилие поворота оказывают влияние только силы подачи на резцах, но не силы резания, которые расположены в плоскостях, перпендикулярных направлению подачи.

Также можно отметить и недостатки исполнительного органа этого типа: ниже качество обработки забоя, чем при работе исполнительного органа с продольно-осевой коронкой, что отрицательно сказывается на трудоемкости процесса крепления выработки и ее устойчивости; невозможность проведения водосточной канавки и осуществления селективной выемки полезного ископаемого.

Таким образом, для обоих типов корончатых исполнительных органов основными недостатками являются: низкое качество поверхности и точности контура выработки, что отрицательно сказывается на возможности механизации процесса крепления [51].

Низкая точность воспроизведения заданного контура выработки во многом обусловлена недостаточной устойчивостью проходческого комбайна. Устойчивость комбайна зависит от ряда факторов: величины и точки приложения вектора внешней нагрузки; продольной и поперечной баз комбайна; наличия специальных распорных устройств; массы комбайна, положение его центра масс [50, 52].

Общеизвестно, что за пределами приемных столов погрузочных устройств комбайнов образуются практически "мертвые" зоны формирования штабелей продуктов разрушения на почвах выработок (рисунок 1.4) [43, 53]. На рисунке 1.4, б представлена схема образования откосов из продуктов разрушения горных пород в прибортовых зонах (коридорах) проходческих забоев для типовых комбайнов избирательного действия: В_в и Н_в – ширина и высота выработки.

Рисунок 1.4 – Примеры форм поперечных сечений проводимых горных выработок проходческим комбайном КП-21: а – при работе комбайна; б – прибортовые зоны

Дозагрузка продуктов разрушения в этих зонах заставляет проходческий комбайн работать в режиме обычной челноковой погрузочной машины по коридорам этих мертвых прибортовых зон штабеля продуктов разрушения (рисунок 1.5). На рисунках 1.4, 1.5 и в таблице 1.8 рассмотрены особенности работы типовых проходческих комбайнов избирательного действия по параметрам ширины выработки (В_в, м) и ширины приемного стола питателя (В_{п.с.}, м).

Анализ таблицы 1.8 [43, 53, 54–59] показывает, что питатели во всех типах используемых проходческих комбайнов практически не перекрывают ширины призабойного пространства, оставляя в прибортовых зонах коридоры ($B_B-B_{n.c.}$) с нулевой погрузочной способностью. Это приводит к образованию прибортовых откосов (рисунок 1.4, б, 1.5) из продуктов разрушения забоя высотой h_{otk} от 0,6 до 0,8 диаметра коронок исполнительного органа комбайна [60].

Перемещения и маневровые операции в прибортовых пространствах проходческой выработки помимо потерь времени могут привести к поломкам элементов возведенной крепи. По данным производственников высота откосов непогруженных продуктов разрушения в призабойной части может составлять $h_{otk} = 500-700$ мм (рисунок 1.4, б).

Рисунок 1.5 – Варианты формирования прибортовых полос из штабеля непогруженных продуктов разрушения типовыми исполнительными органами проходческих комбайнов избирательного действия: а – при эксплуатации радиальных коронок; б – при эксплуатации аксиальных коронок; В_{и.о.} – прибортовая рабочая ширина исполнительного органа; В^л_{н.ш.} – ширина непогруженного штабеля продуктов разрушения у левого борта; В^п_{н.ш.} – ширина непогруженного штабеля продуктов разрушения у правого борта; В_в – проектная ширина выработки; В_{п.с.} – ширина приемного стола питателя погрузочного устройства

Поскольку в конвейерном штреке ленточный конвейер сдвигается к непроходному борту на расстояние до 200–400 мм, то незачищенные откосы могут заштыбовать холостую ветвь конвейера. При наличии влаги может произойти заиловка конвейерной ленты.

Поэтому при проходке горных выработок необходимо механизировать процессы разрушения, дробления негабаритов и погрузки разрушенного массива угольных пластов и присекаемых горных пород на транспортные средства.

Комбайны	Ширина приемного стола	Ширина выработки В _в , м	Разница В _в -В _{п.с.}						
СМ-130К [54]	3.0	5.005	2.005						
«Копейский машиностроительный завод» [43, 44]									
1ГПКС	3,02	4,7	1,68						
КП21	3,4	6,68	3,28						
КП200	4,2	7,6	3,4						
КП200Т	4,2	8,0	3,8						
~	Ясиноватский маши	ностроительный завод»	[55]						
КСП-22	3,1	5,2	2,1						
КСП-32(33)	3,67	6,8 (7,1 телескоп)	3,13 (3,43)						
КСП-35	3,53	7,5	3,97						
КСП-42	4,16	7,6	3,44						
«He	эвокраматорский маш	иностроительный заво	д» [56]						
П110	2,1; 3,8	6,69	4,59; 2,89						
П110-01 (П220)	2,4; 4,0	7,0	4,6; 3,0						
П110-01М	2,4; 4,0	7,1	4,7; 3,1						
П110-04	2,4; 4,0	6,8	4,4; 2,8						
	«REMA	AG S.A.» [57]							
AMz-50	2,5; 3,0	4,8	2,3; 1,8						
KR-150z	3,5 5,0	7,6	4,1; 2,6						
R-130	2,0; 2,5; 3,0	5,1	3,1;2,6; 2,1						
R-200	3,555; 4,15	7,155	3,6; 3,005						
	«WIRTH Mir	ning Solutions» [58]							
Wirth T1.24	3,2	6,6; (7,2 телескоп)	3,4; (4,0)						
Wirth T3.20	4,0	8,96	4,96						
	«Dosco Overseas E	Engineering Limited» [59]							
TB 2500	5,0	8,0	3,0						
TB 3000	4,5	8,9	4,4						

Таблица 1.8 – Сопоставление ширины приемного стола питателя B_{п.с.} с шириной проходческой выработки B_в

А это, в свою очередь, предъявляет повышенные требования к износостойкости породоразрушающего инструмента и узлам его крепления, к элементам транспортирования и погрузки продуктов разрушения в призабойной зоне, к обеспечению механизированного способа дробления негабаритов, оперативной взаимозаменяемости основных функциональных элементов проходческих комбайнов избирательного действия при ремонтах в рабочем пространстве на месте их эксплуатации [60, 61].

1.4 Анализ результатов исследований параметров разрушения горных пород дисковым инструментом

Многочисленные отечественные и зарубежные исследования и опыт применения дискового инструмента на исполнительных органах очистных и проходческих комбайнов показывает, что он является перспективным и в ряде случаев применения конкурентно способным резцовому инструменту [12, 27–37, 60, 62–126].

В 1962 году опубликованы результаты теоретических и экспериментальных исследований процесса разрушения горных пород дисковым инструментом, проведенных в ИГД им. А.А. Скочинского [70]. Наиболее полно в этих исследованиях освящены возможности использования дисковых инструментов для оснащения исполнительных органов проходческих комбайнов.

Исследованиям дисковых инструментов значительное внимание уделяли ряд научно-исследовательских, учебных и проектно-конструкторских организаций: НИГРИ, ЦНИИПодземмаш, ДонУГИ, Донгипроуглемаш, Украинский институт синтетических сверхтвердых материалов и инструмента, КузГТУ им. Т.Ф. Горбачева, ТулГУ, а также Ясиноватский машиностроительный завод, РММ и РММ предприятия НГМК и другие. В этих исследованиях установлено влияния свойств разрушаемой горной породы, геометрических параметров дискового инструмента, режимов и схемы разрушения, износа дисков, материала и других параметров на энергоемкость процесса разрушения забоев проходческими и очистными машин [66].

В КузГТУ им. Т.Ф. Горбачева накоплен опыт применения дискового инструмента для разрушения углей и пород [12, 26, 29–36, 60, 64–66, 71–80, 117].

Для комбайнов с исполнительными органами, оснащенными дисковым скалывающим инструментом характерно разрушение угля крупным сколом, увеличение скорости подачи комбайна, снижение пылеобразования, динамичности работы, удельной энергоемкости и расхода инструмента.

Большой вклад в исследования процессов разрушения горных пород и углей дисковыми инструментами, синтеза добычных и проходческих комплексов, обос-

нованием и разработкой параметров исполнительных органов проходческих комбайнов внесли отечественные и зарубежные ученые: Л.И. Барон, А.И. Берон, Л.Б. Глатман, М.Г. Крапивин, Г.Ш. Хазанович, В.А. Бреннер, А.Б. Жабин, М.С. Сафохин, А.Н. Коршунов, В.И. Нестеров, А.Б. Логов, Б.Л. Герике, А.А. Хорешок, В.В. Аксенов, Л.Е. Маметьев, А.М. Цехин, В.В. Кузнецов, В.М. Лизункин, А.П. Безгубов, В.Г. Мерзляков, И.А. Леванковский, В.А. Ганжа, Д.А. Юнгмейстер, В.В. Габов, С.А. Лавренко, В. Maidl, L. Schmid, W. Ritz, M. Entacher, G. Winter, T. Bumberger, K. Decker, I. Godor, R. Galler, R. Gertsch, L. Gertsch, J. Rostami, J. Roby, T. Sandell, J. Kocab, L. Lindbergh, A.E. Samuel, L.P. Seow, Y. Zhang, X.W. Wang, H.F. Liu и другие.

Основное влияние на силовые показатели процесса разрушения горных пород и углей дисковыми инструментами оказывают такие факторы, как свойства разрушаемого материала, геометрические параметры дисков, параметры разрушения, схема разрушения и анизотропия разрушаемой среды.

Геометрия дискового инструмента является одним из основных факторов, определяющая нагрузку на нем.

Влияние диаметра, угла заострения и радиуса закругления режущей кромки дискового инструмента на усилия, возникающие в процессе разрушения, изучалось авторами работ [64–66, 71, 72, 74, 75, 78, 79, 81–88]. Утверждается, что изменение угла заострения существенно влияет на усилие внедрения, распределение полей напряжения в массиве, износостойкость и прочность режущей кромки.

Так, в работе [86] предлагается учитывать влияние угла заострения γ инструмента в пределах от 30° до 90° на величину усилий P_Y, P_Z соответствующими коэффициентами, определяемыми по формулам:

$$K\gamma z = \frac{3,55\gamma + 374}{525}; \tag{1.1}$$

$$K\gamma = \frac{19,1\gamma + 16,5}{2519}.$$
 (1.2)

Авторами установлено, что при увеличении угла заострения свыше 60° наблюдается более интенсивный рост усилий P_Y, P_Z.

По данным ИГД им. Скочинского [81, 89, 90] изменение величины угла заострения γ в пределах от 40 до 50° практически не влияет на величину усилий. Исследования на полноразмерном стенде ЦНИИПодземшахстрое показали, что при работе дисковых шарошек с углом заострения 20–25° наблюдалось выкрашивание режущей кромки диска и изгиб лезвия дисков, а при увеличении угла заострения до 40–45° – этого не отмечено [91, 92].

Влияние угла заострения диска γ и глубины разрушения h_p на усилия P_Y и P_Z при разрушении андезита ($\sigma_{c\pi} = 780 \text{ кг/cm}^2$ и $\sigma_{c\pi} = 1680 \text{ кг/cm}^2$) и гранита ($\sigma_{c\pi} = 1380 \text{ кг/cm}^2$) исследовалось японскими исследователями [93]. Эти исследования проводились с дисковой шарошкой диаметром 200 мм и углами заострения диска $\gamma = 60$; 70; 80 и 90°. Были получены зависимости усилий P_Y и P_Z от глубины разрушения h_p при различных углах заострения диска и крепости породы. На всех глубинах разрушения увеличение угла заострения приводит к росту усилий P_Y и P_Z. Такой характер изменений усилий P_Y и P_Z при увеличении угла заострения γ отмечен для всех пород, при этом интенсивность роста усилий несколько различна.

Исследование напряженно-деформированного состояния упругой полуплоскости с уступом при сосредоточенном воздействии под уступ, проведенное Бундаевым В.В. [90], показало, что толщина разрушаемого слоя и угол приложения сосредоточенной нагрузки оказывают существенное влияние на распределение полей напряжения в массиве. Важным фактором при формировании этих полей и разрушении уступа является угол заострения рабочей кромки инструмента.

Детальное исследование влияния радиуса закругления режущей кромки дисковой шарошки на силовые показатели процесса разрушения горных пород было проведено К.Ф. Деркачем, М.Г. Крапивиным [94]. Опыты проводились на трех блоках песчаника различной прочности (P = 111; 145 и 153 кг/мм²) по выровненной поверхности без взаимного влияния проходов. Глубина разрушения составляла 0,004 м. Исследовались шарошки с радиусом закругления $\rho_{\partial} = 0,001$; 0,0015; 0,0022; 0,0025; 0,003; 0,004 м. Исследования показали, что увеличение радиуса закругления в указанных пределах вызывает значительный рост усилий P_Y и P_Z. В диапазоне $\rho_{\partial} = 0,001-0,0035$ м рекомендуется учитывать влияние ρ_{π} на P_Y и P_Z соответствующими коэффициентами, величина которых определяется по следующим формулам [66]:

$$K\rho_y = \frac{682\,\rho_o + 761}{1443};\tag{1.3}$$

$$K\rho z = \frac{118 \,\rho_{\delta} + 413}{531} \ . \tag{1.4}$$

По мнению С.Л. Загорского [69], изменение радиуса закругления в пределах 0,001–0,002 м не будет существенно влиять на величину усилий P_Y и P_Z , а, следовательно, и на энергоемкость процесса разрушения.

28

На основе анализа весьма значительного экспериментального материала авторы исследования [95] отмечают, что радиус закругления режущей кромки следует принимать минимально возможным. При этом отмечается, что радиус закругления влияет на величину усилий в большой степени, чем угол заострения дисковой шарошки. Учитывая необходимость обязательного применения термообработки, минимальный радиус закругления рекомендуется принимать в пределах 0,001–0,0015 м.

Влиянию диаметра D дискового инструмента от 0,15 до 0,32 м на усилия перекатывания P_Z и подачи P_Y посвящены исследования авторов [65, 66, 72, 81, 86].

При увеличении диаметра дискового инструмента уменьшается сила трения качения, происходит скалывание более крупных элементов и снижается удельная энергоемкость процесса разрушения [89]. Однако с увеличением диаметра инструмента усилия подачи и боковое возрастают, что объясняется увеличением площадок контакта разрушающего обода диска с массивом. По данным Безгубова А.П. [82] при увеличении диаметра $D_{\mu \mu}$ от 0,15 до 0,30 м усилие P_X увеличивается в среднем в 2,4 раза, усилие P_Y увеличивается в среднем в 2,7 раза, причем максимальное увеличение усилия P_Y происходит на участке изменения диаметра $D_{\mu \mu}$ от 0,15 до 0,20 м – усилие P_Y увеличивается в 2 раза, затем увеличение P_Y происходит значительно медленнее, – при изменении диаметра от 0,20 до 0,30 м усилие P_Y увеличивается только в 1,23 раза.

Влияние диаметра дискового инструмента D_ш на величину подачи P_Y и перекатывания P_Z экспериментально исследовались в ИГД им. А.А. Скочинского [69]. Использовались дисковые инструменты диаметром 0,068; 0,104; 0,150 и 0,199 м.

В работе К.Ф. Деркача [96] установлено, что при изменении диаметра инструмента в пределах 0,12–0,35 м и 0,20–0,30 м усилие Р_Y возрастает в 2,23 и 1,37 раза. Исходя из условия повышения прочности опорного узла и износостойкости дискового инструмента, снижения скорости скольжения точек лезвия относительно породы, возможности увеличения шага разрушения и уменьшения количества дисков на исполнительном органе выемочного комбайна, то наиболее целесообразно использовать диски диаметром 0,27–0,31 м [65, 66].

Анализируя влияние основных факторов на силовые и энергетические показатели процесса разрушения горных пород дисковыми инструментами, а также сравнительные испытания указанного инструмента на отечественных и зарубежных проходческих комбайнах можно сделать вывод, что данный инструмент является в указанных условиях более эффективным по сравнению с резцовым инструментом. Так, энергоемкость процесса разрушения снижается в среднем на 30– 35%, а при работе по крепким породам преимущества дисковых инструментов еще более заметны с точки зрения стойкости инструмента [66].

Основными параметрами разрушения являются шаг разрушения t и глубина разрушения h. Уменьшение числа дисковых инструментов на исполнительном органе может быть достигнуто путем увеличения шага разрушения t.

Возможность увеличения шага разрушения t ограничивается недопустимостью превышения предельных нагрузок, действующих на дисковый инструмент. Максимальное значение шага разрушения не должно превышать величины, соответствующей блокированному режиму разрушения, при котором резко возрастают усилия на инструменте. Кроме того, величина допустимых усилий зависит от сопротивляемости разрушению массива дисковым инструментом, а также от глубины разрушения h [65].

Важное значение имеет относительный шаг разрушения, выражаемый соотношением t/h. Авторами работы [81] замечено, что с ростом толщины стружки (по абсолютному значению шага разрушения) размеры зоны установившегося режима работы дискового инструмента увеличиваются.

Деркачем К.Ф., Бароном М.И., Глатманом Л.Б. было отмечено, что с увеличением шага разрушения t > 0,032–0,04 м работа дискового инструмента происходит в прерывисто-установившемся режиме, причем, если в зоне установившегося режима интенсивность прироста величин усилий P_Y и P_Z невелика, то в зоне прерывисто-установившегося режима вместе с ростом сопротивляемости разрушению абсолютные различия величин усилий P_Y и P_Z по мере увеличения шага разрушения становятся все более и более значительными.

В то же время коэффициенты неравномерности усилий k_Z и k_Y от толщины стружки и шага разрушения практически не зависят, что объясняется, очевидно, периодическим распространением опережающих трещин перед работающим диском [65, 67, 96, 97].

Результаты исследований И.И. Лозовского [98] при разрушении углецементного блока с сопротивляемостью резанию 140–170 кН/м дисковым инструментом диаметром D = 0,30 м с углом резания $\gamma = 30^{\circ}$ при шаге разрушения t = 0,05 м представлены на рисунке 1.6, а. Во время исследований регистрировались усилия P_Y и P_Z, а также определялась сортность продуктов разрушения. Зависимости усилий подачи P_Y, перекатывания P_Z от глубины резания h при различном соотношении t/h параметров разрушения изображены на рисунке 1.6, б, энергоемкость процесса разрушения – на рисунке 1.6, в.

Рисунок 1.6 – Зависимости усилий P_y, P_z и энергоемкости W процесса разрушения от параметров разрушения h, t, t/h: a – от глубины резания h при t = 0,05 м с учетом выхода угля класса 0-6; б – от глубины резания h при различном соотношении t/h; в – от соотношения параметров разрушения t/h при различной глубине резания h

Эти исследования установили эффективность работы дисковых инструментов при разрушении угля даже по сравнению с резцами струговых исполнительных органов.

В работе А.С. Шанина [74] приведены зависимости усилий при разрушении блока с временным сопротивлением одноосному сжатию $\sigma_{cx} = 89,7$ МПа дисковым инструментом диаметром 0,20; 0,24; 0,28; 0,32 м и углом резания $\gamma = 30^{\circ}$, при шаге разрушения t = 0,04–0,06 м и глубине стружки h = 0,02–0,04 м:

$$P_{y} = 0,808D + 16,5t + 24,5h; \qquad (1.5)$$

$$P_z = -0.85D + 20.05t + 25.71h.$$
(1.6)

с коэффициентами вариации соответственно равными: 44,8–47,5% и 15,8– 18,5%, что говорит о большом разбросе данных, полученных для усилия P_z.

В работе Прейс Е.В. [77] представлены исследования по расчету нагрузок на дисковом инструменте и энергоемкости процесса разрушения:

$$P_{z} = R\theta t_{p} \sin \varphi \cdot \sin(k\theta) \sigma_{cx}(\gamma)/2,3, \, \kappa H$$
(1.7)

$$H_{w} = \frac{A(P_{z})}{V^{cp}} = 0,0272 \frac{P_{z} \cdot Z}{V^{cp}}, \text{ kBt} \cdot \text{ y/m}^{3}$$
(1.8)

Определено, что для угля, чем больше соотношение t_p/h , тем меньше энергоемкость и эффективнее процесс разрушения. Зависимости H_w от t_p/h для различных значений углов наклона плоскостей ослабления к поверхности разрушения $\gamma = 0^\circ$, 30° , 60° показывают, что наименьшие затраты энергоемкости наблюдаются для угла $\gamma \approx 60^\circ$. Этому же значению γ соответствует наилучшая сортность угля.

Таким образом, в процессе проектирования проходческих горных машин и их рабочего инструмента необходимо знание величины и характера нагрузок, возникающих на инструменте в процессе его работы. Эти нагрузки определяются при моделировании процесса разрушения дисковым инструментом пород и углей.

Исследование дисковых инструментов, как элемента, непосредственно участвующего во взаимодействии горной машины с разрушаемым массивом, до определенного времени были направлены, в основном, на определение работоспособности того или иного типа дискового инструмента. Изучению самого процесса взаимодействия уделялось мало внимания. При этом использование разными авторами различных критериев разрушения вносит некоторую неопределенность в полученные результаты и не позволяет однозначно использовать их при проектировании нового типа дискового скалывающего инструмента. Так, например, И.И. Лозовский [98] для описания состояния разрушаемого массива использовал сопротивляемость резанию, Д.М. Дергунов [66] – осредненный коэффициент крепости, а А.С. Шанин [74] – предел прочности на сжатие, на изгиб и контактную прочность горных пород. Однако при приведении этих различных показателей к одному (например, к осредненному коэффициенту крепости) с помощью эмпирических зависимостей [110] и сопоставление этих силовых показателей работы дискового инструмента при одинаковых режимных параметрах показывает, что различие в полученных данных составляет 37–62% [64]. Объясняется это тем, что вышеприведенные критерии не соответствуют механизму отделения стружки дисковым скалывающим инструментом.

Для описания взаимодействия дисковых инструментов с массивом пород или угля, необходимо разработать универсальный критерий, отвечающий механизму разрушения массива дисковым инструментом, основанный на описании разрушаемой среды реологическими моделями, разработанными в механике сплошных сред и механике хрупкого разрушения.

Представляют интерес результаты производственных исследований, в которых использованы дисковые инструменты на рабочих органах проходческих комбайнах избирательного действия для механического способа разрушения углей и крепких горных пород [12, 34].

Общий вид, схемы набора и расстановки породоразрушающих инструментов на опытных образцах рабочих органов представлены на рисунках 1.7–1.11 со следующими элементами: 1 – коронка; 2 – дисковый инструмент; 3 – резец; 4 – забурник; 5 – зарубной диск; 6 – погрузочная лопасть.

Методика и условия проведения производственных испытаний реализованы при проведении выработок по рудным и угольным пластам с твердыми включениями и прослойками с пределом прочности на сжатие σ_{cx} до 87 МПа и σ_{cx} до 112 МПа. Испытания проводились в два этапа. Первый этап включал в себя исследования комбайна, оборудованного серийным рабочим органом, второй – экспериментальным рабочим органом, оснащенным дисковыми инструментами. В процессе сравнительных исследований определялись силовые, энергетические показатели работы комбайна и удельный расход рабочего инструмента.

Рисунок 1.7 – Рабочий орган 1-го типа

Рисунок 1.8 – Рабочий орган 2-го типа

Рисунок 1.10 – Рабочий орган 3-го типа

Рисунок 1.9 – Рабочий орган 3-го типа

Рисунок 1.11 – Рабочий орган 4-го типа

Основные элементы дискового инструмента имеют следующие геометрические параметры: диаметр D = 0,16 м, угол заострения $\phi = \phi_1 + \phi_2 = 30 \div 35^\circ$.

Во время испытаний была выявлена трудоемкость прямого забуривания телескопом стрелы рабочего органа (рисунок 1.7) из-за высоких осевых нагрузок. Конструкция рабочего органа по рисунку 1.8 показала более высокую работоспособность, особенно в режиме забуривания.

На рабочем органе с погрузочными лопастями (рисунки 1.9–1.10) было отмечено налипание песчано-глинистых пород и резкое ухудшение погрузочной способности при работе в водонасыщенных пластах. Удовлетворительная энергоемкость и расширенная область применения проходческих комбайнов по прочности горных пород были получены при эксплуатации коронок, изображенных на рисунке 1.11.

В целом обобщенный анализ известных исследований процесса разрушения горных пород и углей дисковыми инструментами показывает, что его влияние на режимы нагружения исполнительных органов различных горных машин носит неоднозначный характер, затрудняющий разработку универсальной модели напряженнодеформированного состояния отдельных узлов и деталей. Это ограничивает возможности применимости известных методик расчета и проектирования проходческих комбайнов избирательного действия с дисковым инструментом на исполнительных органах.

Кроме того, обобщенный анализ современного уровня развития горнопроходческой техники показывает, что в известных научных исследованиях и конструкторских разработках отсутствует информация о совмещении процессов разрушения, дробления негабаритов и погрузки разрушенной горной массы и реализации реверсивных режимов работы коронок на исполнительных органах проходческих комбайнов избирательного действия с дисковым инструментом.

Перспективным и важным направлением представляется разработка конструкции модульных блоков с узлами консольного крепления дискового инструмента на многогранных призмах корпусов рабочих органах проходческих комбайнов с целью снижения заштыбовки и повышения эффективности процесса монтажно-демонтажных операций при замене дисковых инструментов в призабойном пространстве. 35 1.5 Выводы

1. Из угледобывающих регионов России самым мощным поставщиком угля является Кузнецкий бассейн. Добыча угля в Кузбассе ежегодно растет и в 2015 году составила 215,6 млн т. Прочность пород Кузнецкого бассейна изменяется в очень широких пределах, как по площади, так и по глубине залегания. Предел прочности при одноосном сжатии песчаников составляет 10–200 МПа, алевролитов 8–140 МПа, аргиллитов - 6–70 МПа, каменного угля - 8–24 МПа.

2. Уровень комбайновой проходки в 2015 году составил 93% общего объема проведенных выработок, а дальнейшее наращивание объемов добычи полезных ископаемых подземным способом влечет за собой необходимость увеличения темпов и эффективности проведения подготовительных выработок, что, потребует расширения области применения и повышения функциональных возможностей проходческих комбайнов при эксплуатации в структурно-неоднородных забойных массивах.

3. Установлено, что ожидаемые темпы проходки в ближайшей перспективе могут составить 600–800 м/мес., а основу парка проходческих комбайнов на шахтах ОАО "СУЭК-Кузбасс" представляют проходческие комбайны избирательного действия КП21 для проходки выработки в угольных пластах с неоднородной структурой, на рабочих органах которых для расширения области применения целесообразно использовать дисковый инструмент.

4. Опыт эксплуатации показал, что для комбайнов с исполнительными органами, оснащенными дисковым инструментом характерно разрушение угля крупным сколом, увеличение скорости подачи комбайна, снижение пылеобразования, динамичности работы, удельной энергоемкости и расхода инструмента.

5. Выявлено, что в известных научных исследованиях и конструкторских проработках отсутствует информация о конструктивных блоках с дисковыми инструментами для совмещения процессов разрушения, дробления и погрузки горных пород при реверсивных режимах работы коронок исполнительных органов проходческих комбайнов избирательного действия.

Целью данной работы является разработка двухкорончатых стреловидных исполнительных органов проходческих комбайнов с дисковым инструментом.

В рамках поставленной цели необходимо решить следующие задачи:

Задачи работы:

1. Обосновать область применения и разработать технические решения для совершенствования конструкций стреловидных исполнительных органов с узлами крепления дисковых инструментов.

2. Разработать конечно-элементные модели отдельных дисковых инструментов с консольными узлами крепления к многогранным призмам двухкорончатых стреловидных исполнительных органов и определить усилия разрушения горных пород.

3. Исследовать напряженно-деформированное состояние отдельных дисковых инструментов с консольными узлами крепления к многогранным призмам двухкорончатых стреловидных исполнительных органов при разрушении горных пород.

4. Оценить суммарные усилия и крутящие моменты на отдельных коронках двухкорончатого стреловидного исполнительного органа с дисковым инструментом при реверсивных режимах работы.
2 НАПРАВЛЕНИЯ СОВЕРШЕНСТВОВАНИЯ УЗЛОВ КРЕПЛЕНИЯ ДИСКОВОГО ИНСТРУМЕНТА НА КОРОНКАХ СТРЕЛОВИДНЫХ ИСПОЛНИТЕЛЬНЫХ ОРГАНОВ И МОДЕЛИРОВАНИЕ НАГРУЗОК

В рамках решения первой и второй задач диссертационной работы обоснована область применения дискового инструмента и предложены конструктивные блоки узлов его консольного крепления на многогранных призмах стреловидных исполнительных органах для реализации реверсивных режимов работы с совмещением процессов разрушения, дробления и погрузки породы. [60, 127, 128]. Для исследования напряженно-деформированного состояния дискового инструмента целесообразно разработать его конечно-элементные модели.

2.1 Обоснование технических решений по совершенствованию узлов крепления дискового инструмента на стреловидных исполнительных органах

Известные конструкции рабочих органов проходческих комбайнов имеют ту или иную степень ремонтопригодности, но степень их адаптации к изменяющимся условиям эксплуатации является недостаточной.

На кафедре горных машин и комплексов КузГТУ разработаны варианты конструкций исполнительных органов проходческих комбайнов избирательного действия для проведения горных выработок по углю и смешанному забою с крепкими и абразивными породными прослойками и отдельными включениями. Конструкции исполнительных органов позволяют расширить область применения проходческих комбайнов на разрушение структорно-неоднородных сред забойных массивов горных пород, включая негабариты, причиной появления которых являются процессы отжима и внезапных выбросов угля, породы, газа в призабойных пространствах подземных горных выработок. Основной научно-технический результат предлагаемых исполнительных органов заключается в повышении эффективности проведения горных выработок путем совмещения процессов разрушения, дробления и погрузки в исполнительном органе проходческого комбайна.

На рисунках 2.1–2.8 представлены конструкции исполнительных органов с дисковым и резцовым инструментами на многогранных призмах по патентам РФ 2455486, 128898, 134586, 136086, 138704, 141339, 146845, 149617, 152701, 160664 [129–138].

Исполнительные органы проходческих комбайнов избирательного действия могут иметь два варианта конструктивного исполнения (рисунок 2.1) и содержат стрелу 1 с двумя разрушающе-погрузочными коронками 2, кинематически связанных между собой через раздаточный редуктор 3 [60, 129].

Рисунок 2.1 – Исполнительный орган с двумя радиальными реверсивными коронками: а – конструктивная схема; б – схема дробления негабаритов; 1 – стрела;
2 – разрушающе-погрузочные коронки; 3 – раздаточный редуктор; 4, 5 – меньшее и большее основание коронок; 6 – трехгранная призма; 7 – дисковый инструмент

В первом варианте исполнительного органа корпус каждой из разрушающепогрузочных коронок 2 выполнен в виде усеченной конической поверхности, объединяющей меньшее основание 4 со стороны забоя с большим основанием 5 со стороны раздаточного редуктора 3. На наружных поверхностях каждой из разрушающе-погрузочных коронок 2 жестко закреплены трехгранные призмы 6 с дисковыми инструментами 7 без возможности монтажа-демонтажа по неизменяемым вариантам схем набора. Во втором варианте корпус каждой из коронок выполнен в виде усеченной многогранной пирамиды с возможностью монтажно-демонтажных операций с изменяемыми вариантами схем набора трехгранных призм по ширине захвата.

Для повышения эффективности монтажно-демонтажных операций узла крепления дискового инструмента в трехгранных призмах исполнительных органов в виде радиальных разрушающе-погрузочных коронок проходческих комбайнов избирательного действия в призабойном пространстве подземной горной выработки, представлен вариант конструктивного исполнения (рисунок 2.2, а) [130, 139–141]. Конструкция содержит трехгранную призму 1, дисковый инструмент 2, установленный с возможностью вращения на жестко закрепленной цапфе-втулке 3 с дистанционными торцевыми шайбами 4 в виде упорных подшипников, зафиксированных в осевом направлении внутренней торцевой поверхностью буртика оси 5, которая размещена внутри цапфы-втулки 3 и сопряжена с ней цилиндрической поверхностью и шпоночным соединением со шпонкой-фиксатором 6 и имеет глухое резьбовое отверстие, внутри которого размещен крепежный винт 7, зафиксированный от проворота через стопорную шайбу 8 и собственную шестигранную головку, жестко прижатую к торцу цапфы-втулки 3. По второму варианту конструкция содержит сквозное резьбовое отверстие внутри оси 5.

Рисунок 2.2 – Варианты узла крепления дискового инструмента в трехгранной призме: а – с глухим резьбовым отверстием; в – с трехгранной крышкой

Для защиты внутреннего пространства трехгранной призмы с узлом крепления дискового инструмента от проникновения разрушенной горной массы при эксплуатации комбайна, а также для повышения эффективности монтажных и демонтажных операций, предложена конструкция на рисунке 2.2, б [131].

Конструкция содержит трехгранную призму 1, жестко закрепленную на наружной поверхности разрушающе-погрузочной коронки 2 и трехгранную крышку 3 с технологическими камерами-канавками 4 для демонтажа. Конструкция трехгранной призмы 1 включает в себя забойную грань 5 со сквозным цилиндрическим отверстием 6. Трехгранная крышка 3 имеет опорную перегородку 7 с полуцилиндрическим зевом, опирающимся на неподвижную цапфу-втулку 8, а с другой стороны имеет крепежную стойку 9, опирающуюся на поверхность корпуса разрушающе-погрузочной коронки 2. Цапфа-втулка 8 жестко закреплена на внутренней поверхности забойной грани 5 трехгранной призмы 1, консольная часть которой проходит через отверстие 6 во внешнее пространство. Дисковый инструмент 10, установленный с возможностью вращения на цапфе-втулке 8 с дистанционными торцевыми шайбами 11, зафиксированных в осевом направлении внутренней торцевой поверхностью упорного буртика оси 12, которая размещена внутри цапфы-втулки 8.

Наружная цилиндрическая поверхность оси 12 с упорным буртиком через шпонку-фиксатор 13 соединена подвижно в осевом направлении с внутренней поверхностью цапфы-втулки 8. Ось 12 содержит сквозное резьбовое отверстие, внутри которого размещен крепежный винт 14 с цилиндрической головкой и шестигранным углублением под ключ и с упорным торцом в виде конуса, переходящим в цилиндрическую ступень, которая переходит в фаску с участком длинной резьбы крепежного винта 14.

Для фиксации от осевого смещения по шпоночному соединению, ось 12 имеет консольный участок с внешней резьбой во внутреннем пространстве трехгранной призмы 1 для размещения круглой шлицевой гайки 15 и стопорной многолапчатой шайбы 16. Цилиндрическая поверхность крепежного винта 14 размещена в коническо-цилиндрическом отверстии 17 крепежной стойки 9 и фиксирует от перемещений трехгранную крышку 3 с уплотнительным кольцом 18. Для осуществления пылеподавления при разрушении, дроблении и погрузке горной массы трехгранными призмами с дисковым инструментом с обеспечением возможности проведения монтажно-демонтажных операций в призабойном пространстве в процессе эксплуатации проходческого комбайна избирательного действия предлагается устройство пылеподавления на рисунке 2.3 [133, 142].

Рисунок 2.3 – Реверсивная коронка проходческого комбайна с дисками: а – общий вид коронки; б – схема формирования струй системы пылеподавления

Данное устройство содержит трехгранную призму 1, жестко закрепленную на наружной поверхности разрушающе-погрузочной коронки 2 и трехгранную крышку 3 с технологическими камерами-канавками 4. Дисковый инструмент 5 установлен с возможностью вращения на цапфе-втулке с дистанционными торцевыми шайбами 6, зафиксированными в осевом направлении внутренней торцевой поверхностью упорного буртика оси 7.

На поверхности внешней забойной грани трехгранной призмы 1 размещены две бонки 8. На верхней поверхности каждой бонки 8 установлены форсунки 9 под углом атаки γ. Выходные сопла форсунок 9 размещены на радиусе r_i относительно оси вращения разрушающе-погрузочной коронки 2 в плоскости параллельной плоскости забойной грани трехгранной призмы 1 внутри пространства, ограниченного расстоянием t. При этом оси выходных сопел форсунок 9 расположены в плоскости, пересекающей обод дискового инструмента 5 с кольцевой режущей кромкой по сегменту, хорда которого удалена от оси вращения дискового инструмента 5 на 4/5 его радиуса R_d . Патрубки 10 и 11 присоединены к бонкам 8, и между собой соединены тройником 12, который в свою очередь присоединен к ниппелю 13 с обратным клапаном 14.

Для повышения эффективности монтажно-демонтажных операций в призабойном пространстве подземной горной выработки при замене узла крепления дискового инструмента в трехгранной призме предлагается устройство (рисунок 2.4) [134, 143].

Рисунок 2.4 – Устройство трехгранной призмы с узлом крепления дискового инструмента: а – вид сверху; б – радиальное сечение

Предлагаемый узел крепления дискового инструмента на рабочем органе горного комбайна содержит трехгранную призму 1, жестко закрепленную на наружной поверхности коронки 2 проходческого комбайна и трехгранную крышку 3. Со стороны передней грани внутренняя поверхность трехгранной крышки 3 содержит опорную седловую стойку-фиксатор 4, которая в виде единой пластины, содержащей конструктивно-сопряженные между собой внутренний полуцилиндрический зев с двумя направляюще-ориентирующими усами из прямоугольных призм, толщина которых меньше ширины проточки 5 оси 6 с упорным буртиком на величину допустимого осевого люфта. Конструкция трехгранной призмы 1 со стороны внешнего пространства включает в себя поверхности двух погрузочно-транспортирующих граней и поверхность передней грани со сквозным цилиндрическим отверстием, в котором жестко закреплена цапфа-втулка 7. Дисковый инструмент 8 консольно установлен перед передней гранью трехгранной призмы 1 на жестко закрепленной цапфевтулке 7 с возможностью свободного вращения между двумя дистанционными торцевыми шайбами 9 с фиксируемым осевым зазором.

Цапфа-втулка 7 имеет трехступенчатую внутреннюю поверхность, первая ступень I которой выполнена гладкой, расположена со стороны забойного торца, имеет максимальный диаметр и минимальную длину l_y . Вторая ступень II выполнена резьбовой и сопряжена с торцевой поверхностью, ограничивающей длину первой ступени I и имеет диаметр поверхности меньший диаметра поверхности первой ступени I, а ее длина l_p превышает длину l_{xu} поверхности третьей ступени III, выполненной в виде гладкого цилиндрического участка с диаметром меньшим диаметра цилиндрической поверхности второй ступени II. Торцевая поверхность третьей ступени II выходит во внутреннее пространство трехгранной призмы 1.

Ось 6 с упорным буртиком имеет трехступенчатую наружную поверхность конгруэнтную участкам трехступенчатой внутренней поверхности цапфы-втулки 7 на участках длиной l_y , l_p , l_{xo} . В центральных частях свободных торцевых поверхностей оси 6 с упорным буртиком выполнены шестигранные гнезда под ключ.

Для формирования схем набора трехгранных призм с дисковым инструментом, адаптивных к широкому спектру условий эксплуатации и повышению эффективности монтажно-демонтажных работ представлены следующие технические решения (рисунок 2.5) [129, 136, 144].

Реверсивный рабочий орган содержит фланец 1, ступицу 2 и корпус 3, выполненный в виде сварной многогранной призмы. На наружной поверхности многогранной призмы жестко закреплены направляющие 4 с боковыми зубчатыми рейками 5. На зубчатых рейках 5 с определенным шагом разрушения относительно друг друга прикреплены опоры 6 П-образной формы. Схемы закрепления трехгранных призм 7, 8 позволяют реализовать кутковые и линейные линии резания. Каждая трехгранная призма 7, 8 закрыта трехгранными крышками 9 и содержит оси 10 с упорными буртиками и дисковыми инструментами 11. Опоры 6 П-образной формы крепятся к направляющим 4 с помощью разъемных проволочных замков-фиксаторов, выполненных в виде длинных цилиндрических стержней 12 с отгибными коническими торцевыми хвостовиками и размещены в квадратных сквозных отверстиях, образованных сквозными боковыми прямоугольными пазами 13, 14 опор 5 П-образной формы и зубчатых реек 5. Опоры 6 П-образной формы выполнены с внутренним П-образным ручьем, одна грань которого выполнена плоской со сквозным боковым прямоугольным пазом 13 под длинный цилиндрический стержень 12, а другая противоположная грань выполнена с зубчатой поверхностью 15. При этом опора 10 П-образной формы может быть выполнена с внутренним П-образным ручьем.

Рисунок 2.5 – Радиальная коронка с дисковым инструментом на корпусе-пирамиде: а – общий вид; б – вид спереди; в – вид на большее основание; г – зубчато-реечный замок трехгранной призмы; д – зона размещения проволочного фиксатора

Для проведения горных выработок проходческими комбайнами избирательного действия по угольным и смешанным углепородным забойным массивам с коэффициентом крепости по шкале проф. М.М. Протодьяконова $f \le 4.6$ предложено техническое решение [137, 145]. Исполнительный орган выемочно-проходческой горной машины (рисунок 2.6, а), содержащий стрелу 1, коронку 2 со ступицей, трехгранные призмы 3 с реверсивным породоразрушающим двухлезвийным инструментом 4 на узлах крепления к трехгранной крышке 5 осью 6 с упорным буртиком.

Рисунок 2.6 – Конструкция исполнительного органа выемочно-проходческой горной машины с поворотными резцами на трехгранных призмах: а – общий вид; б – разрушение забоя реверсивным двухлезвийным поворотным резцом

При проходке выработки стрела 1 может осуществлять перемещение на забой по трем направлениям Х-поперечное, Ү-вертикальное, Z-продольное при непрерывном вращении коронки 2 как по часовой, так и против часовой стрелке k. При вращении по часовой стрелке (рисунок 2.6, б), режущие грани 7, 8 двухлезвийных поворотных резцов 4 с наружным конструктивным вылетом L_p и внутренним вылетом державки L_q опираются на одну из поперечных боковых граней 9 сквозного П-образного паза 10 с сохранением установочного угла γ , средней стружки h_{cp} и условного зазора Δ .

Для повышения эффективности процесса зарубки исполнительного органа проходческого комбайна избирательного действия с поперечно-осевыми аксиальными коронками, которые разделены друг от друга корпусом раздаточного редуктора, предложено в межкорончатой зоне размещать дисковые инструменты на четырехгранных призмах (рисунки 2.7, 2.8) [132, 146–149].

Рисунок 2.7 – Проходческий комбайн с аксиальными коронками: а – вид сверху; б – схема окружного вписывания дисковых инструментов

Исполнительный орган (рисунки 2.7) проходческого комбайна избирательного действия содержит стрелу 1, корпус 2 раздаточного редуктора с двумя разрушающими аксиальными коронками 3, содержащими резцы 4. К корпусу 2 раздаточного редуктора прикреплены четырехгранные призмы 5 с двумя дисковыми инструментами 6. Внутреннее пространство четырехгранной призмы 5 с узлами крепления дискового инструмента 6 закрыто герметичной четырехгранной крышкой.

Диаметр окружности (рисунок 2.7, б), описывающий вылет наружных кромок дисковых инструментов 6 в плоскости перпендикулярной оси вращения коронок 3 не превышает диаметра окружности, описывающий максимальный радиальный вылет крайних резцов 4 на больших основаниях разрушающих аксиальных коронок 3

Устройство узла крепления (рисунок 2.8, а) содержит четырехгранную призму 1, раздельные дисковые инструменты 2, цапфы-втулки 3, приваренные к внутренним поверхностям граней-стоек, дистанционные торцевые шайбы 4, оси 5 с упорными буртиками. Наружные цилиндрические поверхности осей 5 через шпонки 6 сопряжены с внутренними поверхностями цапф-втулок 3. Оси 5 через резьбовые хвостовики жестко прикреплены стопорными шайбами 7 и гайками 8 к внутренними торцевым поверхностям цапф-втулок 3, создавая возможность сво-

бодного вращательного движения дискам 2 и дистанционным торцевым шайбам 4. К боковым стенкам четырехгранной призмы 1 приварены бонки 9 с резьбовыми гнездами для крепления крышки 10. Сквозные внутренние резьбовые отверстия в осях 5 закрыты винтами 12, головки которых размещены в цилиндрических углублениях 11 со стороны внешних торцов упорных буртиков осей 5.

Рисунок 2.8 – Узлы крепления в четырехгранной призме: с раздельными (а) и со спаренными (б) дисковыми инструментами

Для уменьшения процесса заклинивания и износа дискового инструмента при зарубке стреловидного исполнительного органа проходческого комбайна с аксиальными коронками в забойный массив, предложено устройство (рисунок 2.8, б), включающее четырехгранную призму со спаренными дисковыми инструментами [135, 145].

Четырехгранная призма 1 состоит из двух рабочих граней 2 со сквозными цилиндрическими отверстиями 3 и двух боковых граней. Внутри каждого отверстия 3 размещена цапфа-втулка 4. При этом спаренные дисковые инструменты 5 выполнены в виде единого сборно-разборного конструктивного модульного блока с возможностью совместного свободного вращения относительно неподвижных цапф-втулок 4. Единый сборно-разборный конструктивный модульный блок выполнен в виде жестко прикрепленных друг другу двух осей 6 и 7 с упорными буртиками, одна из которых содержит шлицевой хвостовик, а другая содержит шлицевую втулку. Оси 6 и 7 имеют зоны, обеспечивающие шпоночное присоединение дискового инструмента 5 посредством шпонки-фиксатора 8. Дистанционные торцевые шайбы 9 размещены между торцевыми поверхностями каждого из двух дисковых инструментов 5 и торцевыми поверхностями упорных буртиков каждой из двух цапф-втулок 4. Ось 6 выполнена со ступенчатым сквозным отверстием, внутри которого размещен дистанционный винт 10 для крепления единого сборно-разборного конструктивного блока. Для защиты внутреннего пространства четырехгранной призмы 1 используют четырехгранную крышку 11. Со стороны свободного торца оси 7 выполнено шестигранное углубление 12 под ключ для осуществления монтажно-демонтажных операций.

Представленные технические решения являются базой для проведения сравнительной оценки напряженного состояния сопрягаемых конструктивных элементов модульных блоков в виде многогранных призм с дисковым инструментом на исполнительных органах проходческих комбайнов избирательного действия при статическом моделировании процессов разрушения забойных массивов с неоднородной структурой от угольных до породных. Что обеспечит выявление закономерностей изменения усилий нагружения P_x, P_y, P_z и рационального выбора для дальнейших направлений совершенствования и разработки конструкций модульных блоков дискового инструмента.

2.2 Анализ методик исследований напряженно-деформированного состояния породоразрушающего инструмента горных выемочных машин

Для изучения вопросов напряженного состояния породоразрушающего инструмента были проанализированы методики различных авторов.

В работе Крестовоздвиженского П.Д. [18] представлены методические основы, позволяющие производить исследования напряженного состояния тангенциальных поворотных резцов (ТПР) с различными формами головной части и технологическими дефектами. Рассмотрено влияние различных дефектов на прочность ТПР, расчет производился с использованием численного метода (метода конечных элементов). Вид конечного элемента и его размер оказывают существенное влияние на достоверность результатов расчета. Метод конечных элементов (МКЭ) основан на идеализации сплошного тела (континуума) совокупностью конечных элементов [150], взаимодействующих между собой в конечном числе узловых точек и вполне подходит для предварительного суждения о напряжениях и деформациях.

Для расчета автором была использована система Ansys 9.0 интегрированная в программный комплекс Solid Works 2007. Эта программа [151] позволяет выполнять расчеты двух- и трехмерных тел для случаев плоского и объемного напряженного-деформированного состояний, результаты вычислений соответствуют 3 (теория максимальных касательных напряжений) и 4 (критерий максимальной энергии формообразования) теории прочности [152] и выводятся в качестве напряжений по Мизесу и интенсивности напряжений.

В качестве конечного элемента был выбран SOLID 95 (рисунок 2.9), применяемый при расчетах трехмерных тел и представляющий собой объемный шестигранник подобный SOLID 45, но имеющий не 8, а 20 узлов [153, 154]. К узлам, находящимся в вершине, добавлены промежуточные узлы на серединах сетки. Он поддерживает элементы вырожденной формы: четырехугольные, призматические, пирамидальные.

Объектом для расчета принята упрощенная модель резца. Упрощение заключалось в принятии корпуса резца и твердосплавной вставки, как однородной конструкции. На рисунке 2.10 представлено приложение нагрузки к ТПР.

Рисунок 2.9 – Элемент SOLID 95

49

Рисунок 2.10 – Приложения нагрузки и ограничений к ТПР: а – головная часть резца представлена жесткозакрепленной консольной балкой; б – закрепление, моделирующее неполную посадку резца, Р – изгибающая сила

Моделирование взаимодействия с разрушаемой средой [155] достигалось представлением резца в виде жесткозакрепленной консольной балки с приложенной к ней изгибающей силы. Максимальные напряжения [156], при которых ТПР может оставаться вполне работоспособным

$$\sigma = \frac{Fl}{I} y \le [\sigma]$$
(2.1)

где F – изгибающая сила, l –конструктивный вылет, I – осевой момент инерции.

Была оценена достоверность результатов [157] расчетов произведенных методом определения максимальных напряжений в опасном сечении в сравнении с расчетами, произведенными МКЭ, погрешность составила 7%.

В работе Крестовоздвиженского П.Д. [18] рассмотрено вооружение исполнительного органа очистного комбайна с применением тангенциальных поворотных резцов (ТПР) различной конструкции головной части: линейная, вогнутая и выпуклая. Расчетные модели соответствовали по геометрии реальным конструкциям головных частей резцов (производство ООО «Горный инструмент»), изготовленных из легированной стали 35ХГСА с физическими характеристиками E = $2.15*10^5$ МПа, v = 0.3. К вершине резца прикладывалась изгибающая сила в 4 кH. Торцевая поверхность головной части закреплялась неподвижно. В качестве конечного элемента использовался элемент SOLID 95. На рисунке 2.11 представлены результаты моделирования напряженного состояния головных частей ТПР.

Рисунок 2.11 – Напряженное состояние головных частей (S1): с линейной (а), с вогнутой (б), с выпуклой (в) образующей

Результаты расчета представлены напряжениями, действующими на главных площадках (S_1 , S_2 , S_3), а также нормальными напряжениями (S_x , S_y , S_z) и эквивалентными напряжениями. Исследование напряженного состояния головных частей тангенциальных поворотных резцов позволяет оптимизировать их конструкцию и определить область применения той или иной формы головной части резца.

Сравнение напряжений возникающих в теле резца позволило сделать вывод, что наиболее прочной является выпуклая головная часть, а наименее - вогнутая.

В работе Чупина С.А. [158] представлен анализ и выбор компьютерных программ для моделирования процесса деформирования фрагментов поворотных резцов. Наибольшее распространение для получения информации о напряженнодеформированном состоянии материалов, подвергающихся обработке давлением, получил программный комплекс DEFORM-3D. Положительным аспектом программы DEFORM-3D является и то, что геометрию инструмента и заготовки можно импортировать из CAD (CAE) программ (систем автоматического проектирования -Компас, SolidWorks, Autodesk Inventor, CATIA и др.), что существенно облегчает построение объектов, имеющих сложную конфигурацию. Также программа дает возможность моделировать весь технологический процесс производства изделия, включая термическую и механические обработки.

Для исследования напряженно-деформированного состояния (НДС) сопрягаемых конструктивных элементов модульных блоков в виде многогранных призм с дисковым инструментом на исполнительных органах проходческих комбайнов избирательного действия целесообразно использование метода конечных элементов с решениями в системе SolidWorks Simulation. 2.3 Разработка конечно-элементных моделей дискового инструмента с консольными узлами крепления к многогранным призмам

Для определения эффективных границ области применения дисковых инструментов по прочности разрушаемого забойного массива исследования охватывают несколько основных этапов (рисунок 2.12) [144, 159].

Рисунок 2.12 – Этапы обоснования параметров конструктивных блоков дискового инструмента на исполнительных органах

Для моделирования напряженно-деформированного состояния (НДС) консольных узлов крепления дискового инструмента на коронках проходческих комбайнов использовалась система SolidWorks Simulation, в которой общий алгоритм решения задачи по методу конечных элементов (МКЭ) в линейной постановке имеет следующий вид [160]:

1. Производится дискретизация объема, занимаемого деталью или сборкой на элементы (создается сетка конечных элементов). Для объемного тела область

разбивается на тетраэдры с гранями, аппроксимируемыми линейными или параболическими функциями координат. Для поверхностных моделей – на плоские или криволинейные треугольники.

2. Для пространственных конечных элементов степенями свободы являются перемещения в направлении осей локальной системы координат элемента. Для конечных элементов оболочек к трем перемещениям в каждом узле добавляются по три угла поворота нормали к срединной поверхности области, аппроксимируемой элементом, относительно тех же осей.

3. Определяются зависимости для преобразования перемещений и углов поворота в узлах к глобальной системе координат.

4. Вычисляются матрицы жесткости конечных элементов. В формулы для расчета компонентов матриц жесткости конечных элементов помимо координат узлов входят модули упругости и коэффициенты Пуассона материалов. Если анализируется сборка, то в зависимости от принадлежности элемента детали при расчете матриц жесткости элементов используются соответствующие характеристики жесткости материала.

5. Полученные матрицы жесткости с использованием зависимостей для перехода от локальных систем координат элемента в глобальные преобразуются в глобальную систему координат.

6. Матрицы жесткости, представленные в глобальных координатах, объединяются в глобальную матрицу жесткости [К].

7. Назначенные пользователем граничные условия, статические и кинематические, приводятся к нагрузкам и перемещениям в узлах, выраженным в глобальной системе координат, и включаются в столбец усилий [F].

8. Полученная линейная система уравнений вида [K] $\{\Delta\} = \{F\}$ решается относительно столбца перемещений $\{\Delta\}$. Для решения используются итерационные или прямые методы.

Для описания особенностей решаемой задачи использовались кинематические (крепления) и статические (нагрузки) граничные условия. В качестве кинематического граничного условия использовалось крепление "Зафиксированный", приложенное к нижней поверхности в виде основания трехгранной призмы, жестко прикрепленного к корпусу коронки проходческого комбайна. Данный вид крепления задает линейные перемещения по трем координатным осям, равные нулю. В качестве статического граничного условия использовалась сила, приложенная к части грани диска и сориентированная в соответствии с составляющими силы резания. Принималось, что сила равномерно распределена по поверхности, к которой она приложена.

Поскольку расчет проводился для сборки узла крепления дискового инструмента на коронке проходческого комбайна, необходимо было описать условия контактного взаимодействия для соприкасающихся граней деталей. Было применено контактное условие "Нет проникновения", исключающее возникновение интерференции компонентов, но допускающее появление зазоров. Контактное условие использовалось с опцией "Поверхность с поверхностью". Данный набор контактных условий дает максимальную точность при решении контактной задачи с гладкими криволинейными взаимодействующими гранями, но требует наибольших затрат вычислительных ресурсов.

При дискретизации геометрической модели использовалась сетка с параболическими конечными элементами (КЭ) в форме тетраэдров [160]. Параболические КЭ обеспечивают лучшее описание геометрии модели сеткой и повышенную точность расчетов за счет большего по сравнению с линейными КЭ числа узлов. Параметры сетки: размер КЭ – 10 мм; допуск – 0,5 мм; автоматическое уплотнение сетки не использовалось.

Для расчета использовался алгоритм FFEPlus, поскольку он, как правило, является более производительным при решении задач большой размерности.

В SolidWorks Simulation доступны два алгоритма решения системы линейных уравнений:

- прямой метод для разреженных матриц (Direct sparse). Этот метод базируется на алгоритме Холесского с применением компактной схемы хранения матрицы жесткости;

- итерационный компактный метод (FFEPlus). Он основан на разложении Ланшоца и рекомендуется для задач с числом степеней свободы более 300 тыс.

Разработаны конечно-элементные модели (рисунок 2.13) для исследования напряженно-деформированного состояния конструктивных вариантов консольных

54

узлов крепления дисковых инструментов к многогранным призмам на исполнительных органах проходческих комбайнов [141, 145, 149, 160–162, 164, 165, 166].

Рисунок 2.13 – Конечно-элементные модели вариантов конструкций консольного закрепления дискового инструмента к трехгранным (а, б, в) и четырехгранным (г) призмам: а – с планкой-замком; б – с крепежным винтом; в – с гайкой; 1 – призма; 2 – дисковый инструмент; 3 – узел крепления

Расчет усилий резания P_z , внедрения P_y и бокового P_x на дисковых инструментах производился в соответствии со схемой, представленной на рисунке 2.14, по формулам (2.2–2.6) [12, 116, 149, 163] с учетом конструктивных, режимных параметров дискового инструмента, а также характеристик разрушаемого массива $\sigma_{c\kappa}$ (таблица 2.1) [11]. При этом рассматривались два варианта конструкции консольных узлов крепления с углами наклона оси дискового инструмента на трехгранной призме к продольной оси рабочего органа $\phi_{\kappa} = 0^{\circ}$ (первый) и $\phi_{\kappa} = 10^{\circ}$; 18° (второй).

Рисунок 2.14 – Расположение трехгранной призмы с биконическим дисковым инструментом относительно корпуса рабочего органа комбайна: а – для барабана при φ_к = 0°; б – для коронки с φ_к = 10° или 18°

Для первого варианта при $\phi_{\kappa}=0^{\circ}$ расчет произведен по формулам:

- для условий $\sigma_{\rm c \star} \geq 50~M\Pi a~c$ коническим дисковым инструментом:

$$P_{z} = R\theta \sqrt{\rho} \sqrt{t_{p}} \cdot \sin(0.9\theta) \cdot \sin \phi \cdot \sigma_{c\pi} \cdot 2;$$

$$P_{y} = P_{z} \cdot ctg(k\theta);$$

$$P_{x} = P_{z} \cdot \frac{c\lambda b}{R\sin(k\theta)};$$
(2.2)

- для условий $\sigma_{c*} \ge 50$ МПа с биконическим дисковым инструментом:

$$P_{z} = R\theta \sqrt{\rho} \sqrt{t_{p}} \cdot \sin(0.9\theta) \cdot \frac{\sin(\varphi_{1} + \varphi_{2})}{\cos \varphi_{2}} \cdot \sigma_{cx} \cdot 2;$$

$$P_{y} = P_{z} \cdot ctg(k\theta);$$

$$P_{x} = P_{z} \cdot \frac{c\lambda b}{R\sin(k\theta)},$$
(2.3)

- для условий $\sigma_{\text{c*}} \leq 50~\text{M}\Pi a$ с коническим дисковым инструментом

$$P_{z} = R\theta \ t_{p} \cdot \sin(k\theta) \cdot \frac{\sigma_{C\mathcal{K}}}{2,3} \cdot \sin\varphi \cdot e^{(\sigma_{p}/\sigma_{C\mathcal{K}})};$$

$$P_{y} = R\theta \ t_{p} \cdot \cos(k\theta) \cdot \sin\varphi \cdot \frac{\sigma_{C\mathcal{K}}}{2,3} \cdot e^{(\sigma_{p}/\sigma_{C\mathcal{K}})};$$

$$P_{x} = (\pm\lambda b) \cdot R\theta \cdot \sin(k\theta) \sin\varphi \cdot \frac{\sigma_{C\mathcal{K}}}{2,3} \cdot e^{(\sigma_{p}/\sigma_{C\mathcal{K}})}.$$
(2.4)

- для условий $\sigma_{\rm cw} \leq 50~M\Pi a~c$ биконическим дисковым инструментом

$$P_{z} = R\theta \ t_{p} \cdot \sin(k\theta) \cdot \frac{\sin(\varphi_{1} + \varphi_{2})}{\cos\varphi_{2}} \cdot \frac{\sigma_{C\mathcal{K}}}{2,3} \cdot e^{(\sigma_{p}/\sigma_{C\mathcal{K}})};$$

$$P_{y} = R\theta \ t_{p} \cdot \cos(k\theta) \cdot \frac{\sin(\varphi_{1} + \varphi_{2})}{\cos\varphi_{2}} \cdot \frac{\sigma_{C\mathcal{K}}}{2,3} \cdot e^{(\sigma_{p}/\sigma_{C\mathcal{K}})};$$

$$P_{x} = (\pm\lambda b) \cdot R\theta \cdot \sin(k\theta) \cdot \frac{\sin(\varphi_{1} + \varphi_{2})}{\cos\varphi_{2}} \cdot e^{(\sigma_{p}/\sigma_{C\mathcal{K}})}.$$
(2.5)

Для второго варианта при $\phi_{\kappa} = 10^{\circ}$; 18° расчет произведен по формулам: - при $\sigma_{c\kappa} \ge 50$ МПа для биконического дискового инструмента

$$P_{z} = R\theta \sqrt{\rho} \sqrt{t_{p}} \cdot \sin(0.9\theta) \cdot \frac{\sin((\varphi_{I_{KOHCMP.}} - \varphi_{\kappa}) + (\varphi_{2_{KOHCMP.}} + \varphi_{\kappa}))}{\cos(\varphi_{2_{KOHCMP.}} + \varphi_{\kappa})} \cdot \sigma_{cw} \cdot 2;$$

$$P_{y} = P_{z} \cdot ctg(k\theta);$$

$$P_{x} = P_{z} \cdot \frac{c\lambda b}{R\sin(k\theta)},$$
(2.6)

где P_z , P_y , P_x – усилия, кH; R – радиус дискового инструмента, м; $\theta = \arccos((R - h)/R)$, рад; p – радиус кромки притупления дискового инструмента, м; t_p – шаг раз-

рушения, м; h – глубина внедрения, м; b – толщина инструмента, м; $\varphi_{1 констр.}$, $\varphi_{2 констр.}$ – конструктивные передний и задний углы заострения, град; φ_{κ} – угол наклона продольной оси узла крепления дискового инструмента к оси вращения коронки, град (рисунок 2.14); k = 0,8 при L > h, k = 0,5 при L = h; L – высота обнаженной поверхности, м; $0 \le \lambda \le 1$ – в зависимости от вида реза; σ_p , σ_{cm} – пределы прочности на одноосное растяжение и сжатие, МПа; c = 1,0 – блокированный и повторноблокированный режим разрушения, c = -1,0 – свободный и полусвободный режим разрушения.

Таблица 2.1 – Показатели свойств углей и пород по Ленинскому угленосному району Кузбасса

	Модуль			Предел п	рочности
Пласт	упругости	Коэффициент	Плотность	Π	ри
11JIac I	$E \cdot 10^{-4}$,	Пуассона µ	ρ ₀ , кг/м ³	сжатии	растяж.
	МПа			$\sigma_{c \varkappa,}$ МПа	$\sigma_{p,} M \Pi a$
	·	Угольный масс	сив		
1. Полысаевский-2	0,5	0,24	1420	12,4	1,2
2. Толмачевский	0,4	0,23	1440	13,5	0,9
3. Байкаимский	0,6	0,23	1420	14,8	1,2
		Породный мас	сив		
1. Полысаевский-2					
- основная кровля	2,9	0,25	2690	51	5,9
- почва	2,7; 1,6	0,23; 0,27	2700; 2680	40,9; 30,6	4,8; 3,9
2. Толмачевский					
- основная кровля	3,1	0,21	2720	60,6	6,9
- почва	2,4	0,2	2760	37,2	4,3
3. Байкаимский					
- основная кровля	3,5	0,27	2760	78,9	8,6
- почва	2,21	0,24	2780	40,3	3,6

Полученные усилия P_z, P_y, P_x нагружения (таблица 2.2–2.4) [116, 149] приложены к конечно-элементным моделям дисковых инструментов с узлами их крепления на многогранных призмах (рисунок 2.13). В результате получены картины

напряженно-деформированного состояния с учетом прочности разрушаемых горных пород для четырех вариантов конструкций дискового инструмента диаметром D = 0,16 м (три биконических с углами заострения: $\varphi = \varphi_1 + \varphi_2 = 25^\circ + 5^\circ = 30^\circ$; $20^\circ + 10^\circ = 30^\circ$; $15^\circ + 15^\circ = 30^\circ$ и один конический $\varphi = 30^\circ$).

Усилия,		Характеристики разрушаемого массива по σ_{cm} , МПа								
ĸН	50	60	70	80	90	100	110	120	130	140
1	Биконический дисковый инструмент $\varphi = \varphi_1 + \varphi_2 = 25^\circ + 5^\circ = 30^\circ$									
Pz	2,06	2,48	2,89	3,3	3,72	4,13	4,54	4,96	5,37	5,78
Py	6,4	7,7	8,97	10,26	11,54	12,82	14,1	15,39	16,67	17,95
P _x	2,52	3,03	3,53	4,04	4,54	5,05	5,6	6,06	6,57	7,07
Б	биконич	еский (дисковь	ий инст	румент	$i \phi = \phi_1$	$+\phi_2 = 20$	$^{\circ}+10^{\circ}=$	30°	
Pz	2,09	2,58	2,92	3,34	3,76	4,18	4,6	5,01	5,43	5,85
Py	6,48	7,78	9,08	10,37	11,67	12,97	14,27	15,56	16,86	18,16
P _x	2,55	3,06	3,57	4,09	4,6	5,11	5,62	6,13	6,64	7,15
Биконический дисковый инструмент $\varphi = \varphi_1 + \varphi_2 = 15^\circ + 15^\circ = 30^\circ$										
Pz	2,13	2,57	2,98	3,41	3,83	4,26	4,68	5,11	5,54	5,96
Py	6,61	7,93	9,26	10,58	11,9	13,22	14,55	15,87	17,19	18,51
P _x	2,6	3,12	3,64	4,17	4,69	5,21	5,73	6,25	6,77	7,29
Конический дисковый инструмент $\varphi = 30^{\circ}$										
Pz	2,06	2,47	2,88	3,29	3,7	4,11	4,53	4,94	5,35	5,76
Py	6,39	7,66	8,94	10,22	11,49	12,77	14,05	15,33	16,6	17,88
P _x	2,51	3,02	3,52	4,02	4,53	5,03	5,53	6,04	6,54	7,05

Таблица 2.2 – Результаты расчета усилий на диске к трехгранной призме при $\phi_{\kappa} = 0^{\circ}$

Таблица 2.3 – Результаты расчета усилий при разрушении проходческих забое	B
дисковым инструментом на четырехгранной призме при $\phi_{\kappa} = 0^{\circ}$	

	Характеристики разрушаемого массива по σ_{cx} , МПа								
Усилия, кН	Уго	ольный мас	ссив	Породный массив					
	12,4	13,5	14,8	51	60,6	78,9			
	n	pu h = 0,04	М	np	h = 0,000	бм			
Биконичесь	Биконический дисковый инструмент: $\varphi = \varphi_1 + \varphi_2 = 25^\circ + 5^\circ = 30^\circ$								
Pz	4,946	5,255	5,812	3,548	4,216	5,489			
Py	11,11	11,737	13,054	11,009	13,082	17,033			
P _x	0,323	0,314	0,318	4,337	5,154	6,71			
Биконическ	ий дисков	ый инстру.	мент:	$\varphi_1 + \varphi_2 = 20$	$^{\circ}+10^{\circ}=30$	0			
Pz	5,003	5,286	5,879	3,589	4,26	5,553			
Py	11,239	11,873	13,205	11,137	13,23	17,23			
P _x	0,327	0,317	0,322	4,388	5,21	6,788			
Биконическ	Биконический дисковый инструмент: $\varphi = \varphi_1 + \varphi_2 = 15^\circ + 15^\circ = 30^\circ$								
Pz	5,101	5,389	5,994	3,659	4,348	5,662			
Py	11,458	12,105	13,463	11,354	13,492	17,566			
P _x	0,333	0,324	0,328	4,473	5,315	6,921			
K	Конический дисковый инструмент:								
Pz	4,927	5,205	5,79	3,535	4,2	5,469			
Py	11,068	11,692	13,004	10,968	13,032	16,968			
P _x	1,739	1,837	2,043	4,321	5,134	6,685			

Зависимости распределения усилий P_x , P_y , P_z от разрушаемых горных пород $\sigma_{c\kappa}$ при углах ($\phi_{\kappa} = 0^{\circ}$; 10° и 18°) наклона оси дискового инструмента на трехгранной призме к продольной оси рабочего органа представлены на рисунках 2.15–2.20. Коэффициент достоверности аппроксимации для всех зависимостей $R^2 = 1$. Характер распределения усилий нагружения P_x , P_y , P_z представлен в таблицах 2.5–2.7 [163].

	Характеристики разрушаемого массива по σ_{cw} , МПа									
Усилия,		Породный массив (при h = 0,006 м)								
кН*	50	80	100	120	140	50	80	100	120	140
			$\varphi_{\kappa} = 10^{\circ}$					$\varphi_{\kappa} = 18^{\circ}$		
Биконический дисковый инструмент: $\varphi = \varphi_1 + \varphi_2 = 5^\circ + 25^\circ = 30^\circ$										
Р.	2,513	4,021	5,027	6,032	7,038	2,815	4,504	5,631	6,757	7,883
- 2	3,403	5,445	6,807	8,168	9,53	3,812	6,099	7,624	9,149	10,674
P	7,798	12,478	15,597	18,717	21,836	8,735	13,976	17,47	20,964	24,458
- y	10,56	16,895	21,119	25,343	29,567	11,82	18,923	23,654	28,385	33,116
Р.,	3,072	4,916	6,145	7,374	8,603	3,441	5,506	6,883	8,259	9,636
- x	4,16	6,656	8,32	9,985	11,649	4,659	7,455	9,319	11,183	13,047
		Биконич	еский дис	ковый ин	струмент	$n: \varphi = \varphi_1 + \varphi_1$	$-\phi_2 = 10^\circ +$	$-20^\circ = 30^\circ$		
Р	2,377	3,804	4,755	5,706	6,657	2,613	4,180	5,226	6,271	7,316
Ιz	3,219	5,151	6,438	7,726	9,014	3,538	5,66	7,076	8,491	9,906
Р	7,376	11,802	14,753	17,704	20,654	8,107	12,971	16,214	19,456	22,699
L y	9,988	15,98	19,976	23,971	27,966	10,976	17,563	21,953	26,344	30,735
Р	2,906	4,65	5,812	6,975	8,137	3,194	5,110	6,388	7,665	8,943
I X	3,935	6,296	7,87	9,444	11,018	4,324	6,919	8,649	10,379	12,109
		Биконич	еский дис	ковый ин	струмент	$n: \varphi = \varphi_1 + \varphi_1$	$-\phi_2 = 15^{\circ} +$	$-15^\circ = 30^\circ$		
р	2,272	3,635	4,544	5,452	6,361	2,455	3,928	4,910	5,892	6,874
Ιz	3,076	4,922	6,152	7,383	8,613	3,324	5,319	6,648	7,978	9,308
P	7,048	11,278	14,097	16,917	19,736	7,617	12,187	15,234	18,281	21,328
- y	9,544	15,27	19,088	22,906	26,723	10,313	16,502	20,627	24,753	28,878
Р.,	2,777	4,443	5,554	6,7	7,776	3,0	4,801	6,0	7,202	8,403
- x	3,76	6,016	7,52	9,024	10,529	4,063	6,501	8,127	9,752	11,378
Конический дисковый инструмент:										
Р	2,688	4,3	5,376	6,451	7,526	3,077	4,923	6,154	7,385	8,616
Ιz	3,639	5,823	7,279	8,734	10,19	4,166	6,67	8,333	10	11,67
Р	8,339	13,343	16,678	20,014	23,35	9,547	15,275	19,094	22,913	26,732
⊥ y	11,29	18,066	22,583	27,1	31,616	12,927	20,683	25,854	31,025	36,196
Р	3,285	5,257	6,571	7,885	9,2	3,761	6,018	7,523	9,027	10,532
- X	4,448	7,118	8,897	10,677	12,456	5,093	8,149	10,186	12,223	14,261

Таблица 2.4 – Результаты расчета нагрузок при разрушении проходческих забоев дисковым инструментом на трехгранной призме при $\phi_{\kappa} = 10^{\circ}$ и 18°

*Значения $P_{z_i} P_{y_i} P_{x_i}$: верхняя строка – при шаге разрушения $t_p = 0,03$ м; нижняя строка – при $t_p = 0,055$ м. $\varphi_{\kappa} = 10^{\circ}$ – для комбайнов КСП-32(33), КСП-35, П110-04. $\varphi_{\kappa} = 18^{\circ}$ – для комбайнов 1ГПКС, КП21, КП200, КП200Т, КПЮ-50.

Рисунок 2.15 – Зависимости усилий P_x , P_y , P_z от прочности разрушаемого забойного массива $\sigma_{c\pi}$ при $\phi_{\kappa} = 0^\circ$: $a - \phi = 5^\circ + 25^\circ$; $\delta - \phi = 10^\circ + 20^\circ$; P_x , P_y , $P_z -$ при $t_p = 0,03$ м; P_x , P_y , $P_z - -----$ при $t_p = 0,055$ м

Рисунок 2.16 – Зависимости усилий P_x , P_y , P_z от прочности разрушаемого забойного массива $\sigma_{c\pi}$ при $\phi_{\kappa} = 0^\circ$: $a - \phi = 15^\circ + 15^\circ$; $\delta - \phi = 0^\circ + 30^\circ$ P_x , P_y , $P_z -$ при $t_p = 0.03$ м; P_x , P_y , $P_z -$ при $t_p = 0.055$ м

Рисунок 2.17 – Зависимости усилий P_x , P_y , P_z от прочности разрушаемого забойного массива $\sigma_{c \kappa}$ при $\phi_{\kappa} = 10^\circ$: $a - \phi = 5^\circ + 25^\circ$; $\delta - \phi = 10^\circ + 20^\circ$; P_x , P_y , $P_z - -----$ при $t_p = 0.03$ м; P_x , P_y , $P_z - ------$ при $t_p = 0.055$ м

Рисунок 2.18 – Зависимости усилий P_x , P_y , P_z от прочности разрушаемого забойного массива σ_{c*} при $\phi_{\kappa} = 10^{\circ}$: $B - \phi = 15^{\circ} + 15^{\circ}$; $\Gamma - \phi = 0^{\circ} + 30^{\circ}$ P_x , P_y , $P_z -$ при $t_p = 0.03$ м; P_x , P_y , $P_z -$ ----- при $t_p = 0.055$ м

Рисунок 2.19 – Зависимости усилий P_x , P_y , P_z от прочности разрушаемого забойного массива $\sigma_{c\pi}$ при $\phi_{\kappa} = 18^{\circ}$: $a - \phi = 5^{\circ} + 25^{\circ}$; $\delta - \phi = 10^{\circ} + 20^{\circ}$; P_x , P_y , P_z — при $t_p = 0.03$ м; P_x , P_y , P_z — — при $t_p = 0.055$ м

Рисунок 2.20 – Зависимости усилий P_x , P_y , P_z от прочности разрушаемого забойного массива $\sigma_{c \pi}$ при $\phi_{\kappa} = 18^{\circ}$: $a - \phi = 15^{\circ} + 15^{\circ}$; $\delta - \phi = 0^{\circ} + 30^{\circ}$ P_x , P_y , $P_z - -----$ при $t_p = 0,03$ м; P_x , P_y , $P_z - ------$ при $t_p = 0,055$ м

Таблица 2.5 – Зависимости усилий нагружения P_x , P_y , P_z дискового инструмента на трехгранных призмах от прочности забойного массива σ_{cw} при наклоне образующей корпуса коронки $\phi_{\kappa} = 0^{\circ}$

Углы заострения	Зависимости при шаге разрушения t _р			
дисков $\phi = \phi_1 + \phi_2$,		-		
град	t _p = 0,03 м	t _p = 0,055 м		
	$P_x = 0.0555\sigma_{cm} - 0.0004$	Р _x = 0,0752σ _{сж} - 0,0006		
5°+25°	$P_{y} = 0,141\sigma_{cx} - 0,0006$	$P_y = 0.1909\sigma_{cx} - 0.0002$		
	$P_z = 0.0454\sigma_{cx} + 0.0005$	$P_z = 0.0615\sigma_{cx} - 5.10^{-5}$		
	$P_x = 0.0536\sigma_{cx} - 0.0003$	$P_x = 0.0725\sigma_{cx} - 0.0014$		
10°+20°	$P_{y} = 0,136\sigma_{cm} - 0,0005$	$P_y = 0.1838\sigma_{cx} + 0.0193$		
	$P_z = 0.0438\sigma_{cx} - 5.10^{-5}$	$P_z = 0.0593\sigma_{cx} + 0.0005$		
	$P_x = 0.0521\sigma_{cx} - 0.0008$	$P_x = 0.0706\sigma_{cm} - 0.0002$		
15°+15°	$P_{y} = 0,1323\sigma_{cx} - 0,0006$	$P_{y} = 0.1791\sigma_{cx}$		
	$P_z = 0.0426\sigma_{cx} - 0.0008$	$P_z = 0.0577\sigma_{cm} - 0.0007$		
	$P_x = 0.0581\sigma_{cx} - 5.10^{-5}$	$P_x = 0.0787\sigma_{cx} + 2.10^{-14}$		
0°+30°	$P_y = 0.1475\sigma_{cx} - 0.0008$	$P_y = 0.1998\sigma_{cx} - 0.0001$		
	$P_z = 0.0476\sigma_{cx} - 0.0006$	$P_z = 0.0644\sigma_{cm} - 0.0003$		

Таблица 2.6 – Зависимости усилий нагружения P_x , P_y , P_z дискового инструмента на трехгранных призмах от прочности забойного массива σ_{c*} при наклоне образующей корпуса коронки $\phi_{\kappa} = 10^{\circ}$

Углы заострения лисков $(0 = 0_1 + 0_2)$	Зависимости при шаге разрушения t _р			
град	t _p = 0,03 м	t _p = 0,055 м		
5°+25°	$P_{x} = 0.0615\sigma_{cx} - 0.0006$ $P_{y} = 0.156\sigma_{cx} - 0.0006$	$P_{x} = 0.0832\sigma_{cm} - 0.0009$ $P_{y} = 0.2112\sigma_{cm} + 0.0002$		
	$P_z = 0.0503\sigma_{cx} - 0.001$	$P_z = 0.0681\sigma_{cx} - 0.001$		
	$P_{\rm x} = 0.0581\sigma_{\rm cm} - 5.10^{-5}$	$P_x = 0.0787\sigma_{cx} + 2.10^{-14}$		
10°+20°	$P_{y} = 0.1475\sigma_{cm} - 0.0008$ $P_{z} = 0.0476\sigma_{cm} - 0.0006$	$P_{y} = 0.1998\sigma_{cw} - 0.0001$ $P_{z} = 0.0644\sigma_{cw} - 0.0003$		
	$P_x = 0.0557\sigma_{cx} - 0.0089$	$P_x = 0.0752\sigma_{cx} - 0.0006$		
15°+15°	$P_y = 0.141\sigma_{cw} - 0.0006$	$P_y = 0.1909\sigma_{cm} - 0.0002$		
	$P_z = 0.0454\sigma_{cx} + 0.0005$	$P_z = 0.0615\sigma_{cx} - 5.10^{-5}$		
	$P_{\rm x} = 0.0657\sigma_{\rm cm} - 0.0008$	$P_x = 0.089\sigma_{cx} - 0.0006$		
0°+30°	$P_y = 0.1668\sigma_{cx} - 0.0003$	$P_y = 0.2258\sigma_{cx} - 0.0019$		
	$P_z = 0.0538\sigma_{cm} - 0.0001$	$P_z = 0.0728\sigma_{cx} - 0.0001$		

Таблица 2.7 – Зависимости усилий нагружения P_x , P_y , P_z дискового инструмента на трехгранных призмах от прочности забойного массива σ_{cw} при наклоне образующей корпуса коронки $\phi_{\kappa} = 18^{\circ}$

Углы заострения	Зависимости при шаге разрушения t _р			
Дисков $\varphi = \varphi_1 + \varphi_2$,		-		
град	t _p = 0,03 м	t _p = 0,055 м		
	$P_x = 0.0688\sigma_{cm} - 0.0005$	$P_x = 0.0932\sigma_{cx} - 0.001$		
5°+25°	$P_{y} = 0.1747\sigma_{cw} - 4 \cdot 10^{-14}$	$P_y = 0.2366\sigma_{cx} - 0.0086$		
	$P_z = 0.0563\sigma_{cm} - 0.0007$	$P_z = 0.0708\sigma_{cw} - 0.0001$		
	$P_x = 0.0639\sigma_{cw} + 5 \cdot 10^{-5}$	$P_x = 0.0865\sigma_{cw} - 0.001$		
10°+20°	$P_{y} = 0.1621\sigma_{cx} + 0.0005$	$P_{y} = 0.2195\sigma_{cx} - 0.0009$		
	$P_z = 0.0523\sigma_{cm} - 0.0001$	$P_z = 0.0708\sigma_{cw} - 0.0001$		
	Р _x = 0,06σ _{сж} - 0,0019	$P_x = 0.0813\sigma_{cw} - 0.001$		
15°+15°	$P_{y} = 0.1523\sigma_{cx} - 0.0004$	$P_y = 0,2063\sigma_{cx} - 0,0006$		
	$P_z = 0.0491\sigma_{cw} - 1.10^{-14}$	$P_z = 0.0665\sigma_{ck} - 0.0003$		
	$P_x = 0.0752\sigma_{cx} - 0.0005$	$P_x = 0,1019\sigma_{cw} - 0,0002$		
0°+30°	$P_{y} = 0,1909\sigma_{cw} - 0,0004$	$P_y = 0.2585\sigma_{cw} - 0.0004$		
	$P_z = 0.0615\sigma_{cw} - 0.0004$	Р _z = 0,0834σ _{сж} - 0,0011		

Установлено, что усилия P_x , P_y , P_z прямо пропорционально зависят от прочности разрушаемого забойного массива σ_{cx} (от 50 до 140 МПа) при углах наклона ϕ_{κ} (0°, 10° и 18°) с диапазонами соотношений $P_y = 3,1P_z$, $P_x = 1,22P_z$ и возрастают как при увеличении шага разрушения t_p от 0,03 м до 0,055 м в 1,35 раза, так и при увеличении угла ϕ_{κ} от 10° до 18° на: 12 % (для диска 1 с $\phi = 5^{\circ}+25^{\circ}$); 9,9 % (для диска 2 с $\phi = 10^{\circ}+20^{\circ}$); 8 % (для диска 3 с $\phi = 15^{\circ}+15^{\circ}$) и 14,4 % (для диска 4 с $\phi = 0^{\circ}+30^{\circ}$). Усилия P_x , P_y , P_z имеют минимальные значения на биконических дисковых инструментах ($\phi = 15^{\circ}+15^{\circ}$), а максимальные – на конических ($\phi = 0^{\circ}+30^{\circ}$).

2.4 Выводы

1. Предложен комплекс оригинальных технических решений в виде консольных узлов крепления комплектов породоразрушающих инструментов как дисковых, так и резцовых на многогранных призмах рабочих органов горных комбайнов, позволяющий расширить области применения и эффективность эксплуатации проходческих, очистных и буровых горных машин.

2. Обоснованы варианты конструкций исполнительных органов проходческого комбайна избирательного действия с трехгранными призмами и дисковым инструментом на кинематически связанных реверсивных радиальных коронках, позволяющие совместить процессы разрушения забоя, дробления негабаритов и погрузки продуктов разрушения в транспортные средства по всей ширине выработки.

3. Сформирована база сравнительной оценки напряженнодеформированного состояния сопрягаемых конструктивных элементов консольных узлов крепления дисковых инструментов к многогранным призмам на исполнительных органах проходческих комбайнов избирательного действия при разрушении забойных массивов с неоднородной структурой с использованием метода конечных элементов в системе SolidWorks Simulation.

3 РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ КОНСОЛЬНЫХ УЗЛОВ КРЕПЛЕНИЯ ДИСКОВОГО ИНСТРУМЕНТА НА МНОГОГРАННЫХ ПРИЗМАХ

Для решения третьей задачи диссертационной работы разработаны модели формирования напряженно-деформированного состояния отдельного дискового инструмента и произведена оценка прочности деталей узлов его консольного крепления к многогранным призмам двухкорончатых стреловидных исполнительных органах при статическом разрушении горных пород в диапазоне прочности σ_{cx} от 12,4 до 140 МПа.

3.1 Напряженно-деформированное состояние вариантов консольных узлов крепления дисковых инструментов к трехгранным призмам

Использование конечно-элементных моделей различных вариантов конструкций консольных узлов крепления дискового инструмента к многогранным призмам (рисунок 2.13) позволяет в режиме статического нагружения при контакте с разрушаемыми забойными массивами определить параметры эквивалентных напряжений по критерию Мизеса и деформации [116, 140, 141, 162, 164, 165].

Результаты моделирования напряженно-деформированного состояния консольного узла крепления дискового инструмента представлены на рисунках 3.1–3.4 [140].

Рисунок 3.1 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления биконического дискового инструмента ($\phi = 25^\circ + 5^\circ = 30^\circ$) для условий: $a - \sigma_{c*} = 70$ МПа; $\delta - \sigma_{c*} = 120$ МПа

68

Рисунок 3.2 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления биконического дискового инструмента ($\phi = 20^\circ + 10^\circ = 30^\circ$) для условий: $a - \sigma_{c*} = 70$ МПа; $\delta - \sigma_{c*} = 120$ МПа

Рисунок 3.3 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления биконического дискового инструмента (φ = 15°+15° = 30°) для условий: a – σ_{cж} = 70 MПa; б – σ_{cж} = 120 MПa

Рисунок 3.4 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления конического дискового инструмента (φ = 30°) для условий: a – σ_{cж} = 70 MПa; б – σ_{cж} = 120 MПa

На рисунках 3.5–3.8 [140] представлены результаты моделирования напряженно-деформированного состояния консольного узла крепления дискового инструмента к трехгранной призме по второму варианту с крепежным винтом при учете характеристики разрушаемого массива $\sigma_{cx} = 70$ МПа и 120 МПа.

Рисунок 3.5 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления биконического дискового инструмента (φ = 25°+5° = 30°) для условий: a – σ_{cж} = 70 МПа; б – σ_{cж} = 120 МПа

б)

Рисунок 3.6 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления биконического дискового инструмента (φ = 20°+10° = 30°) для условий: a – σ_{cж} = 70 MПa; б – σ_{cж} = 120 MПa

Рисунок 3.7 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления биконического дискового инструмента ($\phi = 15^{\circ}+15^{\circ} = 30^{\circ}$) для условий: $a - \sigma_{c*} = 70$ МПа; $\delta - \sigma_{c*} = 120$ МПа

Рисунок 3.8 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления конического дискового инструмента ($\phi = 30^{\circ}$) для условий: $a - \sigma_{c*} = 70$ МПа; $\delta - \sigma_{c*} = 120$ МПа

На рисунках 3.9–3.12 [140] представлены результаты моделирования напряженно-деформированного состояния консольного узла крепления дискового инструмента к трехгранной призме по третьему варианту с гайкой при учете характеристики разрушаемого массива $\sigma_{cw} = 70$ МПа и 120 МПа.

Рисунок 3.9 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления биконического дискового инструмента (φ = 25°+5° = 30°) для условий: a – σ_{cж} = 70 MПa; б – σ_{cж} = 120 MПa

Рисунок 3.10 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления биконического дискового инструмента (φ = 20°+10° = 30°) для условий: a – σ_{cж} = 70 МПа; б – σ_{cж} = 120 МПа

Рисунок 3.11 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления биконического дискового инструмента (φ = 15°+15° = 30°) для условий: a – σ_{cж} = 70 MПa; б – σ_{cж} = 120 MПa

Рисунок 3.12 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления конического дискового инструмента (φ = 30°) для условий: а – σ_{сж} = 70 МПа; б – σ_{сж} = 120 МПа

На рисунке 3.13 и в таблице 3.1 [159] представлены зависимости эквивалентных напряжений $\sigma_{3\kappa B}$ от диаметров D сопряженных конструктивных элементов консольных узлов крепления дискового инструмента к трехгранным призмам для разрушения забойного массива горных пород с $\sigma_{c\kappa} = 70$ МПа. Углы заострения дисков составляют: $1 - \varphi = 5^{\circ}+25^{\circ}$; $2 - \varphi = 10^{\circ}+20^{\circ}$; $3 - \varphi = 15^{\circ}+15^{\circ}$; $4 - \varphi = 0^{\circ}+30^{\circ}$. Характерные сечения проходят через лезвия дисков и пересекают следующие сопрягаемые элементы: - для первого варианта на рисунке 2.13, а (диск, ось-цапфа), - для второго и третьего вариантов на рисунках 2.13, б, в (диск, цапфа, ось с упорным буртиком). Материал для всех деталей сталь 35ХГСА.

 D_1 б) σэкв, MПа 120 4 100 D_2 80 • D_3 1 60 •2 **4**0 •3 20 ţ • • **D**, мм 0 20 40 60 80 100 120 140 160

Рисунок 3.13 – Зависимости эквивалентных напряжений $\sigma_{_{ЭКВ}}$ от диаметра D сопряженных конструктивных элементов в сечении, проходящем через лезвие дисков с узлами консольного крепления к трехгранным призмам: а – планкой; б – винтом; в – гайкой; D₁ – лезвие диска; D₂ – цапфа; D₃ – ось с буртиком
Таблица 3.1 – Результаты определения полиномиальных зависимостей эквивалентных напряжений σ_{экв} от диаметра D дисков при статическом нагружении дискового инструмента с узлами крепления на трехгранных призмах

		Углы		Корфиниенти	
Варианты	заострения			коэффициенты	
узлов	дисков $\phi = \phi_1 + \phi_{2,}$		полиномиальные	достоверности	
крепления			зависимости	аппроксимации р ²	
		град		ĸ	
	1	50,750	$\sigma_{_{3KB}} = -4 \cdot 10^{-10} \text{D}^6 + 2 \cdot 10^{-7} \text{D}^5 - 4 \cdot 10^{-5} \text{D}^4 +$	0.0116	
	1	5"+25"	+0,0036D ³ -0,13D ² +2,1824D-3,364	0,9110	
	2	100,000	$\sigma_{_{3KB}} = -2 \cdot 10^{-10} \text{D}^6 + 1 \cdot 10^{-7} \text{D}^5 - 3 \cdot 10^{-5} \text{D}^4 +$	0.0	
т	2	10 +20	+0,0028D ³ -0,1138D ² +1,8771D-2,6505	0,9	
I	2	150,150	$\sigma_{_{3KB}} = -4 \cdot 10^{-10} \text{D}^6 + 2 \cdot 10^{-7} \text{D}^5 - 5 \cdot 10^{-5} \text{D}^4 +$	0.875	
	5	15 +15	+0,0044D ³ -0,1686D ² +2,5206D-4,4542	0,075	
	1	0° 1 30°	$\sigma_{_{3KB}} = 2 \cdot 10^{-10} D^6 - 1 \cdot 10^{-7} D^5 + 2 \cdot 10^{-5} D^4 -$	0.8087	
	4 0 +30		-0,0011D ³ +0,0297D ² +0,0692D+0,8159	0,0907	
	1	50,750	$\sigma_{_{3KB}} = -1 \cdot 10^{-10} \text{D}^6 + 8 \cdot 10^{-8} \text{D}^5 - 2 \cdot 10^{-5} \text{D}^4 +$	0.01/2	
	1 5 +25		+0,002D ³ -0,0932D ² +1,8159D-3,217	0,9145	
	2	100,000	$\sigma_{_{3KB}} = 2 \cdot 10^{-10} D^6 - 2 \cdot 10^{-8} D^5 - 4 \cdot 10^{-6} D^4 +$	0.9001	
п	2	10 +20	+0,0011D ³ -0,0686D ² +1,5676D-2,8298	0,8901	
11	2	150,150	$\sigma_{_{3KB}} = 5 \cdot 10^{-10} D^6 - 2 \cdot 10^{-7} D^5 + 2 \cdot 10^{-5} D^4 -$	0.8752	
	5	15 +15	-0,0008D ³ -0,0002D ² +0,6508D-1,3489	0,0752	
	1	0°+20°	$\sigma_{_{3KB}} = 6 \cdot 10^{-10} D^6 - 3 \cdot 10^{-7} D^5 + 4 \cdot 10^{-5} D^4 -$	0.0467	
	4	0 +30	-0,0031D ³ +0,0984D ² -0,7694D+2,4977	0,9407	
	1	50,750	$\sigma_{_{3KB}} = -1 \cdot 10^{-10} \text{D}^6 + 6 \cdot 10^{-8} \text{D}^5 - 1 \cdot 10^{-5} \text{D}^4 +$	0.0004	
	1	5 +25	+0,0014D ³ -0,0648D ² +1,5159D-3,3668	0,9004	
	2	10° ± 2 0°	$\sigma_{_{3KB}} = -3 \cdot 10^{-11} \text{D}^6 + 6 \cdot 10^{-8} \text{D}^5 - 2 \cdot 10^{-5} \text{D}^4 +$	0.0003	
ш	2	10 +20	+0,0022D ³ -0,1041D ² +2,0006D-4,0917	0,9003	
111	2	150,150	$\sigma_{_{3KB}} = 4 \cdot 10^{-10} D^6 - 1 \cdot 10^{-7} D^5 + 1 \cdot 10^{-5} D^4 -$	0.0011	
	5	15 +15	-4.10 ⁻⁵ D ³ -0,0253D ² +0,921D-1,7204	0,9011	
	Λ	0°+20°	$\sigma_{_{3KB}} = -3 \cdot 10^{-10} \text{D}^6 + 1 \cdot 10^{-7} \text{D}^5 - 2 \cdot 10^{-5} \text{D}^4 +$	0.8700	
	4	$0^{\circ}+30^{\circ}$	+0,0012D ³ -0,0291D ² +0,4971D+0,2927	0,8799	

На рисунке 3.14 представлены результаты моделирования перемещений в консольных узлах крепления дискового инструмента к трехгранным призмам по трем вариантам.

Рисунок 3.14 – Перемещения в консольных узлах крепления биконического дискового инструмента (φ = 15°+15°) при статическом нагружении для условий σ_{сж} = 70 МПа: а – вариант 1; б – вариант 2; в – вариант 3

Для консольных узлов крепления дискового инструмента к забойным граням трехгранных призм зоны концентрации максимальных эквивалентных напряжений $\sigma_{3\kappa B}$ по критерию Мизеса смещены к лезвию дискового инструмента с минимальным объемом в контакте с разрушаемым массивом при статическом нагружении с минимальным значением для всех типов биконических дисковых инструментов с вариантом крепления гайкой. При этом величина максимальных значений σ_{3KB} изменяется от 100 до 120 МПа для горных пород с σ_{cm} от 70 МПа до 120 МПа, что значительно ниже предела текучести для стали 35ХГСА (σ_T = 490 МПа). Максимальные уровни деформационных перемещений дискового инструмента в сопряженных конструктивных элементах узлов крепления не превышают 0,045 мм. При сравнении зависимостей о_{экв} от диаметра D по трем вариантам консольных узлов крепления видно, что на участке D = 140 мм для конического диска $\phi = 0^{\circ} + 30^{\circ}$: по вариантам 1 и 2 – $\sigma_{3KB} = 105$ МПа, а для варианта 3 – $\sigma_{3KB} = 100$ МПа. При сравнении зависимостей на том же участке D = 140 мм для биконического диска $\phi = 15+15^{\circ}$ получаем: для варианта 1 – $\sigma_{_{3KB}} = 51$ МПа, а для вариантов 2 и 3 – $\sigma_{3 \text{кв}} = 30 \text{ МПа}$, то есть разница 21 МПа или 41%.

3.2 Напряженно-деформированное состояние вариантов консольных узлов крепления раздельных дисковых инструментов к четырехгранным призмам

На рисунках 3.15–3.18 представлены результаты моделирования напряженного состояния консольных узлов крепления дисковых инструментов к четырехгранной призме с углами заострения ($\phi = 25^{\circ}+5^{\circ} = 30^{\circ}$; $\phi = 20^{\circ}+10^{\circ}$; $\phi = 15^{\circ}+15^{\circ}$ и $\phi = 30^{\circ}$) с учетом характеристики разрушаемого массива [145, 149, 161, 162, 165]. В расчетах использованы марки сталей: 35ХГСА и Ст. 45.

Рисунок 3.15 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления биконического дискового инструмента (φ = 25°+5° = 30°) при разрушении забойного массива: a – σ_{cж} = 12,4 МПа; б – σ_{cж} = 78,9 МПа

Рисунок 3.16 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления биконического дискового инструмента ($\phi = 20^\circ + 10^\circ = 30^\circ$) при разрушении забойного массива: $a - \sigma_{c*} = 12,4$ МПа; $\delta - \sigma_{c*} = 78,9$ МПа

Рисунок 3.17 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления биконического дискового инструмента (φ = 15°+15° = 30°) при разрушении забойного массива: a – σ_{сж} = 12,4 МПа; б – σ_{сж} = 78,9 МПа

Рисунок 3.18 – Распределение эквивалентных напряжений по критерию Мизеса в узле крепления конического дискового инструмента (φ = 30°) при разрушении забойного массива: a – σ_{cж} = 12,4 MПa; б – σ_{cж} = 78,9 MПa

На рисунке 3.19 и в таблице 3.2 представлены зависимости распределения эквивалентных напряжений $\sigma_{3\kappa B}$ от диаметров D сопряженных конструктивных элементов консольных узлов крепления с раздельными дисковыми инструментами к четырехгранной призме для прогнозируемого разрушения забойного массива $\sigma_{c\kappa}$: уголь (1 – 12,4 МПа), порода (2 – 51 МПа; 3 – 60,6 МПа; 4 – 78,9 МПа) [145, 162, 165].

Рисунок 3.19 – Зависимости эквивалентных напряжений σ_{экв} от диаметра D сопряженных конструктивных элементов в сечении, проходящем через лезвие дисков с раздельными узлами консольного крепления к четырехгранной призме: a – φ = 5°+25°; б – φ = 10°+20°; в – φ = 15°+15°; г – φ = 0°+30°; D₁ – лезвие диска; D₂ – цапфа; D₃ – ось с буртиком

77

Таблица 3.2 – Результаты определения полиномиальных зависимостей эквивалентных напряжений σ_{экв} от диаметра D дисков при статическом нагружении раздельного дискового инструмента с узлами консольного крепления на четырехгранных призмах

Углы заостре- ния двух дис- ков $\phi = \phi_1 + \phi_{2,}$ град	Забойные массивы, σ _{сж} , МПа		Полиномиальные зависимости	Коэффициенты достоверности аппроксимации R ²
	1	12,4	$\sigma_{_{3KB}} = 9 \cdot 10^{-10} \text{D}^6 - 49 \cdot 10^{-7} \text{D}^5 + 79 \cdot 10^{-5} \text{D}^4 - 0,005 \text{D}^3 + 0,1473 \text{D}^2 - 0,4312 \text{D} + 3,5697$	0,8307
5° 1 25°	2	51	$\sigma_{_{3KB}} = 5 \cdot 10^{-10} \text{D}^6 - 3 \cdot 10^{-7} \text{D}^5 + 5 \cdot 10^{-5} \text{D}^4 - 0,0034 \text{D}^3 + 0,0955 \text{D}^2 + 0,236 \text{D} + 2,227$	0,9124
5 +25	3	60,6	$\sigma_{_{3KB}} = 6 \cdot 10^{-10} \text{D}^6 - 3 \cdot 10^{-7} \text{D}^5 + 5 \cdot 10^{-5} \text{D}^4 - 0,0041 \text{D}^3 + 0,1219 \text{D}^2 - 0,0698 \text{D} + 2,6707$	0,9093
	4	78,9	$\sigma_{_{3KB}} = 2 \cdot 10^{-9} \text{D}^6 - 8 \cdot 10^{-7} \text{D}^5 + 0,0001 \text{D}^4 - 0,0115 \text{D}^3 + 0,3972 \text{D}^2 - 3,802 \text{D} + 11,028$	0,9305
	1	12,4	$\sigma_{_{3KB}} = 9 \cdot 10^{-10} \text{D}^6 - 4 \cdot 10^{-7} \text{D}^5 + 7 \cdot 10^{-5} \text{D}^4 - 0,0051 \text{D}^3 + 0,1618 \text{D}^2 - 0,792 \text{D} + 4,5062$	0,8155
100,200	2	2 51	$\sigma_{_{3KB}} = 4 \cdot 10^{-10} \text{D}^6 - 1 \cdot 10^{-7} \text{D}^5 + 2 \cdot 10^{-5} \text{D}^4 - 0,0011 \text{D}^3 - 0,0011 \text{D}^2 + 1,5566 \text{D} - 0,5273$	0,8962
10 +20	3	60,6	$\sigma_{_{3KB}} = 7 \cdot 10^{-10} \text{D}^6 - 3 \cdot 10^{-7} \text{D}^5 + 5 \cdot 10^{-5} \text{D}^4 - 0,0033 \text{D}^3 + 0,0822 \text{D}^2 + 0,4756 \text{D} + 1,7038$	0,8832
	4	78,9	$\sigma_{_{3KB}} = 5 \cdot 10^{-10} \text{D}^6 - 2 \cdot 10^{-7} \text{D}^5 + 4 \cdot 10^{-5} \text{D}^4 - 0,003 \text{D}^3 + 0,0857 \text{D}^2 + 0,3425 \text{D} + 1,9343$	0,8462
	1	12,4	$\sigma_{_{3KB}} = 1 \cdot 10^{-9} \text{D}^6 - 5 \cdot 10^{-7} \text{D}^5 + 9 \cdot 10^{-5} \text{D}^4 - 0,0071 \text{D}^3 + 0,2323 \text{D}^2 - 1,9484 \text{D} + 4,5644$	0,704
150,150	2	51	$\sigma_{_{3KB}} = 7 \cdot 10^{-10} \text{D}^6 - 3 \cdot 10^{-7} \text{D}^5 + 4 \cdot 10^{-5} \text{D}^4 - 0,0025 \text{D}^3 + 0,045 \text{D}^2 + 0,8656 \text{D} - 0,1547$	0,8645
15 +15	3	60,6	$\sigma_{_{3KB}} = 6 \cdot 10^{-10} \text{D}^6 - 2 \cdot 10^{-7} \text{D}^5 + 3 \cdot 10^{-5} \text{D}^4 - 0,0017 \text{D}^3 + 0,0208 \text{D}^2 + 1,1856 \text{D} - 0,8734$	0,8712
	4	78,9	$\sigma_{_{3KB}} = 8 \cdot 10^{-10} \text{D}^6 - 3 \cdot 10^{-7} \text{D}^5 + 5 \cdot 10^{-5} \text{D}^4 - 0,0031 \text{D}^3 + 0,0604 \text{D}^2 + 0,9739 \text{D} - 0,1622$	0,763
	1	12,4	$\sigma_{_{3KB}} = 8 \cdot 10^{-10} \text{D}^6 - 4 \cdot 10^{-7} \text{D}^5 + 8 \cdot 10^{-5} \text{D}^4 - 0,0059 \text{D}^3 + 0,1813 \text{D}^2 - 0,9435 \text{D} + 1,7707$	0,8275
0°+20°	2	51	$\sigma_{_{3KB}} = 1 \cdot 10^{-9} \text{D}^6 - 7 \cdot 10^{-7} \text{D}^5 + 0,0001 \text{D}^4 - 0,0099 \text{D}^3 + 0,3281 \text{D}^2 - 2,8843 \text{D} + 6,5965$	0,8627
0*+30*	3	60,6	$\sigma_{_{3KB}} = 2 \cdot 10^{-9} \text{D}^6 - 8 \cdot 10^{-7} \text{D}^5 + 0,0001 \text{D}^4 - 0,0108 \text{D}^3 + 0,3579 \text{D}^2 - 3,1909 \text{D} + 6,9559$	0,8572
	4	78,9	$\sigma_{_{3KB}} = 2 \cdot 10^{-9} \text{D}^6 - 9 \cdot 10^{-7} \text{D}^5 + 0,0002 \text{D}^4 - 0,0125 \text{D}^3 + 0,4166 \text{D}^2 - 3,8895 \text{D} + 7,5362$	0,8501

На рисунках 3.20, 3.21 и в таблице 3.3 представлены зависимости распределения величины эквивалентных напряжений $\sigma_{_{3KB}}$ по критерию Мизеса в сопряженных конструктивных элементах (1–6) консольного узла крепления дискового инструмента на четырехгранной призме от разрушаемого горного массива σ_{cw} . Характеристики горного массива: уголь ($\sigma_{cw} = 12,4$ МПа; 13,5 МПа; 14,8 МПа) и порода ($\sigma_{cw} = 51$ МПа; 60,6 МПа; 78,9 МПа). Произведен анализ зависимостей по сечению, проходящему через режущую кромку каждого из четырех дисковых инструментов диаметром D = 0,16 м с учетом углов заострения: (биконические: $\varphi = \varphi_1 + \varphi_2 = 5^\circ + 25^\circ = 30^\circ$; $10^\circ + 20^\circ = 30^\circ$; $15^\circ + 15^\circ = 30^\circ$ и конический $\varphi = 0^\circ + 30^\circ$) [162].

Рисунок 3.20 – Зависимости эквивалентных напряжений σ_{экв} от предела прочности разрушаемого горного массива на сжатие σ_{сж} в диаметральном сечении по лезвию диска (φ) для сопрягаемых конструктивных элементов (1–6) узла консольного крепления к четырехгранной призме: а – φ = 5°+25°; б – φ = 10°+20°

Таблица 3.3 – Зависимости эквивалентных напряжений $\sigma_{_{3KB}}$ в сопряженных элементах консольных узлов крепления дисков к четырехгранным призмам от $\sigma_{_{CK}}$ пород

Углы заостре- ния дисков $\phi = \phi_1 + \phi_{2,1}$ град	Поверхности моделирования сопрягаемых конструктивных элементов		Зависимости	Коэффициенты достоверности аппроксимации R ²
1 * 7	1	по кромке диска	$\sigma_{_{3KB}} = 1,0115 \sigma_{_{CK}} + 105,44$	0,9711
	2	по ступице диска	$\sigma_{_{3KB}} = 1,1923 \sigma_{_{CK}} + 49,771$	0,9519
	3	по наружной поверхно- сти цапфы	$\sigma_{_{3KB}} = 0,5683 \sigma_{_{CK}} + 38,424$	0,685
5°+25°	4	по внутренней поверх- ности цапфы	$\sigma_{_{3KB}} = 0,1728 \sigma_{_{CK}} + 59,486$	0,8121
	5	по наружной поверхно- сти оси	$\sigma_{_{3KB}} = 0,1645 \sigma_{_{CK}} + 57,655$	0,819
	6	в центре оси	$\sigma_{_{3KB}} = 0,0997 \sigma_{_{CK}} + 17,194$	0,5241
	1	по кромке диска	$\sigma_{_{3KB}} = 1,153 \sigma_{_{CK}} + 94,515$	0,963
	2	по ступице диска	$\sigma_{_{3KB}} = 0,7837 \sigma_{_{CK}} + 59,495$	0,9911
10°+20°	3	по наружной поверхно- сти цапфы	$\sigma_{_{3KB}} = 0,4563 \sigma_{_{CK}} + 23,353$	0,9969
	4	по внутренней поверх- ности цапфы	$\sigma_{_{3KB}} = 0,273 \sigma_{_{CK}} + 49,9$	0,851
	5	по наружной поверхно- сти оси	$\sigma_{_{3KB}} = 0.921 \sigma_{_{CK}} + 35.783$	0,5218
	6	в центре оси	$\sigma_{3KB} = 0,2206 \sigma_{CK} + 22,06$	0,7235
	1	по кромке диска	$\sigma_{_{3KB}} = 0,9396 \sigma_{_{CK}} + 103,59$	0,9442
	2	по ступице диска	$\sigma_{_{3KB}} = 0,5622 \sigma_{_{CK}} + 53,984$	0,5191
	3	по наружной поверхно- сти цапфы	$\sigma_{_{3KB}} = 0,3284 \sigma_{_{CK}} + 16,344$	0,9024
15°+15°	4	по внутренней поверх- ности цапфы	$\sigma_{_{3KB}} = 0,1354 \sigma_{_{CK}} + 56,883$	0,4664
	5	по наружной поверхно- сти оси	$\sigma_{_{3KB}} = 0,5446 \sigma_{_{CK}} + 47,124$	0,4087
	6	в центре оси	$\sigma_{_{3KB}} = 0,3868 \sigma_{_{CK}} + 9,6287$	0,9629
	1	по кромке диска	$\sigma_{_{3KB}} = 0,9328 \sigma_{_{CK}} + 116,43$	0,8789
	2	по ступице диска	$\sigma_{_{3KB}} = 0,4487 \sigma_{_{CK}} + 115,99$	0,9884
0° +30°	3	по наружной поверхно- сти цапфы	$\sigma_{_{3KB}} = 0,4338 \sigma_{_{CK}} + 38,498$	0,8523
	4	по внутренней поверх- ности цапфы	$\sigma_{_{3KB}} = 1,2391 \sigma_{_{CK}} + 38,897$	0,9435
	5	по наружной поверхно- сти оси	$\sigma_{_{3KB}} = 0,4039 \sigma_{_{CK}} + 98,013$	0,6492
	6	в центре оси	$\sigma_{_{3KB}} = 0,0282 \sigma_{_{CK}} + 9,5708$	0,9368

Рисунок 3.21 – Зависимости эквивалентных напряжений σ_{экв} от предела прочности разрушаемого горного массива на сжатие σ_{сж} в диаметральном сечении по лезвию диска (φ) для сопрягаемых конструктивных элементов (1–6) узла консольного крепления к четырехгранной призме: a – φ = 15°+15°; б – φ = 0°+30°

На рисунке 3.22 представлены результаты моделирования перемещений в раздельных узлах крепления дисковых инструментов к четырехгранным призмам.

Рисунок 3.22 – Перемещения в раздельных консольных узлах крепления биконических дисковых инструментов (ϕ) при статическом нагружении породного массива $\sigma_{cx} = 60,6$ МПа: $a - \phi = 25^{\circ} + 5^{\circ}; \delta - \phi = 20^{\circ} + 10^{\circ}; B - \phi = 15^{\circ} + 15^{\circ}; B - \phi = 30^{\circ}$

Минимальный уровень эквивалентных напряжений $\sigma_{3\kappa B}$ при разрушении забойных массивов ($\sigma_{c\kappa} = 12,4-78,9$ МПа) отмечен установкой биконического дискового инструмента ($\phi = 5^{\circ}+25^{\circ} = 30^{\circ}$; $10^{\circ}+20^{\circ} = 30^{\circ}$; $15^{\circ}+15^{\circ} = 30^{\circ}$), а максимальный уровень эквивалентных напряжений $\sigma_{3\kappa B}$ отмечен при использовании конического дискового инструмента ($\phi = 0^{\circ}+30^{\circ}$). В конструкциях биконического дискового инструмента при изменении углов заострения от асимметричного ($\phi = 5^{\circ}+25^{\circ}$; $10^{\circ}+20^{\circ}$) до симметричного ($\phi = 15^{\circ}+15^{\circ}$) фиксируется снижение расчетного уровня максимальных эквивалентных напряжений $\sigma_{3\kappa B}$ у симметричного диска для всех вариантов нагружения.

Зависимости распределения эквивалентных напряжений $\sigma_{3\kappa B}$ по критерию Мизеса от диаметра D сопрягаемых конструктивных элементов в сечении, проходящем через лезвие дискового инструмента к четырехгранным призмам описывается полиномиальными зависимостями. При этом зависимости распределения эквивалентных напряжений $\sigma_{3\kappa B}$ по критерию Мизеса на кромках дисковых инструментов консольных узлов крепления к четырехгранной призме от показателей разрушаемого горного массива $\sigma_{c\kappa}$ описываются линейными зависимостями.

При статическом нагружении четырех вариантов конструкций раздельных консольных узлов крепления дискового инструмента к четырехгранным призмам для горных пород (σ_{c*} от 12,4 до 78,9 МПа) определена картина максимальных деформационных перемещений в области до 0,06 мм.

Эквивалентные напряжения по критерию Мизеса $\sigma_{3\kappa B}$ до 180 МПа для расчетного диапазона прочности горных пород на забойных проходческих массивах ($\sigma_{c\kappa}$ от 12,4 до 78,9 МПа) существенно ниже предела текучести для стали 35ХГСА ($\sigma_{T} = 490$ МПа) и Ст. 45 ($\sigma_{T} = 275$ МПа).

С учетом изложенного можно рекомендовать применение указанных марок сталей для изготовления всех деталей раздельных консольных узлов крепления двух дисковых инструментов к четырехгранным призмам.

3.3 Напряженно-деформированное состояние вариантов консольных узлов крепления спаренных дисковых инструментов к четырехгранным призмам

На рисунках 3.23, 3.24 представлены результаты моделирования напряженного состояния консольных узлов крепления биконических и конических дисковых инструментов ($\phi = 5^{\circ}+25^{\circ} = 30^{\circ}$; $\phi = 10^{\circ}+20^{\circ} = 30^{\circ}$; $\phi = 15^{\circ}+15^{\circ} = 30^{\circ}$ и $\phi = 0^{\circ}+30^{\circ}$) к четырехгранным призмам с учетом предела прочности на одноосное сжатие забойного массива $\sigma_{c\kappa}$ от 12,4 до 78,9 МПа. В расчетах использованы марки сталей: 35ХГСА, Ст. 45, Ст.65Г, Ст.15 [145, 166].

Рисунок 3.23 – Распределение эквивалентных напряжений по критерию Мизеса в деталях консольных узлов крепления спаренных дисковых инструментов при разрушении угольного массива σ_{сж} = 12,4 МПа

Рисунок 3.24 – Распределение эквивалентных напряжений по критерию Мизеса в деталях консольных узлов крепления спаренных дисковых инструментов при разрушении породного массива σ_{сж} = 78,9 МПа

На рисунке 3.25 представлены зависимости эквивалентных напряжений $\sigma_{3\kappa B}$ по критерию Мизеса от диаметра D дискового инструмента в плоскости сечения по лезвию диска со стороны крепежного винта для спаренного режима вращения дисков при разрушении забойных массивов σ_{cw} : угольного (1 – 12,4 МПа), породных (2 – 51 МПа; 3 – 60,6 МПа; 4 – 78,9 МПа) [166].

В таблице 3.4 представлены полиномиальные зависимости эквивалентных напряжений σ_{экв} по критерию Мизеса от диаметра D дискового инструмента в плоскости сечения по лезвию диска со стороны крепежного винта узла крепления к четырехгранной призме для спаренного режима вращения четырех конструктивных вариантов дисков при разрушении забойных массивов [166].

84

Рисунок 3.25 – Зависимости эквивалентных напряжений $\sigma_{3\kappa B}$ от диаметра D сопряженных конструктивных элементов в сечении, проходящем через лезвие спаренных дисков с узлами консольного крепления к четырехгранным призмам: $a - \phi = 5^{\circ} + 25^{\circ}; \ \delta - \phi = 10^{\circ} + 20^{\circ}; \ B - \phi = 15^{\circ} + 15^{\circ}; \ \Gamma - \phi = 0^{\circ} + 30^{\circ};$ $D_1 -$ лезвие диска; $D_3 -$ ось с буртиком

85

Таблица 3.4 – Полиномиальные зависимости эквивалентных напряжений $\sigma_{_{3кв}}$ от диаметра D дисков при статическом нагружении спаренного дискового инструмента с узлами консольного крепления на четырехгранных призмах

Углы заострения	Забойные	Полиномиальные	Коэффициенты
диска $\varphi = \varphi_1 + \varphi_2$,	массивы,	зависимости	достоверности
Трад	12,4	$\sigma_{_{3KB}} = 2 \cdot 10^{-7} D^4 - 3 \cdot 10^{-5} D^3 + 0.002 D^2 - 0.0106 D$	0,9711
25° + 5°	51	$\sigma_{_{3KB}} = -8 \cdot 10^{-8} D^4 + 1 \cdot 10^{-5} D^3 + 0,0049 D^2 - 0,0918 D$	0,898
25 +5	60,6	$\sigma_{_{3KB}} = -2 \cdot 10^{-7} D^4 + 4 \cdot 10^{-5} D^3 + 0,0025 D^2 + 0,0038 D$	0,8982
	78,9	$\sigma_{_{3KB}} = -4 \cdot 10^{-7} D^4 + 1 \cdot 10^{-4} D^3 - 0,0005 D^2 + 0,0579 D$	0,9037
	12,4	$\sigma_{_{3KB}} = 1 \cdot 10^{-6} D^4 - 0,0003 D^3 + 0,0244 D^2 - 0,5984 D$	0,9399
200 + 100	51	$\sigma_{_{3KB}} = 1 \cdot 10^{-6} D^4 - 0,0003 D^3 + 0,0339 D^2 - 0,7942 D$	0,8921
20*+10*	60,6	$\sigma_{_{3KB}} = 1 \cdot 10^{-6} D^4 - 0,0003 D^3 + 0,0329 D^2 - 0,7628 D$	0,8877
	78,9	$\sigma_{_{3KB}} = 9 \cdot 10^{-7} D^4 - 0,0003 D^3 + 0,0295 D^2 - 0,6635 D$	0,8909
	12,4	$\sigma_{_{3KB}} = 1 \cdot 10^{-6} D^4 - 0,0003 D^3 + 0,0247 D^2 - 0,6035 D$	0,9423
15° + 15°	51	$\sigma_{_{3KB}} = 2 \cdot 10^{-6} D^4 - 0,0006 D^3 + 0,0517 D^2 - 1,2264 D$	0,858
15 +15	60,6	$\sigma_{_{3KB}} = 2 \cdot 10^{-6} D^4 - 0,0006 D^3 + 0,0523 D^2 - 1,1771 D$	0,8458
	78,9	$\sigma_{_{3KB}} = 2 \cdot 10^{-6} D^4 - 0,0006 D^3 + 0,0548 D^2 - 1,2626 D^4$	0,8041
	12,4	$\sigma_{_{3KB}} = -8 \cdot 10^{-7} D^4 + 0,0003 D^3 - 0,0246 D^2 + 0,6791 D$	0,9532
0°+30°	51	$\sigma_{_{3KB}} = -1 \cdot 10^{-6} \text{D}^4 + 0,0004 \text{D}^3 - 0,0355 \text{D}^2 + 1,0052 \text{D}$	0,9246
	60,6	$\sigma_{_{3KB}} = -2 \cdot 10^{-6} \text{D}^4 + 0,0005 \text{D}^3 - 0,0405 \text{D}^2 + 1,178 \text{D}$	0,8986
	78,9	$\sigma_{_{3KB}} = -2 \cdot 10^{-6} \text{D}^4 + 0.0005 \text{D}^3 - 0.037 \text{D}^2 + 1.0852 \text{D}^3$	0,8808

На рисунке 3.26 представлен сводный график зависимостей эквивалентных напряжений $\sigma_{_{3KB}}$ от диаметра D спаренных дисковых инструментов разных конструктивных вариантов к четырехгранным призмам (три биконических с углами за-

сопряженных конструктивных элементов в сечении, проходящем через лезвие дисков со спаренными узлами консольного крепления к четырехгранной призме: D₁ – лезвие диска; D₃ – диаметр оси с буртиком

Анализ результатов зависимостей эквивалентных напряжений $\sigma_{3\kappa B}$ от диаметра D спаренных дисковых инструментов четырех конструктивных вариантов показывает, что при разрушении угольных забойных массивов проходческих горных выработок все они имеют характер изменения в виде полиномиальных зависимостей с максимальной крутизной нарастания к зоне разрушения массива с глубиной внедрения h = 0,04 м при диаметре лезвия диска D = 0,16 м. Здесь максимальный уровень эквивалентных напряжений $\sigma_{3\kappa B}$ составляет 95 МПа, что характерно при разрушении угольного забойного массива коническим дисковым инструментом $\phi = \phi_1 + \phi_2 = 0^\circ + 30^\circ$. Для трех конструктивных вариантов биконических спаренных дисковых инструментов ($\phi = 25^\circ + 5^\circ = 30^\circ$; $20^\circ + 10^\circ$; $15^\circ + 15^\circ$) отмечается снижение уровня эквивалентных напряжений $\sigma_{3\kappa B}$ до 85–87 МПа.

Установлено, что при разрушении породных забойных массивов зависимости эквивалентных напряжений $\sigma_{_{3KB}}$ от диаметра D спаренных дисковых инструментов описываются полиномами четвертой степени с более пологой крутизной нарастания к зоне разрушения породного массива по сравнению с угольными забоями при глубине внедрения лезвия диска h = 0,006 м. При этом максимальный уровень $\sigma_{_{3KB}}$ находится в диапазоне 97–100 МПа, что существенно ниже предела текучести для стали 35ХГСА ($\sigma_{\rm T}$ = 490 МПа) и Ст. 45 ($\sigma_{\rm T}$ = 275 МПа).

3.4 Выводы

1. Выявлено влияние конструкции консольного узла крепления дискового инструмента к забойной грани трехгранной призмы на размеры зон концентрации максимальных эквивалентных напряжений в сопряженных конструктивных элементах при статическом нагружении, которые имеют минимальные значения для всех типов биконических дисковых инструментов с гаечным вариантом крепления.

2. Для трехгранных и четырехгранных призм минимальный уровень эквивалентных напряжений $\sigma_{3\kappa B}$ при разрушении забойных массивов ($\sigma_{c\kappa} = 12,4-120$ МПа) отмечен установкой биконического дискового инструмента ($\phi = 5^{\circ}+25^{\circ} = 30^{\circ}$; $10^{\circ}+20^{\circ} = 30^{\circ}$; $15^{\circ}+15^{\circ} = 30^{\circ}$), а максимальный уровень эквивалентных напряжений $\sigma_{3\kappa B}$ отмечен при использовании конического дискового инструмента ($\phi = 0^{\circ}+30^{\circ}$). В конструкциях биконического дискового инструмента при изменении углов заострения от асимметричного ($\phi = 5^{\circ}+25^{\circ}$; $10^{\circ}+20^{\circ}$) до симметричного ($\phi = 15^{\circ}+15^{\circ}$) фиксируется снижение расчетного уровня максимальных эквивалентных напряжений $\sigma_{3\kappa B}$ у симметричного диска для всех вариантов нагружения.

3. Зависимости распределения эквивалентных напряжений $\sigma_{3\kappa B}$ по критерию Мизеса от диаметра D сопряженных конструктивных элементов в сечении, проходящем через лезвие дискового инструмента к трехгранным и четырехгранным призмам описывается полиномиальными зависимостями. При этом зависимости распределения эквивалентных напряжений $\sigma_{3\kappa B}$ по критерию Мизеса на лезвиях дисковых инструментов консольных узлов крепления к четырехгранной призме от показателей разрушаемого горного массива σ_{c*} описываются линейными зависимостями.

4. Анализ результатов зависимостей эквивалентных напряжений σ_{экв} от диаметра D спаренных дисковых инструментов показывает, что при разрушении угольных забойных массивов проходческих горных выработок независимо от параметров биконичности углов заострения они являются полиномиальными с максимальной крутизной нарастания к зоне разрушения с глубиной внедрения h =

0,04 м при диаметре лезвия диска D = 0,16 м. Максимальный уровень эквивалентных напряжений $\sigma_{_{3KB}}$ составляет 95 МПа, что характерно для разрушения угольного забойного массива коническим дисковым инструментом $\phi = \phi_1 + \phi_2 = 0^\circ + 30^\circ$. Для трех биконических спаренных дисковых инструментов ($\phi = 25^\circ + 5^\circ = 30^\circ$; $20^\circ + 10^\circ$; $15^\circ + 15^\circ$) отмечается снижение уровня эквивалентных напряжений $\sigma_{_{3KB}}$ до 85–87 МПа.

5. Установлено, что при разрушении породных забойных массивов зависимости эквивалентных напряжений $\sigma_{3\kappa B}$ от диаметра D спаренных дисковых инструментов описываются полиномами четвертой степени с более пологой крутизной нарастания к зоне разрушения породного массива по сравнению с угольными забоями при глубине внедрения h = 0,006 м и диаметре лезвия диска D = 0,16 м. Для всех вариантов конструкций дисковых инструментов максимальный уровень эквивалентных напряжений $\sigma_{3\kappa B}$ расположен в диапазоне 97–100 МПа.

6. Определено, что эквивалентные напряжения $\sigma_{3\kappa B}$ по критерию Мизеса при статическом нагружении консольных узлов крепления дискового инструмента к трехгранным и четырехгранным призмам на стреловидных исполнительных органах проходческих комбайнов существенно ниже предела текучести для стали 35ХГСА ($\sigma_T = 490$ МПа) и Ст. 45 ($\sigma_T = 275$ МПа), а максимальные уровни деформационных перемещений при статическом нагружении составляют:

- для трехгранных призм с вариантами конструкций узлов крепления дискового инструмента для горных пород (σ_{сж} 70 МПа и 120 МПа) до 0,045 мм;

- для четырехгранных призм с вариантами конструкций раздельных узлов крепления дискового инструмента для горных пород (σ_{сж} от 12,4 до 78,9 МПа) до 0,06 мм.

4 ОБОСНОВАНИЕ НАГРУЖЕННОСТИ ДВУХКОРОНЧАТЫХ СТРЕЛОВИДНЫХ ИСПОЛНИТЕЛЬНЫХ ОРГАНОВ ПРОХОДЧЕСКИХ КОМБАЙНОВ С ДИСКОВЫМ ИНСТРУМЕНТОМ НА ТРЕХГРАННЫХ ПРИЗМАХ

4.1 Формирование суммарных усилий на реверсивной коронке с дисковыми инструментами на трехгранных призмах при разрушении забойных массивов

Для решения четвертой задачи диссертационной работы по оценке суммарных усилий и крутящих моментов на отдельных коронках двухкорончатого стреловидного исполнительного органа с дисковым инструментом при реверсивных режимах работы в КузГТУ предложено техническое решение, представленное на рисунке 4.1. Двухкорончатый стреловидный исполнительный орган при проведении горных выработок по углю и смешанному забою с присечкой горных пород обеспечивает совмещение процессов разрушения забоев неоднородной структуры, дробления негабаритов и погрузки горной массы на стол питателя [60, 129, 146, 167].

Рисунок 4.1 – Исполнительный орган проходческого комбайна с двумя радиальными коронками: а – кинематическая схема; б – схема зарубки

Исполнительный орган (рисунок 4.1, а) включает стрелу с раздаточным редуктором, в корпусе 1 которого размещен вал 2, который получает вращательное движение от выходного вала основного привода стрелы проходческого комбайна. Далее вращение через вал 2 и шестерню 3 передается зубчатому колесу 4, которое прикреплено к валу 5. Через вал 5, к которому прикреплена шестерня 6 вращательное движение передается с одной стороны на зубчатое колесо 7, а с другой стороны на промежуточное зубчатое колесо 8, вал 9 и зубчатое колесо 10, вал 11 соответственно. При этом зубчатое колесо 7 жестко прикреплено к валу 12, который прикреплен к ступице корпуса 13 левой коронки, которая вращается, например, против часовой стрелке n₁. Вал 11 раздаточного редуктора жестко прикреплен к ступице корпуса 14 правой коронки, которая в данном случае вращается по часовой стрелке n₂. На усеченных конических поверхностях корпусов коронок 13 и 14 по определенной схеме набора размещены и прикреплены трехгранные призмы 15 с дисковыми инструментами 16. Валы и оси внутри корпуса 1 раздаточного редуктора центрируются через опоры, содержащие радиальные 17 и упорные 18 шарикоподшипники.

В процессе проходки горной выработки, перед каждым рабочим циклом, первоначально осуществляют зарубку двухкорончатого исполнительного органа на ширину захвата B_3 разрушающе-погрузочными коронками 13, 14 (рисунок 4.1, б). При этом стрела перемещается по направлению движения 1' от кровли выработки к почве с постепенным телескопическим удлинением по стрелке К от $B_3 = 0$ до требуемой величины B_3 и после этого производят подъемно-поворотное перемещение стрелы по стрелке Л от почвы к кровле выработки по направлению движения 2'.

На рисунке 4.2 представлено начальное положение коронок для иллюстрации взаимного расположения трехгранных призм с дисковыми инструментами в центральной зоне пересечения траекторий движения. При этом бесконтактный режим вращения трехгранных призм с дисковыми инструментами в центральной зоне обеспечен их относительным сдвигом в зоне выступов и впадин на угол 22,5 градуса. На рисунке 4.2, а, б представлено движение коронок вверх и вниз соответственно [167].

91

Рисунок 4.2 – Траектории движения трехгранных призм и дискового инструмента с пересечением без контакта в центральной зоне проходческого забоя:
1 – врубовая поверхность; 2 и 3 – радиальные правая и левая коронки; 4 – трех-гранная призма; 5 – дисковый инструмент; 6 – семейство окружностей перемещения лезвий дисков; В_{и.о.} – ширина исполнительного органа; D_{макс.} – диаметр максимальной окружности перемещения лезвий дискового инструмента

В соответствии со схемой набора (рисунок 4.2) и количеством одинаковых групп дисков на трехгранных призмах осуществляется поворот каждой радиальной группы дисков на условно фиксированные угловые положения через 45 градусов. Это составляет в контакте с забоем в секторе его охвата на 180° восемь условных фиксированных положений внедрения диска в забой за один полный цикл оборотов двух реверсивных радиальных коронок. При этом положении коронок с поворотом на 45 градусов обеспечено бесконтактным, кинематически связанным размещением в зоне пересечения траекторий движения трехгранных призм с дисками №4 и №8 правой коронки с опережением на 22,5 градуса трехгранных призм с стороны поверхности забоя и соответственно с отставанием на 22,5 градуса от левой коронки при встречном на 22,5 градуса от левой коронки при встречном на 22,5 градуса от левой коронки при попутном направлении вращения.

Схемы набора инструментов на каждой коронке образуют двухзаходные спирали с двумя дисками в линии перекатывания и шагом между ними t = 75 мм. При взаимодействии правой и левой коронок с породой на них действуют внешние нагрузки в виде суммарных осевых усилий и крутящих моментов (рисунок 4.3) [168]. За базовую машину в расчетах принят проходческий комбайн КП21 производства АО «Копейский машиностроительный завод» [43], который в последнее время получил широкое применение на шахтах ОАО "СУЭК-Кузбасс".

Рисунок 4.3 – Схемы суммарных осевых сил и крутящих моментов в плоскости вращения двухкорончатого рабочего органа: а, б – при подъеме и опускании стрелы; в, г – при боковом перемещении стрелы; 1, 2 – левая и правая коронки

На рисунках 4.2 и 4.3 приняты следующие обозначения:

 $\Sigma P_{\text{опп}}, \Sigma P_{\text{опп}}$ – суммарные осевые усилия на правой и левой коронках при подъеме стрелы;

 $\Sigma P_{\text{опо}}, \Sigma P_{\text{оло}}$ – суммарные осевые усилия на правой и левой коронках при опускании стрелы;

 $\Sigma P_{\text{опб}}, \Sigma P_{\text{олб}}$ – суммарные осевые усилия на правой или левой коронках при боковых перемещениях стрелы;

 $\Sigma M_{\rm кnn}$, $\Sigma M_{\rm кnn}$ – суммарные крутящие моменты на правой или левой коронках при подъеме стрелы;

 $\Sigma M_{\rm kno}$, $\Sigma M_{\rm kno}$ – суммарные крутящие моменты на правой и левой коронках при опускании стрелы;

 $\Sigma M_{\rm kn6}$, $\Sigma M_{\rm kn6}$ – суммарные крутящие моменты на правой и левой коронках при боковых перемещениях стрелы;

V_п – направление скорости перемещения стрелы с коронками;

 $\Sigma P_{\text{оп}} = \Sigma P_{\text{опп}} + \Sigma P_{\text{олп}}$ – суммарные осевые усилия на сдвоенных коронках при подъеме стрелы;

 $\Sigma P_{oo} = \Sigma P_{ono} + \Sigma P_{ono}$ – суммарные осевые усилия на сдвоенных коронках при опускании стрелы;

 $P_{y1...}P_{y8}$ – осевые усилия на каждом из восьми одиночных дисках;

 $P_{z1...}P_{z8}$ – окружные усилия на каждом из восьми одиночных дисках;

 $P_{\text{д1...}} P_{\text{д8}}$ – результирующие усилия на каждом из восьми одиночных дисках.

Во время работы дисковый инструмент своей передней частью по дуге ОА внедряется в породу на глубину h (рисунок 4.4, б). При этом каждая точка его лезвия описывает циклоиду. Для упрощения расчетов предположим, что дисковый инструмент перемещается по поверхности контакта с разрушаемым забоем без проскальзывания. Путь АБ в контакте с породой за один оборот дискового инструмента определится из выражения [167, 169]:

$$L = 2D(1 - \sqrt{1 - \frac{h}{D}}), \text{ MM},$$
 (4.1)

где D – диаметр дискового инструмента, мм;

h – глубина вдавливания дискового инструмента в породу, мм.

Угол входа лезвия в контакт с породой

$$\theta = \frac{\pi}{2} - \frac{1}{2} \arccos(1 - \frac{2h}{D}), \ \Gamma \text{рад.}$$
(4.2)

Расчеты показывают, что при D = 200–600 мм и h = 5–10 мм угол входа θ = 73–82°. При таких углах скольжения лезвия относительно породы отсутствует. При глубине вдавливания h до 15 мм путь L за один оборот дискового инструмента составляет L = (1,05-1,1)h.

Дисковый инструмент (рисунок 4.4, а) представляет собой лезвие 1 с радиусом скругления r_{n} и две боковые щечки 2 и 3. В данном случае обе щечки имеют одинаковые углы заострения φ . Проекции площадей контакта дискового инструмента с породой в плоскостях ХҮ и ХZ в зоне разрушения представлены на рисунках 4.5, а, б [167].

Рисунок 4.4 – Схема сил на биконическом диске: а – в клиновой канавке; б – в направлении качения

Рисунок 4.5 – Площади контакта элементов биконического диска с разрушаемым забойным массивом

Расчет площадей контакта дискового инструмента с породой производится по следующим выражениям:

$$S_{XY} = \int_{S_{1XY}} dS_{1XY} + \int_{S_{2XY}} dS_{2XY} + \int_{S_{3XY}} dS_{3XY} , \qquad (4.3)$$

$$S_{XZ} = \int_{S_{4XZ}} dS_{4XZ} + \int_{S_{5XZ}} dS_{5XZ} + \int_{S_{6XZ}} dS_{6XZ} .$$
(4.4)

Производя интегрирование, получаем после преобразований и некоторых упрощений следующие выражения:

$$S_{XY} = 2r_{_{B}}h + \frac{1}{2}(h - r_{_{B}})(b - 2r_{_{B}}), \qquad (4.5)$$

$$S_{XZ} = 2r_{x}l + \frac{1}{2}(b - 2r_{x})l.$$
(4.6)

На дисковый инструмент во время перекатывания по забою действует реакция со стороны породы, распределенная по параболической кривой (рисунок 4.4, б). Равнодействующая Р распределенных сил расположена под углом γ к оси ОУ и раскладывается на три составляющих P_z , P_y (рисунок 4.4, б) и P_x (рисунок 4.4, а).

Сила давления P_{μ} со стороны породы на поверхность контакта S с дисковым инструментом [45, 167]

$$P_{\mu} = P_{y\mu} S_{xz} / \cos\gamma, H, \quad или \quad P_{\mu} = P_{y\mu} S_{xy} / \sin\gamma, H,$$
(4.7)
где $P_{y\mu} = A P_{\kappa} K_{ht} K_{LH} - удельное давление, МПа;$

 P_{κ} – контактная прочность породы, МПа;

A = 0,38 – экспериментальный коэффициент равный отношению значений сопротивления породы вдавливанию дискового инструмента и контактной прочности породы;

$$K_{ht} = \frac{0.9}{\sqrt{h}} + (0.008h + 0.01)\frac{t}{h} - коэффициент, учитывающий соотношение пара-$$

метров разрушения породы h и t;

h и t – глубина вдавливания и шаг разрушения породы, мм;

К_{LH} – коэффициент, учитывающий схему работы дискового инструмента

$$K_{LH} = \sqrt{\cos\left(\operatorname{arctg}\frac{L}{H}\right)},\tag{4.8}$$

L – длина уступа, мм; Н – ширина уступа, мм

Значения сил перекатывания P_z , подачи на забой P_y и боковой составляющей P_x определялись из выражений (рисунок 4.4, а, б):

$$P_z = P_{\pi} \sin \gamma \tag{4.9}$$

$$P_{y} = P_{\pi} \cos \gamma \tag{4.10}$$

$$P_x = P_{\alpha} \cos\gamma \sin\alpha \tag{4.11}$$

Сила трения качения дискового инструмента по породе (рисунок 4.4, *б*) определится по формуле

$$F = \mu_k P_{\pi}, \quad \text{H}, \tag{4.12}$$

где $\mu_k = 0.045 - коэффициент трения качения.$

На основе анализа характеристик вмещающих пород в угольных пластах Кузбасса расчеты нагруженности реверсивных коронок с дисковым инструментом на трехгранных призмах произведены для следующих пород [167, 170–172]: $P_{\kappa} = 230$ МПа (f = 3), $\sigma_{c\kappa} = 15-23$ МПа; $P_{\kappa} = 350$ МПа (f = 4), $\sigma_{c\kappa} = 23-35$ МПа; $P_{\kappa} = 490$ МПа (f = 5), $\sigma_{c\kappa} = 35-52$ МПа; $P_{\kappa} = 700$ МПа (f = 6), $\sigma_{c\kappa} = 52-80$ МПа; $P_{\kappa} = 860$ МПа (f = 7), $\sigma_{c\kappa} = 80-100$ МПа; $P_{\kappa} = 1000$ МПа (f = 8), $\sigma_{c\kappa} = 80-120$ МПа; $P_{\kappa} = 1250$ МПа (f = 10), $\sigma_{c\kappa} = 120-180$ МПа.

Процесс взаимодействия одиночных дисковых инструментов правой коронки исполнительного органа с породой (рисунок 4.6) характеризуется тем, что при вращении коронки с дисковым инструментом его лезвие находится в контакте с породой только при $\rho = 0-180^\circ$. При $\rho = 180-360^\circ$ контакт отсутствует. При увеличении ρ с 0° до 90° глубина внедрения *h* лезвия в породу возрастает: $h_1 =$ 0,1 h_{max} , $h_2 = 0,3$ h_{max} , $h_3 = 0,6$ h_{max} , $h_4 = 0,8$ h_{max} и $h_5 = h_{\text{max}}$, а с увеличением ρ с 90° до 180° глубина внедрения *h* уменьшается: $h_6=0,8$ h_{max} , $h_7=0,6$ h_{max} , $h_8=0,3$ h_{max} и $h_9 = 0,1$ h_{max} . Это происходит в условно контрольной угловой последовательности с углами $\rho = 0^\circ$; 22,5°; 45°; 67,5°; 90°; 112,5°; 135°; 157,5° и 180°.

В целом для каждого дискового инструмента поверхность отпечатка в забойном массиве глубины внедрения имеет серповидную форму, параметры которой взаимосвязаны с зонами угловых секторов расположения дисков при перемещении коронок с частотой вращения n и подачей на забой со скоростью V_{π} (рисунок 4.6) [167].

В периферийных зонах A глубина внедрения изменяется в интервале от 0,1 h_{max} до 0,3 h_{max} в средних зонах E – от 0,3 h_{max} до 0,6 h_{max} и в центральных зонах B – от 0,6 h_{max} до h_{max} .

Рисунок 4.6 – Схема формирования глубины внедрения биконического диска радиальных коронок в забойный массив

Максимальное значение глубины поверхности внедрения $h_{\text{макс}}$ дискового инструмента в забойный массив определяется по формуле [167, 169].

$$h_{\max} = \frac{100v_{\pi}}{n m_{l_{\pi}}}, \text{ CM}, \tag{4.13}$$

где *v*_п – скорость перемещения коронки по поверхности забоя, м/мин;

n – частота вращения коронки, мин⁻¹;

*m*_л – количество дисков в линии резания.

В результате получен представительный массив данных по расчетным усилиям $P_{\rm д}$, $P_{\rm z}$, $P_{\rm y}$, F и моментам $M_{\rm d}$ на 32 дисковых инструментах коронок (Приложение A) [167]. Дисковые инструменты устанавливались на коронках с определенным радиусом вращения: 1 диск – R = 340 мм; 2 диск – R = 360 мм; 3 диск – R = 385 мм; 4 диск – R = 410 мм; 5 диск – R = 430 мм; 6 диск – R = 450 мм; 7 диск – R = 475 мм; 8 диск – R = 490 мм. При этом вращение левой коронки искусственно фиксировалось под определенным углом ρ : 1 положение – 22,5°; 2 положение – 67,5°; 3 положение – 122,5°; 4 положение – 157,5°; 5 положение – 202,5°; 6 положение – 247,5°; 7 положение – 292,5°; 8 положение – 337,5°. Вращение правой коронки фиксировалось: 1 положение – 45°; 2 положение – 90°; 3 положение – 135°; 4 положение – 180°; 5 положение – 225°; 6 положение – 270°; 7 положение – 315°; 8 положение – 360°.

Расчеты нагруженности радиальных коронок произведены для двух вариантов направлений подачи на забой по стрелке V_n (снизу вверх или сверху вниз) и для каждого из них для двух вариантов направлений вращения кинематически связанных радиальных реверсивных коронок (левая против часовой стрелки, а правая против часовой стрелке или наоборот).

На рисунке 4.7 представлена расчетная схема для определения осевых усилий P_{y8} , $P_{д8}$ и крутящих моментов $M_{д8}$ на условно фиксированных положениях угловых поворотов левой коронки при перемещении ее вверх и повороте дискового инструмента № 8 на 22,5° и 67,5° [167].

При заданной контактной прочности $P_{\rm k}$ определены силовые составляющие процесса разрушения горных пород одиночными дисковыми инструментами, перемещаемыми по семейству окружностей лезвий дисков радиусом $R_{\rm i}$: $P_{\rm a}$ – равнодействующая сила в зоне контакта клиновой биконической поверхности диска с поверхностью разрушения забоя; $P_{\rm z}$ – усилие перекатывания; $P_{\rm y}$ – усилие вдавливания; F – сила трения; $M_{\rm a}$ – момент сопротивления вращению диска с трехгранной призмой на коронке.

Рисунок 4.7 – Расчетная схема для определения осевых усилий P_{y8}, P_{д8} и крутящих моментов M_{д8} на восьмом диске левой коронки при повороте на условно фиксированные угловые положения

На рисунке 4.8, а показана схема действия сил на дисковые инструменты № 7, 3, 6, 2, 5, 1, 8, 4 первой спирали правой коронки при ее перемещении снизу вверх, а на рисунке 4.9, а – на диски № 5, 1, 8, 4, 7, 3, 6, 2 второй спирали правой коронки при ее перемещении сверху вниз. На рисунке 4.8, б, приведены схемы действия сил на дисковые инструменты № 6, 2, 7, 3, 8, 4, 5, 1 первой спирали левой коронки при ее перемещении снизу вверх, а на рисунке 4.9, б – на диски № 5, 1, 8, 4, 7, 3, 6, 2 второй спирали левой коронки при ее перемещении снизу вверх, а на рисунке 4.9, б – на диски № 5, 1, 8, 4, 7, 3, 6, 2 второй спирали левой коронки при ее перемещении снизу вверх, а на рисунке 4.9, б – на диски № 5, 1, 8, 4, 7, 3, 6, 2 второй спирали левой коронки при ее перемещении сверху вниз. Дисковые инструменты устанавливаются по два на одном луче: № 6 и № 2; № 7 и № 3; № 8 и № 4; № 5 и № 1 с различными радиусами перекатывания R.

На рисунках 4.8, 4.9 с целью упрощения показаны усилия, действующие только на внешние дисковые инструменты. На внутренних дисковых инструментах схема расположения изображена аналогично через координаты приложения усилия перекатывания P_z и усилия вдавливания P_y, направление которой совпадает с направлением радиус-вектора трехгранной призмы с конкретным диском [168].

Составляющие усилий перекатывания P_z и усилия вдавливания P_y в координатах точек приложения равнодействующих сил в зоне контактов дисковых инструментов с породой забоя определялись по известной методике, представленной в ОСТ 12.44.258-84. Комбайны очистные. Выбор параметров и расчет сил резания и подачи на исполнительных органах [173].

Рисунок 4.8 – Схема приложения составляющих усилий перекатывания P_z и вдавливания P_y при разрушении забойного массива дисковыми инструментами на правой (а) и левой (б) коронках при их перемещении снизу вверх

Рисунок 4.9 – Схема приложения составляющих усилий перекатывания P_z и вдавливания P_y при разрушении забойного массива дисковыми инструментами на правой (а) и левой (б) коронках при их перемещении сверху вниз

При взаимодействии коронки с породой на нее действует внешняя нагрузка в виде суммарных усилий $\Sigma P_{\text{опп}}, \Sigma P_{\text{опо}}, \Sigma P_{\text{опо}}, \Sigma P_{\text{опо}}$ и суммарных моментов $\Sigma M_{\text{кпп}}, \Sigma M_{\text{кпп}}, \Sigma M_{\text{кпп}}, \Sigma M_{\text{кпо}}, \Sigma M_{\text{кпо}}$ (рисунок 4.3).

Предложено акцентировать внимание именно на усилиях, как наиболее важной составляющей внешней нагрузки на дисковый инструмент.

Усилие ΣР_{vi} определялось из выражения [168]:

$$\sum P_{yi} = P_{y1} + P_{y2} + P_{y3} + P_{y4} + P_{y5} + P_{y6} + P_{y7} + P_{y8}, \text{ kH}$$
(4.14)

где P_{y1} – P_{y8} проекции на ось Y усилий (рисунки 4.8, 4.9), действующих со стороны породы на диски 1–8. В таблицах 4.1–4.4 приведены расчетные данные усилий P_{y1} – P_{y8} (положения № 1–4 поворота коронок на угол ρ от 0° до 180° при контакте восьми дисков с породой $P_{\kappa} = 860$ МПа).

Для схемы на рисунке 4.8, а получены следующие расчетные выражения: $P_{y7} = -P_{y7} \sin 45^{\circ} - P_{z7} \cos 45^{\circ}; P_{y6} = -P_{y6}; P_{y5} = -P_{y5} \sin 45^{\circ} - P_{z5} \cos 45^{\circ}; P_{y8} = -P_{z8};$ $P_{y3} = -P_{y3} \sin 45^{\circ} - P_{z3} \cos 45^{\circ}; P_{y2} = -P_{y2}; P_{y1} = -P_{y1} \sin 45^{\circ} - P_{z1} \cos 45^{\circ}; P_{y4} = -P_{z4}.$ Для схемы на рисунке 4.8, б получены следующие расчетные выражения: $P_{y6} = -P_{y6} \sin 22,5^{\circ} - P_{z6} \cos 22,5^{\circ}; P_{y7} = -P_{y7} \sin 67,5^{\circ} - P_{z7} \cos 67,5^{\circ};$ $P_{y8} = -P_{y8} \sin 67,5^{\circ} - P_{z8} \cos 67,5^{\circ}; P_{y5} = -P_{y5} \sin 22,5^{\circ} - P_{z5} \cos 22,5^{\circ};$ $P_{y2} = -P_{y2} \sin 22,5^{\circ} - P_{z2} \cos 22,5^{\circ}; P_{y3} = -P_{y3} \sin 67,5^{\circ} - P_{z3} \cos 67,5^{\circ};$ $P_{y4} = -P_{y4} \sin 67,5^{\circ} - P_{z4} \cos 67,5^{\circ}; P_{y1} = -P_{y1} \sin 22,5^{\circ} - P_{z1} \cos 22,5^{\circ}.$ Для схемы на рисунке 4.9, а получены следующие расчетные выражения: $P_{y5} = P_{y5} \sin 45^\circ + P_{z5} \cos 45^\circ$; $P_{y6} = P_{y6}$; $P_{y7} = P_{y7} \sin 45^\circ + P_{z7} \cos 45^\circ$; $P_{y8} = P_{z8}$; $P_{y1} = P_{y1} \sin 45^\circ + P_{z1} \cos 45^\circ$; $P_{y2} = P_{y2}$; $P_{y3} = P_{y3} \sin 45^\circ + P_{z3} \cos 45^\circ$; $P_{y4} = P_{z4}$ Для схемы на рисунке 4.9, б получены следующие расчетные выражения: $P_{y5} = P_{y5} \sin 22,5^\circ + P_{z5} \cos 22,5^\circ$; $P_{y8} = P_{y8} \sin 67,5^\circ + P_{z8} \cos 67,5^\circ$; $P_{y7} = P_{y7} \sin 67,5^\circ + P_{z7} \cos 67,5^\circ$; $P_{y6} = P_{y6} \sin 22,5^\circ + P_{z6} \cos 22,5^\circ$; $P_{y1} = P_{y1} \sin 22,5^\circ + P_{z1} \cos 22,5^\circ$; $P_{y4} = P_{y4} \sin 67,5^\circ + P_{z4} \cos 67,5^\circ$; $P_{y3} = P_{y3} \sin 67,5^\circ + P_{z3} \cos 67,5^\circ$; $P_{y2} = P_{y2} \sin 22,5^\circ + P_{z2} \cos 22,5^\circ$.

Таблица 4.1 – Результаты расчета внешней нагрузки на дисках левой коронки при ее перемещении снизу вверх

1 положение		2 положение		3 положение		4 положение	
№ диска	Р _{уі} , кН						
1	19,8	1	84,8	1	67,3	1	7,9
2	7,6	2	19,1	2	82,7	2	66,2
3	66,2	3	7,7	3	18,8	3	82,7
4	80,7	4	65,0	4	7,7	4	18,1
5	17,8	5	80,7	5	65,0	5	7,9
6	7,6	6	17,2	6	78,7	6	63,9
7	63,9	7	7,9	7	16,9	7	78,7
8	76,7	8	62,4	8	7,9	8	16,9

Таблица 4.2 – Результаты расчета внешней нагрузки на дисках левой коронки при ее перемещении сверху вниз

1 положение		2 положение		3 положение		4 положение	
№ диска	Р _{уі} , кН						
1	7,9	1	19,8	1	84,8	1	67,3
2	19,0	2	82,7	2	66,1	2	7,6
3	82,7	3	66,1	3	8,0	3	18,8
4	65,0	4	7,7	4	18,1	4	80,7
5	7,9	5	17,8	5	80,7	5	65,0
6	17,2	6	78,7	6	63,9	6	7,6
7	78,7	7	63,9	7	7,9	7	16,9
8	84,8	8	7,9	8	16,9	8	77,1

1 положение		2 положение		3 положение		4 положение	
№ диска	Р _{уі} , кН	№ диска	Р _{уі} , кН	№ диска	P _{yi} , кН	№ диска	Р _{уі} , кН
1	49,2	1	72,3	1	30,8	1	2,1
2	94,3	2	30,8	2	2,1	2	49,2
3	30,3	3	1,7	3	47,6	3	72,3
4	1,75	4	47,6	4	71,1	4	30,3
5	46,3	5	71,1	5	29,5	5	1,7
6	92,7	6	29,9	6	1,4	6	46,1
7	29,0	7	1,46	7	44,7	7	69,8
8	1,4	8	44,8	8	69,8	8	29,0

Таблица 4.3 – Результаты расчета внешней нагрузки на дисках правой коронки при ее перемещении снизу вверх

Таблица 4.4 – Результаты расчета внешней нагрузки на дисках правой коронки при ее перемещении сверху вниз

1 положение		2 пол	ожение	3 положение		4 положение	
№ диска	Р _{уі} , кН	№ диска	Р _{уі} , кН	№ диска	P _{yi} , кН	№ диска	Р _{уі} , кН
1	30,8	1	2,1	1	49,2	1	72,3
2	72,3	2	30,8	2	2,0	2	47,9
3	45,0	3	72,3	3	30,3	3	1,2
4	0,7	4	47,6	4	71,0	4	30,3
5	28,7	5	1,7	5	46,3	5	70,9
6	70,9	6	29,9	6	1,4	6	46,1
7	47,4	7	69,8	7	28,8	7	1,4
8	0,6	8	44,8	8	69,8	8	29,0

Результаты расчетов по усилиям и моментам на рабочих органах для всех дисковых инструментов представлены в таблицах (Приложение А).

4.2 Суммарные усилия на реверсивном двухкорончатом стреловидном исполнительном органе с дисковым инструментом

На рисунке 4.10 и в таблице 4.5 приведены зависимости усилий P_y , $P_z = f(P_\kappa)$, которые носят линейный характер [167]. При повороте одиночного дискового инструмента №8, установленного на радиусе вращения R = 490 мм с условно фикси-

рованных положений левой коронки, усилие подачи P_y при контактной прочности породы $P_{\kappa} = 1250$ МПа возрастает с 47,189 кН до 111,918 кН, а усилие P_z возрастает от 3,722 кН до 27,913 кН (Приложение А). Зависимости, представленные на рисунке 4.10, а показывают, что максимальные значения усилий P_y превышают усилия P_z в 4 раза. Поэтому усилия P_y являются определяющими при взаимодействии дискового инструмента с породой.

Рисунок 4.10 – Зависимости усилий Р_у, Р_z от контактной прочности Р_к при:
встречном движении вверх: а – левая коронка; б – правая коронка;
противовстречном движении вниз: в – левая коронка; г – правая коронка

В таблицах 4.6–4.9 и на рисунке 4.11 и приведены зависимости суммарных осевых усилий $\Sigma P_{yi} = f(\rho)$, действующих на все дисковые инструменты левой или правой коронок исполнительного органа (рисунки 4.2, 4.7) при их повороте с учетом восьми положений, на 360° [167, 168].

Зависимости (рисунок – 4.10, а)	\mathbb{R}^2	Зависимости (рисунок – 4.10, б)	R^2
1 - (I положение диска 8) P _v = 14.845P _v + 1.3987	0,9926	1 - (III положение диска 8) P _v = 13.689P _v + 1.6763	0,9918
2 – (IV положение диска 8)	0,9866	2 – (II положение диска 8)	0,992
$P_y = 6,2773P_k + 1,3879$ 3 – (I положение диска 8)	0,9926	$P_y = 10,238 P_{\kappa} + 1,2994$ 3 – (Ш положение диска 8)	0,9918
$P_z = 3,7036P_{\kappa} + 0,3493$ 4 – (I положение диска 5)	0.0017	$P_z = 3,9315P_{\kappa} + 0,4814$ 4 – (IV положение диска 5)	0.0019
$P_z = 1,0488P_k + 0,1064$	0,9917	$P_z = 0,641P_{\kappa} + 0,0789$ Зависимости (рисунок – 4 10 г)	0,9918
1 – (IV положение диска 8)	0.9918	1 – (Ш положение диска 8)	0.9917
$P_y = 14,768P_k + 1,8094$	- ,	$P_y = 13,692P_k + 1,6497$	
$P_y = 6,3821P_k + 0,7823$	0,9918	$P_y = 10,243P_k + 1,2556$	0,9918
3 - (IV положение диска 8) $P_z = 3,684P_{\kappa} + 0,4526$	0,9918	3 - (IV положение диска 8) $P_z = 2,1785P_{\kappa} + 0,2667$	0,9918
4 - (IV положение диска 6) P _a = 1.0065P _a + 0.1236	0,9918	4 - (I положение диска 8) P _z = 0.1272P _z + 0.0159	0,9917

Таблица 4.5 – Зависимости усилий P_{y}, P_{z} от контактной прочности P_{κ}

Таблица 4.6 – Зависимости усилий ΣР_{уі} от угла поворота ρ левой коронки при встречном движении вверх

Зависимости для рисунка 4.11, а	R^2
$1 - \Sigma P_{yi} = 0.9799 \rho^5 - 22.082 \rho^4 + 187.25 \rho^3 - 739.62 \rho^2 + 1323.6 \rho - 303.88$	0,6158
$2 - \Sigma P_{yi} = 0.9662\rho^5 - 21,061\rho^4 + 170,08\rho^3 - 628,13\rho^2 + 1034,6\rho - 163,17$	0,8185
$3 - \Sigma P_{yi} = 0.8281\rho^5 - 18,042\rho^4 + 145,62\rho^3 - 537,59\rho^2 + 885,67\rho - 138,25$	0,816
$4 - \Sigma P_{yi} = 0.6787\rho^5 - 14,802\rho^4 + 119,6\rho^3 - 441,86\rho^2 + 727,68\rho - 115,95$	0,8211
$5 - \Sigma P_{yi} = 0.4751\rho^5 - 10.361\rho^4 + 83.72\rho^3 - 309.31\rho^2 + 509.39\rho - 81.169$	0,8211
$6 - \Sigma P_{yi} = 0.3488\rho^5 - 7.6188\rho^4 + 61.64\rho^3 - 227.84\rho^2 + 374.69\rho - 63.548$	0,816
$7 - \Sigma P_{yi} = 0,2279\rho^5 - 4,9733\rho^4 + 40,2\rho^3 - 148,49\rho^2 + 244,27\rho - 40,78$	0,8113

106

Рисунок 4.11 – Зависимости усилий ΣP_{yi} от угла поворота р коронки для условий (1 – $P_{\kappa} = 1250 \text{ МПа}; 2 - P_{\kappa} = 1000 \text{ МПа}; 3 - P_{\kappa} = 860 \text{ МПа}; 4 - P_{\kappa} = 700 \text{ МПа};$ $5 - P_{\kappa} = 490 \text{ МПа}; 6 - P_{\kappa} = 350 \text{ МПа}; 7 - P_{\kappa} = 230 \text{ МПа})$ при:

- встречном движении вверх: а – левая коронка; б – правая коронка;

- противовстречном движении вниз: в – левая коронка; г – правая коронка

Таблица 4.7 – Зависимости усилий ΣP_{yi} от угла поворота ρ правой коронки при встречном движении вверх

Зависимости для рисунка 4.11, б	R^2
$1 - \Sigma P_{yi} = 0.7107 \rho^5 - 15.262 \rho^4 + 119.16 \rho^3 - 406.31 \rho^2 + 551.69 \rho + 236.52$	0,9194
$2 - \Sigma P_{yi} = 0,5686\rho^5 - 12,209\rho^4 + 95,329\rho^3 - 325,04\rho^2 + 441,34\rho + 189,23$	0,9195
$3 - \Sigma P_{yi} = 0,492\rho^5 - 10,571\rho^4 + 82,629\rho^3 - 282,28\rho^2 + 384,95\rho + 159,5$	0,918
$4 - \Sigma P_{yi} = 0,4031\rho^5 - 8,6714\rho^4 + 67,859\rho^3 - 232,12\rho^2 + 316,82\rho + 128,16$	0,9193
$5 - \Sigma P_{yi} = 0,2564\rho^5 - 5,4375\rho^4 + 41,784\rho^3 - 139,46\rho^2 + 182,82\rho + 110,9$	0,8558
$6 - \Sigma P_{yi} = 0,2068\rho^5 - 4,4576\rho^4 + 34,974\rho^3 - 119,99\rho^2 + 164,46\rho + 61,028$	0,9205
$7 - \Sigma P_{yi} = 0.1359 \rho^5 - 2.9278 \rho^4 + 22.956 \rho^3 - 78.7 \rho^2 + 107.89 \rho + 40.155$	0,9192

Таблица 4.8 – Зависимости усилий ΣР_{уі} от угла поворота ρ левой коронки при противовстречном движении вниз

Зависимости для рисунка 4.11, в	R^2
$1 - \Sigma P_{yi} = 0,2075\rho^5 - 4,7083\rho^4 + 42,938\rho^3 - 192,81\rho^2 + 366,91\rho + 372,08$	0,9907
$2 - \Sigma P_{yi} = 0,1665\rho^5 - 3,7773\rho^4 + 34,446\rho^3 - 154,65\rho^2 + 294,25\rho + 297,26$	0,9907
$3 - \Sigma P_{yi} = 0.1435\rho^5 - 3.2562\rho^4 + 29.694\rho^3 - 133.31\rho^2 + 253.65\rho + 256.26$	0,9907
$4 - \Sigma P_{yi} = 0.1145\rho^5 - 2.5945\rho^4 + 23.633\rho^3 - 106.05\rho^2 + 201.26\rho + 210.97$	0,9907
$5 - \Sigma P_{\rm o} = 0,0694\rho^5 - 1,5668\rho^4 + 14,442\rho^3 - 66,419\rho^2 + 128,71\rho + 154,01$	0,9911
$6 - \Sigma P_{yi} = 0.0528\rho^5 - 1.1968\rho^4 + 11.004\rho^3 - 50.137\rho^2 + 96.166\rho + 107.87$	0,9919
$7 - \Sigma P_{yi} = 0,036\rho^5 - 0,8195\rho^4 + 7,5502\rho^3 - 34,416\rho^2 + 66,344\rho + 68,873$	0,9919

Таблица 4.9 – Зависимости усилий ΣР_{уі} от угла поворота ρ правой коронки при противовстречном движении вниз

Зависимости для рисунка 4.11, г	R^2
$1 - \Sigma P_{yi} = 0.5147\rho^5 - 10.466\rho^4 + 76.71\rho^3 - 252.75\rho^2 + 376.36\rho + 240.26$	0,9135
$2 - \Sigma P_{yi} = 0.4118\rho^5 - 8.3727\rho^4 + 61.369\rho^3 - 202.21\rho^2 + 301.1\rho + 192.2$	0,9135
$3 - \Sigma P_{yi} = 0,3566\rho^5 - 7,2586\rho^4 + 53,301\rho^3 - 176,15\rho^2 + 263,55\rho + 162,47$	0,9136
$4 - \Sigma P_{yi} = 0,2888\rho^5 - 5,8794\rho^4 + 43,174\rho^3 - 142,68\rho^2 + 213,48\rho + 131,59$	0,9136
$5 - \Sigma P_{yi} = 0,2003\rho^5 - 4,0686\rho^4 + 29,764\rho^3 - 97,764\rho^2 + 144,84\rho + 95,828$	0,9135
$6 - \Sigma P_{yi} = 0.146\rho^5 - 2.9766\rho^4 + 21.898\rho^3 - 72.375\rho^2 + 107.49\rho + 66.405$	0,9165
$7 - \Sigma P_{yi} = 0,0946\rho^5 - 1,9227\rho^4 + 14,088\rho^3 - 46,356\rho^2 + 68,729\rho + 44,606$	0,9143

Установлено, что зависимости усилий P_y и P_z на дисках от P_κ носят линейный характер, а зависимости суммарных осевых усилий ΣP_{yi} от ρ , действующих на контактирующих с забоем дисков левой или правой коронок исполнительного органа при их повороте описываются полиномами пятой степени.

4.3 Формирование суммарных крутящих моментов на реверсивном двухкорончатом стреловидном исполнительном органе с дисковым инструментом

На рисунке 4.12 и в таблицах 4.10–4.13 приведены зависимости $M_{\kappa} = f(P_{\kappa})$, которые, как видно из графиков, носят прямолинейный характер. Результаты расчетов представлены в таблицах (Приложение А). Из рисунка 4.12, а видно, что с увеличением контактной прочности P_{κ} породы моменты M_{κ} для всех пяти рассмотренных дис-

ковых инструментов возрастают. Зависимости 1, 2, 3, 4 соответствуют повороту левой коронки на угол 67,5°, а зависимости 5, 6, 7 – на угол 22,5° (рисунок 4.2). Например, при $P_{\kappa} = 1250$ МПа момент на одиночном дисковом инструменте составил: 13327 Н·м (1 зависимость), 11953 Н·м (2), 11366 Н·м (3), 10076 Н·м (4), 3178 Н·м (5), 2970 Н·м (6) и 2768 Н·м (7). Таким образом, при повороте с 22,5° до 67,5° момент на одиночном дисковом инструменте увеличивается в 3,39–4,19 раза [167].

Рисунок 4.12 – Зависимости моментов M_{κ} от контактной прочности P_{κ} при:

- встречном движении вверх: а – левая коронка; б – правая коронка;

- противовстречном движении вниз: в – левая коронка; г – правая коронка

Таблица 4.10 – Зависимости моментов M_к от контактной прочности P_к на левой коронке при встречном движении вверх

Зависимость		R^2
1 – (I положение 8 диск)	$M_{\kappa} = 1833, 3P_{\kappa} + 128, 43$	0,9945
2 – (III положение 6 диск)	$M_{\kappa} = 1616,8P_{\kappa} + 197,43$	0,9918
3 – (I положение 4 диск)	$M_{\kappa} = 1545, 5P_{\kappa} + 142, 86$	0,9926
4 – (II положение 1 диск)	$M_{\kappa} = 1368,7P_{\kappa} + 134,71$	0,9924
5 – (VIII положение 8 диск)	$M_{\kappa} = 429,75P_{\kappa} + 53,143$	0,9918
6 – (IV положение 4 диск)	$M_{\kappa} = 397,43P_{\kappa} + 48,143$	0,9918
7 – (V положение 1 диск)	$M_{\kappa} = 374,39P_{\kappa} + 45,571$	0,9918
Таблица 4.11 – Зависимости моментов М_к от контактной прочности Р_к на правой коронке при встречном движении вверх

3ai	R^2	
1 – (VII положение 8 диск) М	$M_{\kappa} = 1686, 5P_{\kappa} + 206, 71$	0,9918
2 – (VII положение 4 диск) М	$M_{\kappa} = 1506, 6P_{\kappa} + 184$	0,9918
3 – (II положение 1 диск) N	$M_{\kappa} = 1317P_{\kappa} + 167$	0,992
4 – (V положение 1 диск) М	$M_{\kappa} = 674,68P_{\kappa} + 82,143$	0,9918
5 – (VIII положение 1 диск) М	$M_{\kappa} = 125,5P_{\kappa} + 15,286$	0,9918

Таблица 4.12 – Зависимости моментов М_к от контактной прочности Р_к на левой коронке при противовстречном движении вниз

Зависимость	R^2
$1 - (IV положение 8 диск) M_{\kappa} = 1690P_{\kappa} + 206,86$	0,9918
$2 - (IV положение 4 диск)$ $M_{\kappa} = 1526,5P_{\kappa} + 249,29$	0,9904
$3 - (II положение 2 диск)$ $M_{\kappa} = 1333, 2P_{\kappa} + 157, 86$	0,9919
$4 - (I положение 6 диск)$ $M_{\kappa} = 525,29P_{\kappa} + 65,571$	0,9919
$5 - (I положение 2 диск)$ $M_{\kappa} = 463,82P_{\kappa} + 58,429$	0,9919

Таблица 4.13 – Зависимости моментов M_к от контактной прочности P_к на правой коронке при противовстречном движении вниз

Зависимость	R^2	
$1 - (III положение 8 диск) M_{\kappa} = 1792P_{\kappa} + 218,$	86	0,9918
$2 - (I положение 6 диск)$ $M_{\kappa} = 1721,6P_{\kappa} + 21$	1,29	0,9918
$3 - (IV положение 5 диск)$ $M_{\kappa} = 1506,6P_{\kappa} + 18$	4	0,9918
$4 - (III положение 4 диск)$ $M_{\kappa} = 1398,7P_{\kappa} + 172$	2,14	0,9918
$5 - (III положение 5 диск)$ $M_{\kappa} = 877,54P_{\kappa} + 10^{\circ}$	7,71	0,9918
$6 - (IV положение 2 диск)$ $M_{\kappa} = 656,46P_{\kappa} + 80$,714	0,9918
$7 - (I положение 8 диск)$ $M_{\kappa} = 60,25P_{\kappa} + 7,85$	571	0,9915

На рисунке 4.13 и в таблицах 4.14–4.17 приведены полиномиальные зависимости $M_{\kappa} = f(\rho)$, учитывающие периодичность входа и выхода дисковых инструментов из контакта с породой при повороте коронок исполнительного органа на угол ρ от 0° до 360°[167].

Рисунок 4.13 – Зависимости моментов M_{κ} от угла разворота ρ (P_{κ} = 860 МПа) при:

- встречном движении вверх: а – левая коронка; б – правая коронка;

- противовстречном движении вниз: в – левая коронка; г – правая коронка

	Зависимости при $P_{\kappa} = 860 \text{ M}\Pi a \text{ c } \mathbb{R}^2 = 1$
1 – (диск 1)	$M_{\kappa} = 315,17\rho^3 - 4863\rho^2 + 17697\rho - 11514$
2 – (диск 2)	$M_{\kappa} = 439,67\rho^3 - 6741\rho^2 + 30301\rho - 35313$
3 – (диск 3)	$M_{\kappa} = -131,67\rho^3 - 720,5\rho^2 + 15130\rho - 33773$
4 – (диск 4)	$M_{\kappa} = 1.5\rho^3 - 2933\rho^2 + 32123\rho - 79636$
5 – (диск 5)	$M_{\kappa} = -387\rho^3 - 457,5\rho^2 + 10246\rho - 7122$
6 – (диск 6)	$M_{\kappa} = 294,5\rho^3 - 5972\rho^2 + 30318\rho - 36915$
7 – (диск 7)	$M_{\kappa} = -373,17\rho^3 + 1865,5\rho^2 + 6557,7\rho - 23952$
8 – (диск 8)	$M_{\kappa} = 456,33\rho^3 - 11118\rho^2 + 80189\rho - 170605$

Таблица 4.14 – Зависимости моментов М_к на одиночных дисках от фиксированного положения при развороте на угол ρ на левой коронке при движении вверх

Зависимости при $P_{\kappa} = 860 \text{ МПа с } \mathbb{R}^2 = 1$
$1 - (диск 1) M_{\kappa} = -9 \cdot 10^{-9} \rho^{6} + 1 \cdot 10^{-5} \rho^{5} - 0,0064 \rho^{4} + 1,8121 \rho^{3} - 280,11 \rho^{2} + 22470 \rho - 733746$
$2 - (диск 2) M_{\kappa} = -4 \cdot 10^{-9} \rho^{6} + 4 \cdot 10^{-6} \rho^{5} - 0,0017 \rho^{4} + 0,3378 \rho^{3} - 34,578 \rho^{2} + 1913,7 \rho - 47040$
$3 - (диск 3) M_{\kappa} = 6 \cdot 10^{-10} \rho^6 - 5 \cdot 10^7 \rho^5 + 0,0002 \rho^4 - 0,044 \rho^3 + 4,4924 \rho^2 - 104,37 \rho - 245,96$
$4 - (диск 4) M_{\kappa} = -1 \cdot 10^{-8} \rho^{6} + 6 \cdot 10^{-6} \rho^{5} - 0,0011 \rho^{4} + 0,0712 \rho^{3} - 1,0849 \rho^{2} + 55,623 \rho + 747$
$5 - (диск 5) M_{\kappa} = -2 \cdot 10^{-8} \rho^{6} + 3 \cdot 10^{-5} \rho^{5} - 0,0165 \rho^{4} + 4,698 \rho^{3} - 731,09 \rho^{2} + 59124 \rho - 2E + 06$
$6 - (диск 6) M_{\kappa} = -1 \cdot 10^{-8} \rho^{6} + 1 \cdot 10^{-5} \rho^{5} - 0,0057 \rho^{4} + 1,2387 \rho^{3} - 144,16 \rho^{2} + 8583,5 \rho - 206388$
7 – (диск 7) $M_{\kappa} = -1.10^{-8}\rho^{6} + 1.10^{-5}\rho^{5} - 0,003\rho^{4} + 0,4554\rho^{3} - 34,209\rho^{2} + 1319,5\rho - 20113$
$8 - (диск 8) M_{\kappa} = -1.10^8 \rho^6 + 7.10^6 \rho^5 - 0,0014 \rho^4 + 0,106 \rho^3 - 2,3885 \rho^2 + 77,011 \rho + 696$

Таблица 4.15 – Зависимости моментов М_к на одиночных дисках от фиксированного положения при развороте на угол р на правой коронке при движении вверх

Таблица 4.16 – Зависимости моментов M_к на одиночных дисках от фиксированного положения при развороте на угол ρ на левой коронке при движении вниз

Зависимости при $P_{\kappa} = 860 \text{ МПа с } R^2 = 1$
$1 - (диск 1) M_{\kappa} = -45,5\rho^3 - 2291\rho^2 + 17721\rho - 23731$
$2 - (диск 2) M_{\kappa} = -43,667 \rho^3 - 1951,5 \rho^2 + 10587 \rho - 6226$
$3 - (диск 3) M_{\kappa} = 43,333 \rho^3 - 3434 \rho^2 + 33832 \rho - 81315$
$4 - (диск 4) M_{\kappa} = 42\rho^3 - 3412\rho^2 + 28146\rho - 52838$
$5 - (диск 5) M_{\kappa} = 645,67 \rho^3 - 9624 \rho^2 + 42271 \rho - 49186$
$6 - (диск 6) M_{\kappa} = -924,17\rho^3 + 4529,5\rho^2 - 3321,3\rho + 2395$
7 – (диск 7) $M_{\kappa} = 0.1667 \rho^3 - 3323 \rho^2 + 36538 \rho - 90803$
$8 - (диск 8) M_{\kappa} = 2E - 10\rho^3 - 3212,5\rho^2 + 28913\rho - 55633$

Таблица 4.17 – Зависимости моментов М_к на одиночных дисках от фиксированного положения при развороте на угол ρ на правой коронке при движении вниз

Зависимости при $P_{\kappa} = 860 \text{ МПа с } \mathbb{R}^2 = 1$	
1 – (диск 1) $M_{\kappa} = 4E - 05\rho^4 - 0.0214\rho^3 + 3.4063\rho^2 - 138.5\rho + 1765$	
2 – (диск 2) $M_{\kappa} = 1E-04\rho^4 - 0,0694\rho^3 + 17,55\rho^2 - 1780,9\rho + 63131$	
3 – (диск 3) $M_{\kappa} = 0,0001\rho^4 - 0,1024\rho^3 + 32,76\rho^2 - 4378,8\rho + 208679$	
4 – (диск 4) $M_{\kappa} = 7E-05\rho^4 - 0.0262\rho^3 + 2.1429\rho^2 + 39.052\rho + 597$	
5 – (диск 5) $M_{\kappa} = 0,0001\rho^4 - 0,064\rho^3 + 11,161\rho^2 - 678,58\rho + 14027$	
6 – (диск 6) $M_{\kappa} = 0,0002\rho^4 - 0,1212\rho^3 + 30,672\rho^2 - 3152,3\rho + 113355$	
7 – (диск 7) $M_{\kappa} = 0,0001\rho^4 - 0,1199\rho^3 + 38,131\rho^2 - 5065,4\rho + 239850$	
8 – (диск 8) $M_{\kappa} = 0,0002\rho^4 - 0,065\rho^3 + 6,1963\rho^2 - 65,109\rho + 308$	

Зависимости $M_{\kappa} = f(\rho)$ учитывают периодичность входа и выхода дисков из контакта с породой при фиксированных положениях поворота коронок на угол ρ и описываются полиномами третьей степени для левой коронки и полиномами шестой, четвертой степени для правой коронки.

При первом положении (рисунок 4.13, а) в контакт с породой входят дисковые инструменты № 5 и № 1, во втором – № 6 и № 2, в третьем – № 7 и № 3, в четвертом – № 8 и № 4. Положения смещены относительно друг друга на 45°, что соответствует геометрическим параметрам левой коронки, схеме расстановки дисковых инструментов на трехгранных призмах.

На рисунках 4.14 и в таблице 4.18 приведены зависимости $\Sigma M_{\kappa} = f(\rho)$, действующих на все дисковые инструменты левой или правой коронок исполнительного органа (рисунки 4.2, 4.7) при их повороте с учетом 8 положений, на 360° [167].

$$\Sigma M_{\kappa} = M_{\mu 5} + M_{\mu 1} + M_{\mu 8} + M_{\mu 4} + M_{\mu 7} + M_{\mu 3} + M_{\mu 6} + M_{\mu 2}, \text{ H} \cdot \text{M}$$
(4.15)

В частности, момент на дисковом инструменте № 8 определится

$$M_{\rm A8} = P_{\rm A8} \ \ell_{\rm A8}, \, \rm H \cdot M, \tag{4.16}$$

где P_{n8} – равнодействующая распределенных сил на дисковом инструменте № 8;

 $\ell_{,a8}$ – плечо силы $P_{,a8}$ относительно оси дискового инструмента (рисунок 4.7), м.

Рисунок 4.14 – Зависимости моментов ΣM_{κ} от угла поворота ρ для условий (1 – P_{κ} = 1250 МПа; 2 – P_{κ} = 1000 МПа; 3 – P_{κ} = 860 МПа; 4 – P_{κ} = 700 МПа; 5 – P_{κ} = 490 МПа; 6 – P_{κ} = 350 МПа; 7 – P_{κ} = 230 МПа) при:

- встречном движении вверх: а – левая коронка; б – правая коронка;

- противовстречном движении вниз: в – левая коронка; г – правая коронка

Зависимости (рисунок – 4.14, а)	R^2
$1 - \Sigma M_{\kappa} = 56,243\rho^5 - 1221\rho^4 + 9518,7\rho^3 - 32265\rho^2 + 44835\rho + 38611$	0,771
$2 - \Sigma M_{\kappa} = 66,145\rho^5 - 1486,8\rho^4 + 12207\rho^3 - 44644\rho^2 + 69407\rho + 12566$	0,8491
$3 - \Sigma M_{\kappa} = 30,579\rho^5 - 642,61\rho^4 + 4747,4\rho^3 - 14652\rho^2 + 16876\rho + 35047$	0,749
$4 - \Sigma M_{\kappa} = 30,741\rho^{5} - 664,84\rho^{4} + 5149,5\rho^{3} - 17249\rho^{2} + 23366\rho + 22924$	0,7767
$5 - \Sigma M_{\rm K} = 20,803\rho^5 - 447,71\rho^4 + 3439,7\rho^3 - 11358\rho^2 + 14941\rho + 17023$	0,7776
$6 - \Sigma M_{\kappa} = 17,223\rho^{5} - 376,32\rho^{4} + 2964,5\rho^{3} - 10213\rho^{2} + 14571\rho + 9597,3$	0,78
$7 - \Sigma M_{\rm K} = 9,2362\rho^5 - 197,35\rho^4 + 1502,2\rho^3 - 4911,8\rho^2 + 6482,7\rho + 7868,3$	0,7306
Зависимости (рисунок – 4.14, б)	R^2
$1 - \Sigma M_{\kappa} = -2E - 07\rho^5 + 0.0002\rho^4 - 0.0746\rho^3 + 10.833\rho^2 - 605.71\rho + 56776$	0,7334
$2 - \Sigma M_{\rm K} = -1E - 07\rho^5 + 0,0001\rho^4 - 0,0488\rho^3 + 7,2555\rho^2 - 420,48\rho + 45452$	0,671
$3 - \Sigma M_{\rm K} = -3E - 08\rho^5 + 4E - 05\rho^4 - 0,0208\rho^3 + 3,9253\rho^2 - 278,27\rho + 38854$	0,7121
$4 - \Sigma M_{\rm K} = -3E - 08\rho^5 + 4E - 05\rho^4 - 0,0176\rho^3 + 3,2948\rho^2 - 233,47\rho + 31664$	0,7277
$5 - \Sigma M_{\rm K} = -3E - 08\rho^5 + 4E - 05\rho^4 - 0.0159\rho^3 + 2.8089\rho^2 - 189.04\rho + 22282$	0,7833
$6 - \Sigma M_{\rm K} = -7E - 09\rho^5 + 1E - 05\rho^4 - 0,0069\rho^3 + 1,4063\rho^2 - 104,85\rho + 15643$	0,6989
$7 - \Sigma M_{\kappa} = 1E - 07\rho^5 - 0,0001\rho^4 + 0,0265\rho^3 - 2,4278\rho^2 + 47,944\rho + 10031$	0,5416
Зависимости (рисунок – 4.14, в)	R^2
$1 - \Sigma M_{\kappa} = -59,483\rho^{5} + 1643,5\rho^{4} - 16665\rho^{3} + 76667\rho^{2} - 158176\rho + 173079$	0,8988
$2 - \Sigma M_{\kappa} = -47,586\rho^5 + 1314,8\rho^4 - 13332\rho^3 + 61334\rho^2 - 126539\rho + 138462$	0,8988
$3 - \Sigma M_{\kappa} = -41,022\rho^5 + 1133,4\rho^4 - 11493\rho^3 + 52874\rho^2 - 109086\rho + 119365$	0,8988
$4 - \Sigma M_{\kappa} = -33,984\rho^{5} + 936,45\rho^{4} - 9473,9\rho^{3} + 43483\rho^{2} - 89457\rho + 97280$	0,9014
$5 - \Sigma M_{\kappa} = -8,2282\rho^{5} + 325,05\rho^{4} - 4168,1\rho^{3} + 23024\rho^{2} - 55469\rho + 67823$	0,8949
$6 - \Sigma M_{\kappa} = -17,502\rho^{5} + 479,46\rho^{4} - 4826,4\rho^{3} + 22051\rho^{2} - 45188\rho + 48869$	0,9063
$7 - \Sigma M_{\kappa} = -9,3128\rho^{5} + 259,73\rho^{4} - 2637,8\rho^{3} + 12057\rho^{2} - 24499\rho + 28036$	0,8616
Зависимости (рисунок – 4.14, г)	R^2
$1 - \Sigma M_{\rm K} = 1E - 07\rho^5 - 0,0002\rho^4 + 0,0615\rho^3 - 10,003\rho^2 + 612,36\rho + 38746$	0,977
$2 - \Sigma M_{\kappa} = 1E - 07\rho^5 - 0,0001\rho^4 + 0,0519\rho^3 - 8,3318\rho^2 + 501,68\rho + 30986$	0,9739
$3 - \Sigma M_{\rm K} = 8E - 08\rho^5 - 0,0001\rho^4 + 0,0424\rho^3 - 6,8995\rho^2 + 422,36\rho + 26721$	0,977
$4 - \Sigma M_{\kappa} = 7E - 08\rho^5 - 9E - 05\rho^4 + 0.0349\rho^3 - 5.6334\rho^2 + 343.1\rho + 21645$	0,9732
$5 - \Sigma M_{\kappa} = 5E - 08\rho^5 - 6E - 05\rho^4 + 0.0244\rho^3 - 3.9423\rho^2 + 240.13\rho + 15151$	0,9732
$6 - \Sigma M_{\kappa} = 4E - 08\rho^5 - 5E - 05\rho^4 + 0.0186\rho^3 - 2.948\rho^2 + 176.63\rho + 10760$	0,9676
$7 - \Sigma M_{\kappa} = 3E - 08\rho^5 - 3E - 05\rho^4 + 0.0121\rho^3 - 1.9322\rho^2 + 116.28\rho + 7100.8$	0,9713

Таблица 4.18 – Зависимости моментов ΣM_{κ} от угла поворота ρ коронки

В целом зависимости моментов $M_{\kappa} = f(P_{\kappa})$ на дисках носят линейный характер, а зависимости $\Sigma M_{\kappa} = f(\rho)$ на коронках, учитывающие периодичность входа и выхода дисковых инструментов из контакта с породой при фиксированных положениях поворота коронок на угол ρ от 0° до 360° описываются полиномами пятой степени.

4.4 Выводы

1. Конструктивно-кинематическое исполнение двухкорончатого стреловидного исполнительного органа обеспечивает бесконтактный режим вращения трехгранных призм с дисковыми инструментами в центральной зоне пересечения траекторий их вращательного движения и реализует следующие режимы работы: реверсивное вращение коронок; совместное перемещение коронок от почвы к кровле выработки и наоборот; совместное перемещение коронок от левой стенки выработки к правой и наоборот.

2. Установлено, что на одиночный дисковый инструмент при заглублении и перекатывании по забою действует реакция со стороны породы, распределенная по параболической кривой, а зависимости усилий P_y, P_z и моментов M_к от контактной прочности P_к носят линейный характер.

3. Определен максимальный уровень трех составляющих усилия разрушения горных пород (при $P_{\kappa} = 1250$ МПа), который составляет для: $P_y = 109,19$ кH, $P_z = 27,24$ кH и F = 5,06 кH, что характеризует многократное превышение усилия подачи P_y над усилием перекатывания P_z и трения F.

4. Выявлено, что периодичность входа и выхода дискового инструмента из контакта с горной породой при взаимном повороте коронок исполнительного органа от 0° до 360° формирует полиномиальные зависимости моментов M_{κ} , ΣM_{κ} и суммарных усилий подачи ΣP_{vi} от угла поворота ρ .

5. Установлено, что при разрушении горных пород одновременно левой и правой коронками в контакте с забоем находятся по 16 дисковых инструментов диаметром 0,16 м, которые формируют суммарные усилия подачи и крутящие моменты на двухкорончатом стреловидном исполнительном органе проходческого комбайна, на базе которых определяется мощность привода вращения коронок.

ЗАКЛЮЧЕНИЕ

В диссертационной работе обоснованы и исследованы новые технические решения по разработке двухкорончатого стреловидного исполнительного органа проходческого комбайна с дисковым инструментом на многогранных призмах для проведения выработок в структурно-неоднородных горных породах, имеющие существенное значение для горного машиностроения.

Проведенные исследования позволили получить следующие результаты:

1. Обоснованы технические решения по совершенствованию и выбору конструктивных, кинематических и силовых параметров консольных узлов крепления дискового инструмента на многогранных призмах для совмещения процессов разрушения, дробления и погрузки горных пород при реверсивных режимах работы двухкорончатого стреловидного исполнительного органа проходческого комбайна.

2. Установлено, что усилия боковые P_x , подачи P_y и перекатывания P_z на отдельных дисковых инструментах прямо пропорционально зависят от прочности разрушаемого забойного массива σ_{cw} (от 50 до 140 МПа) и при углах наклона продольной оси узла крепления дискового инструмента к оси вращения коронки ϕ_k (0°, 10° и 18°) соотносятся друг к другу $P_y = 3,1P_z$, $P_x = 1,22P_z$ и возрастают как при увеличении шага разрушения t_p от 0,03 м до 0,055 м в 1,35 раза, так и при увеличении угла ϕ_k от 10° до 18° на: 12 % (для диска 1 с $\phi = 5^\circ+25^\circ$); 9,9 % (для диска 2 с $\phi = 10^\circ+20^\circ$); 8 % (для диска 3 с $\phi = 15^\circ+15^\circ$) и 14,4 % (для диска 4 с $\phi = 0^\circ+30^\circ$), имеют минимальные значения на биконическом дисковом инструменте ($\phi = 15^\circ+15^\circ$), а максимальные – на коническом ($\phi = 0^\circ+30^\circ$).

3. Определены зависимости эквивалентных напряжений σ_{экв} на отдельном дисковом инструменте с консольными узлами крепления к многогранным призмам от прочности горных пород, которые описываются полиномами шестой степени для трехгранных и четырехгранных призм с раздельными дисками, и четвертой степени для спаренных дисков на четырехгранных призмах.

4. Выявлены зоны максимальных эквивалентных напряжений σ_{экв}, которые для консольных узлов крепления отдельного дискового инструмента к трехгранным призмам составляют 120 МПа, к четырехгранным призмам составляют 180

115

МПа при раздельном креплении двух дисков и 100 МПа при спаренном креплении двух дисков со смещением зон концентраций к кромкам дисков, поверхностям граней призм, обращенным в зону контакта с забойным массивом, местам расположения шпоночных и шлицевых соединений.

5. Установлено, что зависимости усилий P_y , P_z и моментов M_κ на отдельных дисковых инструментах от контактной прочности P_κ носят прямолинейный характер, а зависимости моментов M_κ от угла ρ фиксированных положений поворота коронок описываются полиномами третьей степени для левой коронки и полиномами шестой, четвертой степени для правой коронки.

6. Определено, что зависимости суммарных усилий ΣP_{yi} и крутящих моментов ΣM_{κ} на отдельных коронках двухкорончатого стреловидного исполнительного органа от угла ρ фиксированных положений поворота коронок описываются полиномами пятой степени с учетом периодичности входа и выхода дисковых инструментов из контакта с породой и реверсивных режимов работы.

Направления дальнейших исследований:

 обосновать технологические и технические решения для снижения энергоемкости процессов забуривания или зарубки радиальных коронок с дисковым инструментом в забой с широким диапазоном прочности горных пород;

- исследовать параметры процессов дробления горных пород и погрузки разрушенной массы на стол питателя проходческого комбайна двухкорончатым стреловидным исполнительным органом в прибортовых коридорах подземной выработки.

117 СПИСОК ЛИТЕРАТУРЫ

1. Таразанов, И.Г. Итоги работы угольной промышленности России за 2006 год / И.Г. Таразанов // Уголь. – 2007. – № 3. – С. 23–29.

2. Таразанов, И.Г. Итоги работы угольной промышленности России за 2007 год / И.Г. Таразанов // Уголь. – 2008. – № 3. – С. 39–46.

3. Таразанов, И.Г. Итоги работы угольной промышленности России за 2008 год / И.Г. Таразанов // Уголь. – 2009. – № 3. – С. 45–52.

4. Таразанов, И.Г. Итоги работы угольной промышленности России за 2009 год / И.Г. Таразанов // Уголь. – 2010. – № 3. – С. 34–42.

5. Таразанов, И.Г. Итоги работы угольной промышленности России за 2010 год / И.Г. Таразанов // Уголь. – 2011. – № 3. – С. 37–45.

6. Таразанов, И.Г. Итоги работы угольной промышленности России за 2011 год / И.Г. Таразанов // Уголь. – 2012. – № 3. – С. 40–50.

7. Таразанов, И.Г. Итоги работы угольной промышленности России за 2012 год / И.Г. Таразанов // Уголь. – 2013. – № 3. – С. 78–90.

8. Таразанов, И.Г. Итоги работы угольной промышленности России за 2013 год / И.Г. Таразанов // Уголь. – 2014. – № 3. – С. 53–66.

9. Таразанов, И.Г. Итоги работы угольной промышленности России за январь-декабрь 2014 года / И.Г. Таразанов // Уголь. – 2015. – № 3. – С. 56–71.

10. Таразанов, И.Г. Итоги работы угольной промышленности России за январь-декабрь 2015 года / И.Г. Таразанов // Уголь. – 2016. – № 3. – С. 58–72.

11. Штумпф, Г.Г. Физико- технические свойства горных пород и углей Кузнецкого бассейна: Справочник / Г.Г. Штумпф, Ю.А. Рыжков, В.А. Шаламанов, А.И. Петров. – М.: Недра, 1994 – 447 с.

12. Кузнецов, В.В. Обоснование параметров и разработка исполнительного органа проходческого комбайна, оснащенного дисковым инструментом: автореф. дис. ... канд. техн. наук / В.В. Кузнецов. – Кемерово, 1992. – 16 с.

13. Нестеров, В.И. Опыт эксплуатации проходческих комбайнов избирательного действия (на примере шахт ОАО "СУЭК-Кузбасс") / В.И. Нестеров, А.А. Хорешок, Б.Л. Герике, В.В. Кузнецов, Ю.В. Дрозденко, С.Г. Мухортиков // Горная техника: добыча, транспортировка и переработка полезных ископаемых: каталогсправочник, 2012. – СПб.: Славутич. – С. 20–23.

14. Хорешок, А.А. Выбор технологических схем и оборудования для отработки угольных пластов на шахтах ОАО "СУЭК-Кузбасс" / А.А. Хорешок, Л.Е. Маметьев, А.М. Цехин, В.И. Нестеров, А.Ю. Борисов // Горное оборудование и электромеханика. – 2015. – № 5. – С. 3–10.

15. Хорешок, А.А. Влияние условий эксплуатации горных комбайнов на конструкцию их исполнительных органов / А.А. Хорешок, А.М. Цехин, А.Ю. Борисов // Горное оборудование и электромеханика. – 2012. – № 6. – С. 2–5.

16. Леванковский, И.А. Научные основы создания высокоэффективных инструментов для разрушения горных пород и породосодержащих композитов: автореф. дис. ... докт. техн. наук / И.А. Леванковский. – М., 2000. – 34с.

17. Хорешок, А.А. Производство и эксплуатация разрушающего инструмента горных машин : монография / А.А. Хорешок, Л.Е. Маметьев, А.М. Цехин, А.Ю. Борисов, П.В. Бурков, С.П. Буркова, П.Д. Крестовоздвиженский ; Юрг. технолог. ин-т – Томск : Изд-во Том. политехн. ун-та, 2013. – 296 с.

18. Крестовоздвиженский, П.Д. Повышение прочности тангенциальных поворотных резцов горных очистных комбайнов : дис. ...канд. техн. наук / П.Д. Крестовоздвиженский. – Кемерово, 2011. – 199 с.

19. Хорешок, А.А. Опыт эксплуатации рабочего инструмента исполнительных органов горных машин на шахтах Кузбасса / А.А. Хорешок, А.М. Цехин, В.В. Кузнецов, А.Ю. Борисов, П.Д. Крестовоздвиженский // Горное оборудование и электромеханика. – 2011. – № 4. – С. 8–11.

20. Габов, В.В. Особенности эксплуатации проходческих комбайнов на шахтах ОАО «Воркутауголь» / В.В. Габов [и др.] // Горн. оборудование и электромеханика. – 2008. – № 12. – С. 2–6.

21. Белич, Е.В. Испытание нового горно-режущего инструмента в шахтах Воркуты / Е.В. Белич, Л.М. Гусельников, Д.А. Задков, А.А. Подосенов // Горное. оборудование и электромеханика. – 2007. – № 8. – С. 2–5.

22. Бреннер, В.А. Гидроструйные технологии в промышленности. Гидромеханическое разрушение горных пород / В.А. Бреннер, А.Б. Жабин, А.Е. Пушкарев, М.М. Щеголевский. – М.: Издательство Академии горных наук, 2000. – 343 с.

23. Поляков, А.В. Разработка метода расчета эффективности процесса резания горных пород струями воды сверхвысокого давления и обоснование параметров устройства для их получения применительно к проходческим комбайнам: автореф. дис. ... канд. техн. наук / А.В. Поляков. – Тула, 2006. – 20 с.

24. Антипов, В.В. Выбор и обоснование параметров и режимов работы гидромеханических исполнительных органов проходческих комбайнов со встроенным в режущую коронку преобразователем давления: автореф. дис. ... канд. техн. наук / В.В. Антипов. – Тула, 2001. – 18с.

25. Мерзляков, В.Г. Научные основы создания гидромеханических исполнительных органов для очистных и проходческих комбайнов: автореф. дис. ... докт. техн. наук / В.Г. Мерзляков. – М., 2000. – 40 с.

26. Сафохин, М.С. Машины и инструмент для бурения скважин на угольных шахтах / М.С. Сафохин, И.Д. Богомолов, Н.М. Скорняков, А.М. Цехин. – М.: Недра, 1985. – 213 с.

27. Логов, А. Б. Механическое разрушение крепких горных пород / А.Б. Логов, Б.Л. Герике, А.Б. Раскин. – Новосибирск: Наука. Сиб. отд-ние, 1989. – 141с.

28. Худин, Ю.Л. Разрушение горных пород комбинированными исполнительными органами / Ю.Л. Худин, Л.Д. Маркман, Ж.П. Вареха, П.М. Цой. – М.: Недра, 1978. – 224 с.

29. Нестеров, В.И. Разрушение угольных и рудных пластов с твердыми включениями шнековыми рабочими органами / В.И. Нестеров, А.А. Хорешок, В.Н. Вернер [и др.]: монография / ГУ Кузбасс. гос. техн. ун-т. – Кемерово, 2001. – 125 с.

30. Хорешок, А.А. Расширение области применения проходческих комбайнов избирательного действия / А.А Хорешок, Ю.Г. Полкунов, В.В. Кузнецов [и др.]; Под ред. В.И. Нестерова – Кемерово: КузГТУ, 2000. – 36 с.

31. Хорешок, А.А. Совершенствование конструкций исполнительных органов проходческих комбайнов избирательного действия / А.А. Хорешок, В.В. Куз-

нецов, А.Ю. Борисов // Горные машины и автоматика. – 2002. – № 9. – С. 22–26.

32. Хорешок, А.А. О состоянии и развитии проходческих комбайнов избирательного действия на шахтах Кузбасса / А. А. Хорешок, А. Ю. Борисов // Горное оборудование и электромеханика. – 2006. – № 11. – С. 42–45.

33. Хорешок, А.А. Обоснование геометрических параметров дискового инструмента для исполнительных органов проходческих комбайнов / А.А. Хорешок,
В.В. Кузнецов, А.Ю. Борисов // Горное оборудование и электромеханика. – 2008. – № 2. – С. 11–13.

34. Хорешок, А.А. Перспективы применения дискового инструмента для коронок проходческих комбайнов / А.А. Хорешок, Л.Е. Маметьев, В.В. Кузнецов, А.Ю. Борисов // Вестник КузГТУ. – 2010. – № 1. – С. 52–54.

35. Хорешок, А.А. Совершенствование конструкции продольно-осевых коронок проходческого комбайна избирательного действия / А.А. Хорешок, Л.Е. Маметьев, А.Ю. Борисов, С.Г. Мухортиков // Горное оборудование и электромеханика. – 2010. – № 5. – С. 2–6.

36. Хорешок, А.А. Прогнозирование максимального объема разрушенного материала дисковым инструментом / А.А. Хорешок, В.В. Кузнецов, А.Ю. Борисов // Горный информационно-аналитический бюллетень. – 2011. – № 9. – С. 299–304.

37. Ганжа, В.А. Влияние скорости резания на силовые и энергетические показатели процесса разрушения льда дисковым режущим инструментом / В.А. Ганжа, Ю.Н. Безбородов, П.В. Ковалевич, А.А. Рябинин // Вестник КузГТУ. – 2013. – № 6. – С. 105–110.

38. Хорешок, А.А. Проходческие комбайны со стреловидным исполнительным органом. Часть 1. Опыт производства и развития : монография / А.А. Хорешок, Л.Е. Маметьев, А.М. Цехин, Б.Л. Герике, Г.Д. Буялич, А.Б. Ефременков, А.Ю. Борисов; Юргинский технологический институт, Кузбасский государственный технический университет. – Томск : Изд-во Томского политехнического университета, 2015. – 213 с.

39. Хорешок, А.А. Проходческие комбайны со стреловидным исполнительным органом. Часть 2. Эксплуатация и диагностика : монография / А.А. Хорешок, Л.Е. Маметьев, А.М. Цехин, Б.Л. Герике, Г.Д. Буялич, А.Б. Ефременков, А.Ю. Борисов; Юргинский технологический институт, Кузбасский государственный технический универ-

ситет. – Томск : Изд-во Томского политехнического университета, 2015. – 281 с.

40. Маметьев, Л.Е. Тенденции формирования парка проходческих комбайнов на шахтах Кузбасса / Л.Е. Маметьев, А.М. Цехин, А.Ю. Борисов // Вестник КузГТУ. – 2013. – № 2. – С. 14–16.

41. АО "КМЗ" Новые рекорды КП21 / [Электронный ресурс]. – Электрон. дан. – Режим доступа: http://www.kopemash.ru/company/awards/detail.php?ID=562

42. АО "КМЗ" Новый рекорд по проходке установлен на КП21 / [Электронный ресурс]. – Электрон. дан. – Режим доступа: http://www.kopemash.ru/company/news/553.html

43. АО «Копейский машзавод» / [Электронный ресурс]. – Электрон. дан. – Режим доступа: http://www.kopemash.ru/products/1/

44. Ютяев, Е.П. Обеспечение безопасности при интенсивной разработке пластов на шахтах ОАО «СУЭК-Кузбасс» / Е.П. Ютяев // Горная промышленность. – 2015. – № 1. – С. 18–22.

45. Сафохин, М.С. Горные машины и оборудование / М.С. Сафохин, Б.А. Александров, В.И. Нестеров. – М.: Недра. – 1995. – 463 с.

46. Сатлыков, Р.З. Обоснование и выбор основных параметров привода исполнительного органа проходческих комбайнов: автореф. дис. ... канд. техн. наук / Р.З. Сатлыков. – Кемерово, 1989. – 16 с.

47. ООО «Завод Гидромаш-НК» / [Электронный ресурс]. – Электрон. дан. – Режим доступа: http://gidromash.ru

48. Семенченко, А.К. Разработка структурно-компоновочной схемы проходческого комбайна нового технического уровня / А. К. Семенченко, О.Е. Шабаев, Д.А. Семенченко, Н.В. Хиценко // Горные машины и автоматика. – 2005. – № 1. – С. 31–32.

49. Семенченко, А.К. Перспективы развития проходческих комбайнов / А.К. Семенченко, О.Е. Шабаев, Д.А. Семенченко, Н.В. Хиценко // Горная техника: добыча, транспортировка и переработка полезных ископаемых: каталогсправочник, 2006. – СПб. : Славутич. – С. 8–15.

50. Шабаев, О.Е. Влияние структуры исполнительного органа проходческого комбайна на эффективность его работы / О.Е. Шабаев, Д.А. Семенченко, Н.В. Хиценко, В.А. Мизин // Горный информационно-аналитический бюллетень. – 2003. – № 11. – C. 145–148.

51. Семенченко, А.К. Перспективы создания проходческих комбайнов нового технического уровня / А.К. Семенченко, О.Е. Шабаев, Д.А. Семенченко, Н.В. Хиценко // Горная техника : добыча, транспортировка и переработка полезных ископаемых : каталог-справочник, 2005. – СПб. : Славутич. – С. 60–69.

52. Семенченко, Д.А. Обоснование параметров исполнительного органа проходческих комбайнов с аксиальными коронками: автореф. дис. ... канд. техн. наук / Д.А. Семенченко. – Донецк, 2003. – 20 с.

53. Калашников, С.А. Основные направления совершенствования горнопроходческой техники / С.А. Калашников, О.А. Малкин, А.Н. Левченко // Горное оборудование и электромеханика. – 2008. – № 8. – С. 27–33.

54. Хорешок, А.А. Систематизация узлов проходческого комбайна СМ-130К по наработкам / А.А. Хорешок, В.В. Кузнецов, А.Ю. Борисов, Ю.В. Дрозденко, Е.В. Прейс, В.Е. Рябов // Горное оборудование и электромеханика. – 2009. – № 3. – С. 11–14.

55. «Ясиноватский машиностроительный завод» / [Электронный ресурс]. – Электрон. дан. – Режим доступа: http://www.jscymz.com

56. «Новокраматорский машиностроительный завод» / [Электронный ресурс]. – Электрон. дан. – Режим доступа: http://www.nkmz.com

57. «REMAG S.A.» / [Электронный ресурс]. – Электрон. дан. – Режим доступа: http://www.remag.com.pl

58. «WIRTH Mining Solutions» / [Электронный ресурс]. – Электрон. дан. – Режим доступа: http://www.wirth-europe.com

59. «Dosco Overseas Engineering Limited» / [Электронный ресурс]. – Электрон. дан. – Режим доступа: http://www.bdsindustrial.com

60. Нестеров, В.И. Исполнительный орган проходческого комбайна для совмещения процессов разрушения забоя с дроблением негабаритов и погрузкой горной массы / В.И. Нестеров, Л.Е. Маметьев, А.А. Хорешок, А.Ю. Борисов // Вестник КузГТУ. – 2012. – № 3. – С. 112–117.

61. Отроков, А.В. Выбор параметров погрузочных органов проходческих комбайнов с нагребающими звездами // А.В. Отроков, Г.Ш. Хазанович, Н.Б. Афо-

нина // Горное оборудование и электромеханика. – 2014. – № 7. – С. 12–16.

62. Герике, П.Б. Разрушение горных пород дисковым инструментом машин для послойного фрезерования: автореф. дис. ... канд. техн. наук / П.Б. Герике. – Кемерово, 2005. – 16с.

63. Ганжа, В.А. Обоснование конструкции и основных параметров дискового режущего инструмента для разрушения снежно-ледяных образований: автореф. дис. ... канд. техн. наук / В.А. Ганжа. – Красноярск, 2011. – 24с.

64. Герике, Б.Л. Исследование режимов работы исполнительных органов очистных комбайнов с дисковым скалывающим инструментом : автореф. дис. ...канд. техн. наук / Б.Л. Герике. – Кемерово, 1977. – 24с.

65. Соколова, Е.К. Установление нагруженности дискового скалывающего инструмента шнековых исполнительных органов выемочных машин: автореф. дис. ...канд. техн. наук / Е.К. Соколова. – Кемерово, 1984. – 16 с.

66. Дергунов, Д.М. Исследование процесса разрушения угля дисковыми шарошками применительно к исполнительным органам узкозахватных комбайнов: автореф. дис. ...канд. техн. наук / Д.М. Дергунов. – Кемерово, 1972. – 16 с.

67. Разрушение горных пород проходческими комбайнами. Разрушение агрегированными инструментами. Коллективная монография. Наука, 1977. – 160 с.

68. Барон, Л.И. Разрушение горных пород шарошечным инструментом /Л.И. Барон, Л.Б. Глатман, С.Л. Загорский [и др]. Наука, 1966. – 139 с.

69. Барон, Л.И. Разрушение горных пород проходческими комбайнами. Разрушение шарошками / Л.И. Барон, Л.Б. Глатман, С.Л. Загорский. – Наука, 1969. – 152 с.

70. Барон, Л.И. Исследование процесса разрушения горных пород свободно вращающимися клиновыми дисками / Л.И. Барон, С.Л. Загорский, В.М. Логунцов. ИГД им. А.А. Скочинского, М., 1962.

71. Корчуганов Ф.В. Исследование и совершенствование конструкции исполнительных органов узкозахватных комбайнов с целью повышения : эффективности комбайновой выемки в условиях Кузбасса: автореф. дис. ...канд. техн. наук / Ф.В. Корчуганов. – Кемерово, 1974. – 24 с.

72. Нестеров, В.И. Экспериментально-теоретические основы повышения каче-

ства процесса взаимодействия рабочих органов очистных комбайнов с разрушаемым массивом: автореф. дис. ...докт. техн. наук / В.И. Нестеров. – Кемерово, 1989. – 42 с.

73. Хорешок, А.А. Разработка и создание рабочих органов выемочных машин для улучшения сортового состава добываемого угля: автореф. дис. ...д-ра техн. наук / А.А. Хорешок. – Кемерово, 1997. – 36 с.

74. Шанин, А.С. Изыскание средств и способов повышения эффективности комбайновой выемки угля из пластов с твердыми включениями в условиях производственного объединения "Южкузбассуголь": автореф. дис. ...канд. техн. наук / А.С. Шанин. – Кемерово, 1975. – 30 с.

75. Полкунов, Ю.Г. Циклическое разрушение крепких пород инструментами горных машин, формирующими трещины нормального разрыва: автореф. дис. ... докт. техн. наук / Ю.Г. Полкунов. – Кемерово, 2000. – 30 с.

76. Вернер, В.Н. Исследование и обоснование рациональных параметров шнековых погрузочно-транспортирующих органов выемочных машин: автореф. дис. ... д-ра техн. наук / В.Н. Вернер. – Кемерово, 1999. – 35 с.

77. Прейс, Е.В. Оценка гранулометрического состава угля при разрушении исполнительными органами очистных комбайнов с дисковыми шарошками: автореф. дис. ... канд. техн. наук / Е.В. Прейс. – Кемерово, 1994. – 18 с.

78. Раскин, А.Б. Создание исполнительного органа очистных комбайнов для отработки рудных жил: дис. ...канд. техн. наук / А.Б. Раскин. – Кемерово, 1989. – 207 с.

79. Коршунов, А.Н. К вопросу отработки угольных пластов с твердыми включениями / А.Н. Коршунов, В.И. Нестеров, А.С. Шанин, Б.Л. Герике. – Науч.тр. / КузПИ, вып. 63, Кемерово, 1974. – С. 60–67.

80. Коршунов, А.Н. Результаты исследований процесса разрушения углей дисковыми шарошками / А.Н. Коршунов, Д.М. Дергунов, А.Б. Логов, Б.Л. Герике // ФТПРПИ. – 1975. – № 5. – С. 118–120.

81. Барон, Л.И. О корреляции силовых показателей процесса разрушения горных пород групповыми дисковыми шарошками с характеристиками свойств разрушаемых пород / Л.И. Барон, Л.Б. Глатман, Ю.Н. Козлов // Разрушение горных пород проходческими комбайнами. Разрушение агрегированными инстру-

ментами. – М.: Наука, 1977. – С. 77–87.

82. Безгубов, А.П. Влияние диаметра шарошки на силовые показатели процесса разрушения горной породы при уступном забое / А.П. Безгубов. – Науч. тр. / ИГД им. А.А. Скочинского, 1980, вып.189. – С. 32–34.

83. Безгубов, А.П. Установление рациональных параметров процесса разрушения горных пород дисковыми шарошками в уступном забое: автореф. дис. ... канд. техн. наук / А.П. Безгубов. – М., 1982. – 16 с.

84. Черемных, М.И. Исследование разрушения горных пород шарошечным инструментом на полноразмерном стенде / М.И. Черемных, В.И. Долгов, А.С. Комаров – В кн.: Разрушение горных пород механическими способами. – М.: Наука, 1966. – С. 110–116.

85. Загорский, С.Л. Разрушение горных пород дисковыми шарошками. – В кн.: Разрушение горных пород механическими способами / С.Л. Загорский. – М.: Наука, 1966. – С. 100–110.

86. Деркач, К.Ф. К расчетному определению усилий при разрушении горных пород дисковыми шарошками / К.Ф. Деркач, М.Г. Крапивин, В.Г. Михайлов // Уголь Украины. – 1969. – № 11. – С. 37–38.

87. Азерская, К.Ф. Исследование параметров режима разрушения горных пород тангенциальной дисковой шарошкой / К.Ф. Азерская. – Науч. тр ИГД им. А. А. Скочинского, 1973, вып. 106. – С. 55–58.

88. Миткевич, Ю.Ф. Взаимодействие дисковых шарошек породопроходческого комбайна с плоским забоем / Ю.Ф. Миткевич, М.Г. Крапивин, К.Ф. Деркач, И.И. Мельников // Изв. ВУЗ. Горный журнал. – 1974. – №2. – С. 73–78.

89. Барон, Л.И. К выбору критерия оценки сопротивляемости горных пород разрушению шарошечным инструментом / Л.И. Барон, Л.Б. Глатман // Разрушение горных пород шарошечным инструментом. – М.: Наука, 1966. – С. 18–27.

90. Бундаев, В.В. Зависимость напряженно-деформированного состояния упругой полуплоскости с уступом от степени затупленности жесткого клина / В.В. Бундаев // ФТПРПИ. – 1981. – № 3. – С. 88–93.

91. Черемных, М.И. К вопросу создания проходческих комбайнов / М.И. Черемных, А.С. Комаров // Тр. Центрального научно-исследовательского и проектно-

конструкторского института подземного и шахтного строительства. – 1967. – №5.

92. Храмов, В.П. Исследование исполнительных органов проходческих комбайнов на полноразмерных стендах / В.П. Храмов // Тр. Центрального научно-исследовательского и проектно-конструкторского института подземного и шахтного строительства. – 1968. – вып.6.

93. Takaoka S., Haumizu H., Misana S. Studies on the fracture of rock by rotary cutters. P.Z. Rock fractyring by disc cutter – "Huxon kore kaйси". J. of the mining and metallurg Justitute of Japan" 1968. – 84 p.

94. Деркач, К.Ф. Исследование работы дисковых шарошек проходческого комбайна для пород средней крепости / К.Ф. Деркач, М.Г. Крапивин // Шахтное строительство. – 1967. – № 12.

95. Крапивин, М.Г. Особенности работы и износа дисковых шарошек для проходческих комбайнов / М.Г. Крапивин, К.Ф Деркач, Ю.Т. Коженцов // Тр. Новочеркасского политехнического института. – 1970. – № 218.

96. Деркач, К.Ф. Исследование работы дисковых шарошек для проходческих комбайнов: автореф. дис. ...канд. техн. наук / К.Ф. Деркач. – Новочеркасск, 1969. – 23 с.

97. R. Teat. The mechanical excavation of rock-experiments with rotter cutter. – Jnternat . J. of rock Mechanics and Mining Sci., 1963. – №1.

98. Лозовский, И.И. Исследование эффективности разрушения угля клинодисковым органом применительно к струговым установкам: дис. ...канд. техн. наук / И.И. Лозовский. – Донецк, 1969.

99. Леванковский, И.А. Сопротивляемость статическому откалыванию как критерий разрушаемости горных пород лобовыми дисковыми шарошками / И.А. Леванковский. – Науч. тр. / ИГД им. А.А.Скочинского, 1982, вып. 207, С. 43–46.

100. Леванковский, И.А. Разработка методов расчета нагруже ности и износостойкости лобовых дисковых шарошек проходческих комбайнов: автореф. дис... канд.техн.наук / И.А. Леванковский. – М., 1983. – 15 с.

101. Roxborough Frank., Phillips Huwk. Rock Excavation by Disc Cutter."Int. J. Rock. Mech and Mining Sci and Geomech. Abstrs, "1975, 12. № 12. P. 361–366.

102. Болдырев, П.И. Исследование и прогнозирование показателей сопро-

тивляемости разрутпению углей Кузнецкого бассейна: дис... канд. техн. наук / П.И. Болдырев. – Кемерово-Прокопьевск, 1975. – 177 с.

103. Барон, Л.И. Коэффициенты крепости горных пород / Л.И. Барон. – М.: Наука, 1972. – 175 с.

104. Ильницкая, Е.И. Свойства горных пород и методы их определения / Е.И. Ильницкая, Р.И. Тедер, Е.С. Ватолин, М.Ф. Кунтыш; под ред. проф. докт. техн. наук М.М. Протодьяконова. – М.: Недра, 1969. – 391 с.

105. Барон, Л.И. Физические предпосылки контроля прочности горных пород акустическим методом / Л.И. Барон, Е.С. Ватолин, В.П. Бородин // ФТПРПИ. – 1976. – № 4. – С.32–35.

106. Берон, А.И. Резание угля / Берон А.И., Казанский А.С, Лейбов Б.М. [и др]. – М.: Госгортехиздат, 1962. – 439 с.

107. Позин, Е.З. Сопротивляемость углей разрушению режущими инструментами / Е.З. Позин. – М.: Наука, 1972.

108. Барон, Л.И. Контактная прочность горных пород / Л.И. Барон, Л.Б. Глатман. – М.: Недра, 1963.

109. Картавый, Н.Г. Вероятностные характеристики сил резания / Н.Г. Картавый, В.Я. Синельников; Науч. тр. МГИ, М., 1968.

110. Барон Л.И. О связях осредненного коэффициента крепости с другими характеристиками свойств горных пород / Л.И. Барон; Науч. сообщ. ИГД им. А.А. Скочинского. – М., 1970. – № 75.

111. Лизункин, В.М. Научно-методические и физико-технические основы комбайновой выемки крепких руд маломощных некрутопадающих месторождений: дис. ... докт. техн. наук / В.М. Лизункин. – Чита, 1999. – 331 с.

112. Плюм, Д. Разработка конструкций шнеков и совершенствование шнековых комбайнов / Д. Плюм // Глюкауф. – 1987. – № 17. – С. 25–32.

113. Раубер, М. Современное состояние и развитие проходческой техники на шахте "Энсдорф" / М. Раубер // Глюкауф. – 1985. – № 19. – С. 38–43.

114. Пфанненштиль, Ф. Состояние и тенденции развития комбайновой выемки / Ф. Пфанненштиль // Глюкауф. – 1980. – № 7. – С. 5–12. 115. Maidl B, Schmid L, Ritz W, Herrenknecht. Hardrock Tunnel Boring Machines. Berlin, 2008. Ernst & Sohn Verlag fur Architektur und technische Wissenschaften GmbH und Co.KG. 343 p.

116. Хорешок, А.А. Распределение напряжений в узлах крепления дискового инструмента на коронках проходческих комбайнов / А.А. Хорешок, Л.Е. Маметьев, В.В. Кузнецов, А.Ю. Борисов, А.В. Воробьев // Вестник КузГТУ. – 2012. – № 6. – С. 34–40.

117. Силкин, А.А. Исследование и совершенствование рабочего органа комбайна для добычи песчано-глинистых руд с твердыми включениями: Дис. ...канд. техн. наук / А.А. Силкин. – Кемерово, 1983. – 207 с.

118. Entacher M., Winter G., Bumberger T., Decker K., Godor I., Galler R. Cutter force measurement on tunnel boring machines – System design. Tunnelling and Underground Space Technology. 31 (2012) 97-106.

119. Gertsch, R., Gertsch, L., Rostami, J., 2007. Disc cutting tests in Colorado red granite: implications for TBM performance prediction. Int. J. Rock Mech. Min. Sci. 44, 238-246.

120. Roby, J., Sandell, T., Kocab, J., Lindbergh, L., 2008. The current state of disc cutter design and development directions. In: Proceedings of the North American Tunnel Congress, San Francisco, USA, pp. 36-45.

121. Samuel, A.E., Seow, L.P., 1984. Disc force measurements on a full-face tunneling machine. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 21, 83-96.

122. Zhang Y., Wang X.W., Liu H.F. Numerical Simulation of Rock-Breaking Process by Disc Cutter in Tunnel Boring Machine, Applied Mechanics and Materials, Vol. 487, pp. 513-516, 2014.

123. Юнгмейстер, Д.А. Модернизированный комплекс для проходки специальных выработок на шахтах "Метростроя" в сложных горно-геологических условиях / Д.А. Юнгмейстер, С.А. Лавренко, А.И. Исаев, В.В. Максаров, Г.В. Соколова, А.В. Иванов // Горное оборудование и электромеханика. – 2014. – № 4. – С. 3–10.

124. Чекмасов, Н.В. Повышение эффективности процесса разрушения калийного массива резцами исполнительных органов проходческо-очистных комбайнов / Н.В. Чекмасов, В.В. Габов, Д.И. Шишлянников, Л.А. Лоскутов // Известия высших учебных заведений // Горный журнал. – 2015. – № 5. – С. 43–49.

125. Лавренко, С.А. Анализ состояния и основные направления развития проходческой техники для сооружения вспомогательных выработок метро Санкт-Петербурга / С.А. Лавренко, С.А. Лыщик // Фундаментальные и прикладные исследования в современном мире. – 2016. – № 13-1. – С. 49–53.

126. Аксенов, В.В. Создание нового инструментария для формирования подземного пространства / В.В. Аксенов, А.А. Хорешок, А.Б. Ефременков, А.А. Казанцев, В.Ю. Бегляков, А.В. Вальтер // Горная техника. – 2015. – № 1. – С. 24–26.

127. Нестеров, В.И. Функциональные возможности двухкорончатого исполнительного органа проходческого комбайна с трехгранными призмами и дисковыми инструментами / В.И. Нестеров, Л.Е. Маметьев, А.А. Хорешок, А.Ю. Борисов, С.Г. Мухортиков // Горный информационно-аналитический бюллетень. Горное машиностроение. – 2012. – ОВ №3. – С. 15–24.

128. Хорешок, А.А. Разработка узлов крепления дискового инструмента к рабочим органам проходческих комбайнов / А.А. Хорешок, Л.Е. Маметьев, А.Ю. Борисов, С.Г. Мухортиков // Горный информационно-аналитический бюллетень. Промышленная безопасность и охрана труда. – 2012. – ОВ №6. – С. 28–36.

129. Исполнительный орган проходческого комбайна : пат. 2455486 РФ на изобретение: МПК Е 21 С 25/18, Е 21 С 27/24 (2006.01). / Маметьев Л.Е, Хорешок А.А., Борисов А.Ю., Кузнецов В.В., Мухортиков С.Г. ; патентообладатель Федер. гос. бюджет. образоват. учреждение высш. профессион. образования «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева» (КузГТУ). – № 2010141881/03 ; заявл. 12.10.2010 ; опубл. 10.07.2012, Бюл. № 19. – 14 с.

130. Узел крепления дискового инструмента в трехгранной призме : пат. 128898 РФ на полезную модель: МПК Е 21 С 27/00 (2006.01). / Маметьев Л.Е, Хорешок А.А., Борисов А.Ю., Мухортиков С.Г., Воробьев А.В. ; патентообладатель Федер. гос. бюджет. образоват. учреждение высш. профессион. образования «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева» (КузГТУ). – № 2013100882/03 ; заявл. 09.01.2013 ; опубл. 10.06.2013, Бюл. № 16. – 2 с.

131. Устройство для защиты внутреннего пространства трехгранной призмы

от продуктов разрушения : пат. 134586 РФ на полезную модель: МПК Е 21 С 27/00 (2006.01). Устройство для защиты внутреннего пространства трехгранной призмы от продуктов разрушения / Маметьев Л.Е, Хорешок А.А., Борисов А.Ю., Цехин А.М. ; патентообладатель Федер. гос. бюджет. образоват. учреждение высш. профессион. образования «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева» (КузГТУ). – № 2013127350/03 ; заявл. 14.06.2013 ; опубл. 20.11.2013, Бюл. № 32. – 2 с.

132. Исполнительный орган проходческого комбайна избирательного действия : пат. 136086 РФ на полезную модель: МПК Е 21 С 25/18, Е 21 С 27/24 (2006.01). / Маметьев Л.Е, Хорешок А.А., Борисов А.Ю., Цехин А.М. ; патентообладатель Федер. гос. бюджет. образоват. учреждение высш. профессион. образования «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева» (КузГТУ). – № 2013135402/03 ; заявл. 26.07.2013 ; опубл. 27.12.2013, Бюл. № 36. – 3 с.

133. Устройство пылеподавления для дискового инструмента на трехгранной призме : пат. 138704 РФ на полезную модель: МПК Е 21 С 35/22, Е 21 F 5/04 (2006.01). / Маметьев Л.Е, Хорешок А.А., Борисов А.Ю., Цехин А.М. ; патентообладатель Федер. гос. бюджет. образоват. учреждение высш. профессион. образования «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева» (КузГТУ). – № 2013135405/03 ; заявл. 26.07.2013 ; опубл. 20.03.2014, Бюл. № 8. – 2 с.

134. Узел крепления дискового инструмента на рабочем органе горного комбайна : пат. 141339 РФ на полезную модель: МПК Е 21 С 27/00 (2006.01). / Маметьев Л.Е, Борисов А.Ю. ; патентообладатель Федер. гос. бюджет. образоват. учреждение высш. профессион. образования «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева» (КузГТУ). – № 2014103560/03 ; заявл. 03.02.2014 ; опубл. 27.05.2014, Бюл. № 15. – 3 с.

135. Дисковый инструмент проходческого комбайна: пат. 146845 РФ на полезную модель: МПК Е 21 С 25/18, Е 21 С 27/24 (2006.01). / Маметьев Л.Е, Хорешок А.А., Борисов А.Ю., Воробьев А.В. ; патентообладатель Федер. гос. бюджет. образоват. учреждение высш. профессион. образования «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева» (КузГТУ). – № 2014109201/03 ; заявл. 11.03.2014 ; опубл. 20.10.2014, Бюл. № 29. – 2 с.

136. Исполнительный орган выемочной горной машины : пат. 149617 РФ на полезную модель: МПК Е 21 С 25/18, Е 21 С 27/24 (2006.01). / Маметьев Л.Е, Хоре-

шок А.А., Борисов А.Ю; патентообладатель Федер. гос. бюджет. образоват. учреждение высш. профессион. образования «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева» (КузГТУ). – № 2014135060/03 ; заявл. 26.08.2014 ; опубл. 10.01.2015, Бюл. № 1. – 2 с.

137. Исполнительный орган выемочно-проходческой горной машины : пат. 152701 РФ на полезную модель: МПК Е 21 С 25/18, Е 21 С 27/24 (2006.01). / Маметьев Л.Е, Хорешок А.А., Борисов А.Ю; патентообладатель Федер. гос. бюджет. образоват. учреждение высш. профессион. образования «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева» (КузГТУ). – № 2014144633/03 ; заявл. 05.11.2014 ; опубл. 10.06.2015, Бюл. № 16. – 3 с.

138. Расширитель скважин обратного хода : пат. 160664 РФ на полезную модель: МПК Е 21 В 7/28, Е 21 D 3/00 (2006.01). / Цехин А.М., Маметьев Л.Е, Хорешок А.А., Борисов А.Ю; патентообладатель Федер. гос. бюджет. образоват. учреждение высш. профессион. образования «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева» (Куз-ГТУ). – № 2015135343/03 ; заявл. 20.08.2015 ; опубл. 27.03.2016, Бюл. № 9. – 2 с.

139. Маметьев, Л.Е. Напряженное состояние узлов крепления дискового инструмента в трехгранных призмах радиальных коронок / Л.Е. Маметьев, А.А. Хорешок, А.Ю. Борисов, А.В. Воробьев // Вестник КузГТУ. – 2013. – № 2. – С. 22–25.

140. Хорешок, А.А. Разработка реверсивных коронок для проходческих комбайнов с дисковым инструментом на сменных трехгранных призмах / А.А. Хорешок, Л.Е. Маметьев, А.Ю. Борисов, С.Г. Мухортиков, А.В. Воробьев // Горное оборудование и электромеханика. – 2013. – № 9. – С. 40–44.

141. Khoreshok A. Stress-deformed state knots fastening of a disk tool on the crowns of roadheaders / Khoreshok A, Mametyev L, Borisov A, Vorobiev A // Mining 2014. Taishan academic forum - project on mine disaster prevention and control. Chinese coal in the XXI century: Mining, green and safety. – Qingdao, China, October 17-20, 2014, Atlantis press, Amsterdam-Paris-Beijing, 2014. p. 177–183.

142. Маметьев, Л.Е. Разработка устройства пылеподавления для реверсивных коронок проходческих комбайнов / Л.Е. Маметьев, А.А. Хорешок, А.М. Цехин, А.Ю. Борисов // Вестник КузГТУ. – 2014. – № 3. – С. 17–21.

143. Маметьев, Л.Е. Улучшение процессов монтажа и демонтажа узлов креп-

ления дискового инструмента на коронках проходческих комбайнов / Л.Е. Маметьев, А.Ю. Борисов // Вестник КузГТУ. – 2014. – № 4. – С. 23–26.

144. Маметьев, Л.Е. Разработка исполнительных органов и инструмента для стреловых проходческих комбайнов и бурошнековых машин / Л.Е. Маметьев // Вестник КузГТУ. – 2015. – №5. – С. 56–63.

145. Хорешок, А.А. Основные этапы разработки и моделирования параметров дискового инструмента проходческих и очистных горных машин / А.А. Хорешок, Л.Е. Маметьев, А.М. Цехин, В.И. Нестеров, А.Ю. Борисов // Горное оборудование и электромеханика. – 2015. – № 7. – С. 9–16.

146. Хорешок, А.А. Устройства для улучшения процессов зарубки исполнительных органов проходческих комбайнов избирательного действия / А.А. Хорешок, Л.Е. Маметьев, А.М. Цехин, А.Ю. Борисов // Горное оборудование и электромеханика. – 2014. – № 4. – С. 11–16.

147. Хорешок, А.А. Адаптация узлов крепления дискового инструмента исполнительных органов проходческих комбайнов к монтажу и демонтажу / А.А. Хорешок, Л.Е. Маметьев, А.М. Цехин, А.Ю. Борисов // Горное оборудование и электромеханика. – 2014. – № 7. – С. 3–8.

148. Маметьев, Л.Е. Направление повышения зарубной способности исполнительных органов проходческих комбайнов с аксиальными коронками / Л.Е. Маметьев, А.А. Хорешок, А.Ю. Борисов // Вестник КузГТУ. – 2014. – № 5. – С. 21–24.

149. Khoreshok, A.A. Influence the design of the modular blocks with disk tool on the stress distribution at the destruction of the coalfaces / Khoreshok A.A., Mametyev L.E., Borisov A.Yu // MINER'S WEEK – 2015 REPORTS OF THE XXIII INTERNATIONAL SCIENTIFIC SYMPOSIUM. 2015. p. 482–491.

150. Басов, К.А. ANSYS в примерах и задачах / К.А. Басов. – М.: Компьютерпресс, 2002. – 187 с.

151. Красковский, Д.Г. Ansys в примерах и задачах / Д.Г. Красковский – М.: Компьютер Пресс, 2002. – 224 с.

152. Хечумов, Р.А. Применение метода конечных элементов к расчету конструкций / Р.А. Хечумов, Х. Кеплер, В.И. Прокофьев. – М.: Изд-во Ассоциации строительных вузов, 1994. – 352 с.

153. Каплун, А.Б. Ansys в руках инженера: Практическое руководство / А.Б. Каплун, Е.М. Морозов, М.А. Алферьева. – М.: Едиториал УРСС, 2003. – 272 с.

154. Шимкович, Д.Г. Расчет конструкций в MSC/NASTRAN for Windows / Д.Г. Шимкович. – М.: ДМК Пресс, 2001 – 448 с.

155. Сафронов, В.В. Численное моделирование нагруженности резцов при резании горных пород / В.В. Сафронов; Тул. гос. ун-т. – Тула, 2005. – 171 с.

156. Кинасошвили, Р.С. Сопротивление материалов / Р.С. Кинасошвили. – М.: Наука, 1975. – 384с.

157. Наседкин, А.В. Конечно-элементное моделирование на основе ANSYS / А.В. Наседкин; Сб. Ansys 5.5ED, 1999.

158. Чупин, С.А. Повышение износостойкости поворотных резцов проходческих комбайнов для проведения выработок по породам средней крепости: автореф. дис. ...канд. техн. наук / С.А. Чупин. – Санкт-Петербург, 2016. – 20 с.

159. Борисов, А.Ю. Напряжения в сопрягаемых элементах дисковых инструментов при разрушении проходческих забоев / А.Ю. Борисов, Л.Е. Маметьев // Вестник КузГТУ. – 2015. – №4. – С. 26–35.

160. Маметьев, Л.Е. Совершенствование конструкций узлов крепления дискового инструмента на коронках проходческих комбайнов / Л.Е. Маметьев, А.А. Хорешок, А.Ю. Борисов, А.В. Воробьев // Вестник КузГТУ. – 2014. – № 1. – С. 3–5.

161. Khoreshok A.A. Stress state of disk tool attachment points on tetrahedral prisms between axial bits / Khoreshok A.A., Mametev L.E., Borisov A.Yu., Vorobev A.V. // Applied Mechanics and Materials. 2015. T. 770. p. 434–438.

162. Khoreshok A.A. The distribution of stresses and strains in the mating elements disk tools working bodies of roadheaders / Khoreshok A.A., Mametyev L.E., Borisov A.Yu., Vorobyev A.V. // IOP Conference Series: Materials Science and Engineering. 2015. T. 91. № 1. p. 012084.

163. Борисов, А.Ю. Влияние формы корпуса рабочего органа горного комбайна нагруженность дискового инструмента / А.Ю. Борисов, А.А. Хорешок, Л.Е. Маметьев, А.М. Цехин // Горное оборудование и электромеханика. – 2016. – № 6. – С. 30–37.

164. Khoreshok A.A. Finite element models of disk tools with attachment points

on triangular prisms / Khoreshok A.A., Mametev L.E., Borisov A.Yu., Vorobev A.V. // Applied Mechanics and Materials. 2015. T. 770. C. 429–433.

165. Маметьев, Л.Е. Распределение напряжений между деталями узлов крепления дисковых инструментов при разрушении проходческих забоев / Л.Е. Маметьев, А.А. Хорешок, А.М. Цехин, А.Ю. Борисов // ФТПРПИ. – 2015. – № 6. – С. 93–100.

166. Khoreshok, A.A. Influence of the rigid connection between discs in the tetrahedral prisms on equivalent stresses when cutting work faces / Khoreshok A.A., Mametyev L.E., Borisov A.Yu., Vorobyev A.V. // IOP Conference Series: Materials Science and Engineering. 2016. V. 127. p. 012039.

167. Хорешок, А.А. Формирование нагруженности реверсивных коронок с дисковым инструментом на трехгранных призмах / А.А. Хорешок, Л.Е. Маметьев, А.М. Цехин, А.Ю. Борисов // Горное оборудование и электромеханика. – 2016. – № 4. – С. 3–10.

168. Mametyev L.E. The power characteristics of the reversible radial crowns with disk tools for roadheaders of selective action / Mametyev L.E., Khoreshok A.A., Tsekhin A.M., Mukhortikov S.G., Borisov A.Yu. // The 8th Russian-Chinese Symposium. Coal in the 21st Century: Mining, Processing and Safety. – Kemerovo, Russia, October 10-12, 2016, Atlantis press, Amsterdam-Beijing-Paris, 2016. p. 233–238.

169.Крапивин, М.Г. Горные инструменты / М.Г. Крапивин. – М.: Недра, 1979. – 264 с.

170. Солод, В.И. Горные машины и автоматизированные комплексы: Учебник для вузов / В.И. Солод, В.И. Зайков, К.М. Первов. – М.: Недра. – 1981. – 503 с.

171. РД 12.25.137-89. Комбайны проходческие со стреловидным исполнительным органом. Расчет эксплуатационной нагруженности трансмиссии исполнительного органа. Методические указания. – М.: Минуглепром СССР, 1989. – 51 с.

172. Трубецкой, К.Н. Открытые горные работы. Справочник / К.Н. Трубецкой, В.Б. Артемьев, А.Д. Рубан и др. – М.: Издательство «Горное дело» ООО «Киммерийский центр», 2014. – 624 с.

173. ОСТ 12.44.258-84. Комбайны очистные. Выбор параметров и расчет сил резания и подачи на исполнительных органах. Методика. – М.: Минуглепром СССР, 1984. – 107 с.

135

Приложение А

Р _к , МПа	R , мм	Р _д , Н	P _z , H	Р _у , Н	F, H	М _д , Н∙м
	490	112566	27241	109189	5065	13327
RA	475	115383	27923	10422	5192	12809
$(+Y\times)$	450	47715	7443	47095	2147	2819
	430	49623	7742	48978	2233	3308
	410	118194	30612	114176	5318	11366
1250	385	121007	31340	116893	5445	11640
	360	51531	8965	50758	2320	2138
	340	53441	9299	52639	2406	23680
	490	90053	21793	87351	4052	10663
	475	92307	22338	89538	4154	10249
	450	29172	5054	27676	1719	2257
	430	54757	6103	37070	1716	2237
1000	430	34737	0193	39162	1780	2042
	410	94555	24490	91341	4259	9087
	385	96805	25072	93515	4356	9317
	360	41225	7172	40607	1856	2139
	340	42753	/439	42112	1924	1895
	490	77632	18/8/	75303	3493	9191
	4/5	/95/5	19257	//188	3581	8836
960	450	32907	5133	32479	1481	1946
860	430	34223	5339	33778	1540	2279
	410	81513	21112	/8/42	3668	/83/
_	385	83453	21614	80616	3/55	8029
	360	35539	6183	35006	1600	1843
	340	30830	6413	36303	1659	1635
	490	62882	15217	60995	2829	7444
	475	64455	15598	62522	2901	7156
	450	26655	4158	26308	1199	1576
700	430	27720	4325	27360	1247	1843
,	410	66026	17101	63781	2971	6349
	385	67597	17507	65299	3042	6505
	360	28787	5008	28355	1296	1495
	340	29853	5195	29405	1343	1325
	490	44250	10709	42923	1991	5239
	475	45358	10976	43997	2041	5039
	450	18757	2926	18513	844	1110
400	430	19507	3043	19253	1247	1302
490	410	46462	12034	44883	2090	4470
	385	47568	12320	45951	2140	4573
	360	20257	3524	19953	912	1051
	340	21007	3655	20693	945	932
	490	31053	7515	30121	1397	3678
	475	31831	7703	30815	1432	3537
	450	13163	2053	12992	592	777
350	430	13689	2135	13511	616	910
550	410	32605	8445	31497	1467	3130
	385	33381	8646	32246	1502	3212
	360	14216	2473	14002	640	732
	340	14742	2565	14521	664	651
	490	20184	4885	19579	908	2390
	475	20690	5007	20069	931	2294
	450	8555	1335	8445	385	503
230	430	8898	1388	8782	400	592
	410	21193	5489	20479	954	2035
	385	21698	5619	20960	976	2087
	360	9240	1608	9102	416	481
	340	9583	1667	9439	431	422

Р _к , МПа	R, мм	Рд, Н	P _z , H	P _v , H	F, H	М _д , Н∙м
	490	112565	27128	109188	5065	11664
	475	47715	7014	47190	2148	2468
AA	450	47715	7443	46999	2148	3175
	430	118193	29548	114410	5319	12243
	410	118193	29548	114410	5319	11374
	385	49624	7344	49079	2233	2565
1250	360	51531	8040	50749	2235	2505
	340	123821	33085	110315	5573	10076
	400	00052	21702	97250	4052	0221
	490	90032	21702 5611	87550	4032	9551
	473	30172	5054	37732	1710	1974
	450	38172	5954	37599	1718	2540
	430	94554	23638	91528	4255	9794
1000	410	94554	23638	91528	4255	9099
1000	385	39699	5875	39263	1786	2052
	360	41225	7152	40599	1855	2138
	340	99057	26468	95452	4458	8061
	490	77631	18709	75302	3493	8044
	475	32907	4837	32545	1481	1702
	450	32907	5133	32413	1481	2190
	430	81512	20378	78904	3668	8443
	410	81512	20378	78904	3668	7844
860	385	34223	5065	33847	1540	1769
	360	35539	6166	34999	1599	1843
	340	85394	22817	82286	3843	6949
	490	62881	15154	60995	2829	6516
	475	26655	3918	25361	1199	1377
	450	26645	4158	26255	1197	1774
	430	66025	16506	63912	2971	6839
	410	66019	16403	63900	2970	6354
700	385	27720	4103	27416	1247	1433
	360	28787	4994	28349	1295	1492
	340	69169	18482	66652	3113	5629
	490	43900	10580	42583	1975	4549
	475	18609	2735	18404	838	963
	450	18600	2903	18330	841	1238
	430	46095	11524	44620	2074	4775
	410	46076	11517	44597	2069	4436
490	385	19353	2864	19141	871	1001
	360	20097	3487	19792	904	1042
	340	48290	12903	46533	2173	3930
	490	31518	7596	30572	1418	3266
	475	13360	1964	13213	601	691
	450	13349	2084	13160	613	889
	430	33094	8273	32035	1489	3428
	410	33087	8269	32014	1492	3185
350	385	14292	2056	13742	625	718
	360	14429	2503	14210	649	748
	340	34670	9264	33408	1560	2821
	490	20122	4849	19518	905	2085
	475	8530	1253	8116	384	441
	450	8539	1330	8402	378	568
	430	21128	5282	20452	951	2188
	410	21120	5279	20132	949	2033
230	385	8870	1313	8773	399	459
250	360	9212	1508	9072	414	477
	340	22134	5914	21329	996	1801
1	2.10				// 0	1001

Таблица 2 – Расчет силовых параметров на левой коронке при движении вверх в положении II

р. МПа	Рим	рц	рц	рμ	ЕH	М. Н.м
$1_{k}, 1_{k}$	K , MM	і _д , 11	$1_{Z}, 11$	1 _y , 11	2149	м _д , 11 [.] м
	490	47715	7001	47190	2148	3882
	475	47706	7060	47185	2145	3531
	450	115378	27921	111919	5191	11953
	430	118194	29547	114412	5319	13120
	410	49623	8188	48929	2232	4039
1250	385	51531	8181	48926	2230	2287
1230	360	121006	31340	116894	5445	9850
	340	121000	33060	110364	5571	0162
	400	29172	5640	27752	1719	2106
	490	30172 20165	5649	37732	1/10	3100
	475	38103	5048	37748	1/10	2825
	450	92303	22337	89535	4153	9563
	430	94555	23638	91530	4255	10496
1000	410	39698	6550	39143	1786	3231
	385	41225	6545	39141	1784	1830
	360	96805	25072	93515	4356	7880
	340	99057	26448	95491	4457	7330
	490	32907	4870	32545	1481	2678
	475	32901	4868	32542	1479	2435
	450	70572	10256	77185	3580	8244
	430	91512	19230	77105	2669	0049
860	430	81313	20378	78903	3008	9048
	410	34223	5647	33744	1540	2785
	385	35539	5642	33742	1538	1578
	360	83453	21614	80616	3755	6793
	340	85394	22800	82320	3842	6319
	490	26655	3944	26361	1199	2169
	475	26655	3943	26359	1197	1972
	450	64452	15507	(2520)	2800	6677
	450	04455	15597	62520	2899	00//
700	430	66025	16506	63913	2971	7329
/00	410	27720	4574	27332	1247	2256
	385	28786	4570	27331	1245	1278
	360	67597	17507	65299	3041	5502
	340	69169	18468	66680	3112	5118
	490	18659	2761	18453	839	1518
	475	18659	2760	18451	837	1380
	450	45117	10918	43764	2029	4674
	430	46217	11554	43704	2022	5130
400	430	40217	2202	10122	2080	1570
490	410	19404	3202	19132	8/3	15/9
	385	20150	3199	19131	8/1	895
	360	47318	12255	45709	2129	3851
	340	48418	12928	46676	2178	3583
	490	13327	1972	13180	599	1084
	475	13327	1971	13180	598	986
	450	32226	7798	31260	1449	3338
	430	32016	8253	31956	1486	3664
350	410	13862	2287	13666	623	1128
	285	1/302	2207	13665	622	630
	363	14393	2203	13003	022	039
	360	33798	8753	32649	1520	2751
	340	34584	9234	33340	1556	2559
<u> </u>	400	8796	1301	8600	305	715
	490 175	8706	1200	8600	204	651
	4/3	0/90	5146	0079	054	001
	450	21269	5146	20631	956	2203
230	430	21130	5447	21091	981	2418
	410	9149	1509	9019	411	744
	385	9499	1507	9018	410	422
	360	22306	5777	21548	1003	1816
	340	22825	6094	22004	1027	1689

Таблица 3 – Расчет силовых параметров на левой коронке при движении вверх в положении III

Р _k , МПа	R , мм	Рд, Н	P _z , H	P _y , H	F, H	М _д , Н∙м
	490	47715	3722	47524	2148	2119
	475	115380	27912	111918	5193	11954
	450	115380	27912	111918	5193	11100
	430	49624	8189	48929	2232	2570
	410	49624	8189	48929	2232	2938
1250	385	121006	31340	116891	5445	9850
1250	360	121006	31340	116891	5445	8954
	340	53441	9245	52746	2405	2373
	490	38172	2978	38019	1718	1695
	475	92304	22330	89535	4154	9563
	450	02204	22330	05535	4154	0000
	430	92304	22530	80000	4134	8880
	430	39099	6551	39143	1780	2030
1000	410	39699	6551	39143	1786	2350
1000	385	96805	25072	93513	4356	/880
	360	96805	25072	93513	4356	7163
	340	42753	7396	42197	1924	1898
	490	32907	2567	32775	1481	1461
	4/5	79572	19250	//185	3581	8244
	450	79572	19250	77185	3581	7655
	430	34223	5647	33744	1540	1772
960	410	34223	5647	33744	1540	2026
860	385	83453	21614	80615	3755	6793
	360	83453	21614	80615	3755	6175
	340	36856	6376	36377	1659	1636
	490	26655	2079	26548	1199	1183
	475	64453	15592	62520	2900	6677
	450	64453	15592	62520	2900	6200
	430	27720	4574	27332	1247	1435
	410	27720	4574	27332	1247	1641
700	385	67597	17507	65298	3041	5502
	360	67597	17507	65298	3041	5002
	340	29853	5164	29465	1344	1325
	490	18658	1455	18584	839	828
	475	45117	10914	43764	2030	4674
	450	45117	10914	43764	2030	4340
	430	19404	3202	19132	873	1004
	410	19404	3202	19132	873	1149
490	385	47318	12255	45709	2128	3851
	360	47318	12255	45709	2128	3501
	340	20897	3615	20625	941	927
	490	13327	1039	13274	599	591
	475	32226	7796	31260	1450	333
	450	32226	7796	31260	1450	3100
	430	13860	2287	13666	623	717
	410	13860	2287	13666	623	820
350	385	33798	8753	32649	1520	2751
	360	33798	8753	32649	1520	2501
	340	14926	2582	14732	672	663
	490	8796	686	10161	395	390
	475	21269	5145	20631	957	219
	450	21269	5145	20631	957	2046
	430	9147	1509	9019	411	473
	410	9147	1509	9019	411	541
230	385	22306	5777	21548	1003	1815
~ ~	360	22306	5777	21548	1003	1650
	340	9851	1704	9723	443	437

Таблица 4 – Расчет силовых параметров на левой коронке при движении вверх в положении IV

Р _к , МПа	R, мм	Рд, Н	P _z , H	Р _у , Н	F, H	М _д , Н∙м
	490	115381	27912	111918	5192	13658
	475	115381	27912	111918	5192	13794
	450	47715	3721	47524	2146	3175
	430	49624	8188	48929	2232	2929
	410	118194	29548	114413	5318	11374
1250	385	121006	31340	116891	5445	10740
1250	360	51531	8189	48929	2233	3809
	340	53441	9245	52746	2405	2768
	490	02305	22330	80535	4154	10027
	475	92305	22330	89535	4154	11035
	475	29172	22330	29010	1717	2540
	430	30172	2977	20142	1/1/ 1796	2340
	430	39099	0330	01520	1760	2343
1000	410	94555	23038	91550	4255	9099
1000	363	90803	23072	95515	4550	8392
	360	41225	6551	39143	1/80	3047
	340	42753	/396	42197	1924	2214
	490	79573	19250	77185	3581	9420
	4/5	/95/3	19250	//185	3381	8828
	450	32907	2567	32775	1481	2190
	430	34223	5647	33744	1540	4020
970	410	81513	20378	78905	3668	7844
860	385	83453	21614	80615	3755	7407
	360	35539	5647	33744	1540	2627
	340	36856	6376	36377	1659	1909
	490	64454	15592	62520	2900	7630
	475	64454	15592	62520	2900	7150
	450	26655	2079	26548	1199	1774
	430	27720	4574	27332	1247	1636
	410	66025	16506	63913	2971	6354
700	385	67597	17507	65298	3041	5999
	360	28786	4574	27333	1247	2128
	340	29853	5164	29465	1344	1546
	490	45118	10914	43764	2030	5341
	475	45118	10914	43764	2030	5005
	450	18658	1455	18584	839	1242
	430	19404	3202	19132	873	1145
	410	46218	11554	44739	2080	4448
490	385	47318	12255	45708	2129	4199
	360	20150	3202	19133	873	1489
	340	20897	3615	20625	941	1082
	490	32227	7796	31260	1450	3815
	475	32227	7796	31260	1450	357
	450	13327	1039	13274	599	887
	430	13860	2287	13666	623	818
	410	33012	8253	31956	1485	3177
350	385	33798	8753	32649	1520	2999
550	260	14202	2297	12666	())	1064
	360	14393	2287	13000	023 672	1004
	340	14920	2332	14/32	072	115
	490	21270	5145	20631	957	2518
	475	21270	5145	20631	957	236
	450	8795	686	8761	395	585
	430	9147	1509	9019	411	540
	410	21788	5447	21091	980	2097
230	385	22307	5777	21548	1003	1979
	360	9499	1509	9020	411	702
	340	9851	1671	9723	444	510

Таблица 5 – Расчет силовых параметров на левой коронке при движении вверх в положении V

	-		~			
P_k , MIIa	R, мм	Рд, Н	P _z , H	Р _у , Н	F, H	М _д , Н∙м
	490	115380	27913	111918	5193	12806
	475	47713	7610	50850	2148	3044
RA	450	47713	6088	40680	1718	3177
$(+Y\times)$	430	118192	29548	114411	5319	9621
	410	118192	29548	114411	5319	11370
	385	515315	8503	50810	2304	3813
1250	360	515315	8503	50810	2304	2670
	340	123821	36155	118373	5571	10079
	490	02304	22330	80534	4154	10245
	475	/1132	6088	40680	1718	2/35
	475	41132	6088	40080	1718	2433
	430	41132 04554	23638	40080	1710	2542
	430	94554	23038	91529	4255	0006
1000	410	94554	23038	91329	4233	9090
1000	365	412252	6802	40048	1043	3030
	360	412252	6802	40648	1843	2136
-	340	99057	28924	94699	4457	8063
	490	79572	19250	7/185	3581	8832
	475	32906	4870	32544	1481	1948
	450	32906	4870	32544	1481	2191
	430	81512	20378	78904	3668	6635
	410	81512	20378	78904	3668	7841
860	385	35539	5864	35041	1589	2630
	360	35539	5864	35041	1589	1841
	340	85394	24935	81637	3842	6951
	490	64453	15593	62520	2900	7154
	475	26654	3944	26361	1199	1578
	450	26654	3944	26361	1199	1775
	430	66024	16506	63912	2971	5374
	410	66024	16506	63912	2971	6351
700	385	28786	4750	28383	1287	2130
	360	28786	4750	28383	1287	1491
	340	69169	20197	66126	3112	5630
-	490	45117	10915	43764	2030	5007
	475	18658	2761	18453	839	1105
	450	18658	2761	18453	839	1242
	430	46217	11554	44738	2078	3762
	410	46217	11554	44738	2078	4445
490	385	20150	3325	19868	901	1491
	360	20150	3325	19868	901	1043
	340	48418	14138	46288	2178	3941
	490	32226	7797	31260	1450	3577
	475	13327	1972	13180	599	789
	450	13327	1972	13180	599	887
	430	33012	8253	31956	1486	2687
	410	33012	8253	31956	1486	3175
250	385	1/303	2375	14101	643	1065
550	505	14575	2375	14171	045	1005
	360	14393	2375	14191	643	746
	340	34584	10098	33063	1556	2815
	490	21269	5146	20631	957	2361
	475	8796	1301	8699	395	520
	450	8796	1301	8699	395	585
	430	21788	5447	21091	981	1773
	410	21788	5447	21091	981	2096
230	385	9499	1567	9366	424	703
	360	9499	1567	9366	424	492
	340	22825	6665	21821	1027	1857

Таблица 6 – Расчет силовых параметров на левой коронке при движении вверх в положении VI

140

P_k , МПа	R, мм	Рд, Н	P _z , H	Р _у , Н	F, H	М _д , Н∙м
	490	47714	7061	47189	2148	2531
	475	47714	7061	47189	1718	2531
	450	115716	27912	111918	5192	12806
	430	118192	29548	114411	5318	12245
	410	49624	8188	48929	2232	2938
1250	385	51531	8502	50810	2318	3812
1250	360	121006	31340	116893	5445	13431
	340	123821	36156	118373	5571	10995
-	490	38171	5649	37751	1718	2825
	475	38171	5649	37751	1718	2825
	450	92572	22330	89535	4154	10245
	430	94554	23638	91529	4255	9796
	410	39699	6551	39143	1786	2350
1000	385	41225	6802	40648	1855	3050
	360	96805	25072	93515	4356	10745
	340	99057	28925	94699	4457	8796
-	490	32906	4870	32544	1481	2435
	475	32906	4870	32544	1481	2435
	450	79572	19250	77185	3581	8832
	430	81512	20378	78904	3668	8445
	410	34223	5647	33744	1540	2026
860	385	35539	5864	35041	1599	2620
000	260	92452	21614	90616	2755	0262
	360	83453	21614	80616	3755	9263
	540	85394	24935	8103/	3842	/383
	490	26654	3945	26360	1199	1972
	475	26654	3945	26360	1199	1972
	450	64453	15592	62519	2900	7154
	430	66025	16506	63912	2971	6840
	410	27720	4574	27332	1247	1641
700	385	28786	4750	28383	1295	2130
	360	67597	17507	65298	3041	7503
	340	69169	20197	66126	3112	6142
	490	18658	2761	18452	839	1380
	475	18658	2761	18452	839	1380
	450	45117	10914	43763	2030	5008
	430	46218	11554	44738	2080	4788
	410	19404	3202	19132	873	449
490	385	20150	3325	19868	907	1491
	360	47318	12255	45708	2128	5252
	340	48418	14138	46288	2178	4299
	490	13327	1972	13180	599	986
	475	13327	1972	13180	599	986
	450	32226	7796	31259	1450	3577
	430	33012	8253	31956	1486	3420
	410	13860	2287	13666	623	820
350	385	14393	2375	14191	647	1065
	360	33798	8753	32649	1520	3751
	340	34584	10098	33063	1556	3071
	490	8796	1301	8699	395	650
	475	8796	1301	8699	395	650
	450	21269	5145	20631	957	2361
	430	21787	5447	21091	981	2257
	410	9148	1509	9019	411	541
230	385	9499	1567	9366	427	703
	360	22307	5777	21548	1003	2475
	340	22825	6665	21821	1027	2027

Таблица 7 – Расчет силовых параметров на левой коронке при движении вверх в положении VII

						-
Р _к , МПа	R, мм	Рд, Н	P _z , H	Р _у , Н	F, H	М _д , Н∙м
	490	47714	7061	47189	2147	3178
\sim	475	10700	27912	111919	5193	12806
	450	10700	27912	111919	5193	1615
	430	49624	8188	48929	2232	2937
	410	49624	8188	48929	2232	3305
1250	385	112294	31340	116891	5445	10745
1250	360	112294	31340	116891	5445	10745
	340	53441	9245	52746	2405	2373
	490	38171	5649	37751	1718	2542
	475	92303	22330	89535	4154	10245
	450	92303	22330	89535	4154	1292
	430	39699	6550	39143	1786	2350
	410	39699	6550	39143	1786	2644
1000	385	96805	25072	93513	4356	8596
	360	96805	25072	93513	4356	8596
	340	42753	7396	42197	1924	1898
	490	32906	4870	32544	1481	2192
	475	79572	19250	77185	3581	8832
	450	79572	19250	77185	3581	1114
	430	34223	5647	33744	1540	2026
	410	34223	5647	33744	1540	2279
860	385	83453	21614	80615	3755	7410
	360	83453	21614	80615	3755	7410
	340	36856	6376	36377	1659	1636
	490	26654	3945	26361	1100	1776
	475	64453	15593	62520	2901	7154
	450	61153	15593	(2520	2001	002
	450	04433	15595	02520	2901	902
	430	27721	4374	27552	1247	1041
700	410	27721	4574	27332	1247	1846
700	385	6/59/	1/50/	65298	3042	6002
	360	6/59/	1/50/	65298	3042	6002 1225
	340	29855	3103	29465	1344	1323
	490	18038	2/61	18453	839	1243
	4/5	45117	10915	43764	2031	5008
	450	45117	10915	43/64	2031	031
	430	19405	3202	19132	8/3	1149
400	410	19405	5202	19132	8/3	1292
490	260	4/318	12255	45709	2129	4201
	240	4/318	12233	43709	2129	4201
	340 400	12227	1072	12100	500	920
	490	15527	1975	15180	1451	000 2577
	475	32227	7797	31200	1451	451
	430	12860	7797	51200 12666	624	431
	430	13800	2207	13000	624	022
350	410	22700	2207	22640	1521	925
550	260	22700	8754 9754	32049	1521	2001
	240	14027	0154	32049 14722	672	662
	400	1472/ 9706	2303	14/33 8600	305	596
	490	0190	1302 5146	20621	0590	2361
	475	21270	5140	20031	9J0 059	2301
	430	0147	1500	20031	730 A10	290 540
	430	9147 0147	1509	9020	412	600
230	410	9147 22207	1309 5777	9020	412	1001
230	260	22307	5111	21348	1004	1901
	240	22307	3///	21348	1004	1901
1	340	9052	1703	9124	444	430

Таблица 8 – Расчет силовых параметров на левой коронке при движении вверх в положении VIII

Р _к , МПа	R, мм	P_{π}, H	P _z , H	P _v , H	F, H	М ", Н∙м
	490	27166	2118	27085	1222	1006
	475	74445	16108	75740	3484	6875
	450	140167	39807	134421	6308	16598
	430	79722	17220	77808	3587	6490
	410	29255	2545	29138	1317	1080
1250	385	82000	17712	80033	3690	6075
1230	360	143028	41764	136735	6437	12706
	340	84277	18962	82085	3793	5609
	490	21732	1695	21668	978	807
	475	61956	12886	60593	2787	5498
	450	112134	31845	107537	5046	13283
	430	63778	13776	62247	2870	5195
	410	23404	2036	23310	1053	866
1000	385	65600	14169	64026	2952	4862
1000	360	114422	33412	150880	5149	10160
	340	67422	15169	65668	3035	4492
	490	18735	1461	18679	843	696
	475	53410	11109	52235	2403	4743
	450	96667	27453	92704	4350	11448
	430	54981	11876	53661	2474	4235
	410	20176	1755	20005	009	747
0.00	410	20170	1/55	20095	908	/4/
860	383	30332	12215	55195	2343	4188
	360	98640	28803	94300	4439	8762
	340	58122	13077	56610	2616	3870
	490	15175	1183	15130	682	562
	475	43262	8998	42310	1946	3893
	450	78300	22237	75090	3523	9272
	430	44535	9620	43465	2004	3626
	410	16242	1422	16277	725	607
700	410	10343	0804	10277	2061	3380
	360	70808	22220	76292	2001	7007
	340	19898	25550	10365	2110	3138
	400	10670	922	10647	491	200
	490	30443	632	20774	401	2701
	475	55100	15648	528/1	2480	6527
	430	31330	6760	30586	2460	2553
	430	11500	1001	11454	518	435
490	385	32235	6962	31/61	1/151	2300
470	360	56225	16/18	53751	2530	4005
	340	33130	7454	32268	1491	2205
	400	7/0/	584	7472	337	2203
	475	21364	4444	20894	961	1895
	450	38667	10081	37082	1740	4581
	430	21002	4750	21464	000	1701
	410	21772	700	21404	262	202
250	410	8070	/02	8038	303	303
550	385	22621	4886	22078	1018	1672
	360	39456	11522	37720	1776	3508
	340	23249	5231	22644	1046	1547
	490	4871	380	4857	219	178
	475	13887	2888	13581	625	1236
	450	25133	7138	24103	1131	2975
	430	14295	3088	13952	643	1162
220	410	5246	456	5225	236	192
230	385	14704	3176	14350	662	1088
	360	25646	7489	24518	1154	2279
	340	15112	3400	14719	680	1006

Таблица 9 – Расчет силовых параметров на правой коронке при движении вверх в положении I

Р _к , МПа	R, мм	Рд, Н	P _z , H	P _v , H	F, H	М _д , Н∙м
	490	77445	16095	60593	2787	5111
	475	27166	2118	27085	1222	1005
	450	79722	16582	77968	3587	6489
	430	107515	30534	103107	4839	11934
	410	82001	17712	80033	3690	6068
1250	385	29255	2545	29138	1317	1299
1250	360	84277	18062	82086	3702	5613
	340	109708	32035	104881	4937	9743
	400	(1056	12035	60502	2797	5110
	490	01930	12870	00393	2/8/	5112 204
	473	21733	1095	21007	978	004
	450	63778	13256	62374	2870	5191
	430	86012	24427	82485	3871	9547
1000	410	65600	14169	64026	2952	4854
1000	385	23404	2036	23310	1053	1039
	360	67422	15169	65669	3033	4490
	340	87766	25628	83905	3950	7794
	490	53410	11100	52235	2403	4406
	475	18735	1461	18679	843	693
	450	54981	11436	53771	2474	4475
	430	74148	21058	71108	3337	8230
	410	56552	12215	55195	2545	4185
860	385	20176	1755	20095	908	896
	360	58122	13077	56611	2615	3871
	340	75661	22093	72332	3405	6719
	490	43262	8991	42310	1946	3569
	475	15175	1183	15130	683	561
	450	14535	0263	13554	2004	3625
	430	60060	17057	57597	2703	6666
	410	45807	0804	44709	2703	3300
700	410	43607	9694	44708	2001	3390
	360	47070	1422	10277	2118	2126
	340	61285	10392	43833	2118	5150
	400	30444	6327	20774	1370	2511
	490	10679	833	16647	1370	305
	475	31330	6510	30640	1410	2551
	430	42264	12003	40532	1902	2551 4601
	430	32235	6063	31461	1902	2385
490	385	11501	1001	11454	518	511
120	360	33130	7454	32268	1/01	2206
	340	43127	12593	41220	1941	3830
<u> </u>	490	21631	4496	21155	073	1785
	475	7588	591	7565	341	281
	450	22267	4631	21777	1002	1812
	430	30030	8529	28798	1351	3333
	410	22003	4047	22254	1020	1605
250	385	8171	711	8130	368	363
350	565	01/1	/11	0139	508	505
	360	23540	5296	22928	1059	1568
	340	30643	8948	29295	1379	2721
	490	14276	2967	13962	642	1178
	475	5008	390	4993	225	186
	450	14696	3056	14373	661	1196
	430	19820	5629	19001	892	2200
	410	15116	3265	14754	680	1119
230	385	5392	469	5372	243	240
	360	15536	3495	15132	699	1035
	340	20224	5906	19335	910	1796

Таблица 10 – Расчет силовых параметров на правой коронке при движении вверх в положении II
				-	-	
Р _к , МПа	R, мм	Р _д , Н	P _z , H	P _y , H	F, H	М _д , Н∙м
	490	10532	29068	101212	4740	12471
	475	77445	16108	75741	3484	7162
$ \langle Y \rangle$	450	25209	1966	27083	1222	801
	430	79722	17220	77808	3588	7669
	410	107515	30534	103106	4839	11139
1250	385	82000	17711	75112	3690	7736
	360	31346	3009	31190	1411	1162
	340	84276	18961	82086	3791	4365
	490	84257	23255	80970	3792	9977
	475	61956	12886	60593	2787	5730
	450	21732	1695	21667	978	641
	430	63778	13776	62247	2870	6135
	410	86012	24427	82485	3871	8911
1000	385	65600	14169	60090	2952	6189
	360	25077	2407	24952	1129	930
	340	67421	15169	65669	3033	3492
	490	72635	20047	69802	3269	8601
	475	53410	11109	52235	2403	4940
	450	18735	1461	18679	843	553
	430	54981	11876	53661	2474	5289
	410	7/1/8	21058	71108	3337	7682
860	385	56552	12215	51802	2545	5336
000	360	21618	2075	21510	073	802
	340	58122	13077	56611	2615	3010
	400	59924	16228	56520	2013	6067
	490	J0034 42262	10230	42210	2046	4001
	473	45202	0990	42310	1940	4001
	450	15175	1183	15130	083	448
	430	44535	9619	43465	2004	4284
700	410	60059	17057	57597	2703	6222
/00	385	45807	9892	41960	2061	4322
	360	17510	1681	17423	788	649
	340	47079	10592	45855	2118	2438
	490	41184	11367	39577	1854	4877
	475	30283	6298	29617	1362	2800
	450	10622	828	10591	478	313
	430	31174	6733	30426	1403	2999
100	410	42041	11940	40318	1892	4355
490	385	32065	6924	29372	1443	3025
	360	12257	1177	12196	552	454
	340	32955	7414	32098	1483	1707
	490	29417	8119	28269	1324	3483
	475	21631	4499	21155	973	2001
	450	7587	591	7565	341	224
	430	22267	4809	21732	1002	2142
	410	30029	8529	28798	1351	3111
350	385	22903	4946	20980	1030	2161
	360	8755	840	8711	394	324
	340	23539	5296	22927	1059	1419
	400	10415	5250	10657	074	2200
	490	19415	2328	1805/	8/4	2299
	4/3	14270	2909	13902	042	1321
	450	5007	390	4993	225	148
	430	14696	31/4	14343	661	1414
220	410	19819	5629	19007	892	2053
230	385	15116	3264	1384/	6/9	1426
	360	5778	554	5749	260	214
	340	15536	3495	15132	699	937

Таблица 11 – Расчет силовых параметров на правой коронке при движении вверх в положении III

Таблица 12 – Расчет силовых параметров на правой коронке при движении вверх в положении IV

Р. MПа	R мм	РН	РН	РН	FН	М Н.м
	<u>400</u>	<u>л</u> , п 27176	1066	25135	1134	838
	490	71860	16107	25155	2484	6647
RA	475	107515	20524	102106	1020	12720
$ \langle X Y \rangle$	450	10/515	30534	103106	4839	12/30
	430	19723	17220	//809	3549	6489
	410	29255	2545	29138	1316	865
1250	385	82000	17711	80031	3690	7888
	360	109708	32035	104881	4938	9742
	340	84276	18961	82086	3791	4988
	490	21733	1695	21668	978	723
	475	61956	12886	60591	2787	5730
	450	86012	24427	82485	3871	10184
	430	63778	13776	62247	2839	5191
	410	23404	2036	23310	1053	692
1000	385	65600	14169	64025	2952	6310
	360	87767	25628	839	3950	7794
	340	67421	15169	65669	3033	3990
	490	18735	1461	18679	843	623
	475	53410	11109	52234	2403	4940
	475	7/1/8	21058	71108	3337	8770
	430	5/081	11876	53661	2447	4475
	410	20176	1755	20005	008	507
860	410	20170	1755	2009J 55104	908 2545	5440
800	260	75661	22002	70220	2345	6710
	240	73001	22095	72552	5405 2615	0/19
	340	38122	13077	50011	2013	5440
	490	15175	1183	7030	683	505
	475	43262	8998	42309	1946	4001
	450	60060	17057	57597	2703	7111
	430	44535	9619	43465	1982	3625
	410	16342	1421	16277	735	484
700	385	45807	9894	44707	2061	3306
	360	61285	17895	58589	2758	5442
	340	47079	10592	45855	2118	2786
	490	10622	828	4921	478	353
	475	30283	6298	29616	1362	2800
	450	42042	11940	40318	1892	4978
	430	31175	6733	30425	1387	2537
	410	11439	995	4394	514	339
490	385	32065	6926	31295	1443	3084
	360	42899	12527	41012	1931	3809
	340	32955	7414	32099	1482	1950
<u> </u>	490	7588	591	3515	341	252
	475	21631	4499	21154	473	2000
	450	30030	8529	28798	1351	3555
	430	22267	4800	21732	991	1812
	410	0171	710	0120	2(7	242
	410	81/1	/10	8139	367	242
350	385	22903	4947	22353	1030	2203
	360	30642	8947	29294	1379	2721
	340	23539	5296	22927	1059	1393
	490	5009	390	2320	225	166
	475	14276	2969	13962	312	1320
	450	19820	5629	19007	892	2346
	430	14696	3174	14343	654	1196
	410	5307	468	5372	242	150
230	385	15115	3265	14753	670	1454
250	360	20224	5005	1033/	010	1706
	340	15535	3405	15132	600	010
	540	15555	5795	15152	099	717

Таблица 13 – Расчет силовых параметров на правой коронке при движении вверх в положении V

Р _к , МПа	R, мм	Рд, Н	P _z , H	P _v , H	F, H	Мд, Н∙м
	490	77445	16108	75739	3484	8022
	475	27166	2118	27084	1222	1005
	450	79722	17220	77809	3588	7079
	430	107515	30534	103106	4839	13126
	410	82002	17711	80031	3690	6674
1250	385	29255	2545	29138	1316	866
1250	360	84276	18961	82086	378	495
	340	109708	32035	104881	4938	8930
	490	61956	12886	60591	2787	6418
	475	21733	1695	21667	978	804
	450	63778	13776	62247	2870	5663
	430	86012	24427	82485	3871	10501
	410	65602	14169	64025	2952	5339
1000	385	23404	2036	23310	1053	693
	360	67421	15169	65669	3033	396
	340	87767	25628	83905	3950	7144
	490	53410	11109	52234	2403	5533
	475	18735	1461	18679	843	693
	450	54981	11876	53661	2474	4882
	430	74148	21058	71108	3337	9053
	410	56553	12215	55194	2545	4603
860	385	20176	1755	20095	908	597
	360	58122	13077	56611	2615	3441
	340	75661	22093	72332	3405	6159
	490	43262	8998	42309	1946	4482
	475	15175	1183	15130	683	561
	450	44534	9620	43465	2004	3954
	430	60060	17056	57597	2703	7333
	410	45808	9894	44707	2061	3728
700	385	16342	1421	16277	735	484
	360	47079	10592	45855	2118	2787
	340	61285	17895	58589	2758	4989
	490	30283	6229	29616	1362	3137
	475	10622	828	10591	478	393
	450	31174	6734	30426	1403	2768
	430	42042	11939	40318	1892	5133
	410	32066	6926	31295	1443	2609
490	385	11439	995	11394	514	339
	360	32955	7414	32099	1482	1951
	340	42899	12526	41012	1931	3492
	490	21631	4499	21154	973	2241
	475	7587	591	7565	341	280
	450	22267	4810	21732	1002	1977
	430	30030	8528	28798	1351	3666
	410	22904	4947	22353	1030	1864
350	385	8171	710	8138	367	242
	360	23539	5296	22927	1059	1393
	340	30642	8947	29294	1379	2495
	400	14076	2060	13062	642	1470
	420	5007	300	1002	225	19
	475	1/606	317	1/3/3	661	1305
	430	19820	5628	19007	807	2410
	410	15117	2025	14752	(0)2	1020
220	410	15117	3265	14/53	680	1230
230	383	5393	409	55/1	242	159
	360	15535	3495	15132	699	919
	340	20224	5905	19334	910	1646

Таблица 14 – Расчет силовых параметров на правой коронке при движении вверх в положении VI

	D		D II	D II	D 11	37.11
P_k , MIIa	R, мм	Р _д , Н	P _z , H	Р _у , Н	F, H	М _д , Н∙м
	490	105321	29069	101212	4738	12470
	475	77445	16107	75739	3484	6878
	450	27166	2119	27085	1222	1005
「秋本法」す	430	79723	17220	77809	3588	6488
	410	107515	30534	103106	4839	11139
1050	385	82000	176461	80031	3690	5461
1250	360	313/3	3008	31188	1/11	027
	340	84276	18061	82086	3701	5612
	340	04270	18901	82080	3791	3012
	490	84257	23255	80970	3790	9976
	475	61956	12886	60591	2787	5502
	450	21733	1695	21668	978	804
	430	63778	13776	62247	2870	5191
	410	86012	24427	82485	3871	8911
1000	385	65600	14169	64025	2952	4369
	360	25075	2407	24950	1129	742
	340	67421	15160	65660	3033	4490
	400	72625	20047	60802	2269	4490 8600
	490	72033	20047	09802 50024	3208	8000
	473	10725	11109	32234	2405	4/43
	450	18/35	1461	18679	843	693
	430	54981	118/6	53661	2474	4475
	410	74148	21058	71108	3337	7682
860	385	56552	12215	55194	2545	3766
	360	21617	2075	21509	973	640
	340	58122	13077	56611	2615	3871
	490	58834	16238	56539	2647	6966
	475	43262	8998	42309	1946	3842
	450	15175	1102	15120	602	561
	430	13173	0610	13150	2004	2625
	430	44555	9619	43465	2004	3623
700	410	60059	17057	57597	2703	6222
700	385	45807	9894	44707	2061	3050
	360	17510	1681	17422	788	518
	340	47079	10592	45855	2118	3135
	490	41184	11367	39577	1853	4876
	475	30283	6298	29616	1362	2689
	450	10622	828	10591	478	393
	430	31174	6733	30426	143	2537
	410	42041	11940	40318	1892	4355
490	385	32065	6926	31295	1443	2555
	360	12257	1176	12195	551	363
	340	32955	7414	32098	1483	2195
	490	29417	8119	28269	1323	3483
	475	21631	4499	21154	973	1921
	450	7587	501	7565	341	281
	430	22267	4800	21732	1002	1812
	430	22207	4002	21752	1002	1012
250	410	30029	8528	28798	1351	3111
350	385	22903	4947	22353	1030	1525
	360	8755	840	8711	394	259
	340	23539	5296	22927	1059	1567
	490	19415	5358	18658	213	2299
	475	14276	2969	1395	642	1268
	450	5007	390	4993	225	185
	430	14696	3174	14343	661	536
	410	19819	5628	19007	891	2053
230	385	15116	3265	14753	680	1006
	360	5778	554	5740	260	171
	3/0	15535	3/05	15122	6080	103/
L	540	15555	5475	15152	0202	1034

Таблица 15 – Расчет силовых параметров на правой коронке при движении вверх в положении VII

Р _к , МПа	R, мм	Рд, Н	P _z , H	Р _у , Н	F, H	М _д , Н∙м
	490	77443	16107	75739	3484	7450
	475	105321	29067	101212	4739	11690
	450	79722	17220	77808	3587	6488
	430	29255	2545	20138	1316	865
	410	82000	17711	80031	3600	6674
1250	410	100707	2225	10/1881	4038	11365
1250	260	109707 84276	19041	02006	4930	5611
	300	04270 21242	18901	82080	5792	028
	400	61055	12006	60501	2797	928 5060
	490	01955	12000	80070	2787	3900 0252
	473	64237	23234	80970	3791	9332
	450	63/78	13776	62246	2870	5191
	430	23404	2036	23310	1053	692
1000	410	65600	14169	64025	2952	5339
1000	385	87766	2660	83905	3950	9092
	360	67421	15169	65669	3034	4489
	340	25075	2594	24950	1128	742
	490	53410	11109	52234	2403	5138
	475	72635	20047	69802	3268	8062
	450	54981	11876	53661	2474	4475
	430	20176	1755	20095	908	597
	410	56552	12215	55194	2545	4603
860	385	75661	22-93	72332	3405	7838
	360	58122	13077	56611	2616	3870
	340	21617	2075	21509	973	640
	490	43262	8998	42309	1946	4162
	475	58834	16238	56539	2647	6530
	450	44535	0620	13165	2004	3625
	430	16342	9020	16277	2004	3023
	430	10342	0204	10277	2061	2729
700	410	43807	9894	44707	2001	5728
100	365	47070	10502	J6J69	2138	2125
	300	4/0/9	10392	43833	2119	5155
	400	20282	6200	20616	1262	2012
	490	50285	0299	29010	1302	2915
	473	41104	6724	20426	1655	4371
	430	51175	0/54	50420	1405 515	2358
	430	22065	995	21205	1442	2600
400	410	32003	1200	31293	1445	2009
470	360	42099	7414	32000	14930	2105
	340	12256	7414	52099	552	2195
	400	21631	4400	21154	073	2081
	490	20417	8110	28260	1323	3265
	475	22717	4810	20207	1002	1812
	430	8171	710	8139	367	242
	410	22002	/10	22254	1020	1064
	410	22903	4970	22354	1030	1804
350	383	50042	928	29293	1379	5175
	360	23539	5296	22927	1059	1567
	340	8754	840	8711	394	259
	490	14276	2969	13962	642	1373
	475	19415	5359	18657	873	2155
	450	14696	3175	14343	661	1196
	430	5393	469	5372	242	160
	410	15116	3280	14754	680	1230
230	385	20224	612	19335	910	2096
	360	15535	3495	15132	699	1034
	340	5777	554	5749	260	171

Таблица 16 – Расчет силовых параметров на правой коронке при движении вверх в положении VIII

P _k , MПа	R , мм	Р,, Н	P _z , H	P _v , H	F, H	М ", Н∙м
K/	490	225130	54481	22626	10131	26655
	475	115380	27921	111918	5191	12806
	450	47715	7442	47095	2147	3885
	430	49624	7741	48978	2147	2938
	410	118193	33208	114413	5310	12244
	385	121006	31340	11680/	5445	11640
1250	360	51521	8066	50750	2210	2421
	300	52441	0245	52620	2319	2768
	340	33441	9243	32039	2404	2708
	490	180104	43585	18101	8105	21324
	475	92304	22337	89535	4153	10245
	450	38172	5954	37676	1718	3108
	430	39699	6193	39182	1786	2350
	410	94555	23638	91530	4255	9795
1000	385	96805	25072	93515	4356	9312
	360	41225	7173	40607	1855	2745
	340	42753	7396	42111	1923	2214
	490	155262	37573	15604	6987	18383
	475	79572	19256	77185	3580	8832
	450	32907	5133	32479	1481	2679
	430	34223	5330	33778	1540	2075
	410	01512	20270	70005	2660	2020
	410	81513	20378	/8905	3668	8444
860	385	83453	21614	80616	3755	8028
	360	35539	6184	35006	1599	2366
	340	36856	6376	36303	1658	1909
	400	125762	30/3/	12630	5650	1/1800
	490	64453	15507	62520	2899	7154
	475	04455	13377	02320	2077	7134
	450	26655	4158	26308	1199	2170
	430	27721	4325	27360	1247	1641
700	410	66026	16506	63913	2971	6840
700	385	67597	17507	65299	3042	6503
	360	28787	5009	28355	1295	1917
	340	29853	5165	29405	1343	1546
	490	88286	21365	8873	3973	11847
	475	51280	10949	43889	2036	5022
	450	18712	2918	18468	842	1524
	430	19460	3036	19207	875	1152
	410	46350	13058	44868	2086	4802
490	385	47453	12290	45841	2136	4565
	360	20208	3516	19905	909	1345
	340	20957	3625	20643	943	1085
	490	62881	15217	6320	2830	7445
	475	32227	7799	31260	1450	3577
	450	13328	2079	13154	599	1085
	430	13861	2163	13680	623	821
	410	33013	8253	31957	1486	3420
350	385	33799	8754	32650	1521	3251
550						0.001
	360	14394	2504	14178	647	959
	340	14927	2583	14703	672	773
	490	41501	10043	4171	1868	4014
	475	21270	5147	20631	957	2361
	450	8796	1372	8682	395	716
	430	9148	1428	9029	411	542
	410	21789	5447	21092	981	2257
230	385	22307	5777	21549	1004	2146
	360	9500	1653	9357	427	633
	340	9852	1705	9704	444	510

Таблица 17 – Расчет силовых параметров на левой коронке при движении вниз в положении I

P _k , MПа	R, мм	Р _л , Н	P _z , H	P _v , H	F, H	М _л , Н∙м
	490	47715	3722	47524	2148	3531
	475	115379	27921	111918	11953	11953
	450	115376	29882	111911	9391	9391
	430	49623	7741	48978	2232	2938
	410	49618	3870	49425	2225	3305
1250	385	121006	31340	116891	5445	10745
1230	360	121000	29283	117376	5438	9850
	340	53441	9245	52746	2405	3164
	400	38172	2078	38010	1718	2825
	490	02303	2378	80535	1710	262J 0562
	475	92303	22337	09555	4154	9302
	450	92301	23906	89529	4153	7513
	430	39698	6193	39182	1/86	2350
1000	410	39694	3096	39540	1780	2644
1000	385	96805	25072	93513	4356	8596
	360	96801	23426	93901	4350	7880
	340	42753	7396	42197	1924	2531
	490	32907	2567	32775	1481	2435
	475	79572	19256	77185	3581	8243
	450	79570	20609	77180	3580	6477
	430	34223	5339	33778	1540	2026
	410	34219	2669	34086	1535	2279
860	385	83453	21614	80615	3755	7410
	360	83449	20195	80949	3750	6793
	340	36856	6376	36377	1659	2182
	490	26655	2079	26548	1100	1972
	475	64453	15597	62520	2901	6677
	450	64452	16602	62526	2000	5246
	430	04432	10095	02310	2900	5240 1641
	430	27717	4323	27500	1247	1041
700	410	2//1/	2162	27609	1243	1846
/00	385	07590	1/30/	05298	3042	5502
	300	07394	10338	03308	3037	5502 1767
	400	29633	1455	19403	1344 920	1707
	490	18039	1433	18384	2031	1580
	473	45116	11686	43761	2031	3672
	430	10/05	3027	10152	2030	11/0
	430	19403	1513	19132	860	1149
490	385	47317	12256	45708	2129	4201
170	360	47316	11451	45897	2127	3851
	340	20898	3616	20627	941	1238
<u> </u>	490	13328	1039	13274	599	986
	475	32226	7799	31260	1451	3339
	450	32220	8347	31258	1450	2623
	430	13861	2162	13680	623	821
	410	13850	1081	13805	621	023
350	385	33798	8754	32649	1521	3001
200	260	22707	0170	20704	1510	2751
	240	33/9/ 14007	01/9	32/84 14722	672	2/31
	340	0756	<u> </u>	0701	204	004 640
	490	0730	5124	0/21	052	2104
	4/3	211/2	550	20338	933	2194 1702
	430	0107	1420	20330	932 400	530
	430	0105	710	0700	409	606
230	410	22205	5751	21/150	400	1072
250	360	22203	5374	21430	999	1972
	340	9807	1697	9680	442	581
L	210	2001	10/1	2000		201

Таблица 18 – Расчет силовых параметров на левой коронке при движении вниз в положении II

P_k , МПа	R, мм	P_{μ} , H	P _z , H	Р _v , Н	F, H	М _д , Н∙м
	490	47714	7061	47188	2146	3178
	475	47705	7053	47182	2143	2825
	450	115290	27010	111010	5102	11054
	450	115380	27912	111918	5192	11954
	430	118192	29547	114411	5318	12245
	410	118192	8187	48928	2232	2938
1250	385	49624	8502	50808	2319	3492
	360	121006	31340	116894	5445	9850
	340	123821	36156	118373	5571	10995
	490	38171	5649	37751	1717	2543
	475	38164	5643	37746	1715	2260
	450	02204	22220	00525	4154	0562
	430	92304	22530	89555	4154	9303
	430	94554	23638	91529	4255	9796
1000	410	39699	6550	39143	1786	2350
1000	385	41225	6802	40647	1855	2746
	360	96805	25072	93515	4356	7880
	340	99057	28925	94699	4457	8796
	490	32906	4870	32544	1481	2192
	475	32900	4865	32540	1479	1948
	450	79572	19250	77185	3581	8244
	430	81512	20378	78904	3668	8445
	410	24222	5647	22744	1540	2026
0.60	410	34223	5964	25041	1540	2020
860	383	33339	3804	55041	1599	2307
	360	83453	21614	80616	3755	6793
	340	85394	24935	81637	3842	7583
	490	26655	3944	26361	1199	1775
	475	26650	3943	26359	1197	1578
	175	52007	15500	2055)	2000	1570
	450	52207	15592	62520	2900	6677
	430	66025	16506	63912	2971	6840
700	410	27720	4574	27333	1247	1641
700	385	28786	4750	28383	1295	1917
	360	67596	17507	65299	3041	5502
	340	69169	20197	66126	3112	6142
	490	18635	2761	18453	839	1243
	475	18633	2760	18451	837	1105
	450	36545	10914	43764	2030	4674
	430	46218	11554	44738	1869	4788
	410	19404	3202	10133	873	1149
490	385	20150	3202	10868	075	13/2
470	360	47217	12255	45700	2120	286
	240	4/31/	12233	43709	2129	500 4200
	340	48418	14138	40288	21/8	4299
	490	1332/	1972	13180	599	88/
	4/5	13325	1971	13179	598	/89
	450	26103	7796	31260	1450	3338
	430	33012	8253	31956	1485	3420
	410	13860	2287	13666	623	820
350	385	14393	2375	14191	647	959
	360	33798	8754	32649	1520	2751
	340	34584	10008	32042	1556	3071
	400	0704	1201	22003 8600	205	5071
	490	8/90	1301	8099	393	383
	4/5	8/95	1300	8098	394	521
	450	17228	5145	20632	957	2203
	430	21788	5447	21091	980	2257
	410	9147	1509	9019	411	541
230	385	9499	1568	9366	427	633
	360	22307	5777	21548	1003	1815
	340	22825	6665	21821	1027	2027

Таблица 19 – Расчет силовых параметров на левой коронке при движении вниз в положении III

Р _k , МПа	R, мм	Рд, Н	P _z , H	P _v , H	F, H	М _д , Н∙м
	490	112565	27240	109188	5065	12495
	475	47715	7061	47190	2148	3177
	450	44277	7442	47092	2145	3531
	430	118103	20547	114412	5310	10405
	410	110195	29547	114412	5210	11271
	410	51521	29347	114412 50808	2210	2670
1250	363	51551	8302	50808	2319	2070
	360	51531	8914	50808	2319	3051
	340	123821	33060	119364	5571	10995
	490	90052	21792	87350	4052	9996
	475	38172	5649	37752	1718	2542
	450	38170	5954	37674	1716	2825
	430	94555	23638	91530	4255	8396
	410	94555	23638	91530	4255	9097
1000	385	41225	6802	40647	1855	2136
	360	41225	7131	40607	1855	2441
	340	99057	26448	95491	4457	8796
	490	77631	18786	75302	3493	8617
	475	32907	4870	32545	1481	2191
	450	32906	5133	32478	1480	2435
	430	81513	20378	78905	3668	7238
	410	01512	20278	78005	2669	7942
0.00	410	35520	20378	25041	1500	1942
860	383	55559	3804	55041	1399	1841
	360	35539	6148	35006	1599	2104
	340	85394	22800	82320	3842	7583
	490	62881	15219	60995	2829	6980
	475	26655	3945	26361	1199	1775
	450	26654	4158	26307	1199	1972
	430	66025	16506	63913	2971	5863
	410	66025	16506	62012	2071	6252
700	410	28786	4750	28383	12971	1/01
	360	28780	4750	20305	1295	1491
	340	28780	4900	26555	2112	6142
	400	44017	10400	42607	1080	4996
	490	18658	2761	42097	830	4000
	475	19657	2701	10433	820	1242
	430	16037	2910	16413	2080	1360
	430	40219	11554	44739	2080	4104
400	410	40219	2225	44/39	2080	4440
490	363	20130	3323	19808	900	1044
	300	20150	5480 12027	19848	900	1193
	340	48418	12927	46676	21/8	4299
	490	31440	/609	30497	1414	3490
	473	13327	1972	13180	599	00/
	450	13327	2079	13180	599	986
	430	33012	8253	31956	1486	2931
250	410	33012	8253	31956	1486	3176
350	385	14393	2375	14191	647	745
	360	14393	2490	14177	647	852
	340	34584	9234	33340	1556	30/1
	490	20750	5022	20128	933	2303
	475	8796	1301	8699	395	585
	450	8796	1372	8699	395	650
	430	21788	5447	21091	981	1934
_	410	21788	5447	21091	981	2096
230	385	9499	1567	9366	427	492
	360	9499	1643	9357	427	562
	340	22825	6094	22004	1027	2027

Таблица 20 – Расчет силовых параметров на левой коронке при движении вниз в положении IV

Р _к , МПа	R, мм	Р _д , Н	P _z , H	P _y , H	F, H	М _д , Н·м
	490	112565	27240	109187	5065	12495
	475	115377	27921	111916	5192	12806
	450	47715	7442	47095	2148	5296
	430	49622	7740	48977	2232	3305
	410	118193	29547	114412	5318	11370
1250	385	121006	31340	116893	5445	10745
	360	51531	8915	50758	2318	3051
	340	53441	9245	52639	2404	2767
	490	90052	21792	87350	4052	9996
	475	92302	22337	89533	4154	10245
	450	38172	5954	37676	1718	4237
	430	39698	6192	39182	1786	2644
1000	410	94555	23638	91530	4255	9096
1000	385	96805	25072	93515	4356	8596
	360	41225	/132	40607	1855	2441
	400	42735	1990	42111	2403	2214
	490	7051	10756	73302	3581	8832
	450	32907	5133	32479	1481	3653
	430	34223	5338	33778	1540	2279
	410	91513	20378	78005	3668	7842
860	385	83453	20378	80616	3755	7642
000	260	25520	6149	25006	1500	2104
	300 340	33339	0148 6276	33000	1599	2104
	340	50850	15217	60004	1038	1909
	490	64452	15217	60994	2829	0980
	473	04432	13397	02319	2900	7134
	450	26655	4158	26308	1199	2959
	430	27721	4324	27360	1247	1846
700	410	66025	16506	63913	2971	6352
700	385	0/39/	1/50/	65299 28255	3041	6002
	300 340	28780	4980	28333	1295	1704
	490	44017	10652	42696	1945	4886
	475	45116	10032	43763	2030	5008
	450	18659	2910	18416	839	2071
	430	19405	3027	19152	873	1292
	410	46218	11554	44739	2080	4446
490	385	47318	12255	45709	2129	4201
	360	20150	3486	19849	907	1193
	340	20897	3615	20584	940	1082
	490	31440	7608	30497	1414	3490
	475	32226	7798	31259	1450	3577
	450	13327	2079	13154	599	1479
	430	13860	2162	13680	623	923
250	410	33012	8253	31956	1486	3176
350	385	33798	8753	32649	1520	3001
	360	14393	2490	14178	647	852
	340	14920	<u> </u>	20129	0/1	2202
	490	20750	5147	20120	955 957	2303
	475	8706	1372	8682	305	976
	430	9148	1427	9029	411	609
	410	21788	.5447	21091	981	2096
230	385	22307	5777	21548	1003	1981
	360	9499	1643	9357	427	562
	340	9851	1704	9703	442	510

Таблица 21 – Расчет силовых параметров на левой коронке при движении вниз в положении V

$T \in \Omega \cap D$	0	3.71
I = I = I = I = I = I = I = I = I = I =	α	\mathbf{U} TDUARAUUUU DUUA DTATAAUUUU V
$-1 a_0 + a_1 + a_2 = 1 a_0 + c_1 +$	амстнов на псвои кононкстн	И ЛВИЖСНИИ ВНИЗ В ПОЛОЖСНИИ УТ
raomiga 22 rao ier ennobbin na	ane pob na nebon koponke np	

Р _k , МПа	R, мм	P_{π}, H	P _z , H	P _v , H	F, H	М _л , Н∙м
	490	47712	7061	47188	2147	3531
	475	47712	7061	47188	2147	3179
	450	115378	27921	111916	5192	11100
	430	118192	29547	114410	5319	11370
	410	40622	8186	///////////////////////////////////////	2222	3305
1050	410	49022	8502	50808	2232	3050
1250	260	121006	21240	116902	5445	3030
	340	121000	31340	110892	5573	9850
	340	123021	55000	119303	1719	9102
	490	38170	5649	37751	1/18	2825
	473	38170	3049	37731	1/18	2345
	450	92302	22337	89533	4154	8880
	430	94554	23638	91528	4255	9096
1000	410	39698	6549	39142	1786	2644
1000	385	41225	6802	40647	1855	2440
	360	96805	25072	93514	4356	7880
	340	99057	26448	95491	4458	7330
	490	32906	4870	32544	1481	2435
	475	32906	4870	32544	1481	2192
	450	79571	19256	77184	3581	7655
	430	81512	20378	78904	3668	7841
	410	34223	5646	33743	1540	2279
860	385	35539	5864	35041	1599	2104
	360	83453	21614	80616	3755	6793
	340	85394	22800	82320	3843	6319
	490	26654	3944	26360	1199	1972
	475	26653	3944	26360	1199	1776
	450	64453	15507	62510	2000	6200
	430	66024	16506	63012	2900	6351
	430	00024	10500	03912	1247	1945
700	410	27720	4375	27552	1247	1843
,00	383	28783	4730	28383	2041	1704
	300	6/39/	1/30/	66670	3041 2112	5502
	340	19659	18408	18452	820	1290
	490	18038	2701	18452	839	1380
	473	18038	10018	10432	039	1243
	430	43117	10918	45705	2030	4340
	430	40217	2201	10122	2079	1201
400	410	20140	3201	19132	873 007	1291
490	360	47219	12255	19808	907	2951
	300	4/510	12233	45709	2129	2592
	400	40410	12927	12180	500	096
	490	1332/	1972	13100	500	900 888
	475	32226	7708	31250	1450	3100
	430	32220	8253	31056	1430	3175
	430	13860	2255	13666	623	022
250	385	1/302	2280	1/101	647	922 852
350	365	14572	2373	14171	1520	052
	360	33798	8754	32649	1520	2751
	340	34384	9234	55540	1556	2559
	490	8796	1301	8699	395	651
	475	8795	1301	8699	395	586
	450	21269	5147	20631	957	2046
	430	21788	5447	21091	981	2096
_	410	9148	1509	9019	411	609
230	385	9499	1567	9366	427	562
	360	22307	5777	21548	1003	1816
	340	22825	6094	22004	1027	1689

Таблица 23 – Расчет силовых параметров на левой коронке при движении вниз в положении VII

	-					
P_k , MIIa	R, мм	Р _д , Н	P _z , H	Р _у , Н	F, H	М _д , Н∙м
	490	157590	38136	152862	7090	17492
	475	51415	7061	47188	2146	3530
	450	51415	7061	47188	2146	2471
	430	118193	29547	114411	5318	9621
The second second	410	118193	29547	114411	5318	12245
1250	385	51531	8502	50808	2319	3051
1250	360	51531	8966	50757	2318	2670
	340	123821	33060	119363	5572	10079
	490	126072	30509	122290	5672	13994
	475	41132	5649	37751	1717	2824
	450	41132	5640	37751	1717	1077
	430	94555	23638	01520	1717	7607
	430	94555	23030	91529	4255	0706
1000	410	94555	23638	91529	4255	9796
1000	385	41225	6802	40647	1855	2441
	360	41225	/1/3	40606	1856	2136
	340	99057	26448	95491	4458	8063
	490	108683	26301	105423	4890	12064
	475	32906	4870	32544	1480	2435
	450	32906	4870	32544	1480	1704
	430	81513	20378	78905	3668	6636
	410	81513	20378	78905	3668	8445
860	385	35539	5864	35041	1599	2104
	360	35539	6184	35006	1600	1841
	340	85394	22800	82320	3843	6951
	490	88033	21304	85392	3961	9772
	475	26654	3945	26360	1199	1972
	450	26653	3945	26360	1199	1380
	430	66026	16506	63913	2971	5375
	410	66026	16506	63913	2971	6840
700	385	28787	4750	28383	1295	1704
	360	28787	5009	28354	1296	1491
	340	69169	18468	66679	3113	5630
	490	61623	14913	59774	2773	6840
	475	18658	2761	18452	839	1380
	450	18657	2761	18452	839	966
	430	46218	11554	44739	2079	3763
	410	46218	11554	44739	2079	4788
490	385	20151	3325	19868	906	1193
.,,,,	360	20151	3506	19848	907	1044
	340	48418	12928	46675	2179	3941
	490	44016	16652	42696	1980	4886
	475	13327	1972	13180	599	986
	450	13326	1972	13180	599	690
	430	33013	8253	31956	1486	2687
	410	33013	8253	31956	1486	3420
250	385	14393	2375	14191	647	852
550	505	14375	2313	14171	047	0.52
	360	14393	2504	14177	648	745
	340	34584	9234	33339	156	2815
	490	29051	10990	28179	1307	585
	475	8796	1301	8699	395	651
	450	8795	1301	8699	395	455
	430	21788	5447	21091	981	1773
	410	21788	5447	21091	981	2257
230	385	9499	1567	9366	427	562
	360	9499	1653	9357	428	492
	340	22825	6094	22004	103	1858

Таблица 24 – Расчет силовых параметров на левой коронке при движении вниз в положении VIII

Р _к , МПа	R, мм	Рд, Н	P _z , H	P _v , H	F, H	М _д , Н∙м
	490	12074	941	12038	544	446
	475	71869	16108	75741	984	683
	450	10525	30534	103106	4839	12730
	430	77444	16729	75585	3484	4585
	410	29255	2545	20138	1316	865
1050	385	82000	17711	80033	3690	5461
1250	360	100700	22025	104991	4038	9021
	300	09709	32055	2006	4936	4000
	340	04270	18901	82080	3793	4990
	490	9659	753	9630	435	357
	475	61956	12886	60593	2787	546
	450	86012	24427	82485	3871	10184
	430	61955	13383	60468	2787	3668
	410	23404	2036	23310	1053	692
1000	385	65600	14169	64026	2952	4369
	360	87767	25628	83905	3950	7145
	340	67422	15169	65669	3035	3992
	490	8327	649	8302	375	308
	475	53410	11109	52235	2403	471
	450	74148	21058	71108	3337	8779
	430	53410	11537	52128	2403	3162
	410	20176	1755	20095	908	597
860	385	56552	12215	55195	2545	3766
000	363	75662	22002	70000	2010	6150
	360	75661	22093	72332	3405	6159
	340	58122	13077	56611	2616	3441
	490	6745	525	6725	304	249
	475	43262	8998	42310	1946	381
	450	60060	17057	57597	2703	7111
	430	43262	9345	42224	1945	2561
	410	16343	1421	16277	735	484
700	385	45807	9894	47708	2061	3050
	360	61285	17895	58589	2758	4989
	340	47079	10592	45855	2119	2787
	490	4722	368	4708	213	174
	475	30283	6299	29617	1362	267
	450	42042	11940	40318	1892	4978
	430	30283	5141	29557	1362	1793
	410	11440	995	11394	515	339
490	385	32065	6926	33396	1443	2135
	360	42899	12527	41012	1931	3492
	340	32955	7414	32099	1483	1951
	490	3373	263	3363	152	125
	475	21631	4499	21155	973	190
	450	30030	8529	28799	1351	3556
	430	21631	4673	21112	973	1281
	410	8172	710	8139	368	242
350	385	22904	4947	23854	1030	1525
	360	30643	8048	20205	1370	2405
	340	23540	5296	29293	1060	1304
	400	23340	174	27720	101	83
	475	14276	2969	13962	642	125
	450	19820	5620	19007	892	2347
	430	14276	3084	13934	642	845
	410	5394	468	5371	243	159
230	385	151166	3265	15744	679	1006
	360	20224	5906	19335	910	1647
	340	15536	3495	16122	699	920

Таблица 25 – Расчет силовых параметров на правой коронке при движении вниз в положении I

r				r		
P_k , МПа	R, мм	Рд, Н	P _z , H	Р _у , Н	F, H	М _д , Н∙м
	490	77442	16107	75738	3483	6878
	475	105321	29068	101212	4740	12470
	450	79723	16583	77968	3588	7078
	430	29255	2545	29138	1316	1083
	410	27255 82000	17711	20022	2600	6674
	410	100708	22025	104991	3090	10554
1250	383	109708	32055	104661	4938	10334
	360	84276	18961	82086	3791	5612
	340	31346	3008	31189	1411	928
	490	61954	12886	60591	2787	5502
	475	84257	23254	80970	3792	9976
	450	63778	13266	62374	2870	5663
	430	23404	2036	23310	1053	866
	410	65600	14169	64026	2952	5339
1000	385	87767	25628	83905	3950	8443
	360	67421	15169	65669	3033	4490
	340	25077	2407	24951	1129	742
	490	53409	11100	52234	2403	1742
	490	72635	20047	60802	3260	8600
	475	54091	11/26	52771	2474	4882
	430	20176	11450	20005	2474	4002
	430	20176	1/55	20095	908	/4/
0.00	410	56552	12215	55195	2545	4603
860	385	75661	22093	72332	3405	7279
	360	58122	13077	56611	2615	3871
	340	21618	2075	21510	973	640
	490	43261	8998	42309	1946	3842
	475	58834	16238	56540	2648	6966
	450	44535	9263	43554	2004	3954
	430	16342	1421	16277	735	605
	410	45807	0804	44708	2061	3728
700	385	61285	17805	58588	2001	5806
700	365	01283	1/693	36366	2138	3890
	360	47079	10592	45855	2118	3136
	340	17510	1681	17423	788	518
	490	30282	6299	29617	1362	2689
	475	41184	11367	39578	1854	4876
	450	31175	6483	30488	1403	2768
	430	11439	994	11394	515	424
	410	32066	6926	31296	1442	2609
490	385	42900	12527	41011	1931	4127
	360	32956	7414	32099	1482	2195
	340	12257	1177	12195	552	363
	490	21630	4499	21155	973	1921
	475	29417	8119	28270	1324	3483
	450	22268	4631	21777	1002	1977
	430	8171	710	8139	368	303
	410	22004	/10	22354	1030	1864
250	385	22904	9048	22334	1370	2048
550	365	30042	6946 5206	29294	1379	2940
	360	23540	5296	22928	1059	1568
	340	8/55	841	8/11	394	259
	490	14276	2969	13962	642	1268
	475	19415	5358	18658	874	2298
	450	14696	3056	14373	661	1305
	430	5393	469	5372	243	201
	410	15117	3265	14753	680	1230
230	385	20224	5906	19334	910	1945
	360	15536	3495	15132	699	1035
	340	5778	555	5740	260	171
	540	5110	555	5147	200	1/1

Таблица 26 – Расчет силовых параметров на правой коронке при движении вниз в положении II

P_k , МПа	R , мм	Р _д , Н	P _z , H	P _y , H	F, H	$\mathbf{M}_{\mathrm{d}},\mathbf{H}\cdot\mathbf{M}$
	490	105320	29068	101212	4739	13249
	475	77444	16107	75739	3484	5709
	450	27165	2119	27084	1222	1005
	430	79722	17220	77808	3588	6488
	410	107515	30534	103106	4838	10342
1250	385	82000	17711	80031	3690	4855
	360	31345	3008	31188	1410	927
	340	84276	18961	82086	3791	5612
	490	84256	23254	80970	3791	10599
	475	61955	12886	60591	2787	4567
	450	21732	1695	21667	978	804
	430	63778	13776	62246	2870	5191
1000	410	86012	24427	82485	3871	8274
1000	385	65600	14169	64025	2952	3884
	360	25076	2407	24950	1128	742
	340	67421	15169	65669	3033	4490
	490	72635	20047	69802	3268	9137
	4/5	53410	11109	522234	2403	3952
	450	18/35	1401	180/9	843	693 4475
	430	74148	21059	71108	2474	4473
860	385	74140 56552	12215	55194	2545	3348
000	360	21617	2075	21509	973	640
	340	58122	13077	56611	2615	3871
	490	58834	16238	56540	2647	7401
	475	43315	8998	42309	1946	3201
	450	15175	1183	15130	683	561
	430	44535	9620	43465	2004	3625
	410	60060	17057	57597	2703	5778
700	385	45807	9894	44707	2061	2712
	360	17509	1642	17422	788	518
	340	47079	10592	45855	2118	3135
	490	41184	11367	39480	1853	5180
	475	30320	6299	29616	1362	2240
	450	10622	828	10591	478	393
	430	31175	6734	30426	1403	2538
	410	42042	11940	40318	1892	4045
490	385	32065	6926	31295	1443	1898
	360	12256	1149	12195	552	363
	340	32955	/414	32098	1483	2195
	490	29417	8119	28270	1323	3700
	473	21037	4499 501	21134	975	280
	430	1301	791 7810	21732	1002	200
	410	30030	8529	21752	1351	2880
350	385	22903	4947	22353	1030	1356
	360	8754	821	8711	394	259
	340	23539	5296	22927	1059	1567
	490	19415	5358	18658	873	2442
	475	14294	2969	13962	642	1056
	450	5007	390	4993	225	185
	430	14696	3175	14343	661	1196
	410	19819	5629	19006	892	1907
230	385	15116	3265	14753	679	895
	360	5777	542	5749	260	171
	340	15535	3495	15132	699	1034

Таблица 27 – Расчет силовых параметров на правой коронке при движении вниз в положении III

Таблица 28 – Расчет силовых параметров на правой коронке при движении вниз в положении IV

	D								x 7
	PACIDAT	OUTODI IV 1	παταιιστή	OD IIO H	nonali kai	$n_{0111/2}$ πn_{1}	DIIIIO D	ΠΟΠΟΜΟΙΙΙΙΙ	\ /
$1 a 0 \pi m a 27 -$	Lacaci	СИЛОВЫА І	Iabamend	ов на п	равои ко	оонке шо	внизв	положении	v
							 		•

	340	32955	8798	31768	1483	2195
	490	7587	591	7564	341	280
	475	21630	4499	21154	973	2081
	450	30029	8528	28798	1351	3333
	430	22267	4809	21354	1002	1812
	410	8171	710	8138	367	242
350	385	22903	4947	22353	1030	1695
	360	30642	8947	29294	1379	2494
	340	23539	6284	22691	1059	1568
	490	5007	390	4992	225	185
	475	14276	2969	13962	642	1373
	450	19819	5628	19007	892	2199
	430	14696	3174	14094	661	1196
	410	5393	469	5371	242	160
230	385	15116	3265	14753	680	1118
	360	20224	5905	19334	910	1646
	340	15536	4147	14976	699	1035

Таблица 30 – Расчет силовых параметров на правой коронке при движении вниз в положении VI

Таблица 31 – Расчет силовых параметров на правой коронке при движении вниз в положении VII

	Dimi		D II		ЕЦ	M II
P_k , MIIIa	К, ММ	Р _д , Н	P_z, H	P _y , H	F, H	$M_{d}, H \cdot M$
	490	77165	16107	/5/38	3483	08/0
	473	27103	2118	27085	1222	803
	430	55140 107515	11055	51978	2391	4320
$\nabla \mathcal{A}$	430	01000	30335	105100	4639	11138
	410	81998	1//11	80031	3690	0008
1250	385	29255	2545	29138	1316	800
	360	84276	18961	82085	3791	4989
	340	109708	32035	104881	4936	8930
	490	61954	12886	60591	2787	5501
	475	21732	1695	21667	978	644
	450	42517	8844	41582	1913	3461
	430	86012	24427	82485	3871	8911
	410	65599	14169	64025	2952	4854
1000	385	23404	2036	23310	1053	693
	360	67421	15169	65668	3033	3991
	340	87767	25628	83905	3949	7144
	490	53409	11109	52234	2403	4743
	475	18735	1461	18679	843	555
	450	36653	7624	35847	1649	2984
	430	74148	21058	71108	3337	7682
	410	56551	12215	55194	2545	4185
860	385	20176	1755	20095	908	597
	360	58122	13077	56611	2615	3441
	340	75661	22093	72332	3405	6159
	490	43261	8998	42309	1946	3842
	475	15175	1183	15130	682	449
	450	29688	6175	29036	1336	2417
	430	60060	17057	57597	2703	6222
	410	45806	080/	44707	2061	3300
700	385	16342	1421	16277	735	484
	360	47079	10592	45854	2118	2787
	340	61285	17895	58589	2758	4989
	490	30283	6299	29616	1362	2689
	475	10622	828	10591	477	314
	450	20781	4322	20325	935	1692
	430	42042	11940	40318	1892	4355
	410	32064	3426	31295	1443	2373
490	385	11439	995	11394	515	339
	360	32955	7414	32098	1483	1951
	340	42899	12527	41012	1931	3492
	490 475	21030	4499 501	21134	9/3	1921
	473	1/8//	3087	1/518	668	1208
	430	30030	8529	28798	1351	3111
	410	22003	4047	22353	1030	1605
250	385	8171	710	8138	367	242
350	505	01/1	/10	0150	507	212
	360	23539	5296	22927	1059	1393
	340	30642	8947	29294	1379	2494
	490	14276	2969	13962	642	1268
	475	5007	390	4993	225	149
	450	9797	2037	9582	441	797
	430	19820	5629	1900/	892	2053
230	410	13110	3263 460	14/33	0/9	1119
230	360	15536	409	15122	600	010
	340	20224	5905	19334	910	1646
	5.0	20221	5705	17551	210	1010

Таблица 32 – Расчет силовых параметров на правой коронке при движении вниз в положении VIII

Приложение Б

АКЦИОНЕРНОЕ ОБЩЕСТВО «СУЭК-КУЗБАСС»

РОССИЯ, 652507, КЕМЕРОВСКАЯ ОБЛ., Г. ЛЕНИНСК-КУЗНЕЦКИЙ УЛ.ВАСИЛЬЕВА, 1 ТЕЛ: (38456) 7-12-76; 3-18-56 ФАКС: (38456) 3-15-18 Е-MAIL: <u>suek-kuzbass@suek.ru</u>

СПРАВКА

о внедрении результатов кандидатской диссертационной работы

Борисова Андрея Юрьевича

В рамках выполнения базовой части государственного задания Министерства образования и науки Российской Федерации по проекту № 632 с рег. № 01201456209 на тему «Исследование параметров технологий и техники для выбора и разработки инновационных технических решений по повышению эффективности эксплуатации выемочно-проходческих горных машин в Кузбассе» проведены комплексные исследования, по результатам которых разработаны варианты конструкций двухкорончатых стреловидных исполнительных органов проходческих комбайнов избирательного действия с узлами крепления дисковых инструментов на многогранных призмах для реализации реверсивных режимов работы.

Особый интерес для реализации горнодобывающими предприятиями АО «СУЭК-Кузбасс» представляют научно-технические рекомендации диссертационной работы Борисова Андрея Юрьевича «Разработка двухкорончатых стреловидных исполнительных органов проходческих комбайнов с дисковым инструментом», которые позволяют повысить эффективность проведения горных выработок по угольным пластам с большими объемами присечки крепких и абразивных горных пород, совмещая процессы разрушения, дробления и погрузки продуктов разрушения в прибортовых коридорах проходческой горной выработки за столом питателя. Представленные в диссертационной работе рекомендации в дальнейшем найдут применение на шахтах АО «СУЭК-Кузбасс».

