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Foreword 

It is an honour and pleasure to write a foreword to this useful and interesting book. 
Authors are very well known researchers who pioneered percolation modelling of 
transport in porous media in Russia from the early 80-th till nowadays. 

The main scope of the work presented in the book was developed when bright 
papers by A. Aharony, H.T. Davis, F.A.L. Dullien, A.A. Heiba, R.G. Larson, R. 
Lenormand, M.Sahimi, L.E. Scriven, D. Stauffer, M. Yanuka, Y.C.Yortsos were 
not available at the "other" side of the Iron Curtain. 

Nowadays hundreds of works and papers with the "percolation" keywords ap­
pear in petroleum and related applied research areas. The book will take a re­
markable place in the "petroleum percolation" bibliography. 

There are two important features of novelty in the monograph presented. 
First of all the authors developed a generalization of percolation clusters theory 

for grids with varying conductivity. Technique of representation of an infinite 
cluster as an hierarchial set of trees (so called r-chain model) allows to present 
conductivity of a stochastic grid in a closed form of explicit formulae. 

This method differs from those known in the West, such as effective media 
theory, solutions for the Bethe-lattice, etc. It has his own area of successful appli­
cations. 

This technique was applied for modelling of transport of multiphase systems 
in complex porous media. The majority of cases discussed have been investigated 
by other authors in the West in more detail using other methods for conductivity 
calculation (two- and three-phase flows, fractured media); some effects are pretty 
new (flow of non-Newtonian fluids, deformable porous media). 

Quasi static percolation models have been further developed into dynamic ones 
(so-called model of the forest growth). Theory of non-equilibrium displacement 
on the pore level in micro heterogeneous media is developed (Chapter 5). This 
approach could give a hint for solution of a very desirable problem of dynamic 
transport in fractals. 

The second important novelty of the book is percolation modelling of electric 
current in porous media. The theory provides basics for fast-developing methods 

ix 
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of well stimulation and improved oil recovery by application of different electro­
magnetic fields to the well drainage areas. 

I hope the technique of r-chains and dynamical "forest growth" will be suc­
cessfully applied and further developed in the area of upscaling of multiphase 
multicomponent flows in reservoirs with complex heterogeneity. 

The book is strong both in theoretical fundamentals and engineering. Wide 
audience of petroleum engineers, researchers and graduate students will find it 
useful and informative. Wish them pleasant reading and further inspiration! 

Professor Pavel Bedrikovetsky, MSc, PhD, DSc Moscow State Oil and Gas 
Academy, Russia Presently with PETROBRAS, CENPES CIDADE UNIVERSI­
TARIA Q.7 ILHA DO FUNDAO 21949-900- RIO DE JANEIRO- RJ- BRAZIL 
30th October 1994 



Abstract 

Results of theoretical analysis and experimental investigations for transport in 
porous media are presented. A new approach to modelling of transport in porous 
media is developed and a number of new percolation models is considered. The 
models allow to obtain analytical correlations for relative phase permeabilities for 
different porous media. Different methods of intensification of economic minerals 
based on new physical effects of reconstruction of the rock's pore space structure, 
are analysed. 

The monograph is of interest for reservoir and chemical engineers, for specialists 
in reservoir characterization and simulation, for core analysts and researchers, and 
for post-graduate students in the above-mentioned areas. 
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Introduction 

Creation of essentially new technologies in the recovery of mineral resources is im­
possible without a thorough research in fluid transfer phenomena in rocks. How­
ever it appears unreasonable to expect discovery of new physical effects in fluid 
flow in porous media if traditional continuous media models are applied. In these 
models, the huge variety of rock types is taken account of by varying the coeffi­
cients of permeability and porosity in the equations describing fluid flow. With this 
approach, the coefficient of phase permeability is the only parameter that bears 
information about pore space structure of rocks; experimental determination of 
this coefficient, however, is of considerable technical difficulty. 

At the same time, it is obvious that the pore space structure has a great 
influence upon the nature of fluid flow in micro heterogeneous media. Notable 
pressure gradients during the fluid flow or electric field potential during the electric 
current flow can emerge at the micro level because of the heterogeneity of the 
medium; those, in their turn, can bring about more physical effects. For example, 
as it exceeds a certain threshold value, the high density of energy release in thin 
capillaries can cause destruction of the cement and result in reconstruction of the 
pore space structure of the medium. This effect was predicted theoretically and 
confirmed experimentally in the mid 70s. Based on this effect, an essentially new 
technology for stimulation of wells was developed, allowing for increase of well 
rates in recovery of mineral resources (water, oil, metals). 

Obviously, to describe a transfer in micro heterogeneous media and related 
effects, one has to use 3D network models. Solving such problems (both static and 
dynamic) by means of numerical simulation requires huge amounts of computer 
time. In this case obtaining approximate analytical solutions using percolation 
models is of a great interest. 

More papers on fluid flow theory, purely computative [1-9] as well as both 
computative and theoretical [10-16], using methods of percolation theory, began 
to appear quite frequently in the last years. Experimental investigations in this 
field come in a series of purely experimental [17 -22] or experimental and com pu­
tative [23, 24] studies, which combine numerical calculations with experimental 
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2 INTRODUCTION 

measurements of parameters for identical systems with further comparison of the 
results. 

Detailed reports, as well as reviews of works accomplished in this field, are 
presented in the reviews [25-29, 115-118) and monographs [30-36) of Russian and 
foreign authors. However the approached used is limited by the framework of 
standard percolation theory where heterogeneity bears a threshold nature. In 
other words, within the framework of these approaches, a medium consists of only 
two types of elements - conducting ones with identical conductivities and non­
conducting ones. 

This narrows the possibilities for the percolation approach to simulation of fluid 
flow dramatically, since actual porous media contain a large variety of conducting 
pore channels. The nature of transfer processes in such media is substantially 
dependent on the structure of heterogeneity in them (i.e., on pore-space structure 
of the medium and properties of its surface) and on the way it is filled with fluids. 

In the majority of actual porous media, a commensurate contribution to effec­
tive conductivity can be made by groups of conducting elements with substantially 
different intrinsic conductivities. Rocks, with their exclusive variety of pore space 
structures, represent a typical example of such media. Thus a need for more ade­
quate percolation models arises, so that the latter be able to describe transfer in 
heterogeneous media when the distribution of conducting elements with respect 
to values of intrinsic conductivities is known. 

The problem of effective conductivity for the media with the stochastic het­
erogeneity can be effectively solved for the case of a small variation of permeabil­
ity [104]. In this case perturbation of flow caused by the heterogeneity is small, 
and the linearized theiry is applicable. It allows not only to describe an aver­
aged flow (effective conductivity), but also estimate the covariance. Perturbation 
method provides exact formulas [104, 105). The self-consistant approach [104, 106) 
provides the analytical solution for the highly heterogeneous systems, but under 
the assumption of self-similarity with the variation of the scale. 

It is worth mentioning that simple formulas for the arithmetic average and 
the geometric average often give reasonable results (for the layer cake reservoir, 
horizontal and vertical permeabilities, respectively, see [107, 108)). The com­
bined arithmetic/harmonic and harmonic/arithmetic averages give even better es­
timates [108, 109]. Renormalization method provides further improvement to the 
accuracy of the estimate of the effective permeability for the media with stochastic 
heterogeneity [1-4). 

Nevertheless analytical models do not give sufficient results in the number of 
important practical cases, and so numerical models are applied [108, 110). 

Calculation of the effective permeability for the two-phase flow in the media 
with stochastic heterogeneity is more complex and in the general case can be done 
only numerically [111, 112). 
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Nevertheless some important cases can be handled analytically. The capilliary 
dominant case of the oil-water flow in porous media with stochastic heterogeneity 
has been solved analytically using the traditional percolation theory and effective 
media model [14]. Viscous dominant case of the waterflood in stochastic porous 
media was solved in [113] using the percolation model proposed in Chapters 1 and 
2 of this book. In this study, a new approach to description of transfer processes in 
stochastically heterogeneous media is presented. The origin of this approach can be 
found in the series of studies [37-42]. A percolation model of a micro heterogeneous 
medium is proposed, allowing for obtaining analytical formulas and solutions for 
problems of the mentioned type. Methods for investigation of pore space structure 
of different types of rocks are described, allowing for determination of the effective 
radius probability density function for capillaries. Using this approach, effects of 
pore space structure of a micro heterogeneous medium upon one- and multi-phase 
flow are studied. A percolation theory for the two-phase flow developed in Chapter 
4 can be used for the generalization of the relative permeabilities model for cases of 
precipitation of paraffins and for chemical reactions in porous media [114]. Effects 
of rearrangement of pore space structure resulting from different types of treatment 
(acoustic, electric) are investigated. Methods for calculating phase permeabilities 
are proposed, new physical effects due to certain properties of transfer processes 
in micro heterogeneous media are described. In Part II, some of the technologies 
based on such effects, are presented. 

The examples shown demonstrate that use of percolation models are very 
promising in investigation of the influence of pore space structure upon transfer 
phenomena in micro heterogeneous media. 

The authors wish to thank their colleagues and students, S.P. Glushko, N.S. 
Rostovsky, and R.M. Musin, who took part in solving some of the problems 
reflected in the book. Special thanks are owed to A.J. Greenberg for his great help 
in preparing the manuscript. 
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Fluid- and Electric 
Conductivity in Porous 

Media. Theoretical Analysis 



Chapter 1 

Percolation Model of Micro 
Heterogeneous Media 

Conductivity of a medium (coefficients of permeability and electric conductivity) 
depends significantly on the pore space structure. In the case of stochastic distri­
bution of conducting channels in the medium, it is possible to describe the topology 
of the pore space in terms of the percolation theory [25-27, 29, 30]. However the 
existing percolation models can be applied only if the conducting structural bonds 
in the medium are sufficiently homogeneous. This is due to the fact that all the 
theoretical relationships in percolation theory were obtained under the assump­
tion that there are only two types of structural bonds in the medium, namely the 
conducting and the non-conducting ones. It is also assumed that the intrinsic con­
ductivities of all conducting bonds are equal. At the same time, in the majority of 
actual media, a commensurate contribution to effective conductivity can be made 
by groups of conducting bonds whose intrinsic conductivities are notably different. 
Rocks, which may have many different types of pore space structure, represent an 
example of such media. 

1.1 Percolation Theory. Basic Concepts 

Percolation theory and a number of its applications to various problems of math­
ematical physics are presented in enough detail in the reviews [31-36]. We shall 
now mention only the basic ideas of percolation theory, those which we will need 
in the future, as we build models to describe conductivities of media with different 
types of pore space structure. 

Consider specifically the problem of flow through a periodic network (we can 
consider solid and intersecting spheres, ellipses, covering graphs, or continual flow). 

7 



8 CHAPTER 1. PERCOLATION MODEL 

The network consists of sites and conducting bonds between them. Obviously, if 
all bonds in the network are broken (i.e., do not conduct), then its conductivity 
vanishes. As the concentration of conducting bonds goes up, the latter begin to 
merge and form clusters, i.e., conducting unions of bonds. Starting from a certain 
threshold value of conducting bond concentration, the bonds begin to form an 
infinite conducting cluster (IC), and the conductivity of the network becomes non­
zero. The density of the IC and correspondingly, its conductivity goes up with the 
further increase of conducting bond concentration. Quantitative description of the 
threshold value for concentration of bonds for different types of networks, as well 
as the correlation between the conductivity of a network and the concentration of 
bonds, is given by percolation theory. 

Thus percolation theory studies formation of connected domains (clusters) from 
elements with certain properties, provided that every bond of each element with 
another one is arbitrary (though established in a strictly defined way). It is clear 
that the phenomena described by percolation theory belong to the so-called crit­
ical processes which are characterized by a particular critical point each. When 
this critical point is reached, the principal property of the system, as far as the 
process in question is concerned, changes fundamentally. Formation of an IC is in 
essence a phase transition of the second kind, which is quantitatively character­
ized by a set of universal critical parameters. The universality of these parameters 
means that they do not depend on the specific model, i.e., on network type, but 
are determined only by the dimension of the space. This fundamental postulate 
of percolation theory is based on analysis of results given by numerical model­
ing of the IC formation in networks of different types. However in the simplest 
cases, such as that of a two-dimensional square network, analytical solutions can 
be obtained as well [30]. Percolation theory shows also that although distribution 
of conducting bonds (sites) in the network is random, there still exists a well­
determined threshold conductivity probability for a bond, when the network as a 
whole acquires conductivity. This threshold value depends only on the network 
type and the dimension of the problem and does not depend on the specific re­
alization of conducting bonds in the network. In a finite system, however, the 
percolation threshold does depend on the specific realization of the conducting 
bond distribution, i.e. is a random variable. As the size of the network increases, 
the fluctuation of the percolation threshold becomes less, and the value of the 
percolation threshold approaches the one predicted by percolation theory. In this 
case, t5, the width of the critical region which is most likely (i.e., has overwhelm­
ing probability) to contain the value of the percolation threshold for a network 
of finite size, decreases as t5 ~ C fN-vD. Here N is the number of sites in the 
network; D is the dimension of the problem; Cis a coefficient (~ 1/2); vis the 
critical parameter (the correlation radius) which depends on the dimension of the 
problem and will be defined later. Since numerical modeling is carried out for net-
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Table 1.1: 

Network Type z I pb 
c I P~z 

Plane 
Square 4 0.5 2.0 
Triangular 6 0.35 2.1 
Hexagonal 3 0.75 2.0 
Solid 
Simple Cubic 6 0.25 1.5 
Body Centered Cubic 8 0.18 1.4 
Face-Centered Cubic 12 0.12 1.4 
Diamond Type 4 0.39 1.6 

works of finite dimensions, the results given by percolation theory are valid only 
for networks with sufficiently large numbers of sites (N ~ 104). In this case the 
size of the network can be considered macroscopic with respect to the size of an 
elementary cell, and the percolation threshold is defined as the limit of the mean 
value of the percolation threshold, as the number of sites in the network goes up. 
We shall now briefly present the major results of percolation theory. 

Percolation threshold. Let P" characterize the probability of conductivity 
in a bond between any two sites, and P 8 , the probability of conductivity in the 
sites. Then if P" ~ P~, where P~ is the threshold value of the conductivity 
probability, then an IC is formed in the network. If P" < P~, then there is no 
IC and the conductivity vanishes. The quantity P~ depends on z, the number of 
closest neighbors of a site in the network, and on the dimension D of the network, 
i.e., it depends on the network type. With good precision, the following invariant 
can be indicated, 

P:z = Df(D -1). (1.1) 

The values of P:z for different network types are given in table 1.1. 
A similar result is obtained when the conductivity of the network is considered 

in terms of site percolation. If the probability P 8 of the site conductivity satisfies 
the condition ps ~ P;, where P; is the threshold conductivity probability of a 
site, then an IC is formed in the network. 

The quantity P; depends on f, the charge coefficient, i.e., on the network type. 
The charge coefficient equals the fraction of the volume covered by a set of balls 
constructed around each site of the network with radius equal to half the distance 
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to the closest neighbor. The following invariant holds to within 10 to 15%, 

p• I= { 0.16 in the three-dimensional case, (1.2) 
c 0.5 in the two-dimensional case. 

The values of P: I for different network types are given in table 1.2. 
Structure of the infinite cluster. Shklovsky- de Gennes model. The 

conductivity of the network strongly depends on- the IC structure. The regions of 
an IC consist of the "skeleton" and the "dead ends." A point is said to belong to 
the "skeleton" of the IC if at least two paths originating from it can be followed to 
infinity. If there is only one such path, then the point belongs to the "dead end." 
A model of the IC structure was proposed independently by B. I. Shklovsky and 
P. de Gennes. According to this model, it is possible to represent the structure 
of the "skeleton" of an IC as an irregular network with the characteristic period 
equal to R, the correlation radius of the IC as determined from the expression 

where the correlation radius index 

_ { 0.9 in the three-dimensional problem, 
11 - 1.33 in the two-dimensional problem. 

(1.3) 

Numerical experiments show that the relation (1.3) holds for the site percola­
tion as well. In this case, the parameter 11 is the same as for the bond percolation. 

Electric conductivity near the percolation threshold. It was shown that 
within the framework of percolation theory, the electro- or hydroconductivity of 
the IC increases near the percolation threshold with the increase of either of the 
probabilities, pb or P 8 , as follows 

where the quantity d is determined from the dimension of the problem only: 

d = { 1. 7 ± 0.02, D = 3, 
1.3 ± 0.02, D = 2. 

(1.4) 

The numerical experiment shows that the relationship (1.4) holds within the 
interval Pg :5 pb :5 Pg + fl.pb, where fl.pb :5 0.1. In the interval Pg + fl.pb :5 
pb < 1, the conductivity of the network can be adequately described by the 
formula obtained for the model of "effective medium" [29]: 

K = Ko[1- (1- pb)/(1- 2/z)], 

where Ko is the greatest possible conductivity of a network when there are no 
broken bonds in it (Pb = 1). The same relationship holds for the quantity P' in 
the "site problem." 
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Table 1.2: 

Network Type z ps 
c I P%f 

Plane 
Square 0.79 0.59 0.47 
Triangular 0.91 0.50 0.46 
Hexagonal 0.61 0.70 0.43 
Solid 
Simple Cubic 0.52 0.31 0.16 
Body Centered Cubic 0.68 0.25 0.17 
Face-Centered Cubic 0.74 0.20 0.15 
Diamond Type 0.34 0.43 0.15 

The Shklovsky - de Gennes model allows to relate the quantity d to the corre­
lation radius index. Since, for instance, the electric current flows only through the 
"skeleton" of the IC, the electric conductivity of the network is determined only 
from the conductivities of the parallel capillary chains within the "skeleton" of 
the IC. The number n of the capillary chains reaching a unit surface of the cross­
section perpendicular to the chosen direction equals R-(D-1). The conductivity 
of the network E ""na1, where a 1 is the specific conductivity of a chain. Using 
the relationship {1.3), we obtain a formula for the specific electric conductivity of 
the network 

{1.5) 

Here, a0 is the specific electric conductivity of the network when pb = 1. 

After comparing the relationships {1.4) and {1.5), we find that d = v in the two­
dimensional case and d = 2v in the three-dimensional case. This fact supports 
the validity of the Shklovsky - de Gennes model. In the three-dimensional case, 
capillary chains can be tortuous. However this feature changes only the formula 
d = 2v to d = v +(,where ( = 1 [26]. In the two-dimensional case this effect does 
not appear. 

Note that the formula {1.5), as well as other percolational relations, was ob­
tained up to a numerical factor of the order of unity. 

Density of an IC. Research has showed that the value of W, the number of 
sites (bonds) which belong to the IC, obeys the exponential law 

{1.6) 
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The critical parameter found from numerous computational analyses is 

(3 = { 0.4 in the three-dimensional case, 
0.14 in the two-dimensional case. 

The contribution to the function W is made by all the sites which belong to the 
"skeleton" and the "dead ends" of the IC. Relationships (1.3) and (1.6) imply that 
near the percolation threshold, the number of sites and bonds of the "skeleton" 
of the IC are negligible compared to the total number of sites and bonds inside 
the IC. In other words, the principal part of the IC is concentrated in the "dead 
ends," which do not affect conductivity. 

1.2 Conductivity of a Network with the Random 
Distribution of Elements 

The existing percolation models can be applied only if the conducting elements 
(bonds in the network) are homogeneous. That is, it is assumed in these models 
that the intrinsic conductivities of all elements in the network are equal. However 
this approach does not work for many kinds of heterogeneous media, e.g., oil and 
gas reservoirs. It fails because various groups of structural elements in a medium 
with intrinsic conductivities differing by several orders can make a commensurate 
contribution to the effective conductivity of a heterogeneous medium. We suggest 
a model which allows to describe conductivity of a heterogeneous medium with the 
given intrinsic conductivity distribution of structure elements. In essence, it is a 
generalization of the Shklovsky - de Gennes model. Our model is able to describe 
the case when the network contains conducting elements randomly distributed 
with respect to values of intrinsic conductivities. 

Consider the network model of a heterogeneous medium whose sites are con­
nected with bonds with different conductivities u. From now on, the general term 
"conductivity," if not otherwise specified, will be used to describe both the hydro­
conductivity, or permeability, and the electric conductivity, since the logic behind 
the construction of models for the two processes is absolutely the same. Let the 
period of the network equall. Suppose that the values of the conductivities (or 
values of the parameter which determines them, i.e., radius of the section) of 
the bonds are distributed randomly in the network and are characterized by the 
distribution function fo(u) which satisfies the normalization condition, 

00 

J fo(u) du = 1 
0 

Since fluid conductivity of a conducting bond is ,... r 4 and its electric conduc­
tivity is ,... r 2 , the distribution of bonds with respect to conductivities can also be 
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characterized by the normalized radius distribution function of conducting bonds 
f(r). From now on, a corresponding form of function u(r) will be used for specific 
transfer phenomena, and the function /(r) will be used to describe heterogeneity 
of the porous medium. Within this section of the book, for clarity's sake, we shall 
use f0 (u) in our reasoning. Let the number of bonds with conductivities u > 0 
be characterized by the quantity ~~:(0 $ ~~: $ 1). Here~~:= 1 only if all bonds are 
conducting and 0 $ ~~: < 1 otherwise. Conduct a mental experiment. Suppose that 
the bond conductivities with values less than u1 vanish. Then percolation is pos­
sible only through those bonds, whose conductivities exceed u1• The probability 
of a bond having conductivity u ~ u1 is 

00 00 

Pb(u1(r1)) = 11: I fo(u) da = ~~: I f(r) dr, (1.7) 

CTl rt(crt) 

where r1 (ut) is the inverse relation o-1 (r1). The infinite cluster and, consequently, 
percolation appears in the network when pb(ut) ~ P:. Using relationships {1.1) 
and (1.7), one can find the value uc(rc) of conductivity at the point when the IC 
is formed. The conductivity of the IC skeleton along the principal axes of the 
network is generally determined from the conducting chains parallel to these axes 
and belonging to the IC (see fig. 1). The number n(ut) of conducting chains 
containing the bonds with conductivities u ~ u1 and reaching a unit surface of a 
cross-section perpendicular to the chosen direction is equal to 1/ R2 in the three­
dimensional case and 1/R in the two-dimensional case. From (1.7), (1.1), and 
(1.3) we obtain that 

/ 
Figure 1: Diagram of the IC skeleton structure in the Shklovsky- de Gennes model 
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or 

[ 

rc l v(D-1) oo 

n(rl) = z<1-D) K, I f(r) dr 'I f(r) dr = P:. 

r1 rc 

(1.8') 

The average conductivity of a chain of unit length k composed from succesive 
bonds is 

(1.9) 

If we decrease the threshold value u1 > 0 further, then n grows. The new con­
ducting chains which join the ones that were there for the initial value u1 contain 
the bonds with conductivities u $ 0'1. Therefore the new average conductivity is 
less, but still determined by (1.9), where 0'1 denotes the minimum value of conduc­
tivity among the bonds contained in the given chain. The average conductivity of 
the chain is uniquely determined from the quantity 0'1. Knowing the distribution 
function F(u1 ) of the condw:ting chains with respect to values of u1 , one can find 
the total conductivity of the IC 

D'c 

K = I k(u1) du1, 

0 

(1.10) 

where F(ut) is related to the quantity n as follows, F(ut) = -dn/do-1. Using this 
relationship, as well as (1.8), (1.9), and (1.10), we obtain 

u [ u ]2v-1 
K = "'fli(D- 1)1<1-D) K.v(D-l) I I fo(u) du /o(u1) I~:~) 

0 D'l 

(1.11) 

where 

The formula (1.11), as well as other known percolation relations, is obtained 
under the assumption of no interflows between the conducting parallel chains. This 
fact is reflected in the formula (1.11) by the numerical factor "' (of the order of 
unity), which depends on the network type. As was pointed out, in the three­
dimensional case the conducting chains of the IC are tortuous. It can be shown 
that taking account of this property causes the change of the exponent 2v - 1 in 
(1.11) to v + (- 1, where ( = 1 [26]. In the two-dimensional case, no such effect 
is observed. 
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Since the formulas obtained in this work assume no interflows between the 
parallel conducting chains, the question arises about the accuracy of the results 
obtained. 

Note that in the case of equal conductivities for all conducting channels, formu­
las of the (1.11) type turn into critical percolation relations E""' K""' (Pb- P~)d. 
It was shown in [29] that relations of this sort describe with good accuracy (10 
to 20%) the change of network conductivity near the critical point for the fol­
lowing range of the bond conductivity probability, P~ ~ pb ~ P~ + t::,.pb, where 
t::,.pb ~ 0.1. For a given distribution of conducting bonds with respect to values 
of their intrinsic conductivities, verification of formula (1.11) with a numerical 
experiment is necessary. 

Numerical experiment. In order to verify the fundamental relationship 
(1.11) obtained above, its results were compared to those of the following numerical 
experiment. Consider stationary flow in an arbitrary medium described by the 
elliptic equation 

div(uVQ>) = 0. (1.12) 

The equation determining the distribution of potential 4> in a square network 
with a period l 

l-2[ui+l/2,j(l/>i+l,j- 1/>i,j)- D"i-1/2,j(l/>i,j- 1/>i-l,j)]+ (1.13) 

+l-2[ui,j+lf2(4>i,j+l- 1/>i,j)- ui,j-lf2(4>i,j- 1/>i,j-1}] = 0 

is the difference analog of the relationship (1.12). Here i = 1, 2, ... , N; 
j = 1, 2, ... , N are natural numbers that locate the site in the network; D"i±l/2,j±l/2 
is the intrinsic conductivity of the bond at the point i ± 1/2,j ± 1/2 (set by a ran­
dom number generator); and 1/>i,j is the value of the potential at the point i,j 
(fig. 2). Conductivities of bonds were assigned by a random number generator 
provided their probability density was determined by a given function fo(u). The 
boundary conditions were as follows 

1/>o,j = 1, 1/>N,j = 0, 

1/>i,N- 1/>i,N-l = 0, 1/>i,l - l/>i,2 = 0. 

(1.14) 

(1.15) 

The condition (1.15) requires no flow through the boundary of the network in 
the jth direction, and the condition (1.14) indicates constancy of the potential on 
those boundaries of the network, through which the flow comes. 

The equation (1.13) has been solved numerically using the relaxation method. 
To speed up calculations, initial distribution was set to be 

1/>i,i = 1- ifN. 
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i•l,j-1 i•l,j i•l,j•l 

i+I/Z,j i•I/Z,j•l 
i,j-1/2 ~j·l/2 

i,j-1 i.j 

i-1/Z,j 

l J j 
·-1, . _, i-1, . i·!,j•l 

Figure 2: Two-dimensional network built for the numerical solution to the problem 
of percolation in a network. 

For the given potential difference 6¢ = 1 on the boundaries of the network, the 
average value of flux between those boundaries was determined by the formula 

N 

Q = N-1 LO'N-1/2,j(¢N-l.j- ¢N,j) 
j=1 

Effective conductivity E was found from the formula 

E = Q/6¢ 

In the course of the numerical experiment, the following types of distribution 
functions for intrinsic conductivities of the bonds were set, 

1./o(a) =a exp( -aa), a:» 0; 

2./o(a) =~(a -1) + (1- K.)6(a -10-1); 

3.fo(a) = K.[17(a) - 17(a- 1)], 

where 6(*) and 77(*) are the conventional notations for Dirac's 6-function and 
Heavyside's 77-function (6(*) = 77'(*)). Furthermore, the fraction of conducting 
bonds in the network K. was also being changed. Sampling was made for each 
method by calculating the conducting bonds distribution in the network for a 
fixed function f0 (a) in different realizations. The quantity N in different methods 
of calculation was set to be either 100 or 150. Comparison of results for different 
distribution functions showed that for N = 150, E is determined with accuracy of 
~ 10-15%. 

The distribution function f 0 (a) =a exp( -aa) was used to find how accurately 
the formula (1.11) determines the effective conductivity of a micro heterogeneous 
medium with a smooth distribution function of its conducting structural elements. 
This distribution function f 0 (a) is normalized on unity, and its variance can be 
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Figure 3: Plot of the effective conductivity against of the parameter K for the 
conditions: a- D = 2,11 = 1.33, l = 1; b- D = 3,11 = 0.9, l = 1 (the dotted line 
represents the classical curve of percolation theory); c- D = 2,11 = 1.33, l = 1 

altered by varying the quantity a. This quantity defines the expectation of the 
00 

function /o(a): mt = J afo(a)da = a-1. 
0 

The results of the numerical calculation of the effective conductivity E for 
a micro heterogeneous medium (marked by index p) for different values of mf, 

and the theoretical values of E (index t), found using formula (1.11), with 11 = 
1.33, D = 2,1 = 2.85, l = 1, are displayed below: 

0.05 
0.043 
0.043 

0.1 
0.089 
0.088 

0.5 
0.47 
0.45 

The formula (1.11) describes the effective conductivity of a micro heterogeneous 
medium with good accuracy in a wide range of m 1. It is interesting to note that for 
smooth distribution functions like those considered above, the value of the effective 
conductivity of the network comes close to the expectation. The latter coincides 
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with the mean value of the conductivity of the medium~~ M =< u >. As for 
the one-dimensional case, the effective conductivity is determined from the mean 
value of the inverse conductivity of the medium, i.e., from the average resistance 
~ ~< 1/u >-1, and does not coincide with the mean value < u >. 

The dependence of the effective conductivity of a medium on the parameter 
K. defined for the second and third distribution functions by the formula (1.11) is 
shown in fig. 3. The parameters v, l, and 'Y were the same as in the previous 
case. Fig. 3, a, b, shows the results of the calculation for f0 (u) No. 2, and fig. 
3, c, shows the results for f0 (u) No. 3. Values of~ obtained in the numerical 
calculation are marked by circles on the same plots. 

Distribution function No. 2 differs from the one regularly used in percolation 
theory only in that the non-conducting bonds are substituted in the network with 
the bonds with small, but non-zero conductivities. Numerical modeling shows that 
introduction of the bonds with small conductivities into the network instead of the 
corresponding "zero" ones changes the nature of the dependence ~(K.) drastically. 

Within the framework of classical percolation theory, where the second term in 
the relation for fo(u) No. 2 is of the form (1- K.)6(u- 0), the given dependence is 
characterized by a curve resembling the dashed line in fig. 3, b. After comparing 
the curves in fig. 3, b, one can notice that although according to the classical 
theory, in the region K. ~ P~, ~(K.) = 0, in the considered generalization of this 
theory, ~(K.) > 0 for all K.. Besides, the behavior of the curves ~(K.) in the interval 
P~ < K. ~ 1 varies. This is most noticeable near K. = P~. The plots presented in 
fig. 3 show that satisfactory agreement of the analytical dependence (1.11) with 
the results of the numerical experiment does take place. 

Note that the obtained relation {1.11) includes the limiting case (1- K.)6(u­
w-1) ~ (1-K.)6(u-O). In this case the calculations using (1.11) yield the classical 
percolational relation shown on fig. 3, b, by the dashed line and described by the 
formula (1.5). 

1.3 Effect of Electric Current on Conductivity 
of Heterogeneous Media 

When electrical current passes through successive capillaries of radii r1 and r2 

the ratio of current densities in them is proportional to (r2/r1) 2, while the ratio 
of energy discharge densities is "' (r2 /rt)4 • For heterogeneous media, e.g., rocks, 
the ratio ( r2/ r1) can be ~ 103 and more. This fact shows how far from unifor­
mity can the energy discharge density be in a medium. High densities of energy 
discharge in thin capillaries can cause changes to the intrinsic conductivities. Spe­
cific mechanisms causing such changes can be very different, e.g., the increase of 
pressure in capillaries, pressure gradients at the micro level, etc. Since in actual 
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media, capillaries can be bonded not only successively, but also in parallel, cor­
rect estimates of the energy discharge density at the micro level must be made 
using the network model of heterogeneous media (see §1.2). In analyzing current 
flow through a network of conductors, we will use the more habitual notation for 
electric conductivity, k(at), rather than E(at)· 

When electric current flows through a chain of successive resistances, the max­
imum voltage is achieved on a bond of minimum conductivity a1 in the chain. The 
current through the chain is proportional to E(at). 

Let E be the gradient of the potential applied to the network. Then the 
maximum local gradient of the potential in the chain satisfies the relationship 

After looking through chains with different a1, one can find the maximum 
gradient of the potential in the network 

(1.16) 

Consider a model probability density function of the form 

(1.17) 

After substituting (1.17) into (1.16), we find that 

VtjJ* /E = (a3/a2 -1)ln-1 (a3/a2) 

It is evident now that with the increase of the variance in the probability density 
function, the heterogeneity of the local gradient of the potential in the network goes 
up sharply. The relationship (1.16) allows to determine the conductivity of the first 
bond in which a change of conductivity has occured. To determine further change 
of the conductivity of the bonds in the network, consider a chain characterized 
by a parameter, say, a1 . Suppose that the conductivity a 1 of those bonds, whose 
energy discharge reaches the value e:a1 fum, increases up to the level where it has 
practically no effect on the conductivity of the chain, i.e., a 1 :» E(a1). Note that 
the quantity e:a;,l, where am = const, depends only on the physical"properties of 
the material constituting the bonds, and is thus constant for the given medium. 
The increase in the conductivity of the network results in the increase of the current 
density in the chains. The latter phenomenon may cause further change in the 
conductivity of the network. 

Suppose that in the network characterized by the parameter a 1 (0), a 1 (t) is the 
conductivity of the bond which changes conductivity at the instant t. (The bonds 
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which satisfy the condition 0'1 (O) :::; u :::; 0'1 (t) have already had their conductivities 
changed.) To obtain the condition for the conductivity change, define the energy 
discharge t:1 in the bond u 1 (t) contained in the chain u1 (0). After neglecting the 
effects of heat exchange between the chains and the non-conducting skeleton of 
the medium, we obtain 

0'1(t) E 2 2( ( )) E 2 It 2( ( )) 
E -- = -(-) l; 0'1 0 + -(t) l; 0'1 T dr, 

O'm 0'1 t 0'1 
(1.18) 

to 

The first term in the right side of the relationship (1.18) corresponds to Joule's 
heat which has discharged in the bond before the instant to = eu;,1 

x (''Vr/J*)-2 , when the conductivity of the chain began to change. The second 
term describes the energy discharge during the period when the conductivity of 
the chain was changing. In this case, t~c is the time needed for all elements of the 
chain to acquire infinite conductivity. 

Consider the change of the conductivity in the case when the probability density 
f0 (u) of the bonds with respect to intrinsic conductivities is described by the model 
function 

(1.19) 

In this case the solution (1.18) can be obtained in the analytical form. As it can 
be deduced from the relationship (1.16), the value 'ilr/J* f E = nf(n -1) is the same 
for all chains and is assumed at those bonds which have the least conductivity for 
the given chain. 

For an arbitrary chain, (1.18) implies 

1 
An= 2(n -1) 

This means that according to (1.9), the average conductivity of all chains 
increases in the like fashion, i.e., proportional to 1- (n- 1)(tft0 - 1)-~"n, so 
that to is the same for all chains. Therefore the effective conductivity of the 

ITl 

medium I:0 (t) "' J I:(u(t)) du, and after integrating 
0 

H bonds are cylindrical capillaries, then the electric conductivity u of such a 
bond is related to its permeability coefficient k in the following way, k "' u2 • Thus 
we obtain the time dependence of the permeability K(t) of the medium 

K(t)fK(O) = [1- (n -1)(tfto- 1)17(t- to)t2~nn 



1.3 EFFECTS OF ELECTRIC CURRENT 

K l' 
K,z, 

I 

1.'":---~-L--,...J 
D,.f 7 t/f, 

21 

Figure 4: Plots of electric conductivity (1) and permeability (2) of heterogeneous 
medium against time during electric treatment 

It is interesting to observe that when t- tk = ton/(n- 1), u1 (t) ~ oo. In this 
case, some chains in the network consist only of those elements which changed their 
conductivities when the electric current passed through them. The dependencies 
E0 (t)/E0 (0) and K(t)/ K(O) are shown in fig. 4. Also depicted there are the results 
of numerical modeling of the process in question for a plane square network with 
the number of sites 100 x 100 and the probability density function of the exponential 
type (1.19) with n = 3, uo = 1. Distribution of the potential in the network was 
found from the solution of the Laplace equation div (a\1¢) = 0, where the values of 
a were set by a pseudorandom number generator. For a given probability density 
function, the solution was found using the relaxation method. When the critical 
level of the energy discharge was achieved at one of the bonds, its conductivity 
was set to equal 105 . Then to was determined. Numerical modeling showed that 
the values t0 and tk agreed well enough with the values obtained analytically 
for various probability density functions. It was also showed that the analytical 
dependencies E0 (t)/E0 (0) and K(t)f K(O) agreed satisfactorily with the results of 
numerical modeling. 

Thus heterogeneity of a medium at the micro level causes sharp heterogeneity 
of the density of energy discharge in the conducting elements. Such heterogeneity, 
in its turn, may cause significant changes in the conductivity of the medium even 
when relatively small electric fields are applied to the medium. Estimates show 
that such effects can be observed in rocks with notably heterogeneous pore space. 
Note that the change of the conductivity predicted by theory is quasi-volumetric, 
a property which makes this process different from those of the "breakthrough" 
type, where contraction of the current in the medium takes place. The presence of 
a threshold, which defines the lower limit of the energy discharge when the rear-
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rangement of the pore space structure is still possible, is also of great importance. 
Obviously, the described effect can be extensively used to increase the conduc­

tivity of media, and consequently, to increase the production rates of wells used 
for the recovery of minerals (water, oil, productive solutions of underground leach­
ing). Experiments at over 50 places across the territory of the former USSR with 
different geological structure (clay, gravel, and rock) have shown that production 
rates of hydrogeological and geotechnological wells increased by factors of 2 to 
10 (average 2 -3 ) when their pre-filter parts were treated with electric current. 
Electric energy consumed in these works did not exceed 300 kilowatt-hours per 
well. 

So the field experiments confirm the possibility of practical application of the 
effect predicted by the theory. 



Chapter 2 

Percolation Models of 
One-Phase Flow in Rocks of 
Different Types 

There are many types of pore space structure in natural rocks. We consider oil 
and gas reservoirs as well as hydrogenous water- and ore-bearing strata. These 
formations break up in three fundamental groups, namely grained, cavernous, 
and fractured reservoirs. There also exist rocks of a mixed type, e.g., fractured­
cavernous, fractured-porous, etc. Inside each group, it is possible to describe 
conductivity of the reservoir rocks using the model of a heterogeneous medium 
(see chapter 1), if the distribution of conducting structural elements with respect 
to intrinsic conductivities is defined. 

2.1 Conductivity of Grained Media 

Consider a specimen of an infinite grained medium with grain centers arranged 
in cyclic symmetry and whose grains have equal diameters (see fig. 5). In such 
a medium fluid can flow only along the thin channels which connect the large 
pores. The channels between the pores can be partially or entirely trapped by 
a cementing substance, and therefore channels have different cross-sections. It is 
possible to characterize conducting properties of each channel by the parameter r, 
the effective radius of the channel. Suppose the conducting channels with different 
rare distributed randomly with the probability density function f(r). Percolation 
theory treats large pores as sites and the thin channels as bonds between them. 
When centers of grains are arranged in cyclic symmetry, the system of channels 

23 
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forms a cubic network. The coefficient of permeability for such a system, which 
simulates the pore space structure of grained media, can be calculated using the 
approach discussed in §1.2. This coefficient is determined from (1.11) for the case 
of hydraulic conductivity u = (rr/8)r4 : 

where I(rl) = 8/rr fro;' f(r)(drfr4 ) (fro;' f(r) dr) -l, rc is the critical radius de­

fined by an expression similar to (1.7) 

00 J f(r)dr = P:. (2.1') 

Note that in deducing the relationship (2.1), the tortuousity of the elements 
forming the skeleton of the IC is already taken into account, since this deduction 
was carried out for a space network. 

Now consider electric conductivity of a grained medium when a conducting fluid 
with specific electric conductivity u' is contained in the medium. We assume that 
neither the grains nor the cementing substance conducts electric current. Note 
that polarization effects can make significant contributions to the current flow 
through a two-phase medium. Therefore the electric conductivity of the medium 
is determined not only by u', but also by >..', a parameter which characterizes 
"surface" electric conductivity induced by the diffuse layer of ions near the phase 
interface. Detailed research on the effect of polarization on electric conductivity 
of media was made by S.M. Scheinmann {1969). We shall present here only the 
final results obtained using the two-phase model. 

When the low-frequency current passes through two successive conducting 
channels, the resistance can be described by the following formula [43], 

p = II~(w) +Po, ~(w) = tanh(JiWTi)/JiWTi. (2.2) 

6K ----
Figure 5: Model of the pore space structure for a grained medium 
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Here w is the angular frequency (O ~ w < 105 radian/s), Ti is the character­
istic period of ion diffusion in the channels. The function ~(w) characterizes the 
relation between resistance and frequency: ~(0) = 1, ~(oo) = 0. Resistance is 
determined only by the quantity Po which characterizes the non-polarized two­
component medium 

(2.3) 

where li is the length of the i-th channel. The conductivity of the i-th channel is 

O'i = _, C1 1 + 2- . 1rr~ , ( >..' ) 
li u'ri 

IT does not depend on frequency and is a function of the channel parameters 
and of the equivalent ion transfer numbers ni± in the solution, which depend on 
the ratio >..' f(u'ri) 

n = (nl+n2- - nl-n2+)2 . 
CT1n1+n1-/a1 + u2n2+n2-/a2 

S. M. Scheinmann used the formula (2.2) to calculate the effective conductivity 
of the medium and its frequency dependence. The conductivity was then averaged 
with regard to the channel size distribution function. In the discussed approach, 
the structure of the conducting infinite cluster formed in the medium is determined 
using this distribution function. Then the effective electric conductivity of the 
medium is calculated with regard to structure of the conducting chains. As it 
was showed in §1.2, conductivity of the IC is determined from parallel conducting 
chains whose distribution with respect to r1 is described by the function F(r1). 

Given the mean values < u( r1) > of electric conductivities for the chains, a formula 
equivalent to (2.1) can be obtained for calculation of the electric conductivity of 
the medium 

I}= 2-yvl-2(1- P:)-2" 1 [7 f(r) dr]" < u(rl) > /(rl) dr1 • (2.4) 

0 r1 

Taking account of the relationship (2.2), one can find< u(r1) >for a chain of 
successive resistances 

< u(r1) > -l= z-1 i [po(r) + IT~(w)]f(r) dr ( 7 f(r) dr) -
1 

(2.5) 

~ ~1 
Formulas (2.4) and (2.5) determine the effective electric conductivity of a 

grained medium. Focus on the calculation of < u(r1) >. Formula (2.2) was 
obtained for the case of two cylindrical channels connected to each other. How­
ever the geometry of channels in a grained medium can be different. Yet due to 



26 CHAPTER2. ONE-PHASE FLOW IN ROCKS 

complexity of the electric current flow problem in a two-phase media, no solution 
for other geometries of channels is available at present. Therefore it is suggested 
in determining the electric conductivity of a grained medium that parameters of 
cylindrical channels be chosen correspondingly. Any channel connecting pores in 
a grained medium can be represented as two cylindrical channels of equal lengths 
h = l2 = l/2 but of different effective radii. After setting the radius of the thin 
channel to equal r and the radius of the thick one to be of the same order of 
magnitude as the radius l/2 of the grain and using (2.3), we find the expression 
for Po in the explicit form 

(2.6) 

In (2.6), the relationship 4A' /((T'l) ~ 1 was taken into account. When radii 
of channels are large enough (2A' /(u'r) ~ 1), the surface conductivity may be 
neglected and the formula (2.6) reduces to 

1 
Po= -,l[1 + (l/r)2]. 

1fU 

2.2 "Permeability- Porosity" Correlation 

Since the distribution function of conducting channels with respect to intrinsic 
conductivities is not always known, finding the correlation between the coefficient 
of permeability and the porosity of a medium is of a certain practical interest. In 
this approach, it is certainly impossible to take account of the effects caused by 
differences in intrinsic conductivities of the channels in a grained medium. However 
for those grained media, whose permeability is determined primarily by a group 
of capillaries with approximately equal intrinsic conductivities, such a method is 
justified. Therefore we shall draw our attention to the model of a grained medium 
discussed in §2.1 (see fig. 5). 

Let !l>o be the porosity of the model structure in question (further called struc­
tural porosity of the medium). Structural porosity is related to the coefficient of 
charge as follows, f = 1 - !l>0 • Suppose that some of the sites are trapped with 
impermeable substance, and thus the porosity of the medium is ![> < !l>0 • If the 
distribution of trapped sites in the network is random, the probability of a site 
having non-zero conductivity can be found from the relationship 

ps = ![> / !l>o (2.7) 

The threshold value of the conductivity probability P: of a site when an 
IC is formed is P: = 0.16f-1 in the three-dimensional case. The coefficient 



2.2 "PERMEABILITY- POROSITY" CORRELATION 

TOO 

!0 
/ 

I 
I 

I 
I 

/B 
I 

41~~~~~~~~ 
Q 41 42 D.J m 

27 

Figure 6: Plot of the coefficient of permeability for a grained medium against 
porosity 

of permeability of the medium near the percolation threshold in the interval 
P: ~ pa < P: + !l.P8 is determined from the relationship (1.4) 

(2.8) 

Outside this interval, the conductivity of the medium can be adequately de­
scribed by a linear relation between the conductivity and the quantity ps. More­
over when all pores are open (P8 = 1) the permeability of the medium is deter­
mined from Causeni's formula [44] 

(2.9) 

Hence the coefficient in the formula (2.8) can be found approximately by match­
ing the relations (2.8) and (2.9) for ps > P: + !l.P8 • In this case, the formula for 
the coefficient of permeabiltiy becomes 

K = 7 ·10-3 (l ~::)2 ( : 0 - P:) d 11 ( :0 - P:). (2.10) 

Formula (2.10) describes the permeability of the medium in the interval P: ~ 
ps < ps + !l.P8 adequately and in the region ps ~ P: + !l.P8 , approximately. 
The following important fact is implied in by the formula (2.10). The value of 
the porosity at the point of the IC formation depends on \l>o, a parameter which 
characterizes the structure of pore space. Structural porosity \1>0 , in its turn, 
depends on the density of packing of the grains and thus can vary within the 
following limits, 0.26 ~ \1>0 ~ 0.48. So the value of the porosity of a grained 
medium when an IC is formed in it is \l>c = \l>oP: and can vary within the interval 
3.9% ~ \l>c ~ 7.2%. This range defines the lower bound of the permeability for the 
grained reservoirs, a result that agrees with experimental data [45]. The dotted line 
in fig. 6 reflects the relation between the coefficient of permeability of a medium 
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and the porosity. This relation was found from {2.10) with f = 0.68, l = 10-3 m. 
Experimental data (46] for the permeability of sandstone, which agree satisfactorily 
with the relationship {2.10), are presented on the same plot for comparison. 

The proposed model allows to explain some experimental facts. For example, 
it is known that for small porosities, a dependence like K ""' <PP between the 
coefficient of permeability and porosity takes place, where p can be as big as 10, 
while Causeni 's formula implies p = 3. Within the framework of percolation theory 
for grained media this fact follows naturally, since near the percolation threshold, 
a sharp dependence of permeability on porosity takes place. If formula (2.10) is 
approximated by the exponential relation K ""' <PP then for small <P, p becomes 
just ~ 10. Note that formula {2.10) implies the lack of a single-valued correlation 
between the coefficient of permeability and porosity. In order to definitely find the 
coefficient of permeability for a grained medium, it is necessary to set the value of 
<Po which defines the structure of the grain packing. It is therefore possible that 
the scatter of experimental points near the percolation threshold is caused not 
by errors of measurement, but by the fact that structural porosities of sandstone 
cores vary. 

2.3 Conductivity of Cavernous Media 

Consider a medium with the globular pores of equal size and with randomly dis­
tributed centers. From the point of view of percolation theory, pores are conduct­
ing sites. Bonds between the pores can be formed only when the latter intersect. 
Consider an arbitrary "reference" point. Other pores can intersect with it if they 
are no more than 2Rp away, where Rp is the radius of the pore. If centers of two 
pores are 2Rp{1- €) apart {0 $ € $ 1) (see fig. 7), then their intersection forms a 
channel which connects them, of radius 

{2.11) 

In this case, the number of channels whose radii exceed the value r 1 is deter­
mined by the number of pore centers inside a sphere of radius 2Rp{1-€) (excluding 
the "reference" pore) 

{2.12) 

where n° is the concentration of the pore centers. Using the fact that porosity 
of the medium <P ~ {4/3)7rn°R: (with no account of the pore overlap), the for­
mula (2.12) can be rewritten as N = 8m(1-€)3 -1. The greatest possible number 
z of nearest neighbors of the "reference" pore can be estimated taking € = 0, 
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~ = 1. In this case, we find that z ~ 6 + 7. The probability of a channel of radius 

r ~ r 1 forming between two pores is 

{2.13) 

By comparing (2.13) and {1.1) fort= 0, one can find the threshold value ~c of 

the porosity of the medium at which percolation begins. The corresponding value 

of the parameter tc can be found from the following condition 

(2.14) 

Using the relation (2.13), in the general approach, it is possible to find the 

correlation radius of the IC formed from the channels satisfying the condition 

€ ~ !t, 

Consequently the concentration of parallel conducting chains, which equals 
Rl-D), is defined by the following relationship 

The quantity e1 characterizes the minimal size of a channel from the chain. The 

distribution function of the parallel conducting chains--With respect to the param­

eter e1 is F{et) = - dn/dt1 • Permeability of a caveroous medium is determined 

from a relationship similar to (1.10) 

Eo 

K =I k{ti)F{ti)dtl· 
0 

(2.16) 

Here k( e1 ) is the average partial conductivity of the chain which contains chan­

nels of the minimal radius characterized by €1. Find f(et), the probability density 

I 
I 
I 

,,..--............ , 
/ ' 

/ ' 

Figure 7: Intersection geometry for spherical pores 
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for conducting channels as a function of parameter ft. The number of channels 
formed by those pores whose centers are 2Rp(1 - t:l} apart is found from for­
mula (2.12). Consequently the probability density /(t:l) = - dN0 /dt:1 can be 
found (up to a normalizing factor) from the relationship 

(2.17} 

Given /(t:l), it is possible to find (up to a factor of the order unity) k(t:l}, a 
parameter which characterizes the conductivity of a chain composed of successive 
channels 

( 

1 

) 

-1 
<t 

....., 7r /(t:) dt: 
k(t:t) = 8 j /(t:}dt: j rt{t:) 

1 <t 

(2.18} 

From (2.18), using (2.17), we can find the dependence k(t:t}. After substituting 
it in (2.16) together with (2.15), we obtain the resultant expression 

Here 'Y is a numerical factor of the order unity. In evaluating the integral 
in (2.16), v was set to equal!. Taking account of the relationship fc = 1-(~c/~)t, 
we can use (2.19) to find the dependence near the percolation threshold 

2.4 Conductivity of Fractured Media 

/ 
I 
I 

/ 
---- --

I 
I 

/ 
/V 

Figure 8: Intersection geometry for circular fractures 
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Figure 9: For determining the average number of intersections for circular frac­
tures 

Consider a set of randomly distributed circular fractures in an infinite medium. 
Assume that the fractures are oriented isotropically and all have the same radius 
Tt and opening b. Assume also that the centers of the fractures are sites, and 
intersections of any two fractures form a bond between the sites. In this case the 
probability of bonds having a non-zero conductivity is determined from the ratio 
of two quantities, namely the number of intersections an arbitrary fracture has 
with other fractures and the number of its nearest neighbors (sites). Consider (fig. 
8) an arbitrary "reference" fracture. Among other fractures, only those intersect 
with it, whose centers lie in the domain V. The total number of fractures in Vis 

t 

z1 =21rn°r~ /(1+2coscfo+cos2cfo)coscfodcfo, 
0 

where n° is the concentration of the fracture centers. The greatest number of sites 
nearest to the "reference" fracture is 

z = Zt- 1 = 21rn°(l + 11"/2 + 2/3)r~- 1. 

Calculate the average number y of intersections the "reference" fracture has 
with its nearest neighbors. Obviously, such an intersection is possible only if 
the center of the other fracture lies inside V. En route, consider a more general 
problem of intersections for those circular fractures which lie in planes forming an 
angle 8 between them (fig. 9). The radius of the "reference" fracture equals Tt 

and the radii of the fractures intersecting with it are equal to R1• Intersection of 
fractures is possible if the center of the second one lies inside a slanted cylinder 
whose base has an area equals 1rr~ and whose altitude is 2R1 cosO. Consequently 
the number of intersections for such fractures (or, more exactly, the expectation 
of this number) is 

(2.20) 
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Figure 10: Geometry of intersection of fractures with the plane M 

Here n~ = n° !(9, 1/J) d9 is the concentration of those fractures oriented at an 
angle 9 from the interval 9 + 9 + d9; f(9, 1/J) is the angle distribution function for 
the circular fractures. If the fractures are oriented isotropically, then their angu­
lar distribution is described in spherical coordinates by the distribution function 
/(9,1/J) = (27r)-1 (0 $ 9 $ 1rj2, 0 $ 1/J $ 21r). In this case we can average Yt 
over the solid angle dO = sin 9 d9 d,P to obtain the following 

y =I ytf(9, 1/J) dO. (2.21) 

Taking account of the relationship (2.20), we find the average number of inter­
sections from (2.21) to equal 

(2.22) 

If the fractures have equal radii all, then y = 1rn°r:. In accordance with the 
discussed above, the probability of a bond forming between two sites is 

pb = yfz. 

The threshold value of the probability in the considered bond problem can be 
estimated using the invariant (1.1) for D = 3 

P; = 1.5/z. (2.23} 

In this case the permeability of the medium is determined according to (2.23}, 
i.e., by the following relationship 

(2.24} 

The coefficient 'Y can be found by comparing the relationship (2.24} to the 
relationship for the coefficient of permeability of a medium pierced with infinitely 
long fractures, oriented isotropically [47] 

(2.25} 
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where r is the thickness of fractures. 
Using the geometry of the problem we can relate the thickness of fractures to 

their concentration. Consider the cross-section M (see fig. 10). Intersection of an 
arbitrary circular fracture with M is possible only if the distance from the center 
of the fracture toM does not exceed Tt. The intersection probability is determined 
from the solid angle fh. If the fracture lies inside this angle, then it can intersect 
with the plane M. It can be seen from fig. 10, that 0 1 = 211'(1- cos81), where 
cos81 = xfrt (the segment x lies in the same plane as the fracture). Taking 
account of symmetry of the problem, we obtain the formula for the probability of 
the plane intersecting with the fracture 

Pt(x) = 1- xfrt. 

The number of traces on a unit surface of the cross-section is 

r, 

n2 = 2n° / Pt(x)dx. 
0 

(2.26) 

(2.27) 

Using (2.26) and {2.27), we find that n2 = n°rt. The thickness of fractures, 
which characterizes the average distance between the fracture traces on the plane, 
is determined from the relationship 

f= #r"t. (2.28) 

When y ~ 1.5, virtually all fractures intersect with each other, and the perme­
ability of the medium can be described by formula (2.25), if r is found from (2.28). 
After comparing the dependence {2.24) for 1rn°rr = 1.5 to the relationship {2.25), 
we can find 'Y using (2.28}. The resultant expression for the coefficient of perme­
ability of the fractured medium is 

Consider the case when the size distribution of the circular fractures in the 
medium is described by the function /{rt)· Using this distribution and the for­
mula (2.23}, we obtain the following expression 

y = 1rn° < r~ >< Tt >, {2.29} 

where< Tt >= f0
00 rtf(rt) drt, < r~ >= f0

00 r~ /(rt) drt. Consequently the number 
of adjacent sites is 

z = 211'[(1 + 11'/2) < r~ >< Tt > +(2/3) < r~ >]- 1, {2.30) 
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where < r~ >= f0
00 r~ J(rt) drt. 

Let the size distribution of fractures be represented by the following exponential 
relation 

(2.31) 

where r 1 is the greatest radius of a circular fracture. 
When r 0 «: r 1 , it follows from (2.29) and (2.30) in accordance with (2.31 ), that 

y ~ 21rn°rg, z ~ 1811'n°rg - 1. After substituting the found relations into (2.24) 
and taking account of (2.28) for Tt = r 0 , we obtain the resultant expression for 
the permeability of the medium for the case of the exponential size distribution of 
fractures 

(2.32) implies that when the variance of the size distribution function of frac­
tures increases, a substantial drop of the percolation threshold follows. This phe­
nomenon is caused primarily by the increase of the number of the nearest neigh­
bors, and consequently by the increase of the probability of fractures intersecting 
with each other. It is quite interesting to compare the sizes of the pores and the 
fractures which correspond to the percolation threshold for a given concentration 
n° in porous and fractured media. It follows from formulas (2.14) and (2.24) that 
Rp ~ 0.55rt. That is, the presence of circular fractures in a medium is as effective 
in encouraging formation of an IC, as is the presence of pores with radii equal to 
exactly half the radius of a circular fracture. This fact implies that the conduc­
tivity of a medium is primarily affected not by the form of the conducting cut-ins, 
but by their maximal size. 

2.5 Conductivity As a Function of the Strained 
State 

Experimental data [48] show that the variation of the strained state of a medium 
can notably affect its conductivity. Relationships (2.1) and (2.4) obtained in §2.1 
allow to find the change of the conductivity in the medium caused by external 
factors (pressure, temperature, etc.), if the nature of the effect which these pa­
rameters have on the distribution function f(r), is known. Thus the problem 
of finding the correlation between the conductivity and the strained state of a 
medium reduces to that of determining the dependence of the intrinsic conduc­
tivity distribution for channels on the strained state of the medium. That is, the 
problem reduces to the study of the change in the effective capillary radii under 
external pressure. The problem of the correlation between the capillary size and 
the value of the strain tensor was discussed in [49] using the model of a nonlinearly 
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elastic fractured capillary porous medium. It is assumed in this model that the 
size of a conducting channel depends linearly on e,H the component of the strain 
tensor which is normal to the channel. The value of fn is calculated using the 
model of a nonlinearly elastic grained medium which takes account of the contact 
compressibility of the grains. 

Note that generally the correlation between the size of the channels and the 
strain tensor can be more complex, especially for those media which have a plastic 
(clay) component. At the same time, as long as elastic deformations of grained 
media are considered, the assumption of a linear dependence of the channel size on 
the value of the strain tensor appears reasonable. Under this assumption, find the 
change of the distribution function f(r) caused by the stress tensor O'i applied to 
the medium. In the case of a uniform comprehensive contraction of the medium, 
the correlation between the radius r' of a channel in the loaded medium and the 
initial radius r can be described as follows 

r' = r + 0.5lfn· (2.33) 

Here fn = e0 /3, where e0 is the volumetric deformation, and l is the grain 
diameter. e0 depends not only on the stress applied, but also on Young's mod­
ulus which is a function of the stress. If the discussed medium is isotropic with 
respect to elastic properties, then the correlation between the small changes of 
deformations and stresses can be expressed by Hooke's law in the differential form 

where 

#Lp is Poisson's modulus. 

3 du· 
dei = L fJi; E( '·), 

j=l u, 

(} .. _ { -1 when i :f. j, ,, - . . 
JLp, when t = 3; 

(2.34) 

According to experimental data (49], the dependence of Young's modulus E 
of a grained medium on the principal stress O'i applied along the Xi-axis can be 
written in the following form 

E(ui) = A[1- exp( -Bui)] + C (i = 1, 2, 3). (2.35) 

Here (A+ C) and Care the maximum and the minimum values of Young's 
modulus, B is a constant. By "stress" we mean the "effective" stress, equal to the 
difference between the external load and the interior pressure in the pores. After 
integrating (2.34) using (2.35), we obtain the following ([49]) 

3 

fi =(A+ c)-1 L fJi;{u; + B-1 log[E(u;)/C]}. (2.36) 
i=l 
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If stress is relatively small (u; < 108 Pa) formula {2.35) can be simplified 

In this case the expression (2.36) becomes 

3 

£i = (Ifg0 ) L Bij log(l + g0u;/C), g0 = AB. 
j=l 

In the case of uniform comprehensive contraction, u; = u0 and 

(2.37) 

(2.38) 

Thus, using formulas (2.33) and (2.38), one can find the distribution function 
of conducting channels in a medium subject to uniform contraction 

f(r) = f[r + 0.5(lfg0)(l- 2~tp) log{ I+ g0u0 fC)J. (2.39) 

By substituting this function into formulas (2.1) and (2.4), one can find the 
change of the permeability and the electric conductivity of the medium. For­
mula (2.39) implies that within the framework of the model of the linear correla­
tion between r and t:n, uniform comprehensive contraction of the medium does not 
change the shape of the distribution function but only causes its shift by 0.5lt:n. 

The variation of the distribution function may change the parameter rc as well as 
the average conductivity of the chains in the skeleton of the IC. We shall present 
here the resultant expression which determines how the coefficient of permeability 
of the medium depends on pressure P = u0 (through the dependence (2.38)) 

K = 2~vr'{ -/ t<r>drr J ~ t<r>drj" 1~(;1~" (2.40) 

where I(rl) = {8/7r) j f(r)(r- ~}-4dr (i f(r) dr) -l, ~ = 0.5lt:n. 

r1 1 

The specific electric conductivity of the medium in this case is also found from 
formula (2.40}, but with 

I(rt) = l-1 l f(r)[Po(r - .l.) + Ilili(w)] dr (] f(r) dr) -1 

When contraction of the medium under the stress tensor O'i is not monoaxial, 
the components of the strain tensor £i are found from the formula (2.36). 
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Consider, for instance, a channel oriented parallel to the principal axis i = 1. 
The change of its cross-section is determined from the values of £2 and £3, i.e., 
by those components of the strain tensor, which are perpendicular to the axis of 
the channel. Assuming that the cross-section s, of a channel is proportional to 
the product of its dimensions along the directions perpendicular to its axis, we 
obtain that s, "'(r + 0.5le2)(r + 0.5le3). Consequently the effective channel radius 

1 
is reff = s{. If the condition 0.5le2,3 > reff is satisfied, then the change in the 
effective radius of the channel in the first approximation is 

Using (2.36) we get 

3 

!;,.ref/ = lf(4g0 ) L(02; + Oa;) log(1 + g0a;/C). (2.41) 
j=l 

Similar dependencies take place for the channels oriented in directions i = 2, 3. 
Note that if the condition !;,.reff < ref/ is satisfied, then the channels do not 
close under the applied load, the value of K. does not change, and the structure of 
the IC is preserved. Therefore the change of the conductivity in the medium for 
this case is caused only by the change in the conductivities of the chains. If the 
tortuousity of the chains is not taken into account, then the average conductivity of 
a unit length of chains is described by (1.9). In this case the distribution function 
f(r') is of the following form, f(r') = f(r + !;,.r), where /(r) is the distribution 
function for Ui = 0 and !;,.r =!;,.ref! found from (2.41). When deformation ofthe 
medium happens at a constant pressure p = (1/3)(a1 + a2 + ua) and the condition 
!;,.u1 = 0.5a2 = 0.5aa is satisfied, a case which is of practical importance, the 
expression (2.41) appears in a less complicated form 

!;,.al)/C)}. (2.42) 

Formulas (1.9), (1.11), (2.20), and (2.41) define the values of the corresponding 
components of the permeability tensor. Similar relationships take place for the 
specific electric conductivity of the medium. 

The relationships presented allow to calculate the change of the coefficients of 
permeability in the medium given the distribution function of pore channels with 
respect to values of intrinsic conductivities. The problem of determining /(r) will 
be studied in detail in further sections of this book. Now we shall use the most 
common approximation of the porometric curves obtained from experiment (48] 

(2.43) 
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7.0 

Figure 11: Plots of the conductivity of the medium against its strained state 

where a* is the minimal radius of a conducting capillary. 
Since in the three-dimensional case 11 = 0.9±0.1, it is possible to find K for an 

exponential function analytically, using formula (2.1), if 11 is set to equall. In this 
case we get rc = 4a*,K = 2.81r7a!/l2 • Setting 7 = 2.85,1 = 0.5 ·10-3 m, a*= 
0.5 ·10-5m, we find K = 18ttm2 • Using the relationships (2.39), (2.40), and (2.43) 
we can find the coefficient of permeability as a function of pressure P 

Usually actual experiments measure the quantity !J.KfK, where !J.K = K(p)­
K(O). The theoretical relationship f:!.K/K calculated for g0 = 103 ,C = 15. 108 

Pais presented in fig. 11 (curve 1). The plots of !J.KfK and SE/'E against 
pressure, measured experimentally for a sandstone core in [48] (curves 3 and 4). 
are also presented in this figure. The theoretical dependence !J.E/E (curve 2) has 
been calculated using formulas (2.4) - (2.6) for )..' fu' = 7 · 10-6 m, II = 0, other 
parameters the same. Curve 5 corresponds to the difference !J.Kd Kt calculated 
using formulas (2.42), (1.9), and (1.11) for the case of anisotropic loading of a 
grained medium under constant pressure p = 200 · 105 Pa. 

It can be noticed from fig.11 that a satisfactory agreement between theoretical 
and experimental data takes place for the given set of parameters of the model 
of a nonlinearly elastic porous medium. Note that the value of Young's modulus 
E ~ 103 MPa differs from its actual characteristic values for typical reservoir 
rocks of the sandstone type by approximately an order of magnitude. Therefore 
the presented calculations correspond to strongly contractible rocks with large 
porosity. 

The remarkable phenomenon of high sensitivity of the medium with E ~ 104 

MPa to relatively low pressures with small deformations can be explained, obvi­
ously, by significant impact that a film of a "bounded" fluid has on the flow in 
thin capillaries. This phenomenon will be studied in detail in the next chapter. 

The change of the component of the permeability tensor K 1 , found theoreti-
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cally, is also close to the characteristic changes of the permeability tensor yielded 
by experiment. However, since the full set of experimental data is not available, it 
does not appear justifiable to compare experimental and theoretical data for the 
case of anisotropic loading of the medium. 



Chapter 3 

Percolation Model of Fluid 
Flow in Heterogeneous 
Media 

Numerous cases of violation of the linear Darcy's law, which claims that the value 
of flux (flow rate) is directly proportional to the pressure gradient, has been ob­
served. For very small flow velocities (pressure gradients) these deviations are 
caused by the formation of bounded fluid layers on the pore (capilliary) sur­
faces [50, 51]. For relatively large velocities, deviations are caused by turbulence 
in the flow in pores (capillaries) and by the fluid kinetic energy losses on hetero­
geneities like capillary junctions, etc. [51, 52]. For sufficiently homogeneous media, 
it is possible to average the law describing flow at the micro level over the whole 
volume of the medium to extend it to the macro level [47]. However for some 
heterogeneous media, such an operation is not valid [52]. Indeed, if r1 and r 2 , the 
radii of two successive capillaries, differ by an order of magnitude, then the local 
pressure gradients in them (for example, in the case of Poiseuille flow through the 
capillaries) are to one another as (rtfr2 )4 , i.e., differ by a factor of 104 • In such 
a medium, all types of flow can take place at the micro level, namely the flow 
with the larger part of the pore space filled with bounded fluid; Poiseuille flow; 
transient flow from laminar to turbulent; and turbulent flow. 

3.1 Flow at the Micro Level 

Begin with some preliminary remarks and introduce some notations which will 
make the further presentation easier. 

41 
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First of all, point out two limiting kinds of porous media, namely the one 
where the characteristic dimensions of sites (pores) are much greater than the 
characteristic cross-sections of bonds (capillaries); and the other one where the 
mentioned dimensions are of the same order of magnitude. Call the first of the 
described models, model I and the second one, model II. 

Second of all, assume the porometric curve f(r) to be defined on an arbitrary 
interval [a*, a*] and to vanish outside this interval. 

As it was shown in chapter 1, the conductivity of the infinite cluster depends 
substantially on its structure, or, more precisely, on the structure of its "skeleton" 
composed of chains formed by the conducting capillaries. To investigate properties 
of the "skeleton," it is reasonable to build an hierarchy of the conducting chains 
using the radius r1 of the thinnest capillary in the chain. We shall call such chains 
r1-chains. 

When r1 = rc, the r1-chains contain only the largest capillaries (rc :5 r :5 a*). 
These will be called the rc-chains. When r1 =a*, r1-chains contain capillaries of 
all possible radii (a* :5 r :5 a*). These will be called the a*-chains. 

Finally, for the conductivity k(rt) of the chain, as in (1.9), introduce the no­
tation of the mean value of an arbitrary function '1/J(r) over an r1-chain as follows 

• -1 

< r, ¢,a>; i ¢(r)f(r) dr (l f(r) dr) (3.1) 

Consider the steady state one-dimensional flow under a given pressure gradient 
G with absolute value Ap L01, where Ap is the pressure difference in the medium 
at a distance £ 0 > l. In this case, for an arbitrary r1-chain of model II, we have 

G = £01 ( ~t::.pci + ~6.Pii) · (3.2) 

Here 6.pci, 6.p;i are the pressure differences in the i-th capillary and the junc­
tion of the i-th and the (i + 1)-st capillaries, respectively. Summation in (3.2) is 
taken in the direction of the pressure increase, i.e., against the flow. Denote by q 
the flow of the fluid through an r1-chain. Assume that 6.p;i depends only on the 
radii rand r' ofthe i-th and the (i + 1)-st capillaries and on the flow q, while 6.pci 
can be expressed in terms of the absolute value of the pressure gradient Uc{r, q) in 
the i-th capillary as is customary 

6.pci = Uc(r,q)l, 6.p;i = 6.p;(r,r',q). (3.3) 

The average pressure losses on the exit from a capillary of radius r in an r1-

chain 6.p;(r, q) are found by means of averaging 6.p;1 over r' as in {3.1), using 
(3.3) 

(3.4) 
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After changing sums in (3.2) to mean values of the summands in the r1-chain 
for a fixed q, we obtain the following, using notations in (3.3) and (3.4) 

where a' = LL01 ~ 1.5, L is the length of the chain. 
For model I, as in (3.5), we have 

Here !l.Pck and !l.ppk are the pressure drops on the k-th capillary of length l 
and on the pore of size lp following this capillary, respectively. Summation is taken 
in the direction of the pressure increase. !l.p~k is the pressure drop on the entrance 

to the k-th capillary, and !l.p§k is the pressure drop on its exit. Estimates show 
that since r 1;1 « 1, the pressure drops !l.ppk in the pores, as well as the pore size 

lp dependencies of !l.pfk and !l.p~k• are negligible. In this case the pressure drops 
on the entrance to and the exit from a capillary depend only on its radius r and 
flow q. Denote them by !l.p~(r, q) and !l.pf (r, q), respectively. As in (3.5), we have 

G =a" < r1, Yc(r, q), a* > +a"z-1 < r1, (!l.p~(r, q) + !l.pf (r, q)), a* >, 

a"= a'l(l + lp)-1. (3.6) 

Denote the first terms in {3.5) and {3.6), i.e., the average pressure losses per 
unit length of a capillary, by C{r1 , q). The second term in {3.5) and {3.6) (notation: 
J(r1 ,q)) describes the average pressure losses per unit length of heterogeneities, 
such as junctions of capillaries and sites. For model I, it is a capillary - pore 
junction; for model II, a capillary - capillary junction. 

In this case expressions {3.5) and {3.6) can be written in the usual form 

{3.7) 

The relationship (3. 7) is an equation for flow q through an r1-chain with fixed 
G, and its solution is q(r1 ,G). If the number of r1-chains is found from {1.8), 
then the conductivity k{r1 ,G) of the r1-chain and the permeability K(G) of the 
medium are expressed as follows 

re 

k{r1 ,G) = Jtq(r1,G)G-1 , K(G) = j k(r1,G}dn(rt), {3.8} 

where Jt is the dynamic viscosity of the fluid. 
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After substituting q(r11 G) into (3. 7) and differentiating the obtained implicit 
function with respect to r1 for a fixed G, we get 

(3.9) 

Let 
8Gf8rt < 0, 8Gf8q > 0. (3.10) 

The first inequality in (3.10) means that the greater the fraction of thin capil­
laries in a chain (the smaller r1, the greater this fraction), the greater the pressure 
gradient required in the r1-chain to let a fixed flow q pass through this chain. The 
second inequality in (3.10) means that the greater the flow q to pass through a 
fixed r1-chain, the greater the average pressure gradient required in the chain. It 
now follows from (3.9) and (3.10) that 8q(rt,G)/8rt > 0 and from (3.8), that 

8k(rt, G) G-t 8q(rt, G) 0 
8rt = J.L 8rt > · (3.11) 

According to (3.11), the conductivities of the r1-chains increase with the in­
crease of r1, and therefore for every pressure gradient G, the hierarchy of r1-chains 
built with respect to the radii r1 of the thinnest capillaries in the chains is the 
same as the hierarchy of the chains built with respect to the average conductivities 
k(rt,F). 

The described approach to the construction of the laws describing the fluid flow 
in porous media holds for gas flow as well, and also allows some modification for 
other types of media, e.g., fractured and cavernous ones. If additional conditions 
like (1.10) are satisfied, then (3.11) holds as well. 

Thus the considered plan for the construction of the law describing the fluid 
flow in micro heterogeneous media allows to study the flow of anomalous fluids as 
well as Newtonian ones, if the laws describing the flow of the former at the micro 
level are known. 

To classify these laws, introduce the Reynolds number Re and the average 
velocity v in the capillary of radius r, when the flow of the fluid with density Pt 
equals q, as is customary 

Depending on Re, the conditions of the flow in capillaries can be broken up 
in three groups. When Re< Ret the flow is laminar; when Re1 $ Re $ Re2 
it is transient from laminar to turbulent; when Re< Re2 it is turbulent. The 
critical values Ret and Re2 of the Reynolds number for the tubes (capillaries) 
with circular cross-section lie in the following intervals, 1500 < Re1 < 2100 and 
1900 < Re2 < 3000 (53). 
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Laminar flow (Re < Rel). Deviations from the Darcy's law for very small 
values of the flow rate are usually explained by the formation of the bounded fluid 
layers on the surfaces of pores (capillaries). These layers can fill a good part of 
the pore space and can decrease the permeability of the medium significantly, up 
to the total termination of the flow [50]. 

Results of a series of experiments on the flow in homogeneous media under 
small pressure gradients can be found in [54]. Present the empirical dependence 
that describes these results [50] 

(3.12) 

Here Go is the minimal pressure gradient, when the flow begins; Ko is the 
permeability for pressure gradients G » G0 , where Darcy's law is valid. Assuming 
that the pore space of a homogeneous medium consists of capillaries with radii r 
close to the average radius, after substitutions 

in (3.12) and some transformations, we can obtain the following correlation be­
tween the pressure gradient in the capillary and the value of flow in it 

(3.13) 

Here g0 ( r) has the meaning of the minimal pressure gradient in a capillary. 
When qf » r 4go(r) we get the well-known Poiseuille's formula 

Transient regime of flow (Re1 :$Re:$ Re2). The flow in this domain is inter­
mediate from laminar and turbulent (Nikuradze's saddle [12]). It does not depend 
on the roughness of the capillary and can be described by a certain approximate 
formula. The latter is obtained after studying the plots of hydraulic resistance 
against the Reynolds number 

(3.14) 

Here i = 2 + 4, j = 4 + 8, Km is a dimensioned constant which depends on PI 
and JL. 

Turbulent flow (Re > Re2). For a rough capillary, the following approximate 
formula can be used 

(3.15) 

Here s = 1.8 + 2.5; h = 4 + 6, Kt is a dimensioned constant which depends on 
p f, JL, and the degree and the type of roughness. 
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Energy losses on junctions of the "capillary - capillary" ("capillary 
- pore") type. A boundary element of a junction of two successive capillaries 
in model II or a boundary element between a pore and a capillary in model I 
can be taken as a local resistance element. Let the radius of the thin capillary 
at the junction equal r and the radius of the thick one, r'. There was a lot of 
publications dealing with the determination of the energy losses in question in the 
scientific press. A review of them appears, for instance, in [55] or in [53], where 
the following semi-empirical formula is proposed 

ll.pi(r,r',q) = 0.5Z(r,r',q)p1v2 (r), 

Z(r, r', q) = (v(r, r', q) + (i(r, r', q). 

(3.16) 

Here (v ( r, r', q) is the coefficient oflosses caused by viscous forces on the bound­
ary; (i ( r, r', q) is the coefficient of losses caused by inertial forces. 

When Re > 300, (i :» (v, and therefore Z ~ (i. The following semi-empirical 
formulas of Borde are valid for (i: 

(/ (r, r') = Bf[(rfr')2 - f- 1(r' /r)]2 , (3.17) 

(f(r, r') = Bi[l - f- 1(r' /r)J2 , 

with (i = (/ when the fluid flows from the capillary of radius r to the one of radius 
r'(r < r'), and (i = (f when the flow is in the opposite direction. The coefficients 
Bi and Bi are of the order unity. The function f(r' fr) in (3.17) characterizes the 
extent to which the stream is compressed. For r' fr > 3 the function f(r' fr) is 
almost constant and equal to f ~ 0.61, and as r' fr goes to unity, f(r' fr) also goes 
to unity. 

When Re:C 10 + 30, (v :» (i, and therefore Z ~ (v· The function (v satisfies 
Wust 's formula 

(v(r,r',q) = A(r,r')Re-1(r,q). (3.18) 

For r' /r > 1.3 the dependence of A(r, r') in (3.18) on rand r' is weak, and the 

value of this function is A ~ 20 + 40. As r' fr goes to unity (r' fr < Ill), A(r, r') 
goes down to zero very quickly. The relationship (3.18) holds for both directions 
of flow. 

In the interval30 ):Re): 20+40 the values of ll.pi(r, r', q) can be found with the 
accuracy good enough for practical calculations by substituting (3.17) and (3.18) 
into (3.16). 
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3.2 Effect of Pore Space Structure on Laws for 
Macroscopic Flow 

The foregoing relations (3.13), (3.14), (3.15) for flow types in the capillaries and 
(3.16) for the pressure losses on the junctions allow to specify the form of the 
equation (3.7) which relates the flow q through an arbitraryr1-chain (a*~ r1 ~ re) 
to the pressure gradient G in the medium. 

Consider the second term, J(r11 q), in (3.7). In model I each capillary of radius 
r joins with the pore of size lp ~ r both at its entrance and exit. After setting 
r' = 0.5lp and passing in (3.17) and (3.18) tor' ~ r(A(r, r'O ~ Ao, €(r' fr) ~ €o), 
we obtain the following from (3.16) and (3.6) 

V(rt) = "'(01 < r1,r-3 ,a* >, 

I'(rt) = d01 < r1,r-\a* >, 

"Ya = 0.5 o:' l-11r-1 Ao, 

da = o:' z-17r-2€()2[Bi + (1- €o)2 Bi]. 

(3.19) 

(3.20) 

For model II, after averaging (3.16) over r' in accordance with (3.4) with further 
substitution of the averaged result into the second term of (3.5) (and then averaging 
the latter with respect to r), we shall arrive back at (3.19), but with different 
functions V ( rt) and I' ( rt) 

V(rt) = "Yb < r1, [< r1, A(r, r')/r'3 , r > +r-3 < r, A(r, r'), a* >],a* >, 

I'(rt) =db< r11[< r-l,(I(r,r')/r'4 ,r > +r-4 < r,({(r,r'),a* >],a*>, (3.21) 

"Yb = 0.250:17r-1l-1, db= 0:111"-21-1. 

Introduce the following notations 

*d-1 Qt =a 2 , 

Tm(q) = d1q, rd(q) = d2q, 

di = (0.511" ReiPt/tL)-1, i = 1, 2, 

*d-1 d-1 l d-1 
Qt m = a 1 1 Qm m = T1 2 1 Q m = T1 1 · 

(3.22) 

We shall now specify the form of equation (3.7), taking into account the rela­
tionship (3.19) for various pressure gradients, starting with the interval of large 
g's. 

Turbulent flow. When rd(q) ~a*, q ~ Qt· In this case, according to (3.22) 
and (3.19), Re(rt) ~ Re(r) ~ Re(a*) ~ Re2 , and therefore the flow in all capillaries 
of the r1-chain is turbulent. 
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Equation (3. 7) becomes 

G = o:' < Tt.9t(r,q),a* > +J(rt.q). (3.23) 

The least absolute value of the gradient Gt(rt) when (3.23) still holds can be 
found by substituting qt into (3.23) 

Gt(rt) = o:' < Tt.9t(rt.qt),a* > +J(rt,qt) G > Gt(rt). (3.24) 

Substituting (3.15), (3.19) into (3.23), (3.24) confirms (3.10) and (3.11) and 
results in the following inequality 

dGt(rt)fdrt < 0. 

Hence, as G goes up, the first to transfer to turbulent flow are the rc-chains 
and the last are the a*-chains. Moreover for heterogeneous media, the interval 
where Gt(a*) ~ G ~ Gt(rc) can be rather lengthy. If G > Gt(a*), then the 
flow in all capillaries in the medium is turbulent. After substituting (3.15) with 
s = 2, h = 5 [53) into (3.23) and neglecting the first term in (3.19), we find from 
(3.8) that 

rc 

K(G) = ~tG- 1 12 j<o:'Kt < r1 ,r-5 ,a* > +0.5rho1I'(rt))-112dn(rt). (3.25) 

a. 

The relationship (3.25) expresses the well-known quadratic law of fluid flow. 
Turbulent - transient flow. When rm(q) ~ a* ~ rd(q) ~ rt. qt ~ q ~ 

qtm, the flow in the capillaries of the r 1-chain with radii r from r 1 :5 r :5 rd(q) 
(Re(rt) ~ Re(r) ~ Re2) is turbulent, and the flow in the capillaries with radii 
from rd(q) < r :5 a* (Re2 > Re(r~Ret) is transient. Equation (3.7) becomes 

G = o:' < rt,9t(r,q),rd(q) > +o:' < rd(q),gm(r,q),a* > +J(rt,q). (3.26) 

The range of G where (3.26) is valid can be found by substituting qt and qtm 
into (3.26) 

Gt(rt) ~ G ~ 9tm(rt), 

Gtm(rt) = o:' < Tt,9t(r,qtm),za > +o:' < Za,9t(r,qtm),a* > 
+J(rllqtm), 

d *d-l Za = 2a 1 . 

Using (3.14), (3.15), and (3.19), one can confirm the validity of (3.11) and 
obtain the following inequality, dGt m ( rt) f dr1 < 0. Therefore the first to transfer 
to the turbulent - transient flow with the increase of G are the rc-chains, and the 
last are the a*-chains. 
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Transient regime of flow. When rm(q) ~a* ~ r1 ~ rd(q), Qmm ~ q ~ 
Qtm 

{3.27) 

the flow in all capillaries of the r1-chain is transient. The inequality (3.27} can 
be satisfied only for a*r11 ~ d1d21 < 1.5, and therefore the transient flow cannot 
take place in any r1-chain of a medium where a*a;1 > d1d21 . The equation {3.7) 
becomes 

{3.28) 

After substituting Qm m and Qt m into (3.28) we find the domain of validity for 
{3.28) to be 

c::,(rt} ~ G ~ G~(rt), 

G::,(ri) =a' < T},gm(T,Qmm),a* > +J(rl,Qmm), 

G'(rl) =a' < Tt 1 9m(r,qtm),a* > +J(rt,Qtm)· 

(3.29) 

By substituting (3.14), (3.19) into (3.29), one can make sure that conditions 
(3.10) and (3.11) are satisfied and obtain the inequality dG'm(rt)/drt 
< 0. 

Turbulent-transient-laminar flow. When a*~ rm(q) ~ rd(q) ~ r 1 (qtm ~ 
q ~ Qmm), the flow in capillaries with radii r1 ~ r ~ rd(q)) (Re(r) ~ Re2) in 
r1-chains is turbulent; in those with radii rd(q) < r ~ rm(q) (Re2 >Re(r) ~Ret), 
transient; and in those with radii rm(q) ~ r ~a* (Re1 >Re(r) ~Re(a*)), laminar. 
In this case the equation (3.7) becomes 

G =a' < TI,9t(r,q),rd(q) >+a' < rd(q),gm(r,q),rm(q) > + 
a' < rm(q),gt(r,q),a* > +J(rt,q). (3.30) 

After substituting Qtm and Ql m into (3.30), obtain the range of G where (3.30) 
holds 

Gtm(ri) ~ G ~ Gtmz(rt), 
Gtml(rl) =a' < Tt,9m(r,qmm),z' >+a'< z',gl(r,qmm),a* > + 
J(rt,Qmm)i 

I d d-1 
Z = 1T1 2 • 

If a*r}1 < d1d21, then the turbulent-transient-laminar flow cannot take place 
in the rrchain. If, moreover, a*a; 1 < d1d21 , then the discussed type can take 
place in no r1-chain in the whole medium. 

Transient-laminar flow. When a* ~ rm(q) ~ r1 ~ rd(q), Qmm ~ q ~ Qlm, 
transient flow takes place in those capillaries of the r1-chain with radii rm(q) ~ 
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r 2:: Tt (Re2 2::Re(rt) 2::Re(r) 2:: Ret), whereas in those with radii a* 2:: r 2:: rm(q) 
(Ret > Re(r) 2::Re(a*)) the flow is laminar. Equation (3.7) in this case is 

G =a' < Tt.9m(r,q),rm(q) >+a' < rm(q),gz(r,q),a* > +J(rt.q). (3.31) 

After substituting qm m and Ql m into (3.31) we find the domain of validity for 
(3.31) to be 

Laminar flow. When r1 2:: rm(q), q 2:: Qtm, laminar flow takes place in all 
capillaries (Ret ~Re(rt) ~Re(r) ~Re(a*)) in the Tt-chain. Equation (3.7) here is 

(3.32} 

The validity condition for (3.32) can be obtained after substituting qz into 
(3.32} 

(3.33) 

If ( 3.33) holds for all Tt -chains (a* ::::; Tt ::::; r c), then the flow is laminar in the 
whole medium. 

Laminar flow under large pressure gradients. 
If the condition 

qzm ~ q ~ qz = max(go(r)r4J.t-t), 

is satisfied for all capillaries in the r 1 -chain, then the flow in all capillaries is close 
to Poiseuille. After substituting qz into (3.32} we get the boundaries of the domain 
where Poiseuille flow in an Tt-chain takes place 

(3.34) 

Gz(rt) =a' < rt,Yt(r,qz),a* > +J(rt,ql)· 

After substituting (3.19} into (3.32) we get the following relations for Poiseuille 
flow 

G = JL(k0t(rt) + V(rt))q + 0.5pf I'(r1)q2 , 

ko(rl) = (1rj8)(a' < r11 r-4 ,a* >)-1. 

(3.35) 

Here ko(r1) is the conductivity of the rt-chain when Poiseuille flow takes place 
in all of its capillaries if there are no pressure losses on junctions. If (3.34) holds 
for all Tt-chains, then it follows from (3.8) that 

rc 

K(G) = JLG- 1 j E(rt)( vh + GF-t(rt)- 1) dn(rt), (3.36) 
a, 
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E(rt) = P!JL-l I'-1(rt)(V(rt) + k01{rt)), 

F{r1) = o.sp,I'(rt) E2 (rt). 
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Define the average radius < r > of a capillary in the medium and the variance 
u3 of the function f ( r) 

< r >=< a*,r,a* >, u3 =< a*,(r- < r >)\a*>. 

If the medium is described by model II and is sufficiently homogeneous ( u d < < 
r >-1 <: 0.1), then k0 -< r >\and according to (3.21), V(rt) < r > 4 , I'(rt) < < 
r > 5<: r1l-1 • In this case F(rt) ~ G. After expanding the square root in (3.36) 
in powers of GF-1(rt) and taking the first three terms, we obtain the following 

rc rc 

K(G) =I ko(ri)dn(rl)- I V(r1 )k~(rt)dn(r1 )-

rc 

o.sp,GJL-2 I I'(rt)kg(rl)dn(rl). {3.37) 

a. 

The first integral in {3.37) is the permeability of the medium in the case when 
Poiseuille flow takes place in every capillary, and therefore this term does not 
depend on G. The presence of the second and third integrals in {3.37) is due to 
the decrease in the permeability of the medium because of, respectively, the viscous 
and the inertial pressure losses on heterogeneities like the capillary junctions. For 
homogeneous media, the relationship {3.37) is valid in the whole domain described 
by {3.34). However for heterogeneous media described by models I and II {when 
O'd < r >-1> 1) the contribution of the third term to {3.35) can become notable; 
in the domain G <: Gml(rt), where Re(rt) <: Ret, the term can even become 
dominant. Thus in heterogeneous media, permeability can decrease by several 
times merely because of the inertial pressure losses on the capillary - capillary 
(capillary- pore) junctions, with no turbulence in capillaries. As for homogeneous 
media, it is known that any notable decrease in permeability is possible only as a 
result of turbulence in capillaries. 

Laminar flow under very small pressure gradients. If the condition 

q « qo =min (go(r)r4 JL-1) (3.38) 

is satisfied for all capillaries in an r 1-chain, then after expanding (3.13) in powers 
of the small parameter q~ g01 ( r )r\ we get the right side of (3. 7) as a series in q1. 

The number of terms to be taken in the series (3.7) depends on the form of go(r), 
f(r), the size of the range G under consideration, and the required accuracy of 
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calculations. Consider (3. 7)1 taking the first three terms in the expansion 

G = Go(rt) + q1M(rl) + q~N(rl} 1 
Go(rl} =a' < rl!go(r) 1 a* >1 

M(rl} =a' < r1 1 U~/2 (r)r-2 1 a* >1 

N(rl) = 1r/8[2k01(rt) + V(rl)J. 

(3.39) 

In writing out (3.39)1 we took into account the fact that the contribution of 
the quadratic term of q to (3.19) can be neglected in comparison with other terms 
in the equation (3.39). First negative terms appear in (3.39) only with the term 
proportional to qr 1 and the term proportional to £A does not appear at all. 

The value G0 ( rt) can be called the minimal pressure gradient of the r1-chain1 

since when G < G0 (rt} 1 the flow in this r1-chain stops because the thinnest cap­
illaries get completely filled with the bounded fluid. After differentiating Go(rl) 
with respect to r11 one can verify that dGo(rt)fdrl < 01 since g0 (r) is a mono­
tone decreasing function of r. Thus if we decrease G 1 then at the point when 
G = G0 (a*) the flow stops in the a*-chain 1 and when G < Go(a*) 1 it stops in the 
chains with r0 (G) ;::: r;::: a* as well, where ro(G) is found from the equation 

Go(ro) =G. (3.40) 

If r0 = rc, then the flow stops in the largest r1-chain, i.e., the medium becomes 
impermeable. Therefore G0 (rc) can be called the minimal pressure gradient for 
the given medium. Taking account of the fact that q(r1, G) is found from (3.7) for 
those r1-chains with r0 (G) ~ r1 ~ r c and the fact that for the rest of the r1-chains, 
a* ~ r1 ~ r0 (G), we obtain the following relationship according to (3.8) 

rc 

K(G) = j k(r1,G)dn(rl} 

ro(G) 

which is valid in the interval 

(3.41) 

(3.42) 

If G > Go(a* ), then ro( G) in (3.41) must be taken equal to a*. The relationship 
(3.34) shows that when G varies within the domain (3.42) the following process 
takes place. First of all, the fluid flow begins or stops in the set of r1-chains 
[see (3.40)] and second of all, the permeability k(r1,G) of other conducting r1-

chains changes. These two factors cause strong dependence of the permeability 
on G. If the medium is heterogeneous, then the relationship (3.41) can have a 
rather complicated form, and the domain (3.42) can appear very lengthy, a fact 
which causes difficulties in determining its boundaries in an experiment. When 
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G ~ G0 (a*) the dependence K(G) becomes weaker. Since the second and the third 
terms in (3.39) are small if the condition (3.38) is satisfied and the inequality 

V(rt)k0 (r1 ) < < r > z-l is also satisfied, for sufficiently homogeneous media 

(ud < r >-1 < 0.1) the dependence k(rt. G) near the permeability threshold G0 (rc) 
of the medium can be found to have approximately the following form 

k(rt.G) ~ 1/8ko(rt)(l- Go(rt)G-1) 2GNm(rt)[1-1/2V(rt)ko(rt)-

1/2GNm(rt)(1- Go(rt)G-1)], (3.43) 

Nm(rt) = 4N(rt)M-2 (rt) ;: G01(rt). 

It is evident from (3.43) that the conductivity of an r1-chain near G0 (rt) is 
substantially less than its Poiseuille conductivity ko(rt). 

Introduce the Reynolds number for a medium 

Re = tf < 11 > p1p.-1 • (3.44) 

Here < 11 > is the average flow velocity, and the quantity lfl is chosen using 
either the average grain size in the medium, or the average pore diameter. If we 
substitute K(G) = p. < 11(G) > a-1 in (3.44), we obtain 

(3.45) 

If we consecutively substitute into (3.45) the above boundary conditions for 
the pressure gradient for different types of flow and the corresponding values of 
permeability determined from {3.8), the critical Reynolds numbers for the medium 
can be obtained. 

3.3 Results of Numerical Calculations and Com­
parison with Experiment 

The experiment studied the flow of water (PJ = 103 kg/m3, p.f PI = 10-6m2 fs) in 
a medium whose pore space was simulated by a cubic network (Pg = 0.25, K. = 0.5) 
with pores situated in sites and connected with rough capillaries. The experimental 
relations found in [53] were used in the construction of the laws to describe the 
flow in capillaries and in the determination of the pressure losses on the capillary -
capillary (capillary- pore) junctions: in (3.14), i = 3,j = 6, Km = 3·10-7 p}p.-1 = 
300 kg-fm5 ; in (3.15), s = 2,h = 5,Kt = 10-3pf = 1 kg/m 3 ; in (3.16) and (3.17), 
a'= 1.5,Bi = Bf = l,A0 = 30. 

The dependence g0(r) = C0r-2 was taken from [50], where the value Co= 105 

Nfm has been found experimentally [56]. To illustrate the dependence of the 
function K(G) on the form of the relationship f(r), a numerical experiment was 
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Figure 12: Plots of the density of the radius distribution for capillaries in hetero­
geneous media 1 - 3 

LgK 

z 5 8 tg8 

Figure 13: Curves for the permeability as a function of pressure gradients for 
media with different probability density functions for capillaries 

carried out for three media with equal average capillary radii < r > and variances 
ad which differed at least by 15% (l < r >-1= 20, lp = l). The plots of f(r) are 
shown in fig.l2, and the corresponding K( G) are shown in fig.l3. It can be seen 
from fig.l2 that equal values of < r > and the proximity of ad's for f(r) do not 
produce even qualitative similarity in the behavior of K(G). Also note that the 
probability density functions f(r) having two "domes" can be found in fractured 
porous media, sandy-argillaceous media, and those media that have block and 
interblock porosity. 

In fig.l3 (curve 1), the first maximum and minimum of K(G) correspond to the 
passage of all large rrchains (r1 > llO~tm) through all flow types consecutively, 
while in the thin r 1-chains (r1 < 40~tm) separation of the bounded fluid is still in 
process {the domain described by {3.42)). According to (3.45), for example, some 
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~~~~~~----~----~~~--~~----~~sG 

Figure 14: Curves for the permeability as a function of pressure gradients for 
media with exponential probability density functions for capillaries 

Figure 15: Permeability as a function of squeezing pressure: 1- calculated curve, 
2 - experimental data 

critical values of the Reynolds number can be calculated for the relation K(G) 
shown on the curve 3: Re(G0(rc)) = 1.8 · w-6 (near the permeability threshold 
), Re(Go(a*)) = 3.4. w-4 (flow has started in all Tt-chains), Re(G,(a*)) = 0.62 
(flow in all r 1-chains is Poiseuille), Re(Gml(rc)) = 6.9 (the beginning of transient 
flow in the rc-chain), Re(Gt(a*)) = 29.3 (turbulent flow in the whole medium). 

The relations K(G) for the simpler probability density functions 

f(r) =canst · r-i. (3.46) 

are shown in fig.l4. 
Curves 1-3 correspond to the values i = 2, 6, 10. The constant was chosen to 

satisfy the normalization condition for f(r) and for the values of K(G) to be equal 
in the domain defined by (3.34), where Darcy's law is valid. It can be seen from 
fig.14 that the values of K( G) in the domain (3.42) can differ by one to three orders 
of magnitude, whereas in the domain (3.34) they can differ by several times. The 
domain (3.34) shrinks with the increase of the variance of f(r) (with the decrease 
of i), and the rate of the change decreases in the domain (3.42). 

Numerical calculations of K(G) in accordance with (3.41) in the domain (3.42) 
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for g0 (r) = C0r-h(h = 1.5; 2; 2.5; 3) and of f(r) in the form (3.46) showed that in 
this range of G, changes of the permeability are very notable (by tens of times), 
and the greater h, the sharper the changes. 

Using the experimental distribution function of [48], which corresponds to 
{3.46) for i = 4 and a* = 25JLm, numerical calculations were carried out for 
the change of permeability of the medium when the relative elastic deformation of 
all capillaries in the conducting r 1-chains is the same {Hooke's law). The value of 
Young's modulus was taken as usual for sandstones, E = 104 MPa (fig. 15). 

Such sensitivity of the specimen's permeability towards its squeezing even with 
a small pressure (when the majority of deformations is elastic) is due to the fact 
that a good deal of r 1-chains, where the thinnest capillaries become completely 
filled with the bounded fluid, is excluded from the fluid flow. The described 
sensitivity is higher when the variance of f(r) is less. 

Also note that the calculations carried out for the model in which the pore space 
of the medium is presented as a body of parallel tubes with constant radii gives 
a low (several per cent) change of the permeability, if the layers of the bounded 
fluid in thin tubes are taken into account, and deformations caused by squeezing 
the specimen are mostly elastic. 

Thus the structure of the pore space of the medium can notably affect laws for 
macroscopic fluid flow, since various types of flow can take place at the micro level 
in such a medium. Therefore knowledge of merely the macroscopic parameters of a 
heterogeneous medium (i.e., some average coefficients of permeability and porosity 
or the average pore size) does not suffice to describe the fluid flow for different 
pressure gradients. 



Chapter 4 

Percolation Model of 
Steady State Multiphase 
Flow in Porous Media 

Description of multi-phase transport in actual rocks is based on the determination 
of the effective macroscopic properties for micro heterogeneous media. In prac­
tice these properties are determined mostly through direct experiments which are 
rather cumbersome and time consuming. At the same time, simple theoretical 
models, like that of infinite cylindrical pores, are too inaccurate and insufficient to 
describe and explain many of the experimental data. To develop a more adequate 
theoretical description of multiphase transport at the micro-level, one should use 
the network models of the pore space structure and the percolation methods for 
analysis of these models, including the necessary calculations. 

4.1 Steady State Flow of Immiscible Newtonian 
Fluids 

Up to a fairly recent period, the majority of theoretical studies of two-phase flow 
was mostly dedicated to phenomenological models of Buckley - Leverett and Rap­
poport - Leas (57, 58). Attempts made towards analyzing the said phenomenon 
at the micro-level were reduced to the simulation of the medium by a bundle of 
parallel capillaries with different radii. These attemts, however, bound to fail, 
since the sum of phase permeabilities for such a model is constant, while all the 
known experiments indicate otherwise. 

Studying two-phase flow in heterogeneous media by means of numerical simu-

57 
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lation with network models was first reflected in the works [22, 59, 60, 61]. This 
approach does not have the drawbacks of the phenomenological and the "one­
dimensional" models but neither does it possess the necessary universality of the 
obtained results, the latter being a typical advantage of analytical methods. 

To obtain analytical relations which allow to calculate and analyze the behavior 
of the coefficients of phase permeability, we use the approach developed in chapter 
1. Based on the obtained results, consider the displacement of a wettable fluid by 
a non-wettable one in a porous medium (we treat both fluids as incompressible 
and viscous). For clarity, we shall use the model which looks upon the medium 
as a cubic network whose sites (pores) are connected with bonds (capillaries) of 
different conductivities. We shall also continue to describe the conductivities of 
the capillaries by means of the probability density function f(r). 

Suppose that partial displacement of the phase which saturates the core took 
place in some macroscopic volume, and the IC of the displacing fluid (further 
denoted by ICG) was formed. From now on, we shall mark the quantities relating 
to the wettable and the non-wettable fluids with indices 1 and 2, respectively. 
Assume that the fraction of capillaries filled with the wettable fluid exceeds the 
percolation threshold, and also that the medium contains an infinite cluster ICD 
of the capillaries containing the displaced phase. Obviously, the wettable fluid can 
be displaced only from those capillaries that satisfy the following condition 

PA:(r) 5 llp, PA:(r) = 2xcos9fr (4.1) 

and have contact with the ICG. Here llp is the pressure difference in the fluids, 
x is the coefficient of surface tension, and () is the contact angle of the surface. 
In other words, displacement can take place only in those capillaries that can be 
reached by the displacing fluid along the chains which belong to the ICG. 

By definition, the ICG consists of those capillaries that satisfy the condition 
(4.1). At the same time, the condition (4.1) can be also satisfied by some capillaries 
which do not belong to the ICG and are filled with the wettable fluid. However, 
as it will be shown later, the fraction of such capillaries, excluding a small domain 
near the percolation threshold, is small. Moreover, such capillaries do not affect 
the conductivity of the ICG at all, since they are not connected to it. From 
this point of view, it does not matter whether these capillaries are filled with the 
wettable or the non-wettable fluid. Thus the radius probability density for those 
capillaries that are conducting for the ICG, can be represented by the function 

h(r) = { f(r)/{(rA:), r ~ TA:, 
0, r < TA: 

(4.2) 

Here TA: is the minimal radius of a capillary where displacement of the wettable 
fluid can take place for a given value of !1p. 
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By substituting h(r) into (2.1), we can find K2, the permeability ofthe macro­

scopic volume under consideration, to the displacing fluid. Using the relationships 

for the absolute permeabilities K0 and K 2 of the medium, one can find the an­
alytical expression for the relative phase permeability k2(rk) of the displacing 

fluid. Relative phase permeabilities are defined by the relationships ki = Ki/ Ko 

(i = 1, 2), and therefore can be found from (2.1) and (4.2) 

Note that the resultant expression for relative phase permeability contains only 

the radius probability density function for capillaries and the percolation invariant 

~c = P: which depends only on the network type and the dimension of the problem. 
Thus the resultant expression ( 4.3) is valid not only for a cubic network, but also 

for networks of other (in fact, any) types and dimensions. The network type 

affects the value of ~c. while the dimension of the problem affects the value of the 

exponent v. 
To determine the relative phase permeability k1 , consider the structure of the 

ICD in a similar fashion. Obviously the ICD contains those capillaries from which 
the wettable fluid can by no means be displaced for a given value of t:!.p, i.e., the 

capillaries of radii r < rk. Furthermore the ICD contains the capillaries with no 
displacing fluid in them whose radii exceed rk. The fraction of such capillaries is 

00 

a(rk) = {- W({), { = K- j f(r)dr 
rk 

Here the quantity~ defines the fraction of capillaries which satisfy the condition 

r > Tk, and the function W(~) defines the fraction of those of such capillaries 
contained in the ICG. 

Near the percolation threshold { = {c, the asymptotics {1.6) W(~) "' I~- ~ci.B 
is valid, where f3 = 0.4 when D = 3. Hence~- W(~) ~ ~c "'(1 + 2) · 10-1 when 

I~- ~cl « 1. However, starting from the values~- ~c ~ 10-1 and further, up to 
~ = 1, the dependence W(~) becomes linear (W(~) =~)very quickly. This means 

that a( rk) = 0 in the outlined range of {. Thus the coefficient a( rk) is of the order 

of 10-1 only in the closest vicinity of the percolation threshold when the ICG is 

formed, while further on, with the increase of~. it goes to zero very quickly. 
Consider equilibrium flow, i.e., the process of the ICG formation when the 

percolation threshold { ~ {c is crossed, is not being analyzed. The study is carried 

out under the assumption that the dynamic stage of growth of the chains forming 

the ICG is finished, and that the cluster is already a sufficiently stable formation 

in the space. Formally this means that the quantity ~ is finitely separated from 
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Q J;, I Ji 

Figure 16: Typical form of the capillary pressure curve (Leverett's function) 

the percolation threshold ~c. ~ - ~c ""' w-1• In this case we obtain the following 
estimate for a(rk), a(rk) ~ 10-2 • Now we shall set a(rk) = 0 to make further 
the computations easier. Taking account of this assumption, we can represent the 
probability density function !I ( r) for capillaries, which defines the conductivity of 
the ICD, in the following form 

{4.4) 

Using {2.1) and {4.4), we find the formula for the relative phase permeability 

!I ( r) dr j ( r) dr r~[< ] 11 
{ rc[rc ]II }-1 

kt(rk) = f [ fi(r)dr I(r) f [ f(r)dr ~ (4.5) 

Here r~ is defined by the relationship 

r,. 
J j(r) dr = ~c· (4.6) 

r~ 

It is interesting to obtain the correlation between the found expressions for the 
relative phase permeabilities and the quantity S1 which characterizes saturation 
of the medium with the wettable fluid. 

Consider two limiting cases of S1 calculation. If we use model I, then we can 
estimate S1 under the assumption that the number of pores filled with the wettable 
fluid is proportional to the number of capillaries filled with it. If the sizes of the 
pores do not differ significantly, then 

r,. 
St = j f(r)dr 

0 

(4.7) 
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I 

Figure 17: Phase permeability curves calculated using model exponential (a) and 
log-normal (b) distribution functions 

In model II the quantity S1 is defined by the volume of capillaries which conduct 
the first fluid. In this case 

(4.8) 

Thus the formulas (4.3) and (1.7) for a1 = rc, pb = ~c and (4.5)- (4.8) define 
parametric dependencies of the relative phase permeabilities on saturation of the 
medium for the two models mentioned above. 

Note that the probability density function for capillaries, together with (4.8) 
or (4.7), defines Leverett's function Pk = (Sl), which sets the correlation between 
the capillary pressure and the saturation of the specimen during equilibrium flow. 
The phase permeabilities and Leverett's function make up the complete set of 
data necessary for calculating the two-phase flow. To define the function J(r) 
in the form most convenient for future computations, investigate the behavior 
of Leverett's function Pk = (S1) (its typical form is presented in fig.16). Using 

the following formula for the derivative, dSl/dr = dSddPk · dpk/dr, and taking 
account of the fact that Pk "' r-1 , we obtain the following estimate from either 
(4.7) or (4.8) 

f(r) "'A' I dS1 (r) I~ 
dpk r 2 

where A'= r-2 in the case (4.8) and A'= 1 when S1 is defined by formula (4.7). 

Since today there are virtually no reliable ways of experimental determination 
of the probability density function for capillaries with respect to values of intrinsic 
conductivities, it seems reasonable to carry out qualitative analysis of the phase 
permeabilities for a model probability density function. Since J(r) -+ 0 as r-+ oo, 
in the general case this function can be represented in the form of an expansion 
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in negative powers of r (Weierstrass's theorem) 
00 

/(r) = L aifri 
i=1 

where ai are the coefficients of the expansion. By choosing the principal term in 
the sum, which makes the major contribution to /(r), and taking it as a model 
probability density function, we can obtain analytical expressions for the phase 
permeabilities and the capillary pressure. Take a model probability function as in 
the empirical dependence {3.46) 

f(r) = 0, (a*< r, r >a*), /(r) = a*a* 1
2 , (a*$ r $a*) (4.9) 

a*- a* r 

Here a* defines the maximum possible capillary radius; obviously, a* cannot 
exceed the size of a grain in the medium. The quantity a* defines the minimum 
radius of a conducting capillary. The existence of such a limiting radius can be 
related, for instance, to the fact that each capillary has a double electric layer 
which hinders fluid flow through thin capillaries because of the exceedingly large 
viscosity generated there. 

After using, for determinedness, the relationship {4.8) in the case {4.9), we find 
the following correlation between the saturation of the medium with the wettable 
fluid and the quantity rk 

{4.10) 

The phase permeabilities found from relationships (4.3)- {4.5) and (4.10) are 
presented in fig.17, a, where the curves k1(Sl) and k2{Sl) are denoted by numbers 
1 and 2, respectively. In the same figure, the functions k1(S1 ) and k2 (Sl) in the 
case when saturation is defined by the relationship {4.7) (model I) are drawn in 
dotted lines. Fig.17, b, contains the phase permeability curves obtained in the case 
when 

/(r) = ( V27r(Jd r)-1 exp[-(logr- p.')2 /(2q~)], 

a form of the dependence /(r) used in numerical calculations in [60]. As in [60], 
the parameters were set as follows, qd = 0.25, p.' = 2, z = 6. The results of the 
numerical simulation of the two-phase flow using the network models [60] presented 
in fig.17, b, {dots) show that the outcomes of analytical and numerical calculations 
for the same function /(r) coincide satisfactorily. For the limiting cases (S1 -+ 1 
and S1 -+ a*fa*), setting v = 1, we can obtain the asymptotic expressions for the 
relative phase permeabilities by expanding the corresponding relations in powers 
of the small parameter e1 =a*/ a* ~ 1. After taking only the first terms in the 
expansions we obtain the following 

(4.11) 



4.1 FLOW OF IMMISCIBLE FLUIDS 63 

I 

Figure 18: Curves for the phase permeabilities as functions of pressure 

(4.12) 

Analysis of relation (4.11) shows that when 51 -+ 1, the curve k1(SI) is convex 
upward, and its slope at the point 51 = 1 is non-zero. When 51 -+ ft, the curve is 
convex downward, and its slope at the point 51 = £1 is close to zero. Similarly it 
can be seen from relationship (4.12) that the curve k2(St) is convex upward on the 
whole range. When 51 -+ ft, we have k2(SI) -+ 1 with almost horizontal slope, 
while when 51 -+ £t/~c, we find that k2(St) tends to zero rather quickly. 

The relationship (4.10) also allows to obtain the dependence Pk(Sl) for the 
case of the equilibrium flow. Since Pk "'r;1 , we find from (4.10) that 

and therefore Pk ,-+ 0 as St -+ 1 and Pk -+ oo when S1 -+ O(S1 -+ £1). The 
qualitative form of the calculated dependence completely coincides with the one 
presented in fig.16. 

The expressions ( 4.3) and ( 4.5) also describe the change of phase permeabilities 
of the medium under exterior factors (such as pressure, temperature, etc.), if their 
correlation with /(r) is known. In the case of elastic deformation of a granular 
medium under the stress tensor u1, we find the following correlation between the 
distribution function and the change of u, if the method presented in §2.5 is used, 
f(r) = f0(r+£lr0). If the distribution function /o(r) is known for u, = 0, then the 
changes of the phase permeabilities can be determined from formulas ( 4.3) and 
(4.5). 

The pressure dependencies of the phase permeabilities are presented in fig. 18, 
a, b. Calculations were carried out for the function f(r) defined by (4.9). The 
curves in fig. 18, a, correspond to the case when saturation is defined by the 
relationship ( 4.8), and the ones in fig. 18, b, to the case when it is defined by the 
relationship ( 4. 7). For calculations, the following values were assigned, C = 1.5·103 
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MPa, g0 = 103 , P,p = 1/3; r0 /a* = 0.2 ·102 • Calculations were performed for three 
values of pressure p = u0 : the curves 1 - 3 correspond to the values 1, 7, and 102 

MPa, respectively. It can be seen from fig.18 that the dependence k2(S1) is more 
sensitive to the pressure changes than is kt(St). 

In this model, the phase permeabilities are completely determined by the prob­
ability density function for conducting capillaries with respect to values of intrin­
sic conductivities (the effective radius) and the value of the percolation threshold 
which characterizes the structure of the medium (the network type). Unfortu­
nately today we do not possess reliable experimental data regarding the form of 
the function f(r), and therefore it is impossible to calculate the phase permeabil­
ities and compare the experimental and the theoretical dependencies numerically. 
However the results of the calculations made for the model probability density 
function demonstrate qualitative agreement of the experimental and the theoreti­
cal dependencies of the phase permeabilities. It should be pointed out that within 
the considered percolation model, dynamic effects [22) are all but not taken into 
account. At the same time, these effects can cause notable deviation of the flow 
from the quasi-stationary regime when the flow rate is large enough. In this case 
an important part can be played by the nature of the pressure distribution in the 
medium at the micro-level, a property which depends on the flow rate. Special 
research on this topic will be carried out further. 

In conclusion, we want to note that the developed approach demonstrates the 
presence of the "endpoint effect" very clearly. This effect expresses itself in the 
trapping of the displacing phase near the surface of the rock until the saturation 
of the medium by the displaced fluid reaches a value close to the limiting one, 
St o ,.., ec· Therefore the rock is impermeable for the second fluid practically up 
to the values of S1 !:::::! 0.2 + 0.4, and only after the saturation drops below the 
mentioned value of S1 ~ S1 0 , the breakthrough of the displacing fluid occurs. 

4.2 Effect of Plastic Properties of Fluids on Phase 
Permeabilities 

Determination of the parameters of plastic flow in porous media is based on two 
principal assumptions. The first one concerns the description of the flow at the 
micro-level, i.e., through an elementary capillary (pore channel). According to 
this assumption, a certain analytical dependence of the shear rate :Ys on tangent 
stress Ts is taken as the friction law of the fluid flow in capillaries. The flow of a 
viscous incompressible fluid through a capillary in this case can be described by 
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the formula [62] 
3 To 

81rR9 J 2 q = - 3- 1'8 ¢( 1's) drs, 
To 

0 

65 

(4.13) 

Here q is the volumetric flow velocity in a capillary; ¢( 1'8 ) is defined by the 
friction law .:Ys = ¢(r8 ); R9 is the hydraulic radius of the capillary (in the case of 
a circular cylindrical capillary of radius r, R9 = r/2); 'Vp is the pressure gradient 
in the capillary; Tp is the maximum shearing stress generated on the surface of the 
contact between the fluid and the capillary if the traditional condition of" sticking" 
(i.e., vanishing of the fluid velocity of the fluid) is granted. 

Using (4.13), it is possible to express the pressure gradient of the fluid in the 
capillary as a function of the flow q, 'Vp = 'Vp(q). 

According to the second assumption, the pore space structure is simulated by 
a regular network with pores situated in its sites and pore channels of circular 
cylindrical form the edges (bonds) of the network. All the inferences made from 
this model in the percolation approach, which takes account of the hierarchy in 
summation of the selected conducting chains, are the same as those outlined in 
§1.2. Among them, the relationship (1.8) holds for the distribution function n(rl) 
of the rrchains, i.e., for those chains of the conducting capillaries with minimal 
radius r1 chosen in the direction of the exterior 'V P when capillaries in the network 
in general are distributed according to some probability density function f(r). 

During the flow through a selected r1-chain with flux q, a local gradient 'Vp, 
defined by (4.13), acts inside each of the capillaries. The macroscopic pressure 
gradient 'V P, averaged over the chain, equals the following 

'17 P(r,) ~ l '17p(q) /(r) dr (! f( r) dr) -t 

which results in the correlation q(rl) = q('VP(rl)). 
The total flux 

Tc 

Q = j q('V P(rl)) dn(rl) 

0 

( 4.14) 

(4.15) 

Since the gradient 'V P is the same for all r1-chains, ( 4.15) describes the corre­
lation between the flux Q through a porous medium and the applied gradient 'V P 
(or some function of this gradient). The coefficient in this relation is naturally 
set to equal the coefficient of permeability divided by viscosity (perhaps, raised to 

some power). Thus the suggested plan of calculations (4.13) - (4.15) using (1.8) 
allows to determine the permeability of the medium if the functions f(r) and¢( 7'8 ) 

and the values of z and l are known. In the course of computing the relative phase 
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permeabilities, the term in (1.8} which appears before the integral cancels out, and 
therefore the knowledge of l is not necessary. 

Flow with the initial pressure gradient. The Binghamian plastic. The 
friction law with limiting shearing stress in the case of the flow of a visco-plastic 
fluid is defined by its structure in the field of the surface forces at the points of 
contact with the solid surface. The most general form of such law was given by 
Wilkinson 

(4.16) 

where A and B are constants found from experiment. For the calculation of the 
permeability in accordance with the given algorithm, the specific form in which 
the law <P( T8 ) is written does not matter. However if A and B are arbitrary 
constants, then after integrating, the expression (4.13} becomes very complicated 
and inconvenient for further use. Therefore it seems reasonable to consider, for 
illustration, a rather frequently encountered specific case of (4.16}, when A = r,, 
Bhs « 1, i.e., the Binghamian plastic. Similar rheological properties can be found 
in heavy viscous oils which contain components with high molecular weights. 

In the outlined case the function <P( T8 ) has the following form 

(4.17} 

Substitution of ( 4.17) into ( 4.17} yields the well-known relation of Bingham 

(4.18) 

(4.18} implies that even in the considered case (i.e., Vp* fVp < 1}, the ratio of 
the third term in the square brackets to the second one is "' 0.1. Therefore it is 
possible to neglect the third term in the square brackets and write the following 
for the local V p 

8JL 4 
Vp(q) = - 4 q + -3Vp* (4.19} 

11"T 

After substituting (4.19} into (4.14) we obtain the value of the macroscopic 
gradient 

. 8JL dr 8~ dr 
[ 

00 00 l ( 00 ) -1 
Vp{rt) = -;- q(rt) [ f(r) r' + -f [ f(r)-; [ f(r) dr 

and 

q(r,) = ~ Vp{r,) i f(r)dr (i f(r)::) _, 
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'lrTp joo f(r) dr (!oo f(r) dr) -1 

3JL r r 4 

rt Tt 

(4.20) 

In this case it follows from ( 4.15) and ( 4.20), in accordance with {1.8), that 

Q = ~~ (1- {c)-2v ;JL "VP J [J J(r) dr] v x 
0 rt 

{ [l j(r)dr- ~ ;~ l f(r) ~] (l f(r) ;: ) -l} j(r,)dr, (4.21) 

After introducing the notation Ao = (1/4)v7rl-2 (1 - {c)-2v and r~ = 2rpf"Vp, 
we obtain, due to (4.21), the expression for the absolute permeability of the Bing­
hamian plastic with the limiting shear r0 for a given gradient "V P 

(4.22) 

If we took all the terms of (4.18) into account, then the 17-function in (4.22) 

would have had (1- r~/r) as its argument. This would have reflected the obvious 
fact that the capillaries with radii r < r~, for given Tp and "VP, become imper­
meable for the Binghamian fluid. However, neglecting the last term in the square 
brackets in (4.18) results in an error of~ 30% in calculation of r~. 

Flow without the initial pressure gradient. Pseudo-plastic and "dila­
tant" fluids. Flow of a number of fluids, such as colloidal solutions, emulsions, 
or thinly dispersed suspensions, is described by a non-linear friction law without 
a limiting shearing stress [63] 

(4.23) 

where J.Lt is some sort of analog to viscosity, and n is an exponent to be found 
from experiment. It was discovered [63] that the law ( 4.23) for n < 1 does well 
enough reflect the behavior of emulsion and polymeric solutions used, for instance, 
in "polymeric" inundation (pseudo-plastic fluids). For n > 1 this law equally well 
describes the properties of flowing suspensions, which are widespread in water 
extraction and in the of underground lixiviation phenomena (dilatant fluids). 
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We shall not go into realization details of the outlined plan for the calculations 
here and shall present only the final result of computing the absolute permeability 
for the discussed type of visco-plastic fluids 

rc [ rc 00 ]1/n 23-1/n dr 
Kg= 3 + 1/n Ao I I f(r) dr/ I f(r) r3n+l 

0 r1 r1 

[/ /(r) dr ]" /(r1) dr1 (4.24) 

To calculate the phase permeabilities, address the displacement of a hydrophilic 
fluid by a hydrophobic one. In accordance with the analysis carried out in §4.1, we 
select the parts of f(r) which characterize the distribution of each of the phases 
in the pore space. This operation is valid for plastic fluids as well, if the plastic 
resistance("' Tp/R9 ) is much less than the capillary resistance ("' x/R~). This 
problem was studied in [64], and it was shown that both the hydrodynamic (vis­
cous) and the plastic forces are small compared to the capillary forces in a common 
domain of relatively small values of Vp, and therefore, of relatively small local ve­
locities. Since the subject of this part is only steady state flow, i.e., the case of 
small flow velocities, it follows that the assumption on the nature of the distribu­
tion of the fluids in the pore space used in §4.1 may be considered valid for the 
visco-plastic fluids as well. Consequently the absolute permeabilities for the phases 
K;•d (i = 1,2) can be calculated using formulas (4.22) and (4.24) as follows. For 
K;·d, the lower limit of integration is changed to rk, and the function h(r) acts as 
f(r). For K~·d, relationships {4.22) and {4.24) do not change, only ft(r) is used 
instead of f(r), and rc is found from (4.6) forK.= 1. 

Note that the flowing fluids can in fact have different plastic properties, the 
algorithm of calculating K;•d using (4.22) and (4.24) not being affected by this at 
all. It is only necessary, when passing to the relative phase permeabilities k:•d = 
K;•d / Kg•d, to take into account the fact that a specific absolute permeability Kg•d 
of the medium corresponds to each of the fluids. In analyzing the qualitative trends 
in the behavior of the quantities k:·d we shall confine ourselves to studying the 
flow of fluids with identical plastic properties. In this case each way of calculations 
is characterized by a common value of the absolute conductivity of the medium, 
Kg or Kg. 

The choice of a model for the calculation of S(rk), naturally, depends on the 
actual pore space structure of a specific porous medium. 

Calculations for a simple cubic network (z = 6) with the model function f(r) = 
ror-277(r- ro) will be presented as an illustration. In this model, the saturation 
S2 of the medium by the displacing less wettable fluid was used as the saturation 
variable S, and the relation S(rk) was established using model I. 
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Figure 19: Curves for the calculation of the phase permeabilities for a - flow of 
the Binghamian plastic (code: r'.,Jro); b- visco-plastic and dilatant liquids (code: 
n) 

The results ofthe calculation of kt(S) for the Binghamian plastic are presented 
in fig.19, a. As Tp goes up, the phase permeabilities of both the displacing and the 
displaced fluid drop sharply; therefore, the limiting shear during the extraction of 
anomalous oils should be made as small as possible. 

The obtained results qualitatively agree with the experimental data [65] and 
with the results of the numerical computations [8] based on the network model, 
carried out in the development [59] {the agreement is satisfactory). In the latter 
case, the only non-Newtonian (Binghamian) fluid is oil (water is Newtonian), and 
it is for oil that the typical transformation of the k~ ( S) curve like the one shown 
in fig. 19, a, is observed. 

The plots of the relations kf(S} for visco-plastic and dilatant fluids are pre­
sented in fig.19, b. The case of n = 1 corresponds to the Newtonian fluids; n = 2, 
to the dilatant fluids; n = 1/2, to the pseudo-plastic fluids. When the exponent n 
in (4.23} changes, all the more at the transfer from one fluid type to another (from 
n < 1 ton> 1), the phase permeabilities change notably. This phenomenon can 
be widely used in various applications. 

4.3 Phase Permeabilities of a Medium with Mixed 
Wettability 

In actual media capillaries often differ not only in size, but also in properties of 
wettability of their surfaces. The effects of mixed wettability of a porous medium 
on the relative phase permeabilities of fluids flowing through it has been studied 
earlier in [9] by means of the numerical simulation of the capillary displacement 
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Figure 20: Probability density function for a medium with mixed wettability of 
the pore space surface, and the conditional breakup of this function 

in a two-dimensional network. 
Consider a porous medium formed by a regular network of capillaries with the 

probability density function f(r) (see fig.20} in an impermeable skeleton. A two­
phase equilibrium flow in such a medium is determined by the capillary forces on 
the phase interface. These forces depend on the coefficient x of surface tension at 
the phase interface and the contact angle 9. 

In homogeneous media the parameters x and 9 are constant. Assume now that 
the medium is heterogeneous, and x and 9 can take one of the two values x1 or 
X2 and 9t and 92 each, with probabilities K. and 1 - K. for the first and the second 
values, respectively. It means that the fraction K. of all capillaries in the network 
(the conditional region 1 in fig. 20, a) is characterized by values Xt. 911 when they 
belong to the phase interface, while the remaining fraction (1- K.) (the conditional 
region 2 in fig. 20, a) is characterized by values x2 , 92 • 

For determinedness, consider henceforth the capillary displacement of phase a, 
which initially occupies all the capillaries, by phase b under the increase of the 
capillary pressure Pic = Pa - Pb from -oo to +oo. When the capillary pressure 
equals Pic the displacing phase b can occupy only those capillaries, whose radii are 
greater than the critical one defined by the Laplace's formula. In the given case 
we have a specific critical radius for each capillary type 

(4.25) 

As it follows from (4.25), the parameters Xi and 9i appear only in the product 
Xi cos 9i. Since Xi > 0, and -1 < cos 9i < 1, it seems natural to decrease the 
number of external parameters by setting x1 = x2 = x and considering further 
only the dependence on cos 9i 

An important property of the problem in question is that if cos 91 and cos 92 

have opposite signs, then the values of Pic for the two outlined capillary types 
must have opposite signs, too, since the critical radius ((4.25)) cannot be negative. 
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Practically the mentioned property means that when Pk increases from -oo to 0 
the capillaries with cos (J < 0 are filled, and only after this process comes to an 
end, when 0 < Pk < oo, are the capillaries of second type (cos(} > 0) being filled. 
Moreover for capillaries with cos (J < 0, we have imbibition instead of displacement: 
in this case the formula ( 4.25) yields not the least, but the largest radius to be filled 
by phase b (the unshaded part of region 1 in fig. 20, a). When cos91 cos92 > 0, the 
capillaries of both types are being filled simultaneously, though they have different 
critical radii as found from (4.25). 

Now turn to the calculation of the coefficients of relative phase permeability 
ka. and kb for such a micro heterogeneous medium. First, study the behavior 
of the quantity kb. We shall begin with the case when cos91 > 0, cos92 > 
0, cos91 :$ cos92 • The last condition can always be made valid by means of the 
simple interchange of the indices 1 and 2. Denote a = cos9t/ cos92 • Then it 
follows from (4.25) that Tkt = ark2, where 0 <a :$ 1. The distribution function 
of capillaries filled with phase b (the shaded region in fig. 20, a) is 

rk2 oo 

nb = "'f f(r)dr + f f(r)dr (4.26) 

ru rk2 

Now analyze the relation (1.7). When Pk increases from -oo to 0 all capillaries 
are filled with phase a, and Tkt and rk2 equal oo. When we pass to the domain of 
Pk > 0, Tkt and rk2 are calculated using formula (4.25). As Pk increases, the radii 
Tkt and rk2 decrease until they reach the values rc2 and ret = are2 (see fig. 20, 
a), where re2 is found from the following condition 

rc2 ex> 

K J f(r) dr + J f(r) dr = {c (4.27) 

arc2 re2 

At this point, an infinite cluster of capillaries of both types filled with phase b 
(ICB) is formed in the medium for the first time. With the further increase of Pk, 
rkt and rk2 continue to decrease, and the substitution of /b(r) in (1.7) yields the 
following condition for reb 

rk2 oo 

K J f(r)dr + J f(r)dr = {e (4.28) 

reb rk2 

The quantity reb is analogous to re. The only difference is in that the former 
is not a constant but a function of rk2· It varies in the range ret :$reb :$ re, where 
reb= re when rk2 = re. Further increase of Pk causes decrease of the values of Tk2 
and rkt, but does not change reb= re. 
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Thus from (2.1) we obtain the following, by calculating the values of Tkt. rk2, 
and rcb and using (4.26) 

k,(rk2) = A'/Ko ]b [lbj,(r)dr] "j11 (r') 

ark2 r 1 

X ( K lf(r)dr +lf(r)dr) (K r(r) ~ +lf(r) ~) -~r' (4.30) 

rc < Tk2 ~ rc2, Pc2b ~ Pk < Pc 

kb(rk2)=A'/Ko{K 72 [K 72

f(r)dr+ J f(r)dr]" 
0~2 ~ ~2 

xf6(r') ( K l"(r) dr + l/(r) dr) ( •l/(r) ~ + l/(r) ~) -~r' 

+l [l J.(r)dr] ~,(r') 1/(r)dr (l/(r) ~) -~r'}, (4.31) 

0 < Tk2 ~ rc, Pc ~ Pk < 00 

Here A' is the term which appears before the integral in {2.1). 
Now consider the case when cosfh cos82 < 0, for instance, cos81 < 0, cos82 > 

0. In this case the region 2 will not begin to be filled until the region 1 is completely 
filled. The filling of the latter region in this case will be directed towards the 
increase of the capillary radii, as was noted before. Depending on the value of "'• 
different types of two-phase flow are possible. 

If K < ~c. then as Pk increases from -oo to 0, the flow of phase b cannot 
begin, since only the capillaries of the first type can be filled with this phase, 
whereas there is not enough of them to form an ICB. With further growth of Pk, 
the instance will come when the ICB is formed from the sum of the capillaries of 
the first and the second type. In this case ( 4.27) becomes 

00 

K + (1- K) J f(r) dr =~c. 
re2 
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if the lower limit in the first term of ( 4.27) is set to equal 0 when a < 0, and 
the normalizing condition for f(r) is taken into account. The function rcb(rk2) is 
still determined from the condition (4.28) and assumes values from 0 to rc, as rk2 
varies between rc2 and 0. Thus in this case the displacement of phase a by phase 
b is identical to the case described above, with cos fh > 0, cos 02 > 0, and the 
formulas (4.29)- (4.31) for kb remain valid. Note only that since a< 0, the lower 
limits of integration in (4.30) and (4.31), formally, are in the domain of r < 0, 
where, obviously, /(r) is defined to vanish. 

Now let ~t ~ ec· In this case, the ICB formation from the capillaries of the first 
type is possible as early as the imbibition stage. When -oo < Pk < 0, 

(4.32) 

After substituting (4.32) into (1.7) we obtain the following condition for deter­
mining Tcb(rkt) 

For reb to be greater than zero, it is necessary that rk1 exceed its limiting value 
rclb which is defined by the condition for the start of the flow for phase bin the 
capillaries of the first type, 

rctb 

K, J f(r)dr = ec 
0 

Thus when Pk < 0, it can be found from (4.32) and (2.1) that 

kb(rkt) = 0, 0 < Tkt < rc1b, -oo < Pk < Pclb, 

k,(r.,) =A'/ Ko l[lf•(r)dr] ~•(•'1'/(r) dr (l f(r) ~) -~r', 
Tclb ~ ru < oo, Pclb ~ Pk < 00 

When the capillary pressure exceeds zero some of the capillaries of the second 
type being filled with phase b associate with the ICB, while all capillaries of the 
first type are by that time filled with this phase. The technique of the further 
calculations of the change of kb(rk2) is identical to the one used for the case when 
K, > ec· It is still described by formulas (4.30) and (4.31), where rc2 = 00 and Tcb 
is found from the condition (4.28). 

We shall use the same scheme to study the quantity ka. Let cos01 > 0, 
cos02 > 0, cos02 ~ cos01. The distribution function for phase a (the shaded 
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region in fig. 20, b), with Tkt = O:Tk2 is 

{ 
0, T ~ 0, 

fo.(r) = /(T)/na, 0 < T < aTk2• 

(1- K)/(T)/na, aTk2 ~ T ~ Tk2 

rk! rk2 

f},o. = J j ( T) dr + ( 1 - K) J f ( T) dr {4.33) 

0 rk1 

After substituting {4.33) into (2.1') we obtain the condition when the function 
Teo.(Tk2 ) can be found. This function plays in the analysis of the ICA formation 
the same part as the function Teb(Tk2 ) does in the case of the ICB. Also, depending 
on the correlation between the quantities Teo. and O:Tk2, two forms of the discussed 
condition can be written 

a~2 ~2 J j(T) dr + (1- K) J f(r) dr = ec, Teo. < O:Tk2 (4.34) 

Tr.a 

rk2 

(1 - K) J j(r) dT = ec, Teo. ~ O:Tk2 ( 4.35) 

The case (4.34) is presented in fig.20, b, and the case (4.35), in fig.20, a. The 
function Teo.(Tk2) varies between Te, when Tk2 = oo( -oo < Pk < 0), and 0 at some 
minimal value Tk2 = Tc2o. determined from the following condition 

O'Tc2a Tc2a J f ( T) dT + ( 1 - K) J f ( T) dT = ee (4.36) 

0 arc2a 

When -oo < Pk < 0 Tk2 = Tkl = oo and ka(rk2) = 1. In the case described by 
(4.34), the substitution of {4.33) into {2.1) gives the following 

ko.(Tk2) = K01 ]a []a fo.(r) dr] ~o.(T') 
0 r' 

x ( ~~(r)dr+(l-K!l~(r)dr) 

x ( 7k2
/(r) ~: + {1- K) 72 

f(r) ~:) -:r', 
~ a~2 

Te2o. < Tk2 < 00, 0 < Pk < Pe2o. 
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In the case described by (4.35) we have 

k4 (rk2 ) = K01 { 72 

[ 72

/ 4 (r)dr] ~4(r') ( 72

/(r)dr + (1- K) 

0 r' r' 

x 7~(r) dr) ( 72 

f(r) :: + (1 - K) 7
2 

f(r) ::) -~r' + (1 - K)2 

arrk2 r' arrk2 

x} [l/.(r)dr] "J.(r') lf(r)dr uf(r) ~:) -~.l (4.37) 

Tc2t.L < Tk2 < 00, 0 < Pk < Pc2t.L 

Note that the cases (4.34) and (4.35) are not necessarily realized separately in 
the whole range 0 < Pk < oo. Certain values of a and K can be found, such that 
these cases can pass to one another as the capillary pressure changes. 

Let now cos/h cos82 < 0, cos81 < 0, cos82 > 0. As Pk increases from -oo to 
0, the fraction of capillaries of the first type in the ICA decreases. The probability 
density function for these capillaries is 

{ 
0, T < 0, 

j 4 (r) = (1- K)j(r)/fl(L, 0 ~ T < Tkt 1 

f(r)/f1a 1 T;:::: Tkt, 
(4.38) 

where Tkl is determined from (4.25). If Tkt < Tc, then the substitution of (4.38) 
into {1.7) yields Tc 4 (rkd = Tc 1 while for ka we have 

ka(rkl) = A'(l- K)K01 { 71 
[(1- K) 71

/(r) dr +] f(r) dr] v fa(r') 
0 r' ru 

x U. f(r)dr- •lf(r)dr) [(1- •) lf(r) ~: +] f(r);: P•' 
+l [! /.(r)dr] "/.(Y) l f(r)dr U. f(r);:) -~r'}, 

0 < Tkl < Tc, -oo < Pk <Pel 

When Tc < Tkt < oo from (4.38) and (1.7), we obtain the dependence Tca(rkl) 
in the following form 

rkl oo 

(1 - K) I f(r) dr + I f(r) dr = {c 

reo rkl 
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' 41 ~ 1 
Figure 21: Curves for the phase permeabilities calculated for models I (b) and 
II(a). Code: a 

If (1 - ~~:) < {c, then as Pic < 0 increases, for some Pic = Pea < 0, the ICA 
must cease to exist, since the capillaries of the second type are not sufficient for 
the ICA formation. If, however, (1- ~~:) > {c, then the ICA does not disappear up 
to Pic = 0 (r1c1 = oo), and the flow of phase a stops only when Pic > 0 , i.e., when 
Pea= Pc2a, and Tela= oo. Thus we obtain the following expression for ka in the 
interval Tc <Tiel <Tela 

ka(r~cl) = A'(1- ~~:) 2K01 7o [ 7°/a(r)dr] v !a(r') ( j f(r)dr 

0 ~ ~ 

-K J"(r)dr) [{1-K) lf(r) ~ +] /(r) ~ Pr', 
rc <Tiel <Tela. Pel <Pic < min{O,Pca} 

If {1 - ~~:) > {c, then in the case when Pic > 0, only those of the capillaries of 
the second type are filled with phase a, whose radii r < r1c2, where r~c2 is found 
from (4.25) if Pic is known. As Pic increases, the quantity ka(r~c2) keeps falling until 
it vanishes at the point r1c2 = rc2a 1 where rc2a is found using formula (4.36). In 
the interval 0 <Pic < Pc2a (rc2a < r1c2 < oo), ka(r1c2) is defined by the relationship 
{4.37), and the function rc4 (r~c2) is defined by {4.35). 

Thus the obtained formulas describe the change of ka and kb for the discussed 
model of the micro heterogeneous medium in the whole range of the parameters 
describing micro heterogeneity, 0 ~ ~~: ~ 1, -1 ~a~ 1. 

Calculations of the relative phase permeabilities ka(Sb) and kb(Sb) were carried 
out for different probability density functions f(r) and different values of param­
eters a and ~~:, based on the formulas obtained above. Here saturation with phase 
b (Sb) was defined as before for the two limiting cases, model I and model II, and 
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was expressed for a > 0 by the following 

rk2 oo 

S 1 = K. I I ( r) dr + I I ( r) dr 
rk1 rk2 

Su~<r2 >-' (•.lf(r)r2dr+l f(r)r2dr); 

and for a ~ 0, by the following 

rk1 oo 

sf="' 1 l(r)dr + (1- "') 1 l(r)dr 
0 rk2 

S11 ~< r2 > -• [ •lf(r) r2dr +(I- •).l /(r) r2dr] 

77 

(4.39) 

(4.40) 

( 4.41) 

{4.42) 

Plots of ka and k& for K. = 0.5 and the model probability density function 

l(l)(r) = { 0, 5 r ~ [1,3], 
4.05r- , r E [1, 3] 

are depicted in fig.21. 
It can be seen that as a decreases, the values of ka fall, whereas the values of k& 

grow. The same effect was obtained in [9] as a result of the numerical simulation 
of the capillary displacement on a two-dimensional network of capillaries. In [9], 
K. = 0.5; a log normal distribution was taken as the function l(r); and it was 
assumed that the lengths of capillaries correlate with their radii, l ....., rk, where k is 
the varied parameter. Therefore the above-mentioned congruence of tendencies in 
the changes of ka and k& caused by change of a is merely qualitative. Furthermore 
it takes place only when saturation is calculated according to model II (see fig. 21, 
a). If S = S1, then the nature of variation of ka and k& with the change of a shifts 
to the opposite, as is evident from fig.21, b, where plots of ka(SI) and k&(SI) are 
presented, calculated for the same function l(r) and values of a and "'· 

To study the impact the form of l(r) has on the functions ka and kb, calcu­
lations were performed for "' = 0.5, a = -1 and 1 and for three model functions, 
1<1>(r) and the following two others, 

1<2>(r)={O, _2 r~[1,3], 
1.5r , r E [1, 3] 

l(a)(r) _ { 0, r ~ [0, 5], 
- 2rexp(-r2 ), rE[0,5] 
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Figure 22: Impact of the form of the function f(r) on the nature of the depen­

dencies ka,b(S): K- = 0.5; 1 - 3- curves obtained by calculations using functions 

j(l>(r), j<2>(r), j<3>(r), respectively. Code: a 

a 1 ,;:.lra~----.,------.k' 

0 

I lr 1---12 
Figure 23: Impact of the parameter K- on the nature of the dependencies ka,b(S): 

f(r) = J<1>(r); 1, 2- curves for a= 1 and a= -1, respectively. Code: K-

In all cases, the calculations of ka and kb were carried out for K- = 0.5, using 

both of the outlined models for computing the saturationS. The obtained curves 

are placed beside each other for comparison: those corresponding to model II, in 

fig.22, a, and those corresponding to model I, in fig. 22, b. It is evident from the 

plots in fig. 22, a, that as the variance of f(r) increases (a~1 ) < a~2) < a~3>), 
kb(Su) decreases, while the threshold saturation, which determines the beginning 

of the flow of phase b, increases, both for a > 0 and a < 0. When S is calculated 

using the pore model (fig. 22, b) the same effects are to be found for ka(SI), i.e., 

as the variance of f(r) goes up, the values of ka(SI) go down, and the threshold 

saturation somewhat increases, though not as notably as in the first case. 

The impact of the parameter K- on the forms of functions ka and kb is reflected 

in fig.23, where, too, the case a corresponds to model II, and the case b, to model 

I. The data presented show that when a = -1 for all K-, the ka ( S II) curves lie 

below the corresponding curves for a= 1, while the opposite is true for ka(SI ). In 

this case the fall (or rise) of the curves with respect to a= -1 is steeper when K-
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Figure 24: Schematic distribution of phases in the pore space under capillary 
forces for steady state flow 

is greater. The effect is reverse for kb. When a= -1 the kb(Su) curves lie higher 
and the kb ( S I), lower than the corresponding plot for a = 1. The characteristic 
convexities which appear on these curves with the increase of K go up in the case 
of kb(Su) and down in the case of kb(SJ). 

4.4 Three-Phase Steady State Flow of 
Immiscible Newtonian Fluids 

Due to great technical difficulties encountered in any attempt to determine exper­
imentally the phase permeabilities for three-phase flow, theoretical study of the 
behavior of the permeabilities is of special importance. The results obtained in 
research on the equilibrium two-phase flow presented in §4.1 allow to generalize 
these results to the three-phase flow. 

Confine ourselves to the study of flow in those media whose pore space structure 
is described by model I. Consider equilibrium flow of three different fluids. We 
shall assign each of them a number from 1 to 3, so that the number is greater 
when the wettable capacity of the fluid is lower. 

In constructing a model for three-phase flow, the requirement for the flow to be 
equilibrium is significant, just as in §4.1. It means that the flow velocities must be 
sufficiently small for the distribution of phases in the pore space to be completely 
determined by the capillary forces. In this case, if initial saturations of the phases 
are approximately equal (i.e., none of the phases is "trapped"), then any future 
change of saturations will be accompanied by the rearrangement of the capillaries 
in the network, so that the more wettable phase inflates the capillaries of smaller 
radii, and the less wettable one inflates the larger ones. 

Estimate the typical saturations (S1 , S2 , S3 ) of the medium with different 
phases which admit flows with different numbers of phases. Equilibrium flow of 
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Figure 25: Triangular diagram of the domains where different numbers of phases 
flow, as a function of the ratio of saturations (the Gibbs- Rosebome triangle) 

any phase is possible only in the case when the capillaries filled with this phase 
form an IC. An IC is formed in the network if and only if the fraction of capillaries 
containing the given phase exceed a certain threshold value {c· 

Estimate the probability of a capillary containing the i-th phase. In the course 
of the equilibrium flow, any phase can access only those capillaries where the 
capillary pressure does not exceed the pressure Pi in the phase. Obviously the 
phase with index 3, whose wettable capacity is least, fills the largest capillaries 
(r > r2 , fig.24). The thinnest capillaries (r < rt) contain the phase of index 1, 
i.e., the most wettable one. Finally, the capillaries of radii rt < r < r2 contain the 
phase of index 2. The values rt and r2, which break f ( r) into zones saturated with 
different phases (see fig. 24), are determined from the phase equilibrium condition 

(4.43) 

where Xi.i+l is the coefficient of surface tension on the interface of the j-th and 
the (j + 1)-th phases; 8;,;+1 is the contact angle for the j-th and the (j + 1)-th 
fluids. 

It was shown in §4.1 that (with a 85% accuracy) the i-th IC contains all capil­
laries whose radii satisfy the condition of the i-th phase penetrating through them. 
Therefore the probability {i of the capillary to contain the i-th phase is defined by 
the following expressions 

~ ~ 00 

{t = J f(r) dr; e2 = J f(r) dr; ea = J f(r) dr (4.44) 

0 ~ ~ 

Consequently the i-th phase flows if 

(4.45) 

To determine the value of ~c quantitatively, it is necessary to know the network 
type that simulates the pore space structure most adequately. Actual location 
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and mutual orientation of the pores and the channels in the medium are random. 
Random structure of bonds is most easily described by a simple cubic network. 
Since there are no data at present in favor of any other network type, we shall 
consider the network to be cubic, as in the previous studies. In this case, from 
{1.1) we find {c = 1/4. 

It follows from the relationships (4.44) that in model I, Si = {i· If we sketch 
the critical values of saturation obtained in a triangular diagram (fig.25) and draw 
dotted lines inside the triangle S1S2Sa, we get a series of domains which differ 
from one another by the number of phases taking part in the flow. The numbers 
1 in fig.25 denote the domains of one-phase flow, when two phases out of three 
are "trapped" (there is no IC for these phases). Given the ratio of the saturations 
corresponding to domains 1, only the i-th component flows, where i is the vertex 
of the triangle. In the domains marked with number 2, one of the three phases is 
"trapped," and two-phase flow of fluids i and j takes place, where i and j are the 
indices of the sides SiS; of the triangle adjacent to the domains 2. The domain 3, 
where flow of all three phases is possible, is situated in the center of the triangle. 

It is clear from the diagram that three-phase flow is only possible in a small 
neighborhood of the center of the triangle S1S2Sa. Note that equilibrium four­
phase flow is impossible in the case of a cubic network, since conditions like {4.45) 
cannot be satisfied for four phases simultaneously. One of the phases in this 
case would have to flow in a disconnected form. However for big coordinational 
numbers of the network (z > 6), the percolation threshold of the system drops 
and the equilibrium flow of four and more phases is possible, at least in theory. 

It appears interesting to compare the obtained theoretical result to the exper­
imental data. 

Unfortunately no experimental study of three-phase equilibrium flow for the 
case of J.ti = const (i = 1,2,3}, X1coslh > x2cos02 > xacosOa was carried 
out before. The only known experiments are those of Leverett (1940) (66], where 
viscosities of the phases differed substantially (p,1 ~ 1'2 » J.ta). The results of these 
experiments are put on the same triangular diagram of saturations for comparison 
(continuous lines inside the triangle S1S2S3 ). 

It can be seen that the areas of domains 3 are approximately the same both 
in the theoretical investigation and in the experiment; however, the triangle found 
experimentally is situated somewhat farther from the vertex Sa. The domains 2 
adjacent to the sides S1Sa and S2Sa are deformed in the same direction. This can 
be explained by dynamic effects. 

For example, due to its significantly smaller viscosity and consequently, its 
greater mobility, the third phase can break through the rock on the dynamic stage 
of flow and thus isolate the "parts" occupied by the less mobile phases 1 and 2. 
As a result, in a broad range of Sa {1 > Sa > 0.35), one-phase flow of the third 
fluid takes place. When Sa < 0.35, i.e., when the rock contains a sufficiently small 
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amount of the third phase for the difference in the mobility of the phases to stop 
determining the nature of their distribution in the pore space, the theoretical and 
the experimental diagrams of different domains of three-phase flow coincide with 
accuracy of R~ 10%. This fact speaks of a good agreement between theory and 
experiment for the discussed case of equilibrium three-phase flow. 

We shall now present the calculations of the coefficients of relative phase per­
meability in different domains of the flow. Obviously, in the domains 1 of the 
triangular diagram, only the relative phase permeabilities of the corresponding 
i-th phases do not vanish (they equal 1). In the domains 2, as it was mentioned 
above, two-phase flow of the i-th and the j-th phases takes place. Coefficients 
of phase permeability for these phases can be found using relationships ( 4.3) and 
(4.5). Generalization of these relationships to the case of three-phase flow per­
mits to determine the relative phase permeabilties in the domain 3. Using the 
conditions (4.43) enables one to cut out the part fi(r) of the general probability 
density function f(r) corresponding to the fraction of the capillaries containing the 
i-th phase. In the case of three-phase flow fi(r) have the following form (before 
normalizing) 

{ 0, 
h(r) = f(r), 

( 4.46) 

After substituting /i(r) for f(r) in (2.1), we find the absolute phase perme­
abilities Ki(r1, r2) as functions of the quantities r1 and r2, which characterize the 
domains of saturation of the capillaries with the i-th phase. Here the satura­
tions of phases are set by the relationships ( 4.44). Coefficients of relative phase 
permeability are calculated using the formula 

(4.47) 

They are completely defined by the radius probability density function for 
capillaries and by the percolation threshold of the system, which depends on the 
network type (coordinational number z). 

Thus the expressions (4.44), (4.45), (2.1), (4.46), and (4.47) allow to calculate 
the relative phase permeabilities in the domain 3 using the relationship ( 4.43). 
In the special case, r1 = r2, we have h(r) = 0, and two-phase flow is realized 
directly along the side S1S3 of the triangle S1S2S3. If, however, T! = T2 and 
some ~i < ~c. then two-phase flow takes place in the domains 2 with a trapped 
i-th phase. Note that the phase permeabilities k1 (r1 = 0, r 2 = r 1 ) = k1 (rl) 
and k3(r1 = r2,r2 = oo) = k3(r2) are actually functions of merely r1 and r 2 , 

respectively, and are calculated uniformly for all domains on the diagram. The 
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outlined phenomenon was observed in Leverett's experiments, where it was also 
noted that the permeability of the most wettable phase (water) depended only on 
the saturation with this phase and was insensitive to the ratio of other phases. 

Find the phase permeabilities for the model probability density function (4.9) 
when a*fa* «: 1, i.e., 

{4.48) 

Assume further that a* = 1. After substituting (4.48) into {4.44) we find the 
correlation between r1 and r2 and the saturations of the phases, S1 = 1 - r11 , 

S3 = r21, S2 = 1-S1- S3 = r11 -r21. Clearly, it is reasonable to find the relation 
for k2 right away, since the values of k1 and k3 can be obtained from it by means 
of the corresponding passages to limits. We can find the correlation between the 
critical radius r~ of the function h(r) and r2 from (1.7), using (4.46) and (4.48). 
To simplify the calculations, we take v = 1 instead of the actual v ~ 0.9. In 
this case, after substituting r~ into (2.1), using (4.46) and (4.47) and neglecting 
the terms ...... (r~ fr2 )5 , we find the coefficient of phase permeability for the second 
phase, 

( 4.49) 

To determine the phase permeability k2 , it is necessary to know any two of the 
three saturations, which are related through the customary relation, S1 + S2 + S3 = 
1. 

The values of k1 and k3 are obtained from ( 4.49) by means of the passage to the 
limit from a three-phase system to the two-phase one. It helps in the case of k1 to 
let S1 approach zero (rt --+ 0). In this case we obtain a two-phase system, where 
the part of S1 is formally played by the saturation S2 , while the phase "interface," 
as far as f(r) is concerned, is r2 • The quantity r2 is uniquely determined by the 
saturation S3 , which equals 1 - S1 for the considered case. Therefore we find 
k1(St) = k2(0, 1-St), or 

2 1 { 1- S1 2 
k1 (St) = 27 (1 - S1 + 'c)2 1 - 2(1 - St +'c) - 3(1 - St +'c) 

X [1- jc2- 2St +'c)+ ~(1- s1 + 'c)(1- st)]} 'fJ(St- 'c) 

Similarly, in the case of k3 we let S3 approach zero {r2 --+ oo). Now S2 is 
formally S3 , while S1 should be replaced by 1- S3. We thus find that k3{S3) = 
k2(1 - s3, 0), i.e., 
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It is impossible to compare the theoretical calculation of k2 (S1. 83 ) to the ex­
perimental data. in the domain ABC of three-phase flow because there are no 
experimental data of such kind. However good qualitative and quantitative agree­
ment of theory with experiment in the domains of one- and two-phase flow (do­
mains 1 and 2 on the phase diagram 818283 ) presented in §§1.2 and 4.1, as well 
as in the case of Leverett's experiments mentioned above, supports the proposed 
theoretical description of the equilibrium three-phase flow. 

4.5 Stability of Percolation Methods for Calcu­
lation of Phase Permeabilities 

The essential characteristic of a. medium in the developed approach to determi­
nation of the phase permeabilities, as well as other coefficients of transfer, is the 
radius probability density function J(r) of capillaries. For actual media, this func­
tion is determined by one of the existing porometric methods [47, 48) and is always 
known up to a. certain error. Therefore it is important to estimate the effect that 
the error in establishing the function j(r) has on the results of the phase perme­
ability calculations. 

The expressions for calculating the phase permeabilities K 1 and K2 for two­
phase flow obtained in §4.1 have similar structure, and therefore it suffices to study 
the behavior of any one of them, e.g., K2 , when f(r) varies. 

Here A' is a pre-integral term which does not affect stability of ( 4.50). In the 
three-dimensional case the correlation radius index v = 0.9 ± 0.1. In this interval 
K2 is a continuous function of the given parameter with a continuous derivative. 
Therefore, without loss of generality, we can investigate stability of this function 
for any of the values 0.8 ~ v ~ 1.0, for instance, v = 1. 

Take two functions j+(r),J-(r) E C[a*,a*), where C[a*,a*) is the class of 
continuous functions on [a*, a*] normalized on unity. We shall mark the values 

correspon[di~g to lt~J:e two functions by the same signs. Introduce the norm 

II · II = 2 (-)2dr . Using Cauchy-Bunyakovsky inequality, we can write the 

following estimate for w(r) = j+(r)- f-(r) 

V. w(r) dr :> Jlw(r)idr :> (J w2 (r)dr 11 · dr) 112 
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1 {\ 

Figure 26: Effect of the oscillatory perturbation of the function f(r) (a) on the 
permeability change (b) 

Introduce the notations, Ko = K2(rk = 0); t/Jo = (Kt- K(;)/A', 

a* a* 

¢11 = (Kt- Ki)/A'; s+ =I j+(r) ~:' s_ =I ,-(r) ~: 
r;T" r;; 

a* a* 

S"!:. =I j+(r) ~:; f* =I lw(r)ldr 

After substituting the critical radii r"[ and r; into (1. 7) we can write the following 

r+ r+ 

j j+(r) dr ~(a*- a*)112 11 w(r)ll, j f-(r) dr ~(a*- a*)112 11 w(r)ll (4.52) 

Suppose rc+ ~ r;. Then the following estimate can be written using (4.51) 
and (4.52) for Tk < r; {the intervening computations are left out) 

I¢1II ~ Aoe* 

where Ao = S.+1 +4(8"!:.)-1 +a;4(S_S~)-1 . 
When rk ~ r; Ki = 0 and 

(4.53} 

(4.54} 

where A1 = s;1• In the case of r; > rj (4.53) and (4.54) remain valid up to the 
interchange of the indices "+" and "-" in the expressions for Ao and At. Thus 
(4.53) holds for all rk and we finally obtain the following 

(4.55) 
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Figure 27: Effect of the shift of< r > for the function f(r) (a) on the perme-
ability change (b) 

Therefore as llw(r)ll-+ 0, IIK:i- Kill-+ 0, i.e., the phase permeabilities are 
stable with respect to small perturbations of f(r). Obviously the relative phase 
permeability k2 = K 2 / K 0 is also stable. Indeed, we can follow the same line used 
in deriving the relationship (4.53) for r~c = 0 to obtain 

and then 

and finally 
llk:i- k:ZII ~-'*(a*- a!12 11 w(r)l 

which proves the stability of the relative phase permeabilities with respect to small 
variations of f(r). 

To illustrate the analysis presented above, a series of calculations of K2(r1c) 
was carried out for different f(r)'s. Two examples from this series are presented 
in figs.26 and 27. Shown in figs.26, a, and 27, a, is the nature of the perturbations 
(dotted lines correspond to f- ( r)) of the original function j+ ( r) = 2r exp( -r2 ) 

defined on [0, 3]. In the first case the perturbation is oscillatory, but does not 
change the average radius < r > of capillaries and the variance O'd of the distribu­
tion f(r). In the second case, a shift of< r > takes place. However in both cases 
the total deviation on the whole range of f(r) is the same, f.* !::!! 0.1. Presented 
in figs.26, b, and 27, b, are the corresponding plots of K2 (r~c). They imply that 
in the first case K2(r~c) does not really change, whereas in the second case a no­
table difference between K:i and K2 appears. Calculations show that the phase 
permeability is as sensitive to changes in the variance of f(r). 

In the outlined cases the numerical value of the coefficient A' A0 (a* - a*)312 , 

which appears in the estimate (4.55), is virtually always greater than its exact 
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calculated value by several orders of magnitude. This is due to the fact that the 
estimates in (4.53) and (4.55) are majorants, and therefore are rather overstated. 
The closest proximity of the estimated and the exact values of the discussed coef­
ficient is observed in the case when the principal difference of j+(r) from f-(r) 
takes place in the neighborhood of the minimal radius r = a* when a* -+ 0. 

Concluding the topic, we would like to remind that other macro properties 
of a porous medium can be calculated using a given f(r), just like the phase 
permeabilities. The specific electric conductivity E of the medium in the case 
when it is saturated by a conducting fluid, is an example of such a property. Since 
the expression (1.11} for E is akin to (4.50} for Tk = 0, if the numerical factor 
A' is replaced in the latter and r4 in its denominator is replaced by r 2 , it follows 
that all estimates presented above remain valid up to the numerical values of the 
majorizing constants s_' s+' s~. 

Thus it turns out that the calculation of the effective macro properties of porous 
media, carried out in the percolation approach, is stable with respect to errors in 
determining f ( r). 



Chapter 5 

Percolation Model of 
Non-Steady State 
Two-Phase Flow in Porous 
Media 

5.1 Immiscible Displacement of a Viscous Fluid 
by a Non-Viscous One 

At present, the description of non-steady state flow of immiscible fluids is carried 
out using equilibrium phase permeabilities and a capillary pressure curve. The 
mentioned functions are determined by the saturation of porous media with any 
of the phases and do not depend on time and space coordinates. In this case 
the phase permeabilities are determined by the results of laboratory experiments 
on steady state two-phase flow, and the Leverett's function is found from the 
porometric curve. 

However experimental data [14, 23] indicate the relaxational nature of inter­
phase equilibrium attainment in non-steady state fluid flow. Considering this 

effect, a phenomenological model was suggested in [24] for the description of two­

phase flow. This model includes time-dependent phase permeability with charac­
teristic time of relaxation towards the equilibrium value. However, experimental 
determination of these dependencies encounters great technical difficulties. 

In this study, for the description of two-phase flow in micro heterogeneous 

porous media a model of "forest growth" was proposed. It is a percolation model 
which permits to take into account the non-equilibrium effects of such fluid flow. 

89 
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Physical premises. In the network model of heterogeneous media [25], capil­
laries form an IC, whose conductivity is determined by the capillary chains oriented 
in the direction of the flow and composing the skeleton of the IC. These chains 
communicate with each other through analogous capillary chains, providing flow 
in the transverse direction. Some of these chains create a network of an irregular 
form. As it is shown in [25), there exists an hierarchy of chains according to their 
average conductivity; therefore, the phase flow velocities, including the case of dis­
placement of one phase by another, are different. At two-phase flow the injected 
phase enters the chains {later called "tree trunks") oriented in the direction of the 
applied pressure gradient, and through them enters the "branches of trees" -the 
capillary chains which provide flow in the transverse direction. As a result, growth 
of the tree formed by a trunk and branches takes place during the injection of the 
displacing phase. 

In their turn, the branches provide inflow of the displacing phase into the 
"leaves," the capillary chains oriented parallel to the trunk. Leaves may have a 
complicated arborescent form, too. In Fig.28, two interrelated trees are presented 
schematically. The number 1 indicates trunks of growing trees, the number 2, 
branches, and the number 3, leaves. 

Thus the same chains of capillaries oriented in the direction of flow may take 
part in the formation of both trunks and leaves, depending on how the displacing 
phase enters them. We shall consider leaves belonging to a given tree if the dis­
placing phase enters them through branches of this tree. During the flow in the 
medium, trees grow at different rates. As a result, rapidly growing trees outrun in 
growth the slower-growing ones and block their further growth; this results in the 
decrease in the concentration of the latter. A similar situation is observed during 
the growth of leaves, which grow until the capillary chains forming them intersect 
with the next tier of branches. As a result, the displacing phase is trapped in 
these chains. This effect is caused by the dynamic nature of the displacement, and 
the fraction of the trapped phase is determined by the ratio between the rates of 
growth of the trunk and leaves. 

Residual saturation of the displaced phase, trapped at the dynamic stage, may 
relax to the equilibrium value. This can happen if the IC of the displaced phase 
exists in the macro-volume, and the capillary forces prevent the invasion of the 
displacing phase into the IC. If the pressure P of the displacing phase is greater 
than the threshold pressure Pt at which the capillaries filled with the displaced 
phase form an IC, then the maximum possible fraction of the displaced phase 
is dynamically trapped. The above-mentioned mechanism allows to explain the 
increase of the fraction of the trapped phase with the increase of the flow velocity. 

Below, we consider the approach which allows to get a quantitative descrip­
tion of two-phase flow in porous media using the forest growth model, where the 
"forest" is understood as the sum of trees (or one "banyan tree") formed by the 
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displacing phase. 
It is obvious that taking into account all peculiarities of the interaction be­

tween the trees in a three-dimentsional case will require an extremely cumbersome 
mathematical apparatus for its description. At the same time, considering the 
plane case of this problem will allow to simplify mathematical models, but will all 
the same reflect the main features of the phenomenon. 

Model of the medium. We shall consider the network model of a hetero­
geneous medium. Conducting bonds (capillaries) of the network are distributed 
chaotically in it and their distribution according to the value of effective hydraulic 
radius is described by an arbitrary normalized probability density function f(r). 
Suppose that before the displacement began the network was completely saturated 
with the displaced phase, whose viscosity is J.£1, and the initial pressure, Po. At the 
time t = 0 the displacing phase, whose viscosity is p,2 , is supplied under pressure 
P to the network boundary x = 0, and the displacement begins. 

Consider the case when (P- Po} ~ Pk, where Pk is the capillary pressure. 
During the description of the displacement we shall neglect flow tongues formed 
at the breakthrough of the displacing phase along a finite sequence of connected 
"thick" capillaries, since these "tongues" attenuate quickly. The velocity x f of the 
phase interface, beyond which the saturation of the displacing phase is non-zero, 
is determined by the average conductivity of an infinite capillary chain, composed 
from the largest capillaries whose concentration is high enough for an infinite 
cluster to be formed in the medium. 

The probability of the radius of a capillary in the network exceeding r 1 is equal 
to 

00 

W(r > rl) = I f(r) dr. 

If W(r > rt} exceeds the percolation threshold We in the network, an infinite 
cluster composed of capillaries that satisfy the condition r > r 1 is formed in the 
network. Thus the capillary chain which determines the location of the front x f 
must consist of those capillaries that satisfy the condition r > re, where Te is found 
from the condition of the formation of an infinite cluster 

00 I f(r) dr =We. (5.1} 

The chains containing capillaries with r > r 1 form an irregular network, whose 
characteristic period (correlation radius) is determined by the expression 

(5.2} 

where d is the period of the network, v is the correlation radius index and depends 
on the dimension of the problem [4]. The concentration of the conducting chains 
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Figure 28: Diagram of the "tree" formation in the "forest growth" model 

with r > r1 {the number ofthe conducting chains intersecting a unit surface) N(rt) 
equals R1-z(rt), where z is the dimension of the problem. As for the density of 
the concentration of r 1-chains, where r1 changes from r1 to (r1 + drt) equals 
n(rt) = -dN(rt)fdr1 and, using (5.1), (5.2), is determined by the expression 

[ l v(z-1)-1 

n(rt); v{l- z)f(r1 ) l f(r)dr d1-• {5.3) 

"Forest growth" model. Consider the interaction between trees during their 
growth in more detail. At the micro level the average flow velocity along an r-chain 
under the conditions p1 ~ p2 and Xf « l, where lis the characteristic size of the 
region of the applied pressure difference, is determined from the Hagen-Poiseuille 
formula 

{5.4) 

This chain joins two opposite ends of the specimen, and therefore in order 
of magnitude its length coincides with that of the specimen, and the pressure 
difference applied to the ends equals the pressure difference applied to the given 
specimen. As is evident from {5.4), the maximum average displacement velocity 
in an r c-chain is 

(5.5) 

Knowing the flow velocity along an rc-chain {5.5), we can determine the posi­
tion of the phase interface at any instant t; behind it, saturation of the displacing 
phase is non-zero 

Xj = Vmt. 

Since the average flow velocity along the chain for a given pressure gradient is 
uniquely related to its effective radius, it is possible to go over from the capillary 
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Figure 29: Blocking of the movement of the displacing fluid along the adjacent 
thinner capillary 

radius distribution function f(r) to the fluid velocity distribution function for r­
chains cj>(V). For example, in the case f(r) = Ar-37J(r - rn), we have cj>(V) = 
BV-27J(Vm- V) 17(V- Vn), where 77(*) is the stepwise Heaviside function, and the 
coefficients A and Bare determined from the normalization conditions 

00 I f(r)dr = 1; 

0 

00 I cj>(V)dV = 1. 
0 

In this case it should be taken into account that the "cutting-off" of the func­
tion cj>(V) in the region of large V will occur at the point V = Vm, determined not 
only by the properties of the medium, but also by the nature of the phenomenon. 

Consider the interaction between trees growing with different rates behind the 
displacement front, and first of all obtain the condition for the blocking of a trunk 
by branches of other, faster-growing trees. Two competing factors influence this 
process: on the one hand, more slowly growing trees must be restrained by the 
more quickly growing trees; on the other hand, the characteristic distance between 
such trees is great, a property that decreases the restraint probability. 

Blocking may take place if along the branches of the tree formed by a V0-chain 
the displacing phase reaches the Vt -chain earlier than along the trunk of the latter 
(Fig.29). Consequently, the blocking condition has the form 

x +aR(Vo) x 
Vo =vt· (5.6) 

Here R(V0 ) is the correlation radius of the IC formed by the capillaries, where 
the minimal flow velocity is V0 ; a is a coefficient of the order unity introduced as 
a result of the fact that the condition (5.6) is written for an arbitrary V1-chain in 
the mean. Besides, in writing (5.6) it was supposed that branches grow with the 
same rate as the trunk. 
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Figure 30: Diagram of the formation of the "crown" of a "tree" 

In principle, the rates of the growth of lateral branches are different. To simplify 
calculations we may average these rates and introduce a certain average rate of 
growth of the branches for a given tree. It is obvious that the higher the rate of 
growth of the trunk, the higher the average growth rate of its branches due to the 
expansion of the range of radii of r1-chains forming the branches. Without loss 
of generality we may take the proportionality factor in the mentioned dependence 
equal to unity, which means that the average rate of the branches' growth is equal 
to the rate of the growth of the trunk 

If condition {5.6) is satisfied, blocking of all trees formed by V-chains with 
V < V1 takes place. The other trees continue their growth. It can be seen from 
{5.6), that blocking of a V1-tree is possible by branches of different trees growing 
with a higher rate, but will occur at different distances x. It is obvious that 
actual blocking of the considered trial tree will be carried out by those trees, 
whose branches are connected at the minimum value x, to which corresponds the 
satisfaction of the following condition 

dxfdV0 = 0. {5.7) 

Thus, taking into account the obvious equality 

(5.8) 

we obtain a system of three equations for the three unknowns V0 , V1 , and x(Vt), 
it being obvious a priori, that V0 > V1 • This system is solvable for any values of 

Xf· 

Consequently, the considered region may be conventionally divided into three 
zones. When x > x 1 one-phase flow without changing of saturation occurs. When 
x < x(Vt) flow of the displacing phase is observed through surviving tree trunks 
corresponding to the values V > Vt(x). Here V1{x) is determined from (5.6)-{5.8) 
as an inverse function to x(Vi). The permeability of the displacing phase in this 
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zone is equal to zero. Finally, when x 1 > x > x(Vt) we have the dynamic stage of 
the flow. 

Now estimate the values of saturation for the porous medium in these zones. 
When x < x(Vt) the fraction of the displacing phase in the V -chain at the moment 
of blocking of the V1-chain by the Yo-chain is t: = V /Vt, and therefore the fraction 
of the trapped displaced phase in this chain is 1 - t:. 

After averaging over the region of characteristic size R(Vo), using {5.1)-(5.3), 
we have 

Vt 
I {1 - V/Vt) n(V) B(V) dV 

So(x) = .::..0-..,..,.------­
Vm 
I n(V) B(V) dV 
0 

{5.9) 

where B(V) = 1 in the pore model, and B(V) = V in the capillary model [26]. 
In the region x > x(V1 ) trees grow practically without interaction. Around 

each trunk a "crown" is formed, i.e., a zone where the first phase has already 
been displaced from {Fig.30). Assuming that crowns have a triangular form and 
grow around the tree trunks with constant rates, we find the distribution of the 
saturation of the medium with the displacing phase in this region. The displace­
ment zone begins to form around a V -chain after the length of the tree trunk in 
the course of its growth exceeds the considered coordinate x(Vt ). The transverse 
dimension of the region is proportional to the quantity 

l(V) = Xj(V/Vm)- X, 

which characterizes the distance between the tree top and the plane with coordi­
nate x. Therefore the saturation by the displaced phase in the region x1 > x > 
x(Vt) equals 

Vm 

S = 1 - {3 J n(V) l(V) B(V) dV {5.10) 

V(x2) 

Here the coefficient {3 is determined from the condition of matching solutions 
(5.9) and {5.10) for x = x(Vt ); x2 is the current coordinate, measured from the 
level x = x(Vt) (Fig.30), and V(x2 ) is the velocity of the phase interface in the 
chain, where it manages to move up to the levetx2 • The velocity is determined 
from relationship (5.8) 

(5.11) 

Thus, the system (5.6) - (5.11) allows to determine the distribution of the 
saturation of the displaced phase for an arbitrary position of the front x 1, if the 
probability density function Q>(V) is known. 
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Figure 31: The displaced phase saturation distribution behind the displacement 
front 

In this model it is also possible to estimate the characteristic size of stagnation 
zones for the displaced phaseD, which corresponds to the value R(Vo). As the front 
advances further, evermore rapidly growing trees are included in the restraint, and 
therefore the size of the stagnation zones grows with the increase of x. The quantity 
D(V0 ),..., R(Vo) can be estimated from (5.2}, using the value V0 (x) determined from 
(5.6} -(5.8}. 

Analysis of results. The qualitative picture of the S0 and D(x) distribution 
behind the displacement front may be obtained from {5.6}-(5.11}, after assigning 
the most characteristic form of the velocity probability density function, such as 

where A= Vm Vn/(Vm - Vn)· In the case Vn/Vm « 1 we have A~ Vn. 
As a result, for x < x(Vi) we obtain 

(5.12} 

and for x > x(Vi }, 

(5.13} 

[ 1/2 l-1 
D(x) = x 2 ( ~~n) +a (5.14} 

The relations {5.12} - (5.14} are represented in graphical form on Figs. 31,32. 
From the diagram in Fig.31 it is clear that the asymptotic value of residual satura­
tion obtained in the given model is a quantity of the order of 0.6-0. 7, a fact that is 
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Figure 32: Characteristic dimension of the stagnation zones of the displaced phase 

as a function of the coordinate x 
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Figure 33: The dependence of the residual saturation on the form of the proba­

bility density function 

consistent with the results of laboratory experiments [18]. This value substantially 

exceeds that of residual saturation of water corresponding to stable displacement, 

when the displacing phase flow is possible up to the breakdown of the IC, i.e., up 

to the values of the order of 0.2-0.3. The diagram in Fig.31 shows that S(x, x f) 

tends to the asymptotic value at xfd > 100. This means that numerical simulation 

of non-steady state fluid flow presents great technical difficulties, since in order to 

obtain stable reliable results it is necessary to use in the two-dimensional case a 

calculation grid (capillary network simulating the pore space) of the size not less 

than 200x200. It is clear that in the three-dimensional case, for calculation one 

should use a network with the number of elements around 107 • 

In the given model it is also possible to estimate relaxation times r for different 

distances behind the displacement front. They will correspond to characteristic 

closure times of the cells with sizeD"' R(Vo), i.e. r"' D(x)/Vo(x), where Vo(x) 

is determined from (5.6} - (5.8), and D(x), from the relationship (5.14}. For the 

model function ¢(V) = Vn v-21J(V- Vn) in dimensionless units we obtain r ~ 1. 

It is of great interest to analyze the influence of the form of the parametric 

curve f(r) and the corresponding ¢(V) on the quantity S0 • Calculations of the 

residual saturation dependence on the exponent n in the probability density func­

tion ¢(V) "' v-n are represented in Fig.33. As can be seen from the diagram, 

the quantity S0 for dynamic displacement may be less than in the case of steady 

state two- phase flow, and in the limit as n -+ oo asymptotically tends to zero. 
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This effect is explained by the fact that as n -t oo, the function cf>(V) approaches 
the6-function in form. Then the displacement velocities in all chains are equal, as 
a result of which the trapping of the displacing phase turns out to be impossible. 

We note that all the above-mentioned arguments are also true for the three­
dimensional case. The forms of the corresponding analytical expressions for the 
three-dimensional problem are different, but the obtained relationships are quali­
tatively the same. 

5.2 Effects of Viscosities and Interfacial Tension 

A great impact of the flow velocity, interfacial tension, and viscosities of fluids on 
the IC structure was observed [18, 27, 28]. From these quantities, one can make 
up two dimensionless parameters, namely the capillary number C = (Qp,t)fu {the 
ratio of the viscous forces to the capillary forces), and the viscosity ratio M = 
p,tfp,2 • Here Q is the flow velocity, J.tt is the viscosity of the injected fluid, p,2 is 
the viscosity of the displaced fluid, u is the coefficient of interfacial tension. When 
M ~ 1 a stable interphase border is formed in the medium, and the displacement 
has a piston-type nature. When M .g: 1 the displacement front turns out to be 
unstable: so-called "fingers," formed by the largest pores and pore channels along 
which displacing phase breaks through, develop. 

It is natural to take into account the influence of the pore space structure, 
where the displacement takes place, in the form of the capillary function f(r). It 
is interesting to observe the effects of the above-mentioned factors on the structure 
of the IC of the displacing phase during the displacement, because knowledge of 
the structure allows for qualitative estimates of saturation of the porous medium 
with each fluid for non-stable two-phase flow. 

In §5.1 the "forest growth" model is suggested and its calculation is carried 
out for the simplest limiting case M = 0, C -t oo . The main attention was 
paid to the investigation of residual saturation of the medium with the displaced 
phase behind the displacement front, while the difference in phase permeabilities 
for steady state and non-steady state fluid flows was not analyzed at all. However, 
the approach suggested in §5.1 allows to consider non-steady state two-phase flow 
in the general case M -1 0, C < oo , as well as to calculate the relative phase 
permeabilities ki(S) for it (i = 1, 2; 1 is the index of the displacing phase, and 2, 
the index of the displaced phase, S = St). 

Invoke the famous solution of the Buckley-Leverett problem [14], where for the 
saturation front velocity we have 

v1 = QF(S)s-tm-1 

Here v, is the velocity of the phase interface averaged over an elementary 
physical volume, F(S) = [k1 (S)/ p,1 + k2{S)/ p,2]-1 , ~ is the porosity. From the 
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microscopic point of view, v, is the velocity averaged over the r-chains [14] with 
r > r1 , where r 1 is the minimum radius capable of admitting the displacing phase. 
Using the technique of the effective radius distribution for chains, we can calcu­
late the concentration of r-chains in the direction of the flow n( r) [25] and after 
summing up over all chains, we obtain 

During the flow of the front, in some vicinity, the formation of "traps" is 
observed, i.e., the restraint of a displacing phase in the chains, where flow runs at a 
velocity less than the speed of overlapping of the chains with "branches" of rapidly 
growing "trees" (Figs. 28,29). In essence, this is the process of infinite cluster 
formation. The skeleton of this cluster, according to the Shklovsky-de Gennes 
model is a network of irregular form with the characteristic period (correlation 
radius) 

The correlation radius represents the characteristic size of traps, and the char­
acteristic time of their closure is 

(5.15) 

Here two processes compete. The maximum velocity of the interphase move­
ment is realized in the thickest chains (the rc- chains). At the same time R(rc) -+ 

oo; therefore, they cannot interact with forming of traps. It is obvious that phys­
ically the situation which is realized corresponds to the minimal time of restraint 
T = r., whereas from the condition of achieving the minimum value, dr/dr = 0, 
the corresponding minimum radius of chains r * in the skeleton of the IC of the 
displacing fluid at the moment of the trap formation can be determined. 

In the chains with r < r * the ratio of the volume occupied by the displacing 
fluid to the total volume of the chains at the moment of restraint is 

f = V(r)/V(r.) = r 2 fr~, 

where V(r) is the flow velocity in the r-chain. In this case the mass of the IC of 
the displacing phase is 
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Figure 34: The dependence of the residual saturation of the displacing phase on 
the viscosity ratio (for a fixed capillary number: logC = 3.5) 

x (l n(r) r2dr) -t +So (5.16) 

The nature of the relation S(M) obtained for the case of the model probability 
density function f(r) = (10/9)r-2 , 1 < r < 10 is represented in Fig.34 by line 1. It 
can be seen that in the limiting cases M ~ 1 and M « 1, theoretical calculations 
give the maximum (the case of piston-type displacement) and the minimum (the 
case of viscous fingering) saturation and correlate well quantitatively with the 
results of numerical experiments [18), represented in Fig.34 by curve 2. These 
relations S(M) are obtained for the case C -+ oo (in the numerical experiment C 
was set to equal 3.5). 

Draw our attention to the investigation of the effect that parameter C has on 
the nature of the displacement. The minimum radius of a capillary which can be 
reached by the displacing fluid for the given pressure difference is determined from 
the condition of the equality between the hydrodynamic and the capillary pressure 
differences 

{5.17} 

From Darcy's law we have V P9 = QJ.ttf(k0ki). The characteristic sizes in this 
problem are pore sizes (for example, the average radius < r >) and the size L of 
the specimen. It is obvious that using the hydrodynamic pressure difference on 
pore size is physically unjustified since the action of mass forces is not taken into 
account. Therefore in {5.17) it is necessary to use the estimate of the value A.P9 

over the size L: A.P9 = VP9 L. From Laplace's formula we have APe= 2ufr. In 
this case, after substituting these relations in (5.17), we have 

C = koktf(rL) (5.18) 
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Figure 35: The dependence of the residual saturation of the displacing phase on 
the capillary number (for a fixed viscosity ration: log M = 2.9} 

Thus, using (5.18} we can determine from the capillary number the minimal 
radius of capillaries rk accessible for the non-wetting fluid. Two situations are 
possible. In the first case r. < rk. Then the capillary pressure does not allow the 
non-wetting fluid to enter the capillaries with radii r < rk, and traps are formed 
by the rk-chains. At the closure of these traps, restraint does not occur since other 
chains, being the more rapidly growing ones, have managed to grow beyond the 
region formed by this conditional trap. For such formation of an IC, equilibrium 
fluid flow takes place. To take into account the influence of the surface tension 
forces on the structure of the IC, it is necessary to substitute rk for r. in (5.16}. 

For the model function f(r) used above, calculations ofthe relation S(C) were 
carried out for a fixed M (In M = 2.9}. The obtained theoretical relation is shown 
in Fig.35 by line 1. Line 2 in this Figure corresponds to the results of the numerical 
experiment [18] for In M = 4.0. A good consistency of transfer regions from 
capillary fingering to stable piston-type displacement in theoretical and calculated 
data can be noticed from the figure. Some difference may be explained by the 
corresponding differences in the values of M and in the forms of functions f(r) 
used in the calculations. 

The second situation occurs when r. > rk. In this case the process is essentially 
non-steady state. When the fore front of the displacement passes, there appear 
traps where the displaced phase is retained, the fraction of the trapped phase being 
greater than the critical value necessary for forming an IC of the displaced phase. 
Therefore the phase retained in the traps does not lose connectedness and flows 
away through its IC, accompanied by the replacement of phase 2 by phase 1 in 
r-chains with rk < r < r •. This means that the skeleton ofiC 2 remains as it was 
(IC 2 only loses its "dead ends"), whereas new chains are added to the skeleton of 
IC 1 to increase its conductivity. 

We may suggest the following model of relaxation. Fluid 2 is displaced from 
the capillary chains retained in the trap starting from r., up to rk. When fluid 2 is 
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completely displaced from the ri- chain it will become part of the skeleton ofiC 1. 
The other chains with rk < r < Ti will remain for the moment dead ends without 
any contribution to the conductivity of IC 1. Therefore, for the conductivity of 
IC 1 at the given instant, taking into account [26], we have 

k1 = (l n(r) I(r) dr) (l n( r) I(r) dr) -
1 

, I(r) = l f(rl) dr1 

x [ [ f(rl)r>'drr (5.19) 

and for its mass, taking account of the dead ends, we have 

S = (I - S0 ) [ l n(r) r2dr + l n( r)cr2dr] 

x [l n(r)r2dr +So (5.20) 

Relations (5.19), (5.20) represent the non-steady state phase permeability of 
phase 1 in a parametric form through the parameter Ti (rk < ri < r.). 

Consider the conductivity of IC 2. At the closure of traps, some part of fluid 
2 will be retained in them. At the same time, there is IC 2 in the medium, which 
consists of the capillaries with r < rk. Along this IC, relaxation of the trapped 
phase to the equilibrium value of its saturation in the medium takes place. As new 
channels for moving of fluid 2 are not formed at that moment, the conductivity of 
the IC does not change in the course of relaxation and is equal to 

!;, = (l n(r)I(r)dr) (l n(r)I(r)dr) -
1 

r~o J f(r)dr =So 

r~ 

(5.21) 

As relaxation takes place, the current value ri approaches the equilibrium value 
rk, while the phase permeabilities approach theirs. Time of relaxation to the 
equilibrium value depends on the values of parameters C and M. The non-steady 
state phase permeabilities represented in Fig.36 are calculated using the mentioned 
model function /(r), for the case lnM = 0 and InC= -1.1. It is clear from the 
above-mentioned data that there are two characteristic flow regions. 

1. S(r.) < S < S(rk)· In this region, traps are formed, fluid flow is essentially 
non-equilibrium, and therefore for the calculation of k1 (S), it is necessary to 
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Figure 36: Unsteady phase permeabilities of phases 1 (curve 1) and 2 (2)for the 
model distribution function f(r) = A/r2 near the displacement front {logM = 0; 
logC = -1.1) 

use formulas {5.19), {5.20), and for the calculation of k2{S), relations {5.20), 
{5.21). 

2. 0 < S < S(r.), S(rk) < S < 1. In these zones either steady state flow before 
the front without forming of the trapped phase is observed, or the relaxation 
displacement of the trapped phase at the front has already finished, and the 
fluid flow becomes equilibrium again. Here the relations from §2.1 are valid 
for the calculation of k1{S) and k2{S). 

The presented calculated curves agree qualitatively with the results of experi­
mental investigations (29] which demonstrate the main tendencies in deviation of 
the dynamic curves of the phase permeabilities from steady state. 

Thus obtained non-steady state phase permeabilities may be used for the cal­
culation of the fluid flow based on Buckley-Leverett or Rappoport-Leas equa­
tions (14]. The capillary number actually determines residual saturation of the 
medium with fluid 2 and affects the rate at which saturations reach their limiting 
values. 

It is interesting to consider the region of small values of C when relaxation in 
the traps formed is slow. As it is known from laboratory experiments (27, 28], 
in this case the flow velocity through the trunk and branches of a tree differ 
substantially. We shall introduce a coefficient which accounts for this anisotropy, 
a = Vc/Vi., where Vc is the rate of growth of the trunk, and Vi. is the average 
rate of growth of branches. This coefficient may be different for different r-chains 
and may also depend on the pressure difference in the specimen. For qualitative 
analysis, we can set the form of the relation a(r) to be linear, and consider the 
slope of the line proportional to the applied pressure difference, as in [27]. 

By analogy with (5.15), introduce the time of restraint tb of the traps formed 
by branches of r-chains, tb = R(r)/Vb(r). Under the assumption of 1£1 « 1£2 and 
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Figure 37: The dependence of the phase saturation on the capillary number for 
the distribution function /{r) = Afr2 

x1 ~ L, for the rate of growth of the trunk we have [30) V.:(r) = tl.Pr2 (J.L2L)-1• 

Consequently lr,(r) = a(r)V.:{r). In order to determine the radius of the chains 
forming the traps let us again require the minimality of time of their joining, 
dtb/dr = 0. Having determined from this condition r;(tl.P), we can calculate 
the dependence S(tl.P} from (5.16}. Furthermore, by taking into consideration 
Darcy's law, we may obtain from (5.18) the dependence C(tl.P) and determine 
the correlation S(C). The results of calculations for the above-mentioned model 
function /(r) are represented by curve 1 in Fig.37, where curve 2 corresponds to 
the data of the numerical experiment [18). 

Thus the model proposed in this chapter allows not only to explain qualita­
tively the results of laboratory experiments on the investigation of non-steady state 
displacement for immiscible fluids in porous media, but also to calculate quanti­
tatively the main parameters of the process, namely the saturation of the medium 
with each phase and the conductivities of the formed IC's. To perform theoretical 
calculations within the framework of the suggested "forest growth" model, it is 
necessary to know the capillary function and the critical percolation indices. The 
results of the calculations performed for the model function f(r) and the typical 
value of the correlation radius index v for an IC demonstrates a good quantita­
tive agreement with experimental data [27, 29) and the results of direct numerical 
modeling in two-dimensional networks (18). 



Chapter 6 

Determination of Pore Size 
Distribution in Grained and 
Cavernous Rocks 

It follows from the results presented above that the quantities E, K, ki are deter­
mined primarily by the function f(r). Therefore the first thing to know for the 
calculation of permeabilties is the size probability density function (PDF) for the 
pore channels. 

At present practical determination of the coefficients of permeability is carried 
out mainly by means of direct experiments [72]. These, however, are too com­
plicated and cumbersome. An alternative approach suggests the development of 
indirect methods for the determination of transfer coefficients, the most important 
of which are K and ki. These methods should be based on model theoretical per­
ceptions of the pore space of the medium and the fluid flow. Information about 
the pore space structure required by these methods can be obtained using one of 
the known porometric methods for the chosen model of the medium. 

The purpose of the porometric methods is to determine the size probability 
density function (PDF) for the pores. The meaning of this function depends on 
the model of the pore space structure used to interpret the porometric data. The 
model of infinite cylindrical pores (ICP), which the majority of the contemporary 
schemes of the porometric data interpretation is based upon, is too inaccurate and 
can bring about considerable errors (73). To take account of specific properties of 
the pore space structure of actual media more adequately, it is necessary to use 
network models and percolation models to interpret the porometric data. 

Many actual media (e.g., grained or cavernous ones) have twofold porosity, 
i.e., large-scale, or porous, and small-scale, or capillary (47]. Volumetric proper-
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ties (such as saturation) of such media are mainly determined by the volumes of 
the pores, while their conducting characteristics depend primarily on the capil­
lary subsystem of the pore space. Usage of the conventional parametric methods 
permits to study only the large-scale pore subsystem (73]. To determine the pa­
rameters of a capillary subsystem, it is necessary to gather information about the 
subsystem using a quantity that does not depend strongly on sizes of the pores. 
Electric conductivity is an example of such a quantity. Parameters can be found 
based on electric surface measurements using electro-parametric methods in a core 
partially saturated with a conducting electrolyte [74]. This method suggests that 
the measurements of the specific electric conductivities for different parts of the 
core saturated with a wetting electrolyte in the gravitational field be taken instead 
of the measurements in the non-wetting mercury volume. The described approach 
allows to get rid of the influence from the subsystem of the site pores. It is also 
possible to determine the PDF for capillaries based on direct use of the percola­
tional formula for electric conductivity. This method suggests a combined scheme 
of mercury and standard porometry. 

6.1 Percolation Model for the Mercury Injection 
Test 

During the mercury injection test the displacement of gas from the core by a non­
wetting phase (mercury) takes place. As it fills the capillaries, the non-wetting 
phase overcomes the capillary pressure 

Pk = !l.p = P1- P2 = 2xcos8/rk. (6.1) 

For small pressure differences at the initial stage of the process, pores with radii 
greater than Tk do not form a connected system. They form finite clusters, only 
those of which can be reached by mercury, that are adjacent to the outer cross­
section of the specimen. When the pressure difference reaches the breakthrough 
value, large enough for mercury to appear in the outer cross-section of the core, 
the pores filled with mercury form a connected system, i.e., an infinite cluster. 

At the intervening stage of the process, as !l.p increases further, the density 
of the infinite cluster of the pores filled with mercury goes up. When saturation 
S reaches the second threshold value the connected system of the gas-saturated 
pores breaks. 

From this instant, during the final stage of the process, the gas stops coming 
out of the core. Trapped in the finite clusters, the gas compresses as the pressure 
in the non-wetting phase goes up. 

Take a periodic network of cylindrical capillaries as a geometrical model of 
the pore space and consider the outlined stages for the filling of the core with 
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mercury [75]. 
The initial stage of displacement. Suppose that at the initial stage dis­

placement takes place along non-intersecting tortuous paths. In this case the 
fraction of the super-critical capillaries being filled with mercury is 

00 

X(rk) = 1- F(rk) = J f(r) dr. (6.2) 
rk 

The probability {i of the first i capillaries being super-critical and the ( i + 1 )-th 
capillary having radius rk (i.e., subcritical) is Xi(rk) F(rk)· 

The average volume v'(rk) of a super-critical capillary is found as the condi­
tional expectation of the random variable 1rr2 l (capillary volume) when rk :::; r < 
oo. The volume of mercury that has reached the first i super-critical capillaries in 
a chain equals iv'(rk)· After averaging this volume with regard to the expression 
for probability {i, we obtain the mean volume V(rk) of mercury which has passed 
into the chain of total volume V = V(rk = 0). Since at the considered stage the 
saturation of the pore space with mercury isS= V(rk)/V, using (6.2) we obtain 
the following correlation 

(6.3) 

After using (6.1) to pass to the variable rk, in the dependence S(LlP), which 
has been measured by means of the mercury porometry method, we obtain the 
experimentally determined dependence S(rk). 

After integrating the right side of (6.3) by parts using (6.2) and then differen­
tiating both sides of the obtained equation with respect to rk, we obtain 

(6.4) 

After passing in (6.4) to the new independent variableS we obtain an ordinary 
differential equation for the function X(S) with the initial condition X(S = 0) = 0. 
Its solution is 

X(S) = 1 -ex+ I v s• : ~;;l(S') l (6.5) 

From (6.5) and (6.2) we obtain the desired dependence f(rk) = -(1 
- X)V(V S + 1rlrn-1(dSjdrk). 

At the instant when mercury appears in the outer cross-section, the fraction 
X of the super-critical pores equals the percolation threshold Xc, and an infinite 
cluster of the super-critical poresis formed. The value Xc is determined from the 
relationship (1.1). 
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Figure 38: Dependence of the fraction of super-critical capillaries filled with mer­
cury on the saturation of the medium with it 

After substituting the value Sc of saturation at the time of the breakthrough 
as measured in the experiment and the value Xc = X(Sc) from (1.1) in (6.5), we 
obtain the following relationship for the constants z, V, and l of the network, 

D VdS' 
[ 

Sc l 
z(D -1) = 1 - exp -! VS' + 71'lr~(S') (6.6) 

Simulation of the intervening stage. At the second stage of mercury 
injection, the non-wetting phase fills the infinite cluster of the super-critical capil­
laries. Concentration N(rk) of such capillaries per unit volume of the specimen is 
0.5 Zttzl-3W(X), where ltz is the correction due to the geometry of the network 
and W(X) is the density of the infinite cluster. Saturation S(rk) at this stage is 
equal to N(rk)v'(rk)/~. where~ is the porosity of the medium, or, taking account 
of (6.1), 

00 

S( ) = 11'Z/tz W(X) I 2j( ) d 
rk 2mt2X r r r (6.7) 

rk 

After integrating by parts in (6.7) using (6.2) and differentiating both sides of 
the obtained relation with respect to rk, we obtain the equation (6.4) for the func­
tion X(rk) again, where now g(rk, X) = 2Sml2 X[11'Z/tz 
W(X)J-1• 

It is also possible, as at the first stage, to pass to the new independent variable 
S in this equation: 

dX [r~(S) ( X dW )] - 1 

dS = 2X mZ2 71'ZttzW(X) + 2S W(X) dX - 1 (6.8) 

Since when X is equal to the threshold value Xc, the density W(X) of the 
infinite cluster vanishes, it follows from the equation (6.7) that S(Xc) = 0. This 
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relationship is the initial condition for the equation (6.8). However in the experi­
ment, at the end of the first stage the value of saturation is Sc > 0. The obtained 
"discrepancy" in data at the transition from the first to the second stage is due 
to the fact that the model {6.8) does not take into account the volume of the 
super-critical pores filled with mercury and adjacent to the entrance cross-section. 
To take this volume into consideration, we shall use the formula (6.5) to calculate 
X(S) in the interval 0 < S ~ S' and the solution of the Cauchy problem (6.8) to 
calculate it for S > S'. It is natural to choose the point S' at the intersection of 
the plots of these two relations in the (S, X)-plane (see fig. 38). 

At the instant when the displaced phase stops coming out of the core, the 
infinite cluster of the gas-containing capillaries breaks up. The value X(S~) equal 
to the percolation threshold for the gas cluster X~ = 1- Xc corresponds to the 
value of saturation S~ measured at the said instant. The expression 

X(S~) = 1- Xc (6.9) 

gives the correlation between the constants z and l of the network. 
The final stage of displacement. At the third stage of the experiment, 

the non-wetting phase still occupies the infinite cluster of the super-critical pores. 
Therefore the equation (6.8) remains valid. Nevertheless at this stage the relation 
rk(S) has to be found anew, since the pressure P2 in the formula (6.1) becomes the 
pressure in the trapped compressing clusters, and is therefore unknown. Suppose 
that trapping of air takes place simultaneously throughout the whole core at the 
instant when the cluster of the gas-containing capillaries breaks up. Consider the 
gas ideal and let all finite clusters filled with the trapped gas compress according 
to the law 

dVk/Vk = -dS/(1- S), 

where vk is the volume of the cluster. 

(6.10) 

Due to the low heat conductance of an actual porous medium it is possible 
to consider compression to be isentropic. When heat conductance is high a poly­
tropic process is considered similarly. After differentiating the law of isentropic 
compression P2 Vk =const and using the relationship (6.10), we obtain 

dS 
dP2 = "Yo 1 _ S P2, (6.11) 

where "Yo is the isentropic exponent. 
The quantity P2 can be expressed in terms of the known value of pressure Pl 

from the formula (6.1) for the capillary pressure as follows, P2 = Pt- 2xcos0/rk. 
After substituting this expression for P2 as well as its differential dP2 in (6.11) 

and some algebraic transformations, we obtain 

drk(S) = r~(S) ("Yo Pl(S)- 2xcos0/rk _ dp1(S)) 
dS 2xcos0 1- S dS 

(6.12) 
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The desired dependence rk(S) can be found from this equation, if the experi­
mental dependence p1{S) is known. At the time of trapping, the pressure in the 
gas phase coincides with the pressure Po in the outer cross-section of the core; 
therefore, the initial condition for the equation {6.12) is 

rk(S') = 2x cosO 
c Pl(S~)-po 

When the displacement is over, the value of porosity cp can be found as the 
ratio of the volume of mercury that has entered the pores to the volume of the 
core. This quantity can be also calculated as the product of the average capillary 
volume and the concentration of the edges of the network 

00 

cp = 1r;~z J r 2 f(r) dr {6.13) 

0 

The last expression represents another correlation between the constants z and 
l of the network. 

Thus the formulas {6.5), {6.8), {6.12) permit to find the dependencies X(rk) 
and J(rk) for the given l and z. To determine the constants z and l from the 
relationships {6.9) and {6.13), an iterative procedure is set up with respect to 
these parameters. Once this is done, the quantity V is found from the relationship 
{6.6), and the dependencies X(rk) and f(rk) are determined in the domain of the 
macro-pores using this quantity at the first stage of displacement. 

The presented algorithm of data interpretation in mercury porometry was ob­
tained for model II. Without drawing close attention to it, we note that the equa­
tions describing the sequence of stages for mercury injection in a porous medium 
for model I can be derived in a similar fashion. 

Results of the calculations using experimental data. To demonstrate 
the efficiency of the outlined method for the experimental data interpretation, 
we shall present the calculations for the experiment on the displacement of air 
by mercury from a core extracted from the East-Poltavian layer (data given by 
N. V. Savchenko). The plot of the X(S) relationship for this core appears in fig. 
38. The obtained dependence proved to be stable with respect to small changes 
of the initial conditions. The value of Sc close to zero and the value of S~ close to 
unity are characteristic of this dependence. For the specimen under consideration, 
Sc = 6.5 · w-4 , S~ = 0.964. 

The curve I in fig. 39 corresponds to the initial experimental data. The curve 
I I is obtained, if a relative error of 0.05 is allowed in determining the quantity 
S. The greatest difference between the two curves is achieved at the values of rk 
corresponding to the third stage of the experiment and makes 15%. For the first 
two stages this difference does not exceed 5%. As the relative error goes down, 
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Figure 39: Results of the study on stability of the dependence X(rJk) with respect 
to small changes of initial values 

f 

Figure 40: Plots of the function f( -logrk) obtained for curves I and II (see fig. 
39) 

the curves I and II are observed to approach each other. This fact confirms the 
conclusion about the stability of the dependence X(rk) with respect to the small 
changes of the initial conditions based on (6.5) and (6.8). 

The plots of f( -ln rk) relations for the cases I and II shown in fig. 39 are 
presented in fig. 40. These curves diverge by more than 100% almost everywhere, 
a fact that speaks of the essential unstability of the dependence f(rk) with respect 
to the small changes of the initial conditions. 

Stability of the dependence X(rk) and unstability of f(rk) are typical not only 
for percolation models of mercury injection. The problem arises from the fact 
that obtaining the dependence f(rk) requires applying to the dependence X(rk) 
a differential operator which is unstable in the general case. To overcome this 
unstability, one can use the regularized differential operator [76]. 

At the same time, the permeability and the electric conductivity of a porous 
medium are expressed in terms of integrals of the J ¢(r) f(r) dr type, where ¢(r) 
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is a known exact dependence. After integrating by parts we find 

a a I <P( r) f ( r) dr = <P( 0) - c/J( a) X (a) + I <P' ( r) X ( r) dr 
0 0 

Therefore the integral, which is necessary for the calculation of the coefficients of 
permeability, is stable towards errors of the experiment. 

The obtained pore radii distribution function, together with the constants z and 
l of the network, forms sufficient initial data for the calculation of the coefficients 
of permeability for a porous medium. 

6.2 Percolation Model for the Electric Porome­
try Method 

If one of the sides of an initially non-saturated core is immersed in a container 
with a wetting electrolyte (see fig. 41), a saturation distribution, decreasing with 
height, is formed there. This phenomenon is due to the fact that a wetting fluid 
rises in a capillary of radius r in the gravitational field up to a height 

L = 2xcosOf(PJgr), (6.14) 

where xis the coefficient of surface tension,() is the contact angle, PJ is the density 
of the fluid, and g is the acceleration of gravity. In general, vertical capillary chains 
are not isolated, but nevertheless the fraction of the saturated pores at the height 
L can be considered, up to some proportionality factor, as determined by a critical 
radius r(L) which correlates with L through (6.14). In this case the specific electric 
conductivity in the vertical direction is a function of saturation, and therefore of 
height L, and can serve as a source of information about the size distribution of 
pores. 

Measure the specific electric conductivity at the heights { Li} in sufficiently 
thin layers tl.Li <t:: Li (see fig. 41), so that within the portion measured, the 
specimen can be considered uniformly saturated. Estimate the specific electric 
conductivity of an arbitrary portion of the specimen and the contributions to it 
made by the subsystems of the site pores and the bond pores. Let the specific 
electric conductivity of the electrolyte be ae and of the skeleton of the specimen, 
a = 0. Obviously, the electric conductivity of the material in the vertical direction 
is determined by the vertically-oriented chains of pores filled with the electrolyte. 
Taking account of the transverse bonds between them in the considered case brings 
coefficients of the order unity into the calculations and does not affect the esti­
mates. Consider a unit cube of an element of the specimen. If l is the period of the 
network and "' is the fraction of the vertical chains in a unit volume filled with the 
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Figure 41: Principal scheme of measurements in the electric porometry method 

electrolyte, then the concentration of such chains on an elementary cross-section 
is Nb = K-1-2 • Bonds of each chain are connected successively, and therefore the 

conductivity of a vertical chain is ui = ( ~ n;) -1 (R; is the resistance of the j-th 
)=1 

bond of the i-th chain, N1 = z-1 is the number of bonds in a chain). 
Estimate the contribution made by each of the subsystems to the value of 

Ui· We shall take into account the following facts: characteristic radius of sites 
is r 6 = l/4 and bonds are cylinders with characteristic radii Tb ¢:: 1 and lengths 
~ l/2. 

In this case, for the resistances of the bonds in the chains we have ~ "' 
u-;1 (1/r~), Rs "' u-;11-1 , and their ratio Rs/ Rb "' (rb/1)2 ¢:: 1. This implies 

( Nl/2 )-1 
ui = ~ (Rb); "' uer~, from which we obtain the following estimate for the 

J=1 
specific electric conductivity of the material, 

Nh 

U(O) "'LUi ,..., Ue(Tb/1)2 

i=1 

(6.15) 

The relationship (6.15) shows that the specific electric conductivity of a spec­
imen made up of the site pore and the bond pore subsystems of different scale 
depends only on the bond resistances. Therefore it is possible within the proposed 
electric porometry method (EPM) to pass from the network model (NM) with 
solid sites to an NM with point sites, where the volumes, electric and fluid flow 
resistances of the sites vanish. The properties of such network (from the point 
of view of the EPM) are determined by the radius probability density function 
(PDF) of the bond pores. Hence radii of different bonds in capillary chains of any 
orientation are of the same order (unlike the chains with sites, where capillaries of 
different scale Tb > r 8 ,..., l connect at each period of the network). This permits to 
establish the actual correlation between capillaries of variable radii and cylindrical 
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Figure 42: Modified scheme of measurements in the electric porometry method 

capillaries of some effective radii. 
Introduce some complimentary simplifying assumptions. Consider the network 

simple cubic and the vector E of the applied electric field collinear to the vertical 
edges of the network. For the chosen type and orientation of the network, only 
vertical capillary chains play an essential part: the transverse bonds affect the 
general picture of the current flow in the medium rather weakly, since they are 
perpendicular to the vector E. In this model we can take the ICP approximation, 
which proves to be more relevant and justified with EPM than with the mercury 
porometry method. In this case it is possible, using the ICP model, to analytically 
solve in the explicit form both the direct and the reverse problems of electric 
porometry. 

Suppose the pore space of the core consists of a system of vertical cylindrical 
pores distributed with respect to radii with the PDF f(r). Establish the correlation 
between the integral electric conductivity a of a specimen portion as a function 
of height L and the radius PDF for capillaries. (The scheme of measurements is 
represented in fig. 42.) Taking into account the fact that all pores are connected 
successively, we obtain 

N r(L) 

L } J a(L) = ?= Ri Ti < r(L) = S* Nb1r f(r)ae(r2 /l) dr, 
t=l 0 

where S* is the cross-section of the specimen, N L is the total number of saturated 
pores in the specimen at the height L. 

Introduce the mean square radius at the height L 



6.2 ELECTRIC POROMETRY 115 

After passing to the limit L -+ 0 we have 

Consider the function X =< r2 > L / < r2 > L=O which can be expressed in 
terms of u(L) as well as f(r) 

r(L) 

u(L)L I 2 2 
X= lim[u(L)L]= f(r)rdr/<r >L=O 

L-+0 o 
(6.16} 

Obviously lim [u(L)L) = uoS* (uo is the specific electric conductivity of the 
L-+0 

completely saturated core). Therefore X = u(L)Lu01 (S*)-1 is uniquely related 
to r(L) and can be measured experimentally. 

On the other hand, after differentiating the equality (6.16) with respect to r(L) 
00 

and taking account of the normalization condition J f(r) dr = 1 we find 
0 

f(r(L)) ; r-2(L )(dX/dT) { l r-'(L )(dX/dr) dr(L)} -
1 

(6.17) 

Taking into account the correlation between r and L determined by the ex­
pression (6.14) and the correlation between X and u(L), it is possible to pass to 
the new variable Lin (6.17} 

(G' = 2xcos0fpg) 

I(~) = ~: ~L[u(L)L] { l L'~[u(L)L]dL} - 1 
(6.18} 

Thus upon measuring the integral conductivity u(L) experimentally for the 
corresponding sequence of the values of L, we can determine the radius PDF for 
capillaries uniquely using the formula (6.18). 

If we give up the severe constraints on the network type and orientation and 
consider these parameters arbitrary, then the ICP approximation proves to be 
unacceptable, and a percolation model should be used. However the direct and 
reverse problems of electric porometry in this case become substantially more 
complex. 

One of the possible approaches to the determination of the PDF for capillaries 
in this more general setting is as follows. The NM is considered in an approxima­
tion, admitting an analytical solution of the direct problem, so that the analytical 
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correlation of the PDF with some macro-characteristics could be later inverted, at 
least by means of some numerical method. 

Realize the first part of the proposed plan, i.e., find an approximate solution 
of the direct problem of the EPM. Assume that the experimental measurements 
are taken according to the scheme represented in fig. 41. Also, still assume that 
only those capillaries are saturated at the height L, which have a radius less than 
the critical r(L) as defined by formula (6.14). Now, considering the radius PDF 
for capillaries known and the system infinite (since the size of the core is much 
greater then the period of the network), find the conductivity of such a medium. 

The problem just set is one of the classical problems in percolation theory, the 
problem of the calculation of the conductivity for the bonds in a network. ( Conduc­
tivity q1 of a separate capillary correlates with its radius as follows, q1 = a(IC'r2 l- 1 .) 

Solving this problem, but for the case of Bethe's classical network, is possible only 
in numerical methods (1, 3]. Due to this fact this solution cannot be used further 
for solving the reverse problem. However the necessary analytical correlation a(L) 
with the radius PDF for capillaries can be obtained approximately using the effec­
tive medium model (EMM) (29], a model that allows to get approximate results 
which agree satisfactorily with those of the exact calculations of the percolation 
problems. Notable deviations ("' 20 %) are observed only near the percolation 
threshold. Therefore if we consider the measurements of a(L) being taken not too 

r(L) 

"high," so that J f(r) dr > 1.2~c, the use of the EMM proves to be legal enough. 
0 

The main idea of the EMM is to substitute the network of random resistances 
with a similar network of identical "effective resistances" under the condition for 
the conductivity of the whole medium not to change. In this case, as is shown 
in (29], the conductivity qm of a single bond in the effective medium is determined 
from the equation 

00 I fo(qt)(qm - ql)((z/2- 1)qm + q1t 1dq1 = 0 

0 

(6.19) 

Here fo(ql) is the conductivity PDF for bonds, z is the number of the near­
est neighbors for the given network type. In the further calculations, it is more 
convenient to pass from the relationship (6.19) for qm to a similar one for rq. In 
doing so, we should take into account the correlation between the conductivity 
of a capillary and its radius and the equality of random variables when they are 
functionally dependent /o(ql) dq1 = f(r) dr. In this case (6.19) can be rewritten 
as 

oo r(L) 

(z/2-1)-1 I f(r)dr+ I f(r)r;[(z/2-1)r;+r2]dr=O 
r(L} 0 
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Now, taking into account the normalization condition for J(r), we obtain the 

resultant expression for r q 

r(L) 

j r 2[{z/2- 1)r~ + r 2r 1 f(r) dr = 2/ z 

0 

(6.20) 

We shall further set z = 6, which corresponds to the simple cubic network. In 

this case the equation (6.20) becomes 

r{L) 

j r2 (2r~ +r2 )-1f(r)dr = 1/3, 

0 

(6.21) 

which implies, for instance, that for the given network type the percolation thresh­

old ~c determined in the effective medium model equals 1/3. The value of this 

quantity found in percolation theory is 1/4. To obtain a reliable criterion of appli­

cability for the EMM take ~c = 1/3. In this case the equation (6.21) can be used for 

describing the conductivity of the considered NM within the ranger' < r(L) < oo, 
where r' is found from the condition 

r' 

j f(r) dr = 0.4. {6.22) 

0 

If the radius PDF for capillaries is known, it is possible to find rq(L) from 

(6.22) using (6.19), and therefore find the conductivity 

q(L) = €1e?r[rq(L)/l](S* / D.L) (6.23} 

(we consider the intervals of the measurement of D.Li equal to D.L all), and thus 

solve the direct problem of the EPM for the chosen NM. 

Now investigate the reverse problem of the EPM for the given NM. Suppose 

that the values of q(L) have been measured in the course of the experiment at 

j different heights satisfying the condition (6.22) and determine the radius PDF 

for capilaries according to these data. Using formulas {6.14) and {6.23), u(L) 

can be easily recalculated into effective radii rq{r(L)). As a result, we obtain a 

mathematical problem of solving a Volterra integral equation of the first type, 

which is the relationship (6.21) for the unknown function f(r). The difficulty of 

this problem lies in the fact that the analytical dependence of the kernel of this 

equation on the upper limit or, more exactly, on rq(r(L)), is unknown. Moreover, 

the function rq(r(L }}, which is a part of the kernel, has to be found experimentally, 

and therefore is always known up to a certain error of measurement. Given these 

conditions, the problem of finding the solution of the integral equation (6.21) is 
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ill-posed, and classical methods for its solution are not applicable. To find the 
PDF from (6.21), some kind of a regularized method, stable towards small errors 
in input data, should be used. 

One of the possibilities lies in the reducing the integral equation (6.21) to 
a system of linear algebraic equations and solving the latter by means of the 
regularization method. In this study, the method of approximating functions was 
used for passing to a system of algebraic equations, where the sought PDF was 
expanded over some system of linearly independent functions. Due to the fact 
that a priori information about the behavior of the PDF is usually very limited, 
it is hard to prefer one system of approximating functions to another. In this case 
we can use Weierstrass's theorem on the expansion of any analytical function in 
power series 

(6.24) 
-oo 

It can be assumed that f(r) is non-vanishing only in the interval [a., a*]. After 
taking only a finite number of terms in the expansion (6.24) and substituting it in 
(6.21), we obtain the following 

where 

-n 

r(L) 

Fik = j r2+i(r2 + 2(r~)k)-1 dr. 
0 

(6.25) 

The immediate use of the system (6.25) would have led to a system of equations 
for an infinite number of unknowns, which does not have a unique solution. 

When j > 2n + 1 the relation (6.25) represents an overdetermined system 
of algebraic equations for the unknown coefficients {ai} of the expansion and 
an inaccurately assigned matrix Fik. Regularization method [76] can be used to 
find a normal pseudosolution of this system, and the regularization parameter 
should be chosen consistent with the errors in the input data. However the error 
caused by using the NM for describing the pore space structure is impossible to 
estimate quantitatively, and therefore the error of the assignment for the matrix 
is in fact unknown. Hence the customary condition of the residual cannot be used 
to choose an optimal regularization parameter. Instead, quasi-optimum criteria or 
relations [76] that do not require knowledge of the input data errors can be used. 

If the condition of obtaining /(r) as an analytical expression is not necessary 
and it is sufficient to represent the sought f(r) as a plot, then the following pro­
cedure can be suggested. 
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Substitute the integral in the left side of the equation (6.21) by an integral 
sum according to some quadrature formula. For example, if we divide the interval 
[a., a*] with the grid {r; = r;-1 + h, h =(a*- a.)/(n- 1), i = 1, ... ,n} and use 
the trapezoid formula, we obtain 

n 

LfiAik = 1/3 (6.26) 
i=l 

where 

Now the system (6.26) can be solved using the regularization method, as de­
scribed above. As a result, the values {f(r;)} of the sought PDF at the chosen set 
of points are obtained. 

6.3 Percolation Model for the Combined Mercu­
ry and Electric Porometry Method 

The method of determining the PDF for capillaries using the data of electric 
porometry presented in §6.2 is more exact and well-defined than the analytical 
formula (6.18) based on the model ofiCP. However this method, in its turn, carries 
an error due to the use of the effective medium model, the latter being merely a 
limiting case of the exact percolation model. The EMM describes the properties of 
the medium well enough only at some distance from the percolation threshold ec 
and brings an error of ~ 20% into the calculations of the percolation parameters in 
the vicinity of ec· Therefore the interval ofradii where f(r) is determined with due 
reliability bevomes smaller. Also, when a wetting fluid is used as an electrolyte 
in the electric porometry method according to the scheme in fig. 36, the most 
significant interval, i.e., that of small radii, is not scanned because the conducting 
IC breaks up. Furthermore in practice, to obtain representative experimental 
information about the studied core, its vertical dimension should be big enough 
(1 - 10 meters), which is much larger than the cores actually studied. 

Overcoming of these drawbacks is possible in the development of a combined 
method, that of mercury electric porometry, which integrates positive features of 
mercury porometry and the standard electric porometry (see fig. 41). The use of 
a non-wetting conducting fluid, which is injected in the medium under pressure, 
takes care of the problem of core size and allows to scan the interval of small radii. 
It is most natural to use mercury as such a fluid. As for the mathematical methods 
to be used for processing the experimental data, they may be upgraded with 
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respect to those presented in §6.2 if the percolation model of transfer phenomena 
(described in part 1), instead of the approximate effective medium model, is used. 

The scheme of the experimental measurement of the specific electric conductiv­
ity uy for the medium is as follows. A specimen with cross-section S* and height 
L is placed in a container with mercury, and the latter is injected in the speci­
men under pressure p. After making a current I pass through the specimen and 
measuring the voltage drop U on it its resistance Ro = U /I, the specific electric 
conductivity O'y = L/(S* Ro) is found. After carrying out a series of such mea­
surements for different values {Pi} of pressure and relating them, according to the 
Laplace formula, to the minimal capillary radius ri = 2xcos0/Pi where mercury 
can pass, we obtain the dependence uy(ri). This correlation can be either rep­
resented in the form of an interpolated curve or tabulated for further numerical 
processing on a computer. 

Specific electric conductivity can be calculated using the percolation model of 
a heterogeneous medium according to (2.4), using the formula 

av(r;) = A" l [ l f(r) dr r [1 /(r) ~ r 1 f(r) dr f(r) dr (6.27) 

where A" is a numerical factor, rc is the critical percolation radius. 
If we now consider the function uy(ri) known and the function f(r) unknown, 

then (6.27} becomes a nonlinear integral equation for f(r). After differentiating it 
once with respect to ri and making some transformations we obtain 

f(r;) = -1/A"(dav/dr;) l f(r) ~; [! f(r)dr] -• [! f(r)dr] -I (6.28} 

or, if we introduce the following notations 

~(r;) = -1/A"(davfdr;) [! f(r)dr] -u [! f(r)dr] -I, (6.29) 

a nonlinear inhomogeneous Volterra equation of the second type in the standard 
form 

(6.30) 

r; 
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It easily follows both from the physical meaning of the percolation model of 
transfer phenomena in a heterogeneous medium and from the immediate analysis 
of the relation (6.28) that the latter expression, as well as (6.30), is valid within 
the interval 0 < Ti < Tc· 

In measuring a 11 ( r i) some intervals r i < r < r i + ~i can be obtained where elec­
tric conductivity of the medium does not change, i.e., da11 (ri)fdri 
= 0. If ~i do not contain rc, then in these intervals A(ri) = <f>(ri) = 0, and 
from (6.30), f(ri) = 0 when ri < r < ri + ~i· This means that there are no 
capillaries with Ti E ~i in the medium. If, however, some ~i contains an rc to­
gether with its neighborhood, then after substituting A(ri) = <f>(ri) = 0 in (6.30), 
we also obtain f(ri) = 0. In this case, the fact that the integral of f(r) is in the 
denominator of (6.29) formally causes a zero-over-zero indeterminacy. However 
the equality da11 fdri = f(ri) = 0 near the initially introduced rc simply means 
that there are no capillaries with Ti close to rc. Therefore it suffices to decrease 
rc up to the closest ri's, for which da11 /dri f. 0, and take it as the new Tc· This 
changes neither the meaning nor the contents of all formulas, but allows to get rid 
of the formal indeterminacy. These cases can be encountered only in those media 
which possess an f(r) function with two global maximums, i.e., in those having 
two different types of porosities (e.g., porous and capillary or block and inter block) 
described by the same f(r). 

Taking account of the new definition of rc, estimate A(ri) and <f>(ri). It follows 
from (6.27) and (6.29), noting that 0 ~ f(r) ~ Mo < oo, that 

(6.31) 

Here Nc is the average value of f(r) in the first segment r1 ~ r ~ rc (rc- r1 = 
t5'). 

Since the contraction mappings principle is valid for the Volterra integral equa­
tion of the second type for every finite A(ri) and <f>(ri) [77, 78], the relationships 
(6.31) speak in favor of the existence and the uniqueness of the solution to the 
equation (6.30) and justify the use of the method of successive approximations 
with an arbitrary initial function j(0)(r) for solving this equation. 

In this case, once we have a normalized function j(n)(r) as the n-th approx­
imation, to obtain the next approximation according to (6.30), we first calculate 
its non-normalized value 

rc 

j<n+l)(ri) = A(n)(ri) J f(n)(r) ~~ + <f>(n)(ri) (6.32) 

r; 



122 CHAPTER 6. PORE SIZE DISTRIBUTION 

and then, after normalizing, 

00 

,(n+l)(r) = [c<n+l)rl j(n+l)(r), c<n+l) = J J<n+l>(r)dr (6.33) 

0 

The use of relationships (2.1'), (6.29), (6.32), (6.33), where the function u11(ri) 
is considered known from the experiment, permits to determine /(r) in the interval 
0 ~ r ~ rc- 6'. For r > rc- 6', the function /(r) is not determined directly in 
the given approach, since "pressure scanning" becomes impossible because the IC 
breaks up. Therefore some a priori suppositions regarding the behavior of /(r) 
in this interval are necessary; in the absolute majority of cases f(r) decreases 
monotonely in this interval. For r > rc- 6' one can take f(r) ""'r-i, where j > 1. 
In this case, for example, for j = 2, taking into account (2.1') we have 

f(r) = {c(rc - 6')/r2 , Tc - 6' < r < 00 (6.34} 

Consequently the quantity z, which is also defined in the interval rc- 6' < f < oo, 
must be calculated using relationships like (6.34). 

In the example given, Zc = ({c/3)(rc- 6')-2 • 

Thus the relationships (2.1}, (6.29), (6.32)- (6.34) represent a closed algorithm 
for determining f(r) when the dependence u11 (ri) is known from experiment. 

6.4 Numerical Calculations and Core Data Pro­
cessing with the Electric Porometry Method 

To determine the efficiency of the methods for recovering of the PDF for cap­
illaries (PDFC) using the electric porometry data described in §§6.2 and 6.3, a 
series of numerical experiments has been carried out. The experiments have been 
performed in the following order. At first, for the chosen PDFC /in(r), the direct 
problem of electric porometry was solved and the specific electric conductivity of 
the medium found for different degrees of its saturation with electrolyte. Then a 
uniformly distributed random error 68 was introduced into the obtained data, and 
the determination of the PDFC was carried out using one of the known methods. 
The functions /out(r) thus obtained were then compared to the original /in(r). To 
find out the properties of the outlined procedures for determination and eliminat­
ing additional systematic errors, introduced by the use of different models (the 
effective medium model and the percolation model}, solutions of the direct and 
the reverse problems were carried out for the same model. 

The method for determining the PDFC based on the use of the effective medium 
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Figure 43: Result of establishing the model function fin(r) by means of solving 

the reverse problem with exact output data 

model and described in §6.2 was tried for the following initial model PDFC 

{ 
a*a* 1 a < r <a* 

a* a :2"• * - - ' ft(r) = - * r 

0, r < a*, r > a*. 

(a* = 1, a* = 11) {6.35) 

In the direct problem with a given function fin ( r) and a chosen set of limits su­

perior {(r(L))k}, the transcendental equation {6.21) was solved using the Newton 

- Ruthson method and {(rq(L))k} were found. Also, the validity threshold r' of 

the effective medium model was found previously from the condition (6.22), and 

all (r(L))k were chosen from the segment [r', a*]. 
The obtained dependence {{rq(L))k} was used as the initial data for solving 

the reverse problem of the EPM by means of solving the system (6.25) using the 

regularization method with the quasi-optimality criterion. The following system of 
functions, decreasing with the increase of the radius, was chosen as approximating, 

The following equation, which reflects the normalization condition for the PDF, 

was added to the system (6.25), 

The results of solving the reverse problem of determining the model PDF (6.35) 

are presented in figs. 43, 44 (the dotted line indicates the true curve fin(r)). In 

the first case (fig. 43), exact input data were used for solving the initial problem, 
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Figure 44: Result of establishing the disturbed model function /in(r) 
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Figure 45: Result of establishing the function /in(r) in the case of inadequate 
choice of the system of approximating functions (monotone decreasing exponential 
functions) 

while in the second case (fig. 44), errors of~ 1% were introduced into /in(r) after 
solving the direct problem. It can be seen that when the system of approximating 
functions is chosen adequately and the errors in input data are not too large the 
desired PDF is recovered with good precision. 

To study the infl.l!ence of errors brought in by inadequate choice of approxi­
mating functions, the PDF was determined for the same /app(r) 

f ( ) _ 6(a*- r)(r- a*) _ 1 * _ 4 
2 r - ( )3 , a* - , a -a*- a* 

The results are presented in fig. 45 (the dotted line represents the exact PDF 
for comparison). It is clear that although on the whole the original PDF is re­
covered approximately correctly, it is altogether impossible to approximate the 
exact PDF by means of the chosen system of functions with adequate precision. 
Therefore substantial errors are observed in the vicinities of the endpoints of the 
range. It follows that in order to adequately choose /app(r), additional a priori 
information concerning the qualitative behavior of f(r) is necessary. In this case, 
one can expect a high degree of accuracy in determining J(r), and the result can 
be represented in the analytical form. 
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f 

Figure 46: Result of solving the inverse problem of establishing the original func­
tion fin(r) without using the system of approximating functions 

If, however, the condition of obtaining the recovered f(r) as an analytical 
expression is unnecessary, then a procedure of reducing the integral equation {6.21) 
to a system of linear algebraic equations, based on substituting the integral with 
an integral sum according to some quadrature formula, can be used as described 
in §6.2. When the trapezoid formula is used, the relationship {6.21) is reduced 
to the system {6.26). After solving this system using the regularization method 
the values of the desired PDFC at the chosen set of points {ri} are obtained. The 
results of solving the reverse problem of the EPM on recovering the original PDFC 
h(r), based on the system {6.26), are presented in fig. 46 {the dotted line indicates 
h(r)). It can be seen from the figure that the consistency of the original and the 
recovered functions is good enough. This result was obtained for the errors of the 
order 68 ~ 1%. 

To define the PDFC properly in the interval of small radii, it is necessary 
to use the combined mercury electric porometry method and invert the exact 
percolational dependence uy{ri) according to the iterative procedure described 
in §6.3. To verify its efficiency, the dependencies uy(ri) obtained by the direct 
calculations from the formula {6.27) for the given fin(r) were taken as the initial 
data. Then these functions were determined by means of the described iterative 
procedure and the obtained distributions !out{r) were compared to the original 
fin(r). 

In all cases j<0l(r) = const was taken as the zero approximation. Calculations 
showed that the iterative process converges quickly enough, and the number of 
iterations before relaxation is ~ 5 - 10. When the nature of the dependence 
f(r) in {6.34) is chosen correctly the consistency of the recovered and the original 
functions is very good (~ 0.1%). Introduction of a significant error into {6.34) 
and, consequently, into the quantity Zc causes the distortion of the behavior of 
f(r) near rc (~ 50%). Nevertheless on the whole the function f(r) is recovered 
satisfactorily in this case as well, the most precise case being in the interval of 
small r. This fact that is crucial for many applications. 

Results of recovering for the following original distributions 
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"one-humped" 
/in(r) = (2xfro) exp( -x2) 

and "two-humped" 

/in(r) = (0.3y'iT0)-1{exp[-(x- Xt)2 fa)+ exp[-(x- x2)2 fa]}, 

x = rfro; ro =10-4 m; x1 = 0.4; x2 = 0.8; a= 0.15 

are presented in fig. 47 to illustrate the efficiency of the method. In both cases 
/in(r) are shown by continuous lines and the recovered distributions, by dotted 
lines. The curves f(r) are compared in the interval of recovering 0 ::; r ::; rc. To 
the right of rc, the function f(r) can be merged with the exponential dependence 
f(r)- r-j, as it was mentioned in §6.3. 

The scheme of the electric porometry method (see fig. 41) was used to recover 
the PDFC for an actual sandstone rock with different degrees of cementation. 
These rocks are grained media with twofold (capillary and pore) porosity. Exper­
imental data were processed according to the procedure described in §6.2 (using 
the effective medium model) by means of solving the system (6.26) using the reg­
ularization method. Examples of the recovered PDFC are shown in fig. 48. In the 
same figure, the functions f(r), obtained using the ICP model according to the 
analytical formula (6.18), are presented. It can be seen that the formula (6.18) 
permits to correctly estimate the characteristic radii of capillaries and the variance 
of PDFC, but rather roughly describes the true distribution f(r). 

Thus the presented results of the numerical simulation and model data pro­
cessing demonstrate the efficiency of the ways used for interpretation of the ex­
perimental data for the recovering of the radius probability density function for 
capillaries in media with porosity of different scale described in this chapter. 
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Figure 47: Results of establishing the "one-humped" (a) and the "two-humped" 
(b) functions of the /in(r) form by means of the combined mercury and electric 
porometry method 
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Figure 48: Results of establishing functions of the f(r) form for actual rocks 
using experimental data of the electric porometry method 



Chapter 7 

Methods for Determining 
Parameters of :Fractured 
Rocks 

Investigation of the cores brought to the surface is one of the most widespread 
methods for studying various types of rocks. At present, methods for determining 
the coefficients of permeability for grained and cavernous reservoir rocks, based on 
experimental study of cores from the productive layer, are well enough developed. 
Since in general the sizes of pores or caverns are much less than the dimensions 
of the core, the latter is in essence a macroscopic volume which can be studied to 
get information about the rock. 

In the case of a fractured medium the lengths of fractures can be commensu­
rate with the characteristic dimension of the core or even exceed this dimension. 
Therefore the permeability of the core of a fractured reservoir rock cannot be iden­
tified with the permeability of the productive layer. Due to this fact there are two 
possible approaches to the obtaining of reliable information about the permeabil­
ity of such a reservoir rock. One should either study the coefficient of permeability 
for the cores with characteristic dimensions much greater than the average length 
of fractures in the rock, or develop mathematical methods for processing the re­
sults of research on the cores of usual dimensions to obtain information about the 
whole body. Obviously the second approach is preferable from the technological 
feasibility viewpoint. It must be taken into account, however, that the only piece 
of information there can be obtained during the study of the core of a fractured 
reservoir rock is the information about the parameters of the traces left by the 
fractures on the surface of the core. 

129 
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7.1 Concentration and Average Length of Frac­
tures Determined from the Core 

Consider a medium with identical disk fractures distributed chaotically in space 
and oriented isotropically. Assume that the traces of these fractures on an ar­
bitrary cross-section are identical; let them be line segments of length 2d., with 
concentration of centers nd. Calculate v', the average number of the traces of 
length 2d8 intersecting the butt surface of the core of radius R'. The surface of 
the core can be intersected not only by the segments whose centers lie in the circle 
of radius R~, but also by the segments whose centers are at a distance of no more 
than (R' +d.) (see fig. 49) from the center 0 of the circle. Here the probability of 
a fracture trace intersecting the circle depends on the orientation of the fracture 
and is determined by the angle 8. Thus the number of intersections for the traces 
of length 2d8 and orientation 8 equals 

(7.1) 

After averaging both sides over the lengths of the traces and over the angles of 
their orientation and taking account of the fact that the length and angle distri­
bution functions of the traces are normalized, we conclude that in the actual case 
of arbitrary length distribution of segments the formula (7.1) defines the quantity 
v'( <d. > ), where 

00 

<d. >= J d.f(d.) dd. 
0 

is the average value of lengths of the fracture traces distributed with the density 
f(d.). 

If we define v'( < d .. >) for circles of different radii R~, then from the system 
of equations 

(7.2) 

it is possible to find the quantities we are seeking, namely the concentration nd of 
the fracture traces on the cross-section and the average length < d8 > of a fracture 
trace on the cross-section. Knowing the quantity nd, we can find the concentration 
of disk fracture centers n• and the average radius of a disk fracture < rt >. The 
latter is easy to relate to the average length of a fracture trace on the cross-section, 
by taking into account the fact that the distribution of fractures is homogeneous. 
The probability of the length of the trace left on the core surface by a fracture to 
belong to the interval 2d8 + 2(d8 + l::J..d8 ) does not depend on the distance x from 
the center of the fracture to its intersection with the cross-section in the fracture 
plane. This probability is the same for all distances x and equal to dx/ < rt >. 
Using the correlation between d8 and x we obtain the following 
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Figure 49: Refers to the determination of the probability of a circle with an 
arbitrary radius intersecting with a fracture trace on the surface of the core 

<r•> 

< da >= J ~h- (xj < Tt >}2dx 
0 

(7.3} 

From (7.3} we find that< ds >= 1r /4 < rt >. The correlation between the surface 
concentration nd of the fracture traces and the volumetric concentration n* of the 
disk fractures can be found as follows. 

Consider the cross-section M (see fig. 49}. Intersection of an arbitrary disk 
fracture with the cross-section is possible only when the distance from the frac­
ture center to the plane M does not exceed the quantity ft. The probability of 
intersection is determined by the value of the solid angle n. If a fracture lies 
inside this angle, then it intersects with the plane. It can be easily shown that 
n = 21r(1 - cos8t}, where cos81 = xfrt. In this case, when we take into account 
the symmetry of the problem, we obtain an expression for P(x}, the probability 
of the plane intersecting a fracture with the average radius < Tt > 

P(x) = 1 - xf < rt > 

The number of the fracture traces on a unit surface of the cross-section is 

<r•> 

nd = 2n* j P(x)dx 

0 

(7.4} 

(7.5} 

Using (7.4} and (7.5} we find nd = n* < rt >. Recall that the density of fractures, 
which characterizes the average distance between the fracture traces on the plane, 
is defined by the relationship 

f = Vn* < Tt > 

The investigation just carried out shows that the concentration and the average 
length of the fracture traces on the surface of the core can be found. Knowing 
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Figure 50: Refers to the determination of the number of fracture traces that fell 
completely inside the lateral surface of the core 

these quantities, one can find the volumetric concentration and the average length 
of the disk fractures. Finally, upon determining the concentration and the average 
length of the disk fractures, one can estimate the coefficient of permeability of a 
fractured medium, for example, for the model presented in the study [79]. 

7.2 Determination of Fracture Length Distribu­
tion from Fracture Traces on the Core 

Length distribution of fractures is one of the important characteristic properties 
of a fractured medium. Knowledge of this distribution is necessary both for the 
calculation of conducting properties of the medium and for the description of its 
destruction under the impulse loads (80]. 

In this section, a technique for processing the results obtained from the in­
vestigation of fracture traces on the core is proposed, which permits to obtain 
information about the length distribution for the model of a medium with disk 
fractures. 

Assume that the medium contains disk fractures with arbitrarily distributed 
centers. Fractures leave traces - line segments of length 2d8 - on some cross­
section; distribution of these segments is determined by the function nd(d8 , 9). 
In this case nd(ds, 9)~ds~9 is the number of the centers of those fracture traces 
on a unit area, whose half-lengths lie in the interval d8 + d8 + ~ds and which 
are oriented at an angle from the interval 9 + 9 + ~9. Suppose that a circle of 
radius R' corresponds to the surface of the core. Some of the fracture traces 
with length 2da fall within this circle, with some traces lying completely inside 
the circle and others intersecting with the boundary of the core. The length and 
location of a fracture center is impossible to determine from the fracture trace 
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which intersects with the boundary of the core. This is due to the fact that those 
fracture traces that intersect with the boundary of the core from the inside and 
from the outside are indistinguishable. Let Nd( d., 9) be the number ofthe fracture 
traces whose half-lengths lie in the interval d. + d8 + 6.d8 , oriented at an angle 
from the interval (} + (} + 6.9 and lying completely inside the core. This number is 
equal to the difference between the total number of all such fractures in the circle 
and the number of the fracture traces that intersect with the circumference. For 
the fractures oriented at an angle 9 (see fig. 50) we have 

(7.6) 

where Sn is the unshaded part of the circle. 
After integrating (7.6) with respect to the angle 9, we can find the number of 

the fracture traces with half-lengths lying in the interval d. +d. +ad. and falling 
completely inside the core 

1r 

Nd(ds) =I nd(d8 ,9)Snd9 
0 

The area Sn is equal to twice the area of the section 

Sn = 2 [R'2cos-1(d./R')- dsVR'2 - ~] 

After substituting (7.8) in (7.7) and taking account of the fact that 

1r I nd(d.,9)dfJ = nd(ds) 
0 

(7.7) 

(7.8) 

where nd(d.) is the surface density of the centers of those fracture traces, whose 
half-lengths lie in the interval d.+ ds + 6.d., we obtain the following expression, 

Upon calculating the number of the fracture traces with length 2d8 falling 
completely inside the core of radius R', one can determine the length probability 
density for fractures 

The quantity Nd(d.), where ds lies in the interval d8 +ds+f:1d8 , has to be deter­
mined from experiment by gathering the amount of data necessary for statistical 
analysis. As it can be seen from {7.9), as d. -+ R', the error in determining nd(d.) 
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goes up abruptly. Therefore reliable determination of the function nd(ds) is pos­
sible only for those fracture traces whose half-lengths are not too large compared 
to the radius of the core (ds < R'). 

For further calculations, it is convenient to introduce a normalized distribution 
function 

(7.10) 

Consider a disk fracture of radius Tt whose mouth is negligible. It is easy to 
show that by reasons similar to those mentioned in deriving the relationship (7.3), 
the probability of this fracture leaving on the cross-section a trace of length 2d8 is 
equal to 

P(d)- ds 
8 - J 2 d2 Tt rt - s 

Let F(rt) be the normalized radius probability density function for disk fractures. 
In this case the probability of the length of a trace on the surface of an arbitrary 
cross-section to lie in the interval 2d8 + 2{ d8 + l:1d8 ) is determined by the expression 

(7.11) 

In deriving the formula (7.11 ), it was taken into account that a fracture with radius 
less than ds cannot leave a trace of length d8 on a plane. 

The integral equation of the first type {7.11) establishes the correlation between 
the experimentally measured function f(ds) and the function F(rt) which is to 
be determined. Since such equations represent examples of ill-posed problems, 
their numerical solutions on computer are unstable. In the special case when 
the function f(ds) and its derivative are continuous and bounded, the solution 
of the equation {7.10) can be obtained in the explicit form. Aside from the fact 
that the obtaining of an analytical solution of the equation (7.10) is of separate 
mathematical interest, it is also very important in the methodological aspect of 
the considered application. The exact analytical solution, unlike an approximate 
numerical one, is stable. Since the outlined limitations on the function f(d8 ) are 
satisfied by the majority of functions obtained in experiment, this solution can be 
used as a stable technique for the processing of a broad set of probability density 
functions for traces of fractures on the core. 

Make the following change of variables in (7.10), rt1 = t. As a result, we 
obtain 

d-1 
• 1 

f( d ) = d I F(C ) dt 
8 8 vf1- fP..t2 

0 8 

(7.12) 
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Another change of variables, t =sin f/J/d., in the equation (7.12) reduces it to 

w/2 

/(d.)= IF (si~f/J) df/J (7.13) 

0 

The equation (7.13) is one of the SchlOmilch integral equations. The solu­
tion of this equation can be obtained as follows. After introducing the function 
F1(sin¢J/d.) = F(d./sinf/J) into the equation (7.13) and then differentiating it 
with respect to d., we obtain 

w/2 

d~f'(ds) =-IF{ (sinf/J/d.)sinf/Jdf/J (7.14) 

0 

By substituting xf sin 1/J fords in (7.14), integrating it with respect to 1/J from 0 
to 1rj2, and changing the order of integration in the right side, the equation (7.14) 
can be reduced to 

w/2 w/2 w/2 

I _j:_ !' (~) d,P = 2 I df/J IF,' (sin,Psinf/J) sinf/Jd'I/J (7.15) 
SID21/J SID 1/J l X 

0 0 0 

Having introduced a new variable sin A = sin f/Jsin 1/J, after changing the order 
of integration in the right side, we obtain 

w/2 w/2 w/2 

I .x: !' (~) d,P =-IF{ (sin A) cosAdA I sinf/Jdf/J 
SID 1/J SID 1/J x J cos2 A - cos2 ¢J 

0 0 .\ 

Taking account of the fact that 

w/2 

I 
sin ¢J df/J 1r 

Jcos2A- cos2¢J = 2' 
.\ 

after integrating with respect to A, we obtain the resultant expression 

w/2 

F(rt) = F(oo)- ~ J -4:- f' ( .rt.,,) d,P 
7r SID 1/J SID 'I' 

0 

(7.16) 

Formula (7.16) permits to find the length distribution function F(rt) of disk 
fractures if the length distribution function /(d.) of fracture traces is known. 

In particular, if the distribution f(d8 ) is defined as an exponential relation 

f(d.) = aexp(-cd.) 
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then the integral in (7.16} can be easily evaluated. The length distribution of 
fractures in this case has the following form 

where Ki(-) is Macdonald's function. 

7.3 Determination of Fracture Parameters from 
the Core 

The techniques for the determination of the fracture parameters for different media 
were tried on cores of a fractured rock extracted from Well 96 of the condensed gas 
deposit in Orenburg. Cores were taken from the productive layer of the deposi­
tions constructed from organogenic and organogenic-fragmental limestones of the 
Artine, Sakmarian, and Assel stages of the lower Permian. An interval of dense 
limestones with low porosities (0.7-3.3%} and minor permeabilities (0.001·10-15 -

0.8·10-15m2 }, opened at a depth of 1379-1436.2 m, were chosen for investigations. 
These are fractured reservoir rocks. 

In the studied interval of 57 m thickness, 10 specimen of the core were chosen. 
The specimen were "cubes" of dimensions 5 x 5 x 5. 

The method described in [81] was used to detect traces on the lateral faces 
of each cube. According to this technique, capillary saturation of the rocks with 
a luminescent solid was carried out, after which they were photographed in the 
ultra-violet to detect open fractures on the pictures of the faces. On each of the 
pictures, a pattern with concentric circles R~ = 0.5; 1.5; 2.5 em was put and the 
number of traces inside each of the circles was calculated. After averaging over 
60 faces of the studied specimen, the quantities v:, average values of the number 
of the fracture traces inside each circle of radius R~, were found. The constructed 
histogram vHRi) (fig. 51} was processed according to the technique developed 
based on the results obtained in §7.1. The equation (7.2} is rewritten in the form 

(7.17} 

By introducing the notations Y = nd'\ X= ds, ai = 4RUv;, bi = 1rR'~Jv:, the 
system (7.17} can be represented in the form 

(7.18} 

Formally, this system must be solved by breaking it up in pairs of equations 
and further averaging of the obtained results. In the averaging of the solutions 
of the paired systems, their statistical weights determined by the radius R~ must 
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Figure 51: Histogram of the fracture trace concentration on the core surface 
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Figure 52: Plot of the graphical solution to a system of algebraic equations for 
the determination of the concentration and the average size of fracture traces 

be taken into account. However in practice it is more convenient to solve the 
overdetermined systems of linear equations (7.18} graphically. 

The linear relations (7.18} constructed for different values of ai and bi are 
presented in fig. 52. Intersection points of these lines define the quantities n;t1 

and < d. >. It can be seen from the plot in fig. 52 that the quantities na and 
< d. > are determined up to some error which can be estimated straight from the 
plot. The following average values were found, na = 0.4 em -t, < d8 >= 1.8 em. 
Consequently the volumetric concentration of disk fractures n• = 0.16 cm-3 and 
their average radius, < Tt >= 2.3 em. 

To find the length distribution function of fractures, the number of the traces, 
from a given length interval, on the surface of the core inside a circle of radius 
R' = 5 em was determined. Averaging over 72 faces of the studied specimen 
yielded the function Na(ds) (fig. 53}. Then the distribution f(d8 ) was determined 
from formula (7.10}, taking account of (7.9}. The histogram of the half-length 
distribution of fracture traces is presented in fig. 54, a. The approximating rela­
tion, which is close to exponential, is marked with a dotted line. The results of 
determining the probability density function F(rt) according to the formula (7.16) 
are presented in fig. 54, b. 

Note that the function f(d8 ) and, consequently, F(rt) are determined ade-
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Figure 53: Histogram of density of fracture traces on the surface of the core 
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Figure 54: Normalized probability density functions: a - of fracture traces with 
respect to half-lengths; b - of circular fractures with respect to dimensions 

quately only within certain intervals 

dm < ds < R', dm < Tt < R' 

The upper bound of the interval of the reliable determination for the functions 
f(ds) and F(rt) is limited by the size of the core, with the error in determination 
of f(ds) going up abruptly when ds --+ R'. The lower bound is due to inaccuracy 
in the determination of the concentration of the fracture centers when 2d8 < 0.5 
em. This is due to the imperfection of experimental technique for the calculations 
in question for small values of d8 • Therefore nothing definite can be said about the 
behavior of f(ds) as d8 --+ 0 and, consequently, of the behavior of F(rt) as rt --+ 0. 
A certain decrease of f(ds) observed for 2d8 < 0.5 em might as well be explained 
by the inaccuracy of the calculations of such fracture traces. 

The half-length distribution functions for fractures obtained in this study 
proved close to the exponential relation that was also observed during the study 
of the micro fracture half-length distribution in metals [82]. 



Part II 

Effects of Physical Fields on 
Recovery of Mineral 

Resources 
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From the practical point of view, it is vital to find optimal regimes of treatment 
with various kinds of physical fields applied to reservoir rocks to increase the 
rate of mineral resources recovery. Theoretical study presented in Part 1 of this 
book showed that micro heterogeneous structure of the medium can cause sharp 
intensification of physical effects when they are intensified locally in some group 
of capillaries. In these cases, weak changes (which are reversible in homogeneous 
media) in a saturated medium caused by action from physical fields (acoustic 
and/or electromagnetic) on micro capillaries can transform into irreversible ones. 
The latter can lead to irreversible changes in macroscopic features of the medium 
(permeability, porosity, electric conductivity). 



Chapter 8 

Conductivity of a 
Heterogeneous Medium 
under Impulse and 
Alternating Current 

Even a preliminary theoretical study allows to assume, with a considerable likeli­
hood, that the use of impulse electric current has certain advantages in applications 
over other types of electric action. This is due to both the diminishing of the role 
of dissipative processes {in particular, heat conducting losses) and to the fact that 
the concentration of energy release in an impulse can bring about the realization 
of a more effective mechanism for the conductivity change in a medium at the 
micro level. 

8.1 Threshold Values for Electric Treatment with 
Impulse Current 

The majority of reservoir rocks consists of a strong skeleton and a far weaker com­
ponent, cement {clay, biotite, etc.), that conducts electricity and fills mainly the 
thin capillaries. It was shown in §§1.2 and 1.3 that as the electric current passes 
through a saturated porous medium, the density of energy release concentrates 
sharply in thin capillaries, limiting the velocity of the fluid flow in the medium. 
Such concentration is caused by heterogeneity of the medium and results in the 
increase of temperature T and temperature gradients T' in these capillaries rela-

143 
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tive to the average in the medium. Since the fluid flow in cement is hardly ever 
observed, temperature can fall primarily due to heat conductance of the skele­
ton of the medium, the fluid, and the cement. When certain threshold values of 
temperature Tc ("temperature mechanism") or temperature gradient ("gradient 
mechanism") are reached, the mechanical tensions developing in the thin capillar­
ies of the cement destroy it. The cement is then ejected entirely or partially into 
larger cavities. This effect results in a notable increase of the electric conductivity 
of the medium {by up to several tens of per cent) and to substantial increase of 
the permeability (by several times). 

We shall determine the values of these thresholds for electric treatment with 
impulse current as functions of the impulse parameters, of the pore space structure 
and the fraction of the non-conducting capillaries in the medium. Since the electric 
conductivity of the skeleton is usually negligible, we can suppose that the current 
flows only through the inter-grain space filled with fluid or cement. Let the average 
field intensity in the medium E(t) = Eou(t), where Eo is the amplitude and u(t) 
is a time function that sets the form of the impulse, be given. If the contribution 
of the high-frequency harmonics {i.e., those with frequencies 100kHz and more) 
to the Fourier spectrum of the impulse is small {this is valid for the duration of 

impulse T > w-s - w-6 s), then the deviations of the form of the current in the 
medium from u(t) due to the reactive components of the electric conductivity can 
be neglected. 

If the radii of the capillaries in the medium are sufficiently larger > >..' fu' :=::$ 

w-6 m, then the surface conductivity of the capillaries can also be neglected. 
For the majority of rocks, the coefficients of temperature conductivity of the 

fluid, cement, and skeleton differ by no more than 3 to 5 times. Therefore, for 
clarity, without significant loss of accuracy, the coefficients of temperature con­
ductivity of the fluid, cement, and skeleton can be considered the same, and equal 
to "'t ("'t :::;$ w-7 m2 /s). 

Since the characteristic size of a grain l :=::$ w-3 m and theradii of the capillaries 
filled with cement r :=::$ w-6 - w-4 m, it follows that the characteristic periods of 
temperature exchange for a capillary Tk = 1/4r2K"t1 :::;$ 2 ·10-6 - 2 ·10-2 sis much 
less than those for a grain Tl = 1/4l2K"t1 :=::$ 2 s. Hence for impulse current with 
the impulse period T < Tj, the overlap of the thermal fields of adjacent capillaries 
can be neglected. 

For r ;: w-6 m, the current density in a capillary can be considered constant 
across the cross-section, and the boundary effects at the capillary (or the capillary 
- pore) junctions can be neglected. 

Suppose the electric current I(t) = Iou(t), where Io is the amplitude, flows 
through two successive capillaries oflength leach and with radii r1 and r2. Assume 
that l ~ r1, r2 and r2 2: r1 and address the determination of the temperature 
distribution in two semi-infinite capillaries. 
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Introduce the cylindrical coordinates r, 4>, z with the origin at the center of the 
capillaries and with the z-axis coinciding with the axis of the capillaries. In this 
case the current density and the energy release density rate (expressed in units 
of degree per second) vanish outside the capillaries and are determined by the 
expressions 

(8.1) 

inside the capillaries. 
Here Ci, Pi, u~ are, respectively, the specific heat, the density and the electric 

conductivity of the fluid or cement in a capillary (depending on what it is filled 
with); i = 1, 2. 

The heat equation, as well as the boundary and initial conditions in the cylin­
drical coordinates with regard to the independence of temperature and other quan­
tities on the angle 4> and the fact that there is no fluid flow, for such a complex 
capillary has the following form, 

( a2T 1 a ( aT)) ar 
Itt az2 + r ar r ar + q(t) = at' (8.2) 

I arl arl arl T -- -- - -o 
t=O- ar r=O- az z=-oo - az z=oo - . 

Here the term that has to do with the source, q(t), is determined from the rela­
tionship (8.1). 

Green's function for the problem (8.2), with regard to (8.1), is [83] 

[ 2rr1 
] 

1 1 1 [ (z- Z1) 2 + r2 + r 12 ] Jo 4~tt(t- t') 
G(r , z, t , r, z, t) = exp 4,.,t(t _ t1) [47rKt(t _ t1)]3/2 

Here r 1, z1, and t 1 are the current values of radius, axial coordinate and time; 
Jo ( ·) is Bessel's function of a purely imaginary argument of the zero order. 

Consequently temperature is determined from the expression 

T(z,t) = j dt1q(t1 ) [ J dz1 ] dr1 27rr1G(r1 ,z1,t1,r,z,t) 
0 -oo 0 

{8.3) 

+ jdz1 J dr1 2n1G(r1,z1,t1,r,z,t)l 
0 0 

Distribution of temperature for an infinitely long capillary can be found from 
(8.3) after setting r1 = r2 = r and integrating with respect to z1 and r'. The 
greatest temperature on the capillary axis (r = 0) at the moment t is 

T(t) = w(Io, r, t) A(y') A01 (8.4) 
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1 

A(y') = I u2(x}(1 - exp(y'-1 (1- x)-1 }dx, 

0 

, 4 t - 2 y=KtT 1 Ao = A(O} 

Here w(/0 , r, t) is the energy (expressed in degrees) per unit volume released in a 
capillary as the impulse passes through it 

(8.5} 

The z-component of the temperature gradient (we shall denote it by T') can be 
obtained by differentiating the expression (8.3} with respect to z and integrating 
it with respect to z' and r'. T' assumes its maximal value at the center of the 
capillary junction (r = 0, z = 0}. If r2 ~ r1 then T' ~ 0. If r2 ~ r1 then the 
contribution of the second term in (8.3} can be neglected. After denoting r 1 = r, 
we find 

T'(t) =w(/o,r,t)B(y'}A010'-1, O' = {411"Ktt)112, 
1 

B(y') =I u2{x}[1- exp(-y'-1{1- x)-1}]{1- x)-112dx {8.6} 

0 

In this case the conditions of achieving any of the threshold values Tc or T: 
can be written in the following form, 

T(t) = Tc, T'(t) = r: {8.7} 

Consider the dependencies ofT and T' on the duration T of the impulse for a 
fixed energy density in the impulse w(Io, r, t) = wo. It follows from {8.4} that for 

T(r) < wo, T'(r) ~ woBoA010'-1, Bo = B{O} {8.8} 

Evidently, for short impulses, the maximum temperature that can be achieved 
in a capillary is bounded by the value w0 of energy density in the impulse. At 
the same time, the temperature gradient grows proportionally to w0r-112. In 
other words, if wo < Tc then the "temperature mechanism" of cement destruction 
cannot be realized for any r, while the "gradient mechanism" is realized for r < 
(woBoT:- 1 Ao)2 /{411"Kt) according to {8.7) and {8.8}. 

Using the asymptotics for the functions A(y') and B(y') for y' ~ 1 (r ~ Tk), 
we obtain 

[Tk (en) 1 (Tk )2 (71< )3] T(r) = Cowo -:;:-In 'YoT + 2 -:;:- - o -:;:- , (8.9) 

T'(r) = C~w0B0A01 r- 1 [ (~) 112 - 11"-112 (~) 312 + o (~) 512] 
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Here Co and Cb depend on the form of u(t) and are of the order unity each; 
"Yo R:l 1.780 is the Euler- Masceroni constant. It can be seen from (8.9} that as T 

grows, T' decreases quicker than T. 
Compare the energy density Wt and amplitude It of a short impulse (r < Tk}, 

when T'(rt) = T~ and (8.8} holds, to the energy density w2 and amplitude I2 of a 
very long impulse (r2 ~ Tk}, when T(r} = Tc and (8.9} holds, 

For example, for Tt = 10-5 s, T2 = 2 s, Tk = 2.5 · 10-4 s (for r = 10-5 m, 
Kt = 10-7 m2 /s and T~ R:l Tcr-t} we obtain w2/Wt R:l 5 · 103 , I2/ It R:l 0.16, i.e., if 
the "temperature mechanism" is realized, it is possible to decrease the amplitude of 
the impulse a little (by a factor of 5 to 10}. At the same time, energy consumption 
grows by thousands of times, and the duration of impulse has to be increased by 
hundreds of thousands of times. Thus impulse current with short impulses and 
a large amplitude, for which the "gradient" mechanism of cement destruction is 
realized, is the most effective one. 

The dependence of the threshold value of the current amplitude Ic on the 
capillary radius r for a fixed duration T of impulse can be determined from formulas 
(8.4} - (8.6} 

(8.10} 

8.2 Permeability and Electric Conductivity un­
der Impulse Current 

Consider impulse current passing through an element of the medium. Current 
flows both along "parallel" rt-chains of the "skeleton of the infinite cluster" and 
along bridges that connect the rt-chains. However the current flowing along rt­
chains can be calculated as though there are no bridges, since the allowances to 
the presence of these bridges, and consequently, the possible rearrangement of the 
current flow in rt-chains, are insignificant according to the results of §1.2. 

Let the fraction of capillaries filled with cement be equal to K 1 = 1 - K. Fur­
thermore let all these capillaries be thin, i.e., K 1 =< a*, 1, rz >, where rz is the 
radius of the thickest capillary filled with cement. 

All chains with a*$ r $ rz do not conduct. We will further mark the quantities 
relating to the fluid with index 1, and those relating to the cement, with index 
2. Using the expressions (3.1}, (8.1} for amplitude I0 (rt) of the current flowing 
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through an r1-chain during the first impulse, we have 

Io(rt) = Eou't6.r~F0- 1 (rt), 'Yrr = uUu~, 
Fo(rt) = r~( < Tt, r-2 , Tz > 'Yrr+ < Tz, r-2 , a* >) 

(8.11} 

(8.12} 

Here 6. ~ 3 + 4 for model II and 6. ~ 6 + 8 for model I. By differentiating 
10 ( rt) with respect to r1, one can make sure that Io ( rt) is a monotone increasing 
function of r1 (for fixed E0). The hierarchy of r1-chains with respect to the size 
of the thinnest capillary coincides with the hierarchy of r1-chains with respect to 
the value of their average electric conductivity. 

Since Ic(r, r) are monotone increasing functions of rand T (this can be verified 
by differentiating (8.10} with respect to r and r}, it follows that the threshold 
Tc or T: will be exceeded in the r1-capillary of the r1-chain. The minimal field 
intensity E.(r1,r} for which this happens can be found by setting (8.10} equal to 
(8.12} for r = r1 

(8.13} 

Similarly, the maximal field intensity E*(rt, r} for which the threshold (8.10} 
will be achieved in the thickest non-conducting capillary- the rz-capillary of the 
r1-chain- can be found by setting (8.10} for r = rz equal to (8.11} 

(8.14} 

For Eo < E.(r) neither of the thresholds, Tc and T:, is going to be exceeded 
in any non-conducting r1-chain, and therefore the same holds for all capillaries in 
the medium that have the same property. Correspondingly, for Eo > E* ( T) one of 
the thresholds, Tc or T:, is going to be exceeded in all non-conducting capillaries 
of the medium. Thus E.(r} and E*(r) can be called, respectively, the minimal 
and the maximal field intensity for the medium. 

Consider the case when the relationship E.(rt,T) <Eo < E*(r1,r) is valid 
for an r1-chain. Let m > 1 impulses of current have passed through the medium. 
Denote by R( r1, m) the radius of the thickest capillary in the r1 -chain where the 
threshold (8.10} was achieved as the m-th impulse passed through it. Suppose 
that R( r1, m) < r z (for m = 1, R( r1, 1) = r1). In this case in all capillaries with 
r $ r1 $ R(rt,m) the threshold {8.10} was exceeded and therefore complete or 
partial destruction and ejection of cement took place in these capillaries. Since 
u~ > u~, the fluid that replaces the cement increases the electric conductivity 
of the capillary. The cement ejected from the capillary gets into the adjacent 
pore in model I or a thicker capillary {if filled with fluid} in model II. These 
phenomena decrease the electric conductivities of the latter a little. Let the electric 
conductivity of the capillary increase by t:(r, m) times after the m-th impulse has 
passed through it {1 $ t:(r, m) $ 'Yrr if no additional destruction of capillaries 
happens, and t:(r, m) > 'Yrr otherwise). The amplitude of the current flowing 
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through the r1 -chain when the next, ( m + 1 )-th impulse is generated is determined 
by the expression 

where 

F1(r1.m) = r~(< r1.r2 f(r,m),R(r1.m) > 
+ < R(r1,m),r-2 ,r.z > 'Yu+ < r.z,r- 2 ,a* >) 

(8.15) 

Therefore the critical radius R( rt. m + 1) is determined from the equation 

(8.16) 

Since the amplitude of the current {8.15) increases as m grows and Ic(R, r) is 
a monotone increasing function of R, it follows that R( r1. m + 1) > R( r1. m). 

Thus the considered process is self-supporting. If the sequence R(r1. m) con­
verges to Ro(rl) < r.z, which is determined from {8.16) by substituting R(rl) for 
R(r1. m), then for the given E0 , cement is destroyed only in thin capillaries with 
r1 ~ r < Ro(rl) < r.z, and the r1-chain remains non-conducting. If it turns out 
that for some m, R( r1, m + 1) > r .z, then in all non-conducting capillaries of the 
r1-chain (r1 ~ r ~ r.z), destruction (perhaps, partial) of cement takes place, f falls 
within the interval 'Yu > f(r,m) > 1, and the r1-chain becomes conducting. 

We shall now directly calculate how the changes of relative permeability K / K 0 

and electric conductivity E/'£0 depend on the duration of the treatment with 
impulse current. (Ko and '£0 are the values of the mentioned quantities before 
electric action was started.) 

Suppose the hydraulic conductivity of an r-capillary after the m-th impulse 
have passed through it is determined by the expression 

(8.17) 

where w(r, m) = 1 for all capillaries with r.z ~ r ~ a*; w(r, m) = 0 for the 
non-conducting capillaries where the threshold {8.10) was not reached; and 0 < 
w(r, m) ~ 1 if the threshold was exceeded, and no additional destruction of capil­
laries took place (otherwise w(r, m) > 1). 

Based on (1.11), we can represent the specific electric conductivity of the 
medium E{m) and its permeability K(m) in the following form 

rc 

E(m) = E01 I Io(rl, m) dn(rl); 

rc 

K(m) =I k(r1,m)dn(rl); (8.18} 

a. 
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Figure 55: Results of calculations for a model function f(r): a- dependencies of 
K/Ko (1, 2) and "£/"£0 (1', 2') on the duration t of treatment with impulse current; 
b- dependence of the greatest possible change of permeability on the amplitude 
of the field intensity in the impulse 

Note that k(r1 ,m) = 0 if there is a non-conducting capillary in the r1-chain 
i.e., w(r,m) = 0 for some r1 ~ r ~ rz. 

We shall simulate the pore space of the medium by a simple cubic network, as 
usual. The following characteristic values for the parameters of the medium and 
the action were used for calculations for model I. a* = 2. w-6 m, a* = l = w-3 

m, Kt = 10-7 m2 /s, b. = 6, <T~ = 0.05 cm-2 · m-1 ' P! = 103 kg/m3 , 'Ycr = 1.1, 
K' = 0.6, Tc = 0.1 K, T: = 104 Kfm, f(r, t) = "'(;1 , w(r, t) = 0 if the threshold (8.7) 
was not exceeded in the r-capillary and w(r, t) = 1, f(r, t) = 1 if this threshold 
was exceeded. 

In fig.55, the results of the numerical calculations for the function J(r) of the 
form 

f(r) = Cri exp( -Dri) (8.19) 

are presented. The values of C and D were chosen so that the normalization 
condition for f(r) was fulfilled, and the average capillary radius in the medium 
was the same for all f(r) as the exponents i and j varied. 

Both for i = 1, j = 2 (heterogeneous medium) and for i = 5, j = 10 (ho­
mogeneous medium) (marked in the figures by numbers 1 and 2, respectively), 
for the parameters of the medium and impulse given above, only the "gradient" 
mechanism of cement destruction is possible. 

In fig.55, a, the t dependencies of K/Ko and "E./"£0 are presented forE= E0 , 

r = 0.005 s, < r >= 3 ·10-4 m, u(t) 9! 1. Here Eo= kJ(o:/fJ)o-*cpf(rfo-), where 
o: is the coefficient of volumetric expansion, f3 is the coefficient of temperature 
expansion, c, and p are the specific heat and the density of the fluid, o-* is the 
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typical value of the destruction strength for the cementing substance, u is the 
electric conductivity of the fluid, k is the coefficient characterizing the pore space 
structure of the medium. 

In both cases the permeability and the electric conductivity reach saturation 
values for large t (we shall denote the limiting values by K' and E', respectively). 
These values are less than the permeability K" and the electric conductivity E" of 
the corresponding media without cement in thin capillaries (~t' = 0). The greater 
the quantity E~r, which is proportional to the energy of a single impulse, and 
the less r, the closer K' and E' to K" and E". If ~t' < 0.15, then K and E 
stop changing soon and no significant growth of these quantities is observed. If 
~t' > 0.15, then the permeability can grow by ten and more times and the electric 
conductivity, by several dozens per cent. 

In fig.55, b, the In Eo dependencies (for ~t' = 0.6) are presented for a fixed value 
of the energy in the impulse w0 = 105 V2 s/m2 (curves 1, 2) and for w0 = 1.2 ·10'4 

V2 s/m2 (curves 1', 2'). The presented plots show that the most significant changes 
of K and K' occur for small T and large Eo. As the medium becomes more 
homogeneous these changes become more apparent. The more homogeneous the 
medium, the less E. ( T) and the wider the range 

E.(r) + E*(r) 

8.3 Determination of Threshold Values for Elec­
tric Treatment 

It was shown in §8.1 that impulse electric treatment, i.e., electric treatment by 
currents with large amplitudes (and consequently with large Eo) is most effective. 
However its realization requires special equipment, and therefore the case of electric 
treatment by currents with small amplitudes (and consequently with small Eo) is 
more interesting for common practice. This case, however, causes substantial 
increase to the duration of electric treatment. 

Take periodic current. To be able to disregard electro-kinetic phenomena, 
suppose that the average field intensity for a period vanishes, and the period is no 
greater than 0.1 second. 

If the contribution made by the high-frequency harmonics (those with fre­
quencies greater than 100 kHz) to u(t) is small, then the effects of the reactive 
components of the electric conductivity of the medium can be neglected. In this 
case the current in any capillary can be given in the form I(r) = Iou(t). 

Since, as it was mentioned above, the characteristic heat exchange periods for 
a capillary are much less than those for the grains, and the heat capacity of a grain 
is much greater than the beat capacity of a capillary (their ratio is of the order 
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l2r-2 > 1), then the superimposition of the thermal fields of adjacent capillaries 
and the increase of the average temperature in the medium with respect to the 
increase of the temperature in the capillaries can be neglected. 

Under exactly the same assumptions as those made in §8.1, expressions similar 
to {8.4), {8.6) can be obtained. Taking into account that t > Tk(r), we use the 
asymptotic expressions for the function A(y') and B(y') for y' > 1 again. Thus 
we obtain 

(8.20) 

The relationship (8.20) shows that T and T' are monotone increasing functions 
oft. However the temperature gradient T'(t,r) is upper bounded fort> Tk(r), 
and therefore for currents with 

the "gradient mechanism" of cement destruction cannot be realized. It is evident 
from (8.7) and (8.20) that for 

t > 9" = ')'oe-1r(r)exp(p'Tc/(lT:)J, p' = C~Bo/(CoAo) 

and 10 >I' the "temperature mechanism" of cement destruction prevails. 
For T: Rj Tcr-1 (strong cement), form (8.20) we find that 9" is small. But 

forT: Rj Tcl-1 (weak cement), 9'' Rj Tk exp(p'lr-1) > Tk(r), and the "gradient 
mechanism" of cement destruction remains the principal one. 

8.4 Permeability and Electric Conductivity after 
Electric Treatment 

Consider the flow of the electric current through an element of the medium. Since 
the expressions (8.20) are monotone increasing functions oft and monotone de­
creasing functions of r, it follows that initially the threshold values of temperature 
Tc or the temperature gradient T: are assumed in the thinnest r1-capillaries of r1-

chains at a certain instant r0(r1). This instant can be called the minimal starting 
time of the irreversible changes to the permeability and the electric conductivity 
of the rt-chain. 

H we assume that 
{8.21) 
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the following approximate expressions can be obtained based on (8.20) 

{ 
')'.,.e- 1 r~c(r1)exp[AnFJ(r1)r}2]; 

ro(rl) ~ 
11'- 1 r~c(rl)[1- A~r1 l- 1 F0- 1(rl)r}2] 

An = BnTcE02 ; A~ = Bnp'-1T:lE02 ; 

Bn = 411'2C2P2~t(cr~coAo')'.,.crD- 1 

The condition (8.21) is satisfied when 

{ 
(BnTc) 112 Fo(r1 )r}1 

Eo<E1= 
(Bnp'-1T:l)112(r1l-1 )112 Fo(r1 )r}1 

153 

(8.22) 

(8.23) 

The quantity E1 qualitatively defines the concept of smallness of the current 
amplitude introduced in §8.3. The upper expressions in (8.22), (8.23) are valid 
when the "temperature mechanism" of cement destruction is realized ((8.21) is 
already valid when Eo/ E1 is of the order several times unity). The lower ones are 
valid when the "gradient mechanism" is realized. 

Suppose that for t > r~c(rl) in all capillaries with r1 ~ r ~ R(r1, t) one of 
the thresholds (8.7) was exceeded, and therefore partial or complete destruction of 
cement took place there. Considerations similar to those stated in §8.2 in deriving 
the relationship (8.15) allow to determine the amplitude of the current that passes 
through the r1-chain at the instant t 

where 

F2(r17R,t) = r~(< r1,f-1(r,t)r-2,R > 
+')'.,. < R,r-2,rz > + < Tz,r-2,a* >) 

(8.24) 

After substituting (8.24) in (8.20), we obtain R(r1 , t) as an implicit function 
of r1 and t 

{ 
')'.,.e- 1 r~c(R) exp[Anr~c(R)rk" 1 (r1 )Ff(r1, R, t)r}2], 

t = t(R, r 11 t) = 
1r- 1 r~c(~)[l- A~r~c(R)rk" 1 Ff(r11 R, t)r}2] 

(8.25) 

Obviously, fort= r0(rl) we have R(r1,r0 (rl)) = r1, and (8.25) becomes (8.22) 
and (8.24), (8.11). Denote by Tq the time when the threshold {8.7) is achieved 
in the thickest capillary of the r1-chain, i.e., R(r1 ,rq(r1)) = rz. Suppose that 
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~~-----++------~~~--~t~gt~/~ 

Figure 56: Variation of the permeability of the medium depending on the duration 
of treatment with periodic current 

starting from t;::: Tq(rl) the r1-chain begins to conduct. The function F2(rt,R,t) 
depends on its argument rather weakly and is close to Fo(rl). Therefore, after 
setting R = rz, t = To(rl), we can obtain the following value from (8.25) with 
good accuracy 

Tq(r!) ~ t(rt, rz, To(rl)) 

The relationship (8.22), with regard to the condition (8.21}, shows that To(rt) 
decreases rapidly as r1 grows (perhaps, with small violations of monotonicity), 
while Tq(rl) > To(r1) and decreases more rapidly than To(rtO as r1 grows. There­
fore the thick rz-chains are the first of all r1-chains to become conducting and 
increase the electric conductivity, and a*-chains are the last to do so. This results 
in the conservation of the initial hierarchy of r1-chains with respect to the values 
of their average electric conductivity during the electric treatment. 

It follows from (8.21), (8.25) that for the "temperature mechanism" R(rt,t) 
grows slower than In t, while for the "gradient mechanism" R(rt, t) is upper bounded. 
If we also take into account the fact that large capillaries affect the average hy­
draulic and electric conductivity of an r1-chain to a small degree, we can notice that 
as time passes, K(t) and I;(t) steady. (According to (8.18), the major contribu­
tion to the alteration ofthe specific electric conductivity I;(t) and the permeability 
K(t) of the medium is made by the thick r1-chains.) 

We shall proceed to determine the starting time t' for changes of I; and K in 
the medium and the time t" when these changes stop 

t'(Eo) = min(To(rt,Eo)), t"(Eo) = max{Tq(rt.Eo)) (8.26) 

Here the minimum and maximum are taken over all non-conducting r1-chains 
(a* :5 r1 :5 rz). 

Results of the numerical calculation of K(t) for a function of the form (8.19) 
and the same values of the parameters as in §8.2, are presented in fig. 56. 
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Calculations show that fori = 1, j = 2 (heterogeneous medium) and fori = 
5, j = 10 (homogeneous medium) and for the chosen characteristic values of the 
parameters of the medium, only the "temperature mechanism" is possible. 

Presented in fig. 56 are the curves calculated for the following sets of charac­
teristics of the process and the medium, 1- E0 , V /m, i = 5, j = 10; 2- E0 , V Jm, 
i = 1, j = 2; 1' - Eo/2, V Jm, i = 5, j = 10; Z - Eo/2, V /m, i = 1, j = 2. It can 
be seen from the presented results that the more homogeneous the medium (for 
fixed< r >and K1) and the greater Eo, the more the relative changes of K(t) and 
I:(t) and the steeper the initial piece of the relation K(t). 

The quantities t' and t" depend most significantly on E0 , the values of thresh­
olds Tc and T:, the average radius< r >of capillaries, through F2 (r1 ,R,t)- on 
the variance of f(r) and the fraction K1 of non-conducting capillaries. Usually 
these quantities lie in the following ranges, t' from several seconds to several hours 
and t" from several minutes to many years. This fact implies that for some me­
dia the maximal values of I: and K cannot be achieved during electric treatment 
with small current. According to the calculations, the optimal duration of electric 
treatment (when the most significant changes of I: and K occur) is a quantity 
of the order (102 - 105)t'. Here the more homogeneous the medium (for a fixed 
< r > ), the greater t' and the smaller the interval between t' and t". 



Chapter 9 

Changing Conductivity and 
Pore Space Structure with 
Electric Current. 
Experiments 

9.1 Conductivity of Sandy-Argillaceous Medium 

We shall analyze the results of laboratory experiments on the electric treatment 
of a sandy-argillaceous rock by a "small-density" current. These experiments were 
carried out to study the nature of reversible changes to the permeability and the 
electric conductivity depending on the value of the electric field intensity, the 
duration of the electric treatment, and the total energy released per unit mass of 
the rock. 

The experimental set-up completely coincides with the one presented in fig. 
41. Voltage is supplied from a source of impulse or alternating current via the 
power electrodes at the ends of the tube. The electrodes located in the middle 
part of the tube allow to measure the current and the voltage in the rock with no 
influence from the surface effects that may take place near the power electrodes. 

The study was conducted on sandy-argillaceous rocks whose fractional struc­
ture was previously determined (see table 9.1}. The average grain size of series 
I was h = 0.203 mm, and of series II, l2 = 0.186 mm; the variance for series I, 
u~1 ) = 0.122, for series II, u~2) = 0.117; clay made up 11.07% for series I and 
14.5% for series II of the total mass. Thus by the fractional structure, the speci­
fied media are averagely homogeneous (u~i) /li!:::! 0.6) and averagely mudded-out. 

157 
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Table 9.1: 

Portion of Fraction in 
Grain Size, mm Total Mass of Specimen,% 

I II 
2.5 0.04 0.02 
1.25 0.13 0.20 
0.63 1.85 3.15 
0.315 31.88 24.04 
0.16 44.34 36.57 

< 0.16 21.78 36.02 

However, since during the fluid flow, clay accumulates in the thin capillaries, it 
follows that the fraction K-1 of the mudded out capillaries is small. This effect sin 
the low conductivity. 

At first, vertical tubes were packed with the rock, with distilled water supplied 
gradually from the bottom sides of the tubes. This direction of water upplying en­
abled to achieve the maximal displacement of the air from the rock pores, uniform 
packing and saturation of the rock with the fluid. Three tubes were usually used. 
Electric treatment with impulse current was carried out in the first tube; electric 
treatment with alternating current, in the second; and the third one was left for 
reference. The volume of water used for the saturation of the rock in tubes was 
measured, and the porosity was determined to equal 18 to 23 % in this series of 
experiments. 

After the tubes have been packed, the flow of distilled water through their 
cross-section was set up for 15 to 25 days, until the production rates of the tubes 
steadied. Further, the electric treatment of the rock with alternating current was 
carried out, with simultaneous measurements of its production rate and electric 
conductivity taken. 

High resistance of the rock did not permit to achieve large values of the current 
density even for large values of the electric field intensity. 

The experiments showed that the electric conductivity of the rock bears a 
notable dependence on the intensity of the applied electric field. Its permeability 
increases reversibly by 30- 40% for Eo V /m, and three-fold for 3E0 V /m. After 
the current was switched off for 5 - 10 minutes, the permeability fell to its original 
value. In other words, for small current density, in spite of the large values of field 
intensity, no irreversible changes to the permeability were observed. This confirms 
the temperature-related nature of the causes for the irreversible changes, which 
were discussed in chapter 8. Substantial reversible changes in the permeability 
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Figure 57: Dependence of the permeability change for a sandy-argillaceous 
medium (saturated with a leaching solution) on the duration of electric treatment 
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Figure 58: Master scheme of the dependence I< I I< 0 = f ( w) for a series of exper-
iments 

and the electric conductivity with almost no heating (temperatures of the fluids 
flowing in and out of the tubes were taken) shows that these changes are related 
to the destruction of layers of bounded fluid. The notable effect of these on the 
permeability of a medium was shown in chapter 3. 

After 30 to 40 days of flow, water was replaced by a leaching solution of low­
concentrated {0.01-normal) sulfuric acid. The presence of acid caused intensive 
ion-saline exchange of suspensions which gradually precipitated on the surface of 
the capillaries, and after the initial increase of the permeability {I< I I<0 = 1.5+ 2.5) 
decreased the transmission properties of the medium down to I< I I<0 = 0.5 + 1.2. 

During the flow of acid its electric conductivity increased by 40 times, which 
allowed to substantially augment the current density. However for Eo V lm no 
significant reversible decrease of the electric conductivity was observed. At the 
same time, for 1.3E0 V lm and electric treatment going on fort= 20 minutes, the 
permeability increased six-fold. When the duration of the treatment was greater, 
the release of the gas phase took place in the solution, causing the decrease of the 
permeability and the electric conductivity as time passed. 

Presented in fig.57 are several typical dependencies of the permeability upon 
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the field intensity for a fixed value of total energy used for the electric treatment 
of a unit mass of the rock 

t 

w = ~E~ I ~(t)dt 
0 

Intensities E = 0.29E0 , 0.75E0 , l.2Eo, 2.16Eo, and 2.83Eo V /m correspond to the 
numbers 1 - 5 of curves. 

The master schedule of the dependencies K/Ko = f(w) for a series of ex­
periments (around 200) is presented in fig.58. It can be seen that for w > 0.2 
kilowatt-hours per kilogram, after the electric treatment with alternating current, 
notable irreversible increase of the permeability is observed. Also note that after 
the electric treatment, a substantial increase {by two to five times) in the concen­
tration of the useful component {metal) in the solution filtered out occurs. 

Scattering of the experimental points in the region w $ 40 kilowatt-hours per 
kilogram is minor {the relative error is no more than 10 %). For w > 40 kilowatt­
hours per kilogram, the relative error can be as big as 30 % {the average error is 
~ 15%). This fact is due to water boiling and consequent necessity to take into 
account the heat emission during its cooling and the energy efflux with the flowing 
fluid. 

Using the plot of the dependence K/Ko = f(w) (see fig.58), one can calculate 
the change of K(w) {or K(T), where T is the temperature of the medium) as 
a function of the duration t of treatment according to the energy w put in a 
unit mass of the given ore and the intensity Eo of the field responsible for the 
electric treatment. The expected value of the irreversible change to K can also be 
calculated using this plot. 

9.2 Pore Space Structure of a Sandy-Argillace­
ous Medium after Electric Treatment 

In §9.1, the results of studies of both the reversible and the irreversible changes 
of permeability for different parameters of electric treatment were described. For 
sufficiently large values of the field intensity, irreversible changes of the permeabil­
ity are constantly observed. In particular, this phenomenon is accompanied by 
evident discharge of substance {clay, small sand) with the flow of the fluid. This 
proves indirectly that the pore space structure of the medium changes. 

In this section, experimental data of the research on the irreversible changes 
of the permeability and the pore space structure of the medium after electric 
treatment with impulse and periodic current are presented. 

Studies were carried out using cores of sandy-argillaceous rocks whose fractional 
structure was determined beforehand (see table 9.1). To determine the pore space 
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structure of a medium characterized by a radius probability density function for 
the capillaries, tubes with length 1 m and diameter 34 mm were used. Along the 
full length of the vertical tube (see fig.41), electrodes were set at the intervals of 
25-50 mm. 

To exclude the ion exchange between the rock and the solution flowing through 
it, a weak (0.01-normal) solution of CaC12 was used. Its electric conductivity was 
determined beforehand, and the electric conductivity of clay taken from a portion 
of the studied rock and saturated with the same solution (saturation of clay lasted 
almost 60 days), was measured. 

The experiment involved five stages. 
Stage 1. A volume of the solution greater then the pore volume of the rock was 

run through the rock. This stage lasted 5 to 15 days depending on the properties 
of the rock. The column production rate Q was being measured daily, and the 
permeability of the medium was determined 

After a steady value of K was established, electric current of frequency w = 5 
kHz and small amplitude (for the current density jo to be much less than the 
critical density ic)· This allowed to significantly reduce the error due to the ca­
pacitive reactance. For a fixed value of current, the resistance of the whole column 
was measured by means of the power electrodes. Further, the voltage drop was 
measured on the sections between adjacent measuring electrodes and between the 
lowest power electrode and a special measuring electrode (see fig. 42) to get rid 
of a systematic error due, for example, to the non-uniform density of the packing 
of the rock. Thus the total resistance of the column R1 (the f index designates 
the fact that the measurements were taken for the steady state flow) and the re­
sistances llRt(Li) of separate sections as functions of height Li, counted from the 
bottom side of the column to the middle of the i-th section, were determined. 

Stage 2. Injection of the solution was stopped, and the bottom side of the 
column was immersed in the solution to a depth of 1 em. The column was kept 
in this state for 5 to 15 days until the quantities tlRJ(Li} steadied. Then the 
values of the reduced specific resistances Py(Li) = a;;1(Li) of the sections were 
calculated. Here 

Based on these, the function f(r) was determined using the methods described in 
§6.2. 

Stage 3. The solution was injected from the bottom side, and it flowed through 
the medium for 5 to 15 days until the production rate Q steadied. After that, as 
at stage 1, the quantities R/(Li) were determined (dash indicates the values after 
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Figure 59: Typical dependence 1/ u y = f ( L) in the electric porometry experi­
ments; 1, 2- measurements were taken before and after electric treatment with 
impulse current, respectively 

treatment) and compared to the initial RJ(Li)· In the majority of cases these 
values did not differ by more than 5%. 

Stage 4. Electric treatment of the rock with current of density j 0 , greater 
than the hypothetical threshold value ic, was carried out for a certain period. 
Permeability of the specimen was being measured throughout the whole treatment. 
Furthermore after the electric treatment was terminated, these measurements were 
being taken for 2 to 7 more days, until the value of permeability steadied. 

Stage 5. As at stage 2, the values of u~(Li) and, correspondingly, f'(r), were 
determined. The results of the electric treatment of a sandy-argillaceous rock 
specimen (see table 9.1, series I) with impulse current are presented in figs. 59, 
60. 

It is clear from fig. 59 that the electric conductivity falls rapidly with the 
increase of height. Moreover after the electric treatment, the total conductivity of 
the column increases during the steady state flow through it and u~(L) falls more 
sharply with the increase of height L than does uy(L). 

Comparison of the curves f(r) and /'(r) presented in fig. 60, a, and marked by 
numbers 1 and 2 shows that after electric treatment the number of thin capillaries 
(with radius r < 20 J.tm) decreases, while the number of thick ones (with radius 
r > 20 J.tm) increases. Such reorganization of the pore space structure causes 
irreversible increase of the electric conductivity of the specimen by 4 % and of its 
permeability by 105 % a day after the treatment. In fig. 60, b, the curves for the 
probability density function for capillaries appear, for specimen of rocks from the 
second series (see table 9.1). It is evident that a rock from the second series is 
more heterogeneous than one from the first series. In this case irreversible change 
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Figure 60: Plots of the radius probability density function for capillaries for a 
sandy-argillaceous medium obtained using the specimen of series I (a) and II (b) 
before (1) and after (2) electric treatment 
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Figure 61: Typical dependence of permeability for a sandy-argillaceous medium 
on the duration of electric treatment. The beginning and end of the treatment are 
specified by letters "b" and "e," respectively 

of the electric conductivity reached 12% and of permeability, 85 % a day after the 
treatment. The data presented in figs. 60, a, b, demonstrate the fact that for both 
types of rocks, the decrease of the fraction of thin capillaries is significant. 

The plot of the permeability change during the treatment and the day after it is 
presented in fig. 61. It shows that during the electric treatment the permeability 
grows sharply (ten-fold}, and when the current is switched off it drops by four 
times during 2 hours (i.e., it exceeds the initial value K0 by 2.5 times). Such 
sharp increase of the permeability during the treatment occurs because of both 
the partial clearing of the thin non-conducting capillaries plugged up with clay 
stoppers and the separation of the bounded water in the thin capillaries. The 
decrease of permeability after the termination of the treatment is due to the re­
establishment of the bounded fluid layers in the thin capillaries (this happens fairly 
quickly} and to there-precipitation of clay ejected from the thin capillaries on the 
surface of the thicker capillaries (this is a slower process). Irreversible increase of 
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the permeability 5 days later made up 2.25 times for the rocks from the first series 
and 1.95 for those from the second series. 

9.3 Research on Irreversible Change of Conduc­
tivities for Sandy-Argillaceous Media after 
Electric Treatment 

Experiments were conducted to find the values of thresholds E'(r) for the electric 
treatment with impulse current and t'(Eo) for the electric treatment with alter­
nating current, and also to determine the nature of the permeability and the 
electric conductivity change for two sandy-argillaceous media whose characteris­
tics were presented in §9.1. Part of the studied medium was used to determine 
f(r) according to the methods outlined in §9.2. 

The experiment studying comparative effectiveness of electric treatment with 
impulse and alternating current consisted of several stages. At the first stage, 
successive packing of three tubes with rock was carried out (the diameter of each 
tube Dt = 1.6 em, height L = 10 em). Filling of the tubes and ramming of the 
rock there was done gradually with a dilute solution of CaC12 being injected from 
the bottom side of the tube. This allowed to displace air out of the tube and 
the rock. At the second stage, long-lasting (around 5 days) flow of the solution 
through the rock took place, until the production rate steadied. A significant drop 
in permeability was observed at this stage. At the third stage, electric treatment 
of the first and the second tubes with a given value of energy input w per unit 
mass was carried out. The third tube was kept for references. The first tube was 
treated with alternating current. Energy input was calculated using the formula 

tp 

w = ~ EgP I u(t)dt 
0 

Here Eop is the amplitude of the intensity of the alternating current field, t, is 
the duration of the electric treatment. The second tube was treated with impulse 
current. Energy consumption was determined using the formula 

t,. 

w = ~r00 1 Eou I E(t) dt 

0 

Here Eou is the amplitude of impulse current, tu is the duration of the impulse 
electric treatment. At the fourth stage, durable flow of the solution in the tubes 
took place until the production rate of the latter steadied (3 to 5 days). Then the 
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Figure 62: The energy input dependence of the irreversible change of the per­
meability: 1, 2- results given by measurements taken after electric treatment of 
a sandy-argillaceous medium with impulse and alternating current; 3- results of 
the theoretical calculations 

value of w was increased, and the third and the fourth stages were conducted for 
the first and the second tubes. 

The results of electric treatment showed that for w :$ 0.002 kilowatt-hours per 
kilogram, irreversible changes of permeability of the first and the second tubes were 
not observed. The production rate of the third tube dropped insignificantly {10%). 
For w = 0.005 kilowatt-hours per kilogram, electric treatment with alternating 
current did not yield any change in the production rate. At the same time, electric 
treatment with impulse current 1 hour after it was terminated made the production 
rate grow by 25% (K/Ko = 1.25). With the flow that followed (stage 4), after 3 
days the increase of the production rate reached 50%. For w = 0.01 kilowatt-hours 
per kilogram, immediately after the electric treatment the production rate in the 
first two tubes increased; however, 5 days later the augmentation of the production 
rate for the treatment with alternating current made up 50% and impulse current, 
120%. For w = 0.02 kilowatt-hours per kilogram, after the electric treatment the 
production rate in tubes 1 and 2 fell almost down to zero {3- 5% from its initial 
value). However 2 hours after the treatment the augmentation of the production 
rate reached 100% for tube 1 and 150% for tube 2 (K / K 0 = 2.5). A day later 
the production rates of both tubes grew. For the first tube, the increase reached 
130% (K/Ko = 2.3) and for the second tube, 470% (K/Ko = 5.7). Three days 
later the production rate of the first tube remained still greater than its initial 
value by 130%, while for the second tube, the augmentation of K decreased to 
280% (K/Ko = 3.8). Further on (for about 5 days) the production rate of the 
tubes remained almost steady. Thus for w = 0.02 kilowatt-hours per kilogram, a 
sharp decrease {almost down to zero} of the production rate immediately after the 
electric treatment and its substantial increase (K/Ko = 3 + 5} 3- 5 days later, 
was observed. 
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Ejection of substance (clay and fine sand} during the electric treatment was 
observed in both cases. Fig. 62 illustrates the dependence of the value of the 
irreversible change in the permeability on the energy consumption. Continuous 
lines represent the results of the calculations for impulse current according to 
§8.2 and for alternating current according to §8.4. It can be seen from fig. 62 
that the calculations for alternating current agree with experiment satisfactorily 
(within the error of experiment). Calculations for impulse current yield somewhat 
overestimated values, as compared to experiment. Apparently, this fact is due 
to the cement destroyed by impulse current, the cement that was moving slowly 
(compared to the duration of treatment) with the flowing fluid. It also gradually 
precipitated on the surface of the capillaries, a fact that was not taken into account 
in §8.2. Good agreement of the calculated and the experimental data for electric 
treatment with alternating current is caused by the fact that such treatment lasts 
longer, and the cement precipitating in thin capillaries does not have time to 
"settle," since the electric treatment destroying it keeps going. As a result, the 
destroyed cement reaches the side of the tube with the flow and leaves the rock. 

Comparison of the efficiency of the electric treatment with impulse and alter­
nating current proves the conclusion made in chapter 8, which states that electric 
treatment with impulse current is much more effective than treatment with alter­
nating current. 

The following conclusions can be drawn. 
1. Passage of the electric current is capable of substantially increasing the con­

ductivities of sandy-argillaceous rocks. Experimental dependence of the reversible 
changes in the permeability of sandy-argillaceous media on the value of the electric 
energy put in a unit mass of the medium, was obtained. 

2. The threshold nature of the irreversible changes in the permeability of 
sandy-argillaceous media was confirmed experimentally. It was shown that these 
changes can be accompanied by the ejection of a suspension of the destroyed 
cement. They are caused primarily by the notable changes in the pore space 
structure of the medium, with relatively small variations of the average effective 
radius of the capillaries. 

3. The theoretical conclusion about the efficiency of electric treatment with 
impulse current being much greater than that of electric treatment with alternating 
current with industrial frequency, was proved experimentally. 



Chapter 10 

Changing Well Production 
with Electric Treatment 

10.1 Calculation of Change in Well Production 
after Electric Treatment 

The relationships describing the changes in the permeability and the electric con­
ductivity of a medium in time for a given amplitude of the electric field intensity 
(§8.2, 8.4} allow to determine the change of the well production after electric 
treatment (86). 

The result of the electric treatment depends substantially on the diagram of 
electric energy supply to the medium. Three most widespread diagrams are pre­
sented in fig. 63. Further calculations are carried out for diagram III, and the 
conversion factors are given for the other two. 

In this diagram, the first power electrode is a casing column with a metal 
filter (the filter column) with the total length Hw. The second power electrode 
is at a distance of H,, much greater than the depth of the well, and is grounded. 
The equation describing the steady state current flow in the general case has the 
following form, 

div j = 0 

j='EE 

E = -'V</>e 

(10.1) 

{10.2} 

(10.3} 

Here j is the current density vector, E(r, t) is the field intensity vector, which 
depends on the radius-vector r and time t, 4>e is the electric field potential and E 
is the electric conductivity of the medium. 

167 
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Figure 63: Hook-up diagrams for the electric treatment of solitary wells: 1 -
electric energy source; 2 - electric cable; 3 - grounding electrode; 4 - open shaft; 
5 - electrode inside the well; 6 - guiding load; 7- filtering station 

The boundary and initial conditions for the considered problem are 

'I I J r--+oo ::::::: 211'r2 ' 

where r = lrl = rw is the radius of the well; 

<Pel = U, <Pel = 0, ru, r--+oo 

~(E(r,O),O) = ~o 

(10.4) 

(10.5) 

(10.6) 

Assume that the electric current is switched on instantly. In the equations 
above, U is the voltage supplied to the casing column, I = U / Ro is the current in 
the circuit, Ro is the apparent resistance of the medium. It is taken into account 
in (10.4) that in the interval Hw ~ r ~ rw the problem has cylindrical symmetry, 
and in the interval r ~ Hw, spherical symmetry. The component of the electric 
current vector perpendicular to the surface of the ground vanishes. 

Taking account of the time dependencies of ~ and E does not cause any change 
to the equations (10.1)- (10.3) and the conditions (10.4)- (10.6), since the char­
acteristic times of variation for ~ and E are no less than several tens of minutes, 
and therefore the contribution of the non-steady state terms is negligible. There­
fore time can be treated as a parameter in this problem, and the problem itself 
becomes quasi-stationary. Using the asymptotics (10.4), we can propose a uniform 
relationship for the current density 

j(r, t)::::::: I(t)JS0 (r) (10.7) 
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In this case the apparent resistance of the medium is 

00 

Ro(t) e:! j[E(r,t)S0(r)t1dr (10.8) 

Having divided (10.2) by E(r, t) and after integrating with respect to r from 
rw to oo, with regard to (10.8), we obtain 

J(t) = U / Ro(t), E(r, t) = J(t)[E(r, t)S0 (r)t1 

After adding the initial condition 

E(r, 0) =Eo 

we obtain the following from {10.9) - {10.10) 

R{O) = Ro, /(0) = Io = U/Ro, 
E(r,O) = Io(EoS0 (r)t1 

{10.9) 

{10.10) 

(10.11) 

The expressions {10.7)- {10.11) represent a closed system of equations for the 
determination of the field intensity distribution E(r, t), if the dependence of the 
specific electric conductivity on r and t is known. 

To determine the change in the well production after electric treatment, we 
will use the equations of steady state flow of an incompressible fluid in a porous 
medium 

divv = 0, 

v = -KJL-hilp 

where v is the flow velocity vector. 

{10.12) 

{10.13) 

Under the assumption the fluid flows at a constant depth, the initial and bound­
ary conditions, have the following form 

p(r, 0) =Po, p(rw, t) = Pw, p(Raq, t) =Po, 

K(r, 0) = Ko(r) e:! K(Raq, t) 

{10.14) 

Here, as in (10.1) - {10.3), the quasi-stationary nature of the process is pro­
posed, and therefore time tin (10.12) - (10.14) can be treated as a parameter. In 
{10.14) Pw is the pressure of the fluid in the well, Po is the pressure at the supply 
line Raq ~> rw, where the permeability K0 does not change and is equal to its 
initial value. The initial layer pressure is also equal to Po· 

Since the well production 
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it can be easily shown that its growth with respect to the initial production is 
determined by the relationship 

Raq IRaq 
dr dr 

Q(t)/Qo = I K0(r)S0 (r) I K(r, t)S0 (r) 
rw rw 

(10.15) 

The absolute value of well production is determined by the expression 

/

R,.o 
Po- Pw dr 

Q(t) = J.L I K(r, t)S0 (r) 
rw 

{10.16) 

which also allows to establish the production rate of an initially non-conducting 

well (K(rw, 0} = K(rw} = 0, Qo(O) = 0). 
To determine the threshold voltage on the power electrodes during the electric 

treatment with impulse current (with duration of impulse r), it is necessary to set 
t = 0, r = rw E = E'(r} in (10.8), {10.9}. 

Thus we obtain 

In the special case of 
E(r, 0} =Eo= const 

we have 

(10.17) 

Since Ht » Hw » rw, the expression (10.17) can be simplified some more: 

U'(r) ~ E'(r)rw ln(Hw/rw) (10.18) 

In the case of electric treatment with alternating current the starting point 
t'(Eo) for the irreversible changes of permeability in the critical zone of the well 
can be found by substituting the value of field intensity E(rw) in the well into 
(8.26} and by using the calculated curve depicted in fig. 56. 

According to the results of chapter 8, the field intensity distribution (10.9} 
allows to find the change in the electric conductivity as a function of the distance 
from the well at any instant that follows (see fig. 56}. The latter, in its turn, 

permits to calculate the new resistance of the medium using {10.8} and the change 
of the well production using (10.15}. Then the procedure is to be repeated. The 
outlined algorithm for the determination of the field intensity distribution as a 
function of time and the corresponding changes of the electric conductivity and 
the permeability distributions, as well as the time dependencies of the current and 
the production rate, was realized on a computer. 
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Figure 64: Relation for the irreversible change of well production when it is 
treated with alternating (1', 2') and impulse (1, 2} current 

In fig. 64, the dependencies of the well production change for a homogeneous 
and a heterogeneous media are presented. The parameters of these dependencies 
are the same as in §8.2, 8.4. Calculations involving /(r) of the form (8.19} with 
i = 1, j = 2 and i = 5, j = 10 correspond to the numbers 1, 2, respectively. 

Duration of the electric treatment is plotted on the x-axis and is uniquely 
related to the total energy consumption 

t 

We= U2 J dt/Ro(t) 
0 

Here to is the time for the input of an energy unit Weo, for example, of 1 kilojoule. 

10.2 Reversible Change of Permeability. Deter­
mination of Optimal Regime for Electric 
Treatment 

In chapter 9, it was shown how the dependence of the effective permeability on the 
amount of electric energy put in the medium (or on the current density and the du­
ration of treatment) can be determined using the data of a laboratory experiment. 
If the heat capacity and the density of the medium are known, these dependencies 
can be transformed into a temperature dependence of the permeability. 

Consider the problem of steady state flow of a conducting fluid in a micro­
heteroeneous medium as current I passes through it, and the increase of the per­
meability is reversible. 

Suppose that the fluid is recovered from a well with radius rw, kept at the 
constant pressure Pw· Let the regions of current and fluid flow coincide and be 
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cylindrically (flow at the depth H) or spherically symmetric. 
For steady state flow, the temperatures of the fluid and the skeleton are locally 

equal. Estimates show that in the critical zone, the effect of heat conductance is 
negligible compared to the convective heat transfer for actual wells and actual con­

ditions of the recovery. In this case the stationary heat equation has the following 

form 
(10.19) 

Here Cf, p 1, and Pe are the specific heat and the density of the fluid and the specific 

electric resistance of the medium, respectively. Furthermore 

Q r I 
v(r) =- SO(r) ;• j(r) = SO(r) (10.20) 

where 
So(r) = { 2trrH, ~ = 1, 

4trr2 , t = 2 
(10.21) 

In this section, the case of cylindrical symmetry is denoted by index i = 1 and 

the case of spherical symmetry, by index i = 2. 
After substituting (10.20), (10.21) into (10.19), taking into account the fact 

that VT = oTfor(rfr), and integrating with respect to r from r to Raq, we 
obtain the radius distribution of temperature 

{ 
ln(Ra!Lir) 

PeT2 21TB ' 
T(r) -T(Raq) = --Q ( ) 

PfCf 1 1 1 
41r r - R;;;; ' 

i = 1, 

(10.22) 

i=2 

The rate of the joule heat release in the medium is 

i = 1, 
(10.23) 

i=2 

If the temperature dependence of the permeability of a micro volume 

K = K(T) (10.24) 

is known, then using (10.22), we obtain 

K = K(r) 

The well production rate before the electric treatment is determined from 

(10.16), if we set K = Ko = const, r = Raq 

{ 
2trH/ ln(Raq/rw), 

Q _Po- Pw R' 
o- o 

f..t 4tr/(r;;/-R;;q1 ), 

i = 1, 

(10.25} 
i=2 
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Introduce the following notation 

X= { 1n(Raq/r)/1n(Raq/rw), i = 1 

(r- 1 - R;;q1 )/(r;;I - R;;q1 ), i = 2 

Using {10.16) and {10.23), we transform {10.22) to get 
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{10.26) 

{10.27) 

Further, based on {10.24), {10.25), and (10.27), we obtain a universal equation for 
both problems 

1 

Qo K j dx 
Q = ° K[we(CJPJQ)-1x + T(Raq)] 

0 

{10.28) 

If we assume that at a distance Raq, the temperature of the medium is close to its 
initial value T(Raq) :::::l To, K(T(Raq)) = K(To) :::::l Ko, for a specific dependence 
{10.24), the relationship (10.28) is an equation for Q with a fixed We. 

The relationship {10.24) was obtained experimentally for sandy-argillaceous 
rocks described in chapter 9 and has the following form 

{ Ko+B"(T-To), T<Tc 
K(T) = Ko + B"(T- To)+ D"(T- Tc)2 , T > Tc (10.29) 

Here Ko is the permeability at the initial temperature T0 ; B", D" are the param­
eters to be determined from experiment; Tc is the critical temperature, starting 
from which the dependence K(T) becomes nonlinear. After substituting (10.29) 
in (10.28) and integrating, we obtain a transcendental equation that relates the 
production rate Q to the power of energy release We 

{ 
ln[1 + We/(E"Q)], 

Qowe 
Q2 E" = 2 ( w - L" E" Q)F" 

ln(1 + L") + F" arctan [ (2 ~ L")E" Q +We] , 

We< We 

(10.30) 

where 

4E"2 D" 
L" = (T.e - ,.,o)B"K0- 1 ·, F" (1 + L") 1 .~, = 2 2K - ; 

CJPJ o 

We= QoE"L"2ln-1{1 + L"), E" = KoCJPJ/B" 

The experimental dependence (10.29) is a good approximation for describing 
the dependence K(T) in a large temperature range (from several degrees Celsius 

to the boiling point of the fluid). After determining the parameters Te, Ko, B", 
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Figure 65: Dependencies of the reversible change in well production (a) and 
efficiency of electric treatment (b) on the energy release rate in the medium 
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Figure 66: Dependencies of the optimal energy input rate in the medium (a) and 
the maximal efficiency of the electric treatment (b) of the critical zone of the well 
on the parameter L". Curve code - F" 

Figure 67: Ranges of L" and F" for different modes of electric treatment of the 
critical zone of the well 

D" from experiment, one can construct the dependence Q( We) for the given rock 
based on (10.30). 

The relations Q/Qo(we/(E"Qo)), 1/Je(we/(E"Qo)) = (Q- Qo)E" /we for some 
media are presented in fig. 65. The function 1/Je defines the additional volume 
of the solution obtained per unit energy consumption rate. Those curves in fig. 
65 marked with index 1 correspond to the case of the linear dependence K(T) 
in the whole temperature range (Tc = oo). The results of the calculations with 
parameters F" = 10, L" = 0.1; 0.2; 0.3, are denoted by indices 2- 4, respectively, 
and the results of the calculations with F" = 40 and the same L", by indices 5 -
7. 

It can be seen in fig. 65, b, that the function 1/Je has a maximum for certain 
values of L" and F". It corresponds to the minimal energy consumption needed to 
obtain additional recovered volumes of fluid, and therefore corresponds to the opti­
mal electric treatment regime. Take w; / ( E" Q0 ) and ¢; as the point of maximum 
for the function 1/Je and its value 1/Je(we) there. In fig. 66, a, the L" dependencies 
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of w;/(E"Qo) are presented, and 1/J;(L") are presented in fig. 66, b. 
It is clear from these plots that w; / ( E" Qo) decreases and 1/Je increases as F" 

grows and L" diminishes. These dependencies are more sensitive to the changes 
in the quantity L" than they are to the changes in F". The value Q/Qo depends 
weakly on the parameters of the problem and varies from 1.5 to 2.5. 

Two regions are shown in fig. 67 in the plane of the parameters F" and L". 
The boundaries of those regions, where the optimal electric treatment regime is 
possible, form region I. The boundaries of those regions, where the maximum 
of 1/Je does not exist, and consequently the treatment regime with small currents 
(we <we) is optimal as far as the energy consumption costs are concerned, form 
region II. 

Therefore depending on the values of the parameters L" and F" determined 
from the plot of K(T), both the presence and the absence of an extremum of the 
function 1/Je are possible. In principle, the optimal electric treatment regime can 
be determined based on the calculated data (see figs. 65 - 67) and the economic 
calculations. For an arbitrary form of the K(T) dependence, the optimal electric 
treatment regime is determined similarly from the solution to the equation (10.28). 
Note that even when the electric treatment is carried out in non-optimal regimes, 
the economic effect is positive. This is due to the fact that the time of maintenance 
of the wells, necessary for the development of a deposit (i.e., for reaching the 
established level of the recovery of the useful component), is made less. 

10.3 Results of Field Studies 

Typical diagrams of electric energy supply to the reservoir, which have already 
been tested, are presented in fig. 63 for the case of a single well. In diagram I I I 
voltage is supplied from the source directly to the casing column. In this case it 
is not necessary to immerse an electrode into the well. This diagram is rather 
simple and efficient, but if the reservoir lies more than 300 meters deep, then the 
electric energy consumption due to the current flow through the lateral area of the 
wells becomes very large. In this case it is advisable to use a different diagram of 
energy supply. Experimental work done with objects of various geological types 
in different regions (over 80 places) showed that the well production rates can 
increase by 2 to 20 times (at an average of 1.5 to 2 times) after electric treatment. 

Experiments showed that well production rates keep stable for two to three 
years after the electric treatment. A positive effect is observed for electric treat­
ment of different types of rocks, e.g. sandy-argillaceous, carbonate, or fractured 
ones. The studies involving observation wells showed that the changes of perme­
ability after the electric treatment are registered at distances up to 10m (fig. 68). 
A typical correlation for the modification of a hydrogeological well production rate 
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Figure 68: Distribution of the presented permeability factor near the well after 
electric treatment 
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Figure 69: Histogram for a typical dependence Q = f(T0 ) for a well under 
electric treatment 

after electric treatment is presented in fig. 69. To is the duration of a unit cycle 
of electric treatment. 

The results of the electric treatment only weakly depend on the location of 
the second electrode, since the resistance between the electrodes is a logarithm 
function of the distance between them. The resistance Re and consequently, the 
current supplied to the reservoir depend more significantly on the lengths of the 
electrodes. 

Thus the results of the field experiments show that the electric treatment of 
wells is an ecologically pure, very effective, and efficient means of the well produc­
tion increase. 

Electric treatment of wells with "high-density" currents can be used to increase 
the production rates, purify the well filter, de-mud the critical zone of a well after 
drilling. 

To study the possibility of the pore space structure reconstruction in rocks 
(underground leaching), an experiment on a fractured low-permeable ore strata in 
Khodgent was conducted. The region is situated in the piedmont part of a crest 
composed from granitoid rocks of several phases of magmatism. The most ancient 
of these rocks, those dating back to the Upper Carboniferous, are represented 
by the fine-grained leucocratic granites, the segments of a porphyritic structure. 
Porphyr granites and aplite-like granites of the Lower Permian are examples of the 
younger ones. The fractures are covered with attrition clay, quartz, or carbonate. 
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Figure 70: The averaged result of action upon a bulk of fractured granite after 
five cycles of electric treatment 
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Figure 71: Curves representing the variation of the production rate 1 and the 
current 2 as the duration of electric treatment goes up 

Five cycles of electric treatment were conducted. The results are presented 
in fig. 70. Observation of the drainage well production demonstrates its steady 
increase throughout all five cycles of the energy supply to the bulk. 

Plots of typical correlations obtained during the electric treatment of a water­
bearing well are shown in fig. 71. The reservoir rock was a highly permeable 
fractured limestone. It is clear from fig. 71 that the increase of the well produc­
tion (curve 1) was accompanied by the increase of the current in the rock (up 
to 30%). The well production increased by 130% after electric treatment was 
stopped. Measurements of the well production seven months after the electric 
treatment showed that the production rates increased by additional 20%, so that 
the total increase in the production reached 150% (or 2.5 times the initial value). 
Similar results were obtained for other analogous wells (a total of 11 wells). The 
average increase in the production equaled 185%; the range of values was 100 to 
200%. 

Typical results of the electric treatment of hydrogeological and oil wells are 
presented in table 10.1. The drop in the inundation of the oil wells after electric 
treatment is due to the development of gas colmatation described in the next 
chapter. This effect is reversible and disappears several months after the well has 
been treated. 
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Table 10.1: 

Well type Number Depth of Change of well Drop in 
(rock type) of wells wells, m rate (qfqo) inundation 

Hydro- 167 50- 200 2.5 -
geological 

(sandstones) 
Hydro- 92 100- 250 2.5 -

geological 
(limestones) 

Hydro- 143 130- 300 2-3 -
geological 

(sandy-
argillaceous) 
Technological 42 20- 150 2.7 -

(granite) 
Oil 83 2000- 2300 2.3 10- 30% 

(limestones) 



Chapter 11 

Gas Colmatation Effect 
during Electric Action on 
Saturated Porous Media 

Under certain conditions, the temperature of the saturating fluid can reach the 
critical value, i.e., the boiling point, and the liquid can transform to the gas phase. 
In this case the capillaries shut off with bubbles of gas are no longer permeable 
to the liquid phase. The gas colmatation effect develops and causes the decrease 
in the permeability of media to the flowing liquid. Thus the total effect of elec­
tric action is determined by two fundamental competing factors: the increase of 
permeability due to the change of the pore space structure (cross-section increase 
in the conducting capillaries) and the decrease of permeability when some of the 
conducting capillaries are cut off from the flow of the liquid phase (being filled 
with the gas phase). Domination of either of the outlined trends over the other 
is determined by the parameters of the medium and of the treatment, or, when 
these parameters are fixed, by the duration of electric treatment. 

Colmatation can not only diminish the desired positive effect of electric treat­
ment, but also cause an altogether negative result. Therefore we shall consider 
this effect in more detail and carry out theoretical analysis at the micro level and 
laboratory modelling of the process. 

181 
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11.1 Temperature Effects in Capillaries Caused 
by Electric Current 

We shall begin with the description for the distribution of the electric current 
flowing in a micro heterogeneous medium. Using the notation (3.1) already intro­
duced, write the expression for the amplitude Io of the current flowing through an 
arbitrary r 1-chain 

Io(rt) = Eocr'r~¢(rt) 

where the so-called heterogeneity factor of the medium is 

A.( ) [ 2 -2 * ]-1 'I' r1 = r 1 < r1, r , a > 

(11.1) 

It is clear from (11.1) that the amplitude of the current flowing through an 
r1-chain depends only on the amplitude of the field intensity Eo, the electric con­
ductivity u' ofthe fluid that fills the pore space, and the heterogeneity factor ¢(rt) 
of the medium. 

According to the results of §1.2, the total current flowing in the medium is 
determined by the expression 

r. 

Jo = J Io(rl) dn(rl) 

Hydraulic conductivity of the r1-chain (for Poiseuille flow in capillaries) can be 
found from an expression similar to (11.1) 

Permeability of the medium in this case is 

rc 

K = J k(rt) dn(rt) 

a. 

It can be shown that the functions ¢(rt) and '1/J(rt) increase as the degree of 
heterogeneity of the medium (the variance of f(r)) decreases. 

The energy release density in an r-capillary (r1 $ r $a*) of an r1-chain is 

It follows that q0 ( r, rt) goes up as r decreases and is maximal in the r 1 -capillary. 
For exponential distribution functions of the form 

f(r) = afri (11.3) 
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a is determined from the normalization condition for f(r). 
For a* » a. we have 

a= (i- 1)a:-1, Tc = a.~;- 1 /(i- 1 ) 

</>(rl) = (i + 1)/(i- 1) = </>o, ,P(rl) = (i + 3)/(i- 1) = 1/Jo 

183 

dn(rt)jdr1 = no(a./rd[(a./rd-1 - (a./rc)i-1] (11.4) 

Io(r1) = Eo(11 </>o7rr~, k(r1) = (1rj8)rt'lf1o 

q(r, rt) = E5(1'(rtfr)4 </>~ 

We shall now use the solution to the problem (8.2) presented in §8.1. This 
problem deals with the temperature distribution in a long cylindrical capillary 
with radius r in a boundless medium (with temperature conductivity the same as 
that of the fluid in the capillary) as electric current J(t) = J0i(t) passes through it. 
After determining q0 according to (11.2) and substituting the obtained expression 
in the relationship (8.3) for q(t'), after transformations we obtain the following 

1 

T(t,z) = 1/2+ j qo(xt){1-exp[(-y'(1-x)-1]} 

0 

x{1 + q>[zr- 1(y'(1- x))-112 ]}dx (11.5) 

Here y' is determined according to (8.4), x is a dummy integration variable, 
and q>( ·) is the error integral defined as 

a; 

q>(x) = Jrr J exp( -e)d~ (11.6) 
0 

After differentiating (11.5) with respect to z and t, we obtain, respectively, the 
temperature gradient along the capillary 

1 

T~(t,z) = ~ j qo(xt){1- exp[(-y'(1- x))- 1]} 

0 

x exp{ -z2 [r2y'(1- x)t1 }(1- x)-112dx (11.7) 

and the rate of the temperature change in the capillary 

1 

T(t, oo) = q0(t)- ;, j q0 (x, t)exp{[-y'(1- x)-1]}(1- x)-2dx (11.8) 

0 

When q0 = Qp = const, where Qp = I6/(ciPi(117r2r4 ) is the current density 
amplitude, it follows from that (11.5)- (11.8) that 

T(t, oo) = Qpt{1- exp[-(y')-1]- y'- 1Ei[-(y')-1]} (11.9) 
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T(t, oo) = qp{1- exp[-(y')-1]} 

T~(t, z) = qpvft/(47rK-t) [Abo)- Abo+~)] 
Abo)= 2e-"Y0 - 2y'?FY0[1- ~(J10)], 'Yo= z2 f(r2 y'), ~ = 1/y' 

The integral exponential function is 

"' 
Ei(-x) = J C1e-{~ 

00 

{11.10) 

{11.11) 

(11.12) 

Using the asymptotics for the functions (11.6) and (11.12), the following asymp­
totics forT, t, and T' can be obtained based on (11.9)- {11.11) 

T() () { 1- (To/t)exp(-To/t), t ~To, y' ~ 1 
t = Qp t (Toft) ln[et/bTo)]- Toft, t ~To, y' ~ 1 

where 'Y = 1.78 is the Euler- Masceroni number; To= r2 /{4K-t)i 

T(t) (t) { 1 - e-1/y'' y' ~ 1, t « To 
~ qp 1/y'- 1/(2y'2 ), y' ~ 1, t ~To 

{ 
.p/?-exp(-z2 fr 2 y') (1- ~~), 1 ~ y' ~ (zfr) 2 

T'(t) ~ q0 (t)r z z 

"-t r (1- 2 exp(-z2/r2y')), 1 ~ (z/r) 2 ~ y' rz v;y; 
It follows from (11.10) and (11.2) that 

8Tjor < 0; 8Tj8r1 > 0 {11.13) 

We thus conclude that the greatest rate of the temperature change is assumed 
in the thinnest r 1-capillary of the r 1-chain. Also, the capillaries with radii equal 
to r have greater values of t in the larger r1-chains. Therefore the greatest rate 
of the temperature change in the medium is observed in the thinnest capillaries of 
the thickest r1-chains, i.e., in the r c-Capillaries of the Tc-chains. 

11.2 Movement and Growth of Bubbles in Cap­
illaries 

Inequalities (11.13) imply that in the thin capillaries of all q-chains the temper­
ature grows faster than in the thick capillaries of the same chains. If we take into 
account the temperature dependence x(T) of the interfacial tension, we can state 
that the thin ("hot") capillaries become stable attraction centers for the bubbles 
coming from thicker ("cold") capillaries. 
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Estimate the velocity of a bubble with radius a0 as it moves from a pore of 
size,..., a* to a capillary ofradius r <a*. Consider the movement ofthe bubble as 
though the fluid were flowing past it. The mass of the former, m0 , is of the order 
of mass of the fluid displaced by the bubble 

When the velocity of the bubble v0 < p.a01 P/1 (a0 <: 10-4 m), the resistance 
to the movement of the bubble is adequately described by Stokes's formula 

The force that causes the movement of the bubbles for small temperature 
gradients T' is determined by the following relationship [87, 88] 

F. 'T' 2 g = -x 11'ao, x' = dx/dT 

As the bubble comes closer to a thinner capillary, both the temperature gra­
dient and the velocity go up. 

The steady state velocity of the bubble is determined from the condition Fe = 
Fg 

vo = -x'T'aop.-1 /6 
The transient period for the velocity of the bubble is 

m 0 2 PJ 2 
Ty ,..., 67rp.ao = 9 -;ao 

(11.14) 

(11.15) 

and is usually much less than the time r9 needed for a bubble to reach the capillary 
from the pore. This fact permits to consider the movement of the bubble to be 
quasi-uniform with velocity determined by (11.14) and T' determined according 
to (11.11) or the corresponding asymptotics. For example, when T' grows slowly 
(when t > a*2 /(4Kt)), using the asymptotics of the expression (11.11), we obtain 
the duration of the movement for the bubble 

48p.Kt 1 (a*) 2 

rg ~ ( -x')qp ao -:;: 

From the condition ry/r9 < 1, the following relationship results, 

216p.2Kt 1 (a*) 2 
q < - -

P ( -x')PJ a~ r 

(11.16) 

For the period of,..., r 9 the bubbles move within a large capillary towards its 
boundary. This results in the bubbles situated in the pores that surround the 
"hot" capillary concentrating inside it ,..., r 9 seconds after the current is turned on. 
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The bubbles can merge at this stage of the process due to the attraction forces 
that act when the distance between the bubbles is of the order of two to three 
times their radius. Attraction between the bubbles is caused by the overlap of the 
low-pressure domains in the surrounding fluid. These domains are formed once 
the balance between the surface tension and the vapor and gas pressure inside a 
bubble is established. When a0 < w-7 m attraction forces can be significant, 
since the pressure outside the bubbles becomes negative. 

It is evident from (11.2) and (11.6) that the first to be filled with bubbles are 
the thinnest r 1-capillaries in r 1-chains. For probability density functions of the 
form (11.3), we have the following, with regard to (11.4) 

48/.L"-t 1 (a*) 2 

Tg = (-x')E5u'¢>~ ao ~ (11.17) 

Note that during the period of"' r 9 , the density of bubbles in the thin capil­
laries increases from the initial value n. to no ~ n.(a* fr) 2 , since a thin capillary 
is most likely to borrow almost all capillaries from the adjacent pore. However, 
adjacent capillaries separated by a pore are not likely to compete in the future, 
since an own "warm" capillary is more attractive for any bubble than perhaps a 
"hotter" one, but separated from it by a big "cold" pore. 

For a bubble in the fluid being heated by the electric current, two essentially 
different phases of growth can be specified. 

At the first stage, when the temperature of the fluid T < n(p00 ), where Poo 
is the fluid pressure at a large distance from the bubbles, Tb is the boiling point 
which corresponds to the pressure p00 , the bubble is in the quasi-steady state. At 
the second stage, when T = n(Poo), the bubble is not in a steady state, and its 
limitless growth begins. The rate of this growth is determined only by the rate of 
the energy supply to the bubble. 

Estimates show that for the actually achievable values q0 of the energy release 
rate in micro capillaries in different media, the pattern of a homogeneous steady 
state vapor bubble can be used. In this pattern, the velocities of the radial motion 
of the phases and the surfaces of the bubbles are considered much less than the 
velocities of the molecular thermal motion or the velocity of sound. 

At the vapor-liquid surface, there is a thin boundary layer, where the phase 
transitions to and from vapor take place. For a balanced system, it is assumed that 
the temperature Tp inside the bubble near the boundary layer, the temperature 
T,p in the boundary layer, and the temperature Ta in the fluid near the boundary 
layer are all equal 

Tp = T.y, = Ta 

The vapor temperature conductivity "-v is much greater than that of the liquid 
""t. and therefore the time for establishing the temperature balance outside the 
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sphere is much greater than inside it. Thus we can consider the temperature of 
vapor inside the bubble to be constant and equal to the temperature T. of the 
saturated vapor which corresponds to the vapor pressure p11 inside the bubble 

{11.18} 

Thus we can consider the properties of the vapor to be observed only by changing 
its pressure. 

According to the first law of thermodynamics, we have 

6Q11 = du11 + p11d(1/ p71 ) (11.19} 

where oQ,, du11 are, respectively, the amount of heat absorbed by and the change of 
the internal energy of, a unit mass of vapor in the bubble. The correlation between 
the heat flow q~ through the surface of the boundary layer and the quantity oQ, 
is determined by the following equations 

4 3 I ( ) 31l'a p716Q 71 = q11dt 11.20 

q~ = -k11(8T,f8r,)lr,.=a-o · 41l'a2 

The equation of state for vapor is 

p11 = p11R,T11 , R11 = Rf tt11 (11.21} 

In the above, R = 8.31 ·103 kilojoule per mole-kelvin is the universal molar gas 
constant; /Lp is the mass of one mole of vapor; k11 is the heat conductivity of the 
vapor; r, is the radial coordinate with the origin in the center of the bubble; and 
a(t) is the current value of the latter's radius. Total internal energy of the vapor 
is 

Up = C~T, + Upa 

where u,o is the initial energy of the vapor and C~ is the specific heat of the 
vapor at a constant volume. It follows from (11.18) that dT8 = dT11 , and finally 
we obtain the following 

(11.22) 

where c: is the specific heat of the vapor at a constant pressure and -y71 is the 
isentropic exponent for the vapor. 

After differentiating the equation of state (11.21) with respect to T11 , we obtain 

(11.23) 

Using the Clausius-Clapeyron equation with p11 = Pa 
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where Lp is the specific heat of liquid evaporation, we obtain 

R dTs 1- pp(pp)fPJ(Pp) 
pPp dpp = "fpL*(pp) 

(11.24) 

L • _ Lp(Pp) ,._ _ c: _ c: 
- ' IP- p - p "fpRpTs(Pp) Cv Cp- Rp 

(11.25) 

After substituting (11.24) in (11.22) and (11.19) and taking into account (11.23), 
we obtain the correlation between Q~ and the change of pressure 

q~ = ( 4/3)1!'a3 (r:;-1 )dppf dt (11.26) 

r. = ("'p -1)£*(1- PpfPJ)-1 

Since along the vapor isentrope (the entropy of the vapor is Sp =canst) 

and along the saturation line of the vapor, according to (11.24), (11.25), 

it follows that the quantity r. shows how close to isentropic is the behavior of the 
vapor, since 

r _ (arp) /(arp) 
• - opp sp opp s 

When r. > 1 and dppfdt < 0, it follows from (11.26) that q~ > 0 and from 
(11.20} that 8Qp > 0. This means that the vapor is receiving heat, while the pres­
sure in the bubble grows. At the same time, the temperature gradient oTpfor < 0, 
and therefore the temperature is higher in the center of the bubble than on its 
surface. The latter fact demonstrates the stability of the bubble growth. 

If we differentiate the mass conservation equation for the bubble 

and take into account the relationship 

where e12 is the mass flow of the bubble due to the phase transition in the boundary 
layer through a unit surface area, we obtain 

(11.27} 
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On the other hand, conservation of the total energy of the phases yields 

Lpdmp + (q~ + qf )dt = 0 {11.28) 
_ 0 I 

qf- -qf- qf 

q/ = -kt(8Tp/8rp)jrp=a+O · 47ra2 

where qf is the heat flow through the boundary of the liquid phase; qJ is an 

additional heat flow due to the release of the joule heat in the fluid as the electric 

current passes through it. 
Since the heat conductivity of vapor kp is much less than the heat conductivity 

of liquid k" it follows that lqtl ~ lqpl· 
Transform {11.28) to get 

{11.29) 

After substituting ~12 from {11.29) into {11.27) and changing Pp/Pp for {11.23) 

with regard to {11.24) and qp for {11.26) with regard to {11.25), we obtain 

Pp [3 a 3q1 ] - = -xo - + -:----::-7-
Pp a 47ra3 Lppp 

{11.30) 

xo = /'p[1 + (l'p -1){1-1jr.)2t 1 

The movement of the bubble boundary is described by the Rayleigh-Lamb 

equation [89, 90] 

a ~t (a- 62/ P!) + ~(a- 62/ P! )2 

= (pp- Pt- 2x/a)/ Pt- 4J.t(a- ~12/ Pt )/(ap,) {11.31) 

Due to the fact that the liquid is virtually incompressible, and its radial velocity 

is relatively small, we can set p 1 = Poo. 

The heat flow qf must be determined from the solution of the exterior heat 

conductance problem for rp > 0 using the initial and boundary conditions 

{11.32) 

Here the effective temperature growth rate T in a capillary, defined by the 

expression {11.10), can be taken as €(t) 

b(t) = qp[1- exp( -r2 /(4Ktt))] (11.33) 
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The equations (11.31), (11.32) are good for describing the growth of a single 
bubble in a boundless medium. However there may be many bubbles in a capillary 
and the average distance between them may be relatively small compared to their 
size (la ~ (10 -103)a). Therefore it is necessary to take into account the interaction 
of thermal fields of the bubbles. 

Suppose that at the time dt, an amount of energy equal to 7rr2le(t) was released 
in a capillary. (In the general case, heat losses caused by the outflow through the 
capillary surface must be taken into account in e(t).) Furthermore, suppose that 
this amount of energy was distributed uniformly among 7rr2ln0 bubbles in the 
capillary. Now, taking into account QJ ~ qp, we obtain 

(11.34) 

If we assume that not all, but only a part of the energy e(t) was used for 
supplying heat to the bubbles, then the rest of the energy will be used for the fluid 
overheating. The latter will make heat losses through the capillary surface larger, 
and therefore will decrease e(t). In its turn, this will create an additional flow q/ 
in (11.28), which is going to partially comensate the mentioned loss, and therefore 
is likely to make the quantity QJ closer to e(t)fn0 in its value. It is possible to 
estimate the additional flow qf, which may cause deviation from equality (11.34), 
as follows. If there is no heat discharge, the temperature at a distance ""' la from 
a bubble must grow by approximately AT = e(t)rk/(Cfpf) in a characteristic 
period of temperature equalizing 

Tk = l~/Kt 
Therefore q/ ~ kJATl;147ra2 ~ 10a2lae(t). 

In this case the ratio 

since (afla) « 1. 
Initial conditions 

a(O) = ao, Pp(O) =PI+ 2xfao 

(11.35) 

and the equations (11.27), (11.26), (11.31), (11.33), (11.34) define the relations 
a(t) and Pp(t) completely. 

Introduce the notations 

Ao = no(4/3)7rag, A= Ao(no/n.), X= Qp/(PJLp), 

H = XoRpTpPJP~1 , Z = 2xf(aopoo) 

and the dimensionless variables 

O. = Xt, w. = afao, G. = Pp/Poo 
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Derivatives with respect to 0. will be denoted by a prime. 
In this case the equations (11.30), (11.31) and the initial conditions can be 

represented in the following form, which is convenient for the further investigation, 

G:/G. + 3xow~jw. = DH A - 1G;1w;3 ; 

w.(w~Y)' + 3/2(w~- Y)2 =(G.- 1- Zjw.}M 

-(w~jw. - Y)N; 

G,.(O} = 1 + Z, w.(O) = 1 

where M = p00j(pta~X2 ), N = 4p,f(pta~X), Y = {12/(ap,X), Lo = 
p00 (3Lppf)- 1(1- r; 1 ), D = 3Aw~(Y +LoG:). 

(11.36) 

(11.37) 

(11.38) 

Note that as the liquid reaches its boiling point T.(Poo) = n, the temperature 
inside the bubble T.(pp) can be substantially higher if the size of the latter is 
sufficiently small (Z > 1}. Moreover, if the conditions (11.35) are met, then it 
is possible to assume that the temperature outside the bubble undergoes little 
change. Therefore (forT< 0.8n) the parameters of the liquid can be considered 
practically constant, whereas the parameters of the vapor can change significantly. 

In the general case, a solution to a system of nonlinear equations (11.36) -
(11.37) with conditions (11.38) can be obtained only numerically. 

To obtain a qualitative dependence w.(O.), transform (11.36) to 

(11.39) 

Since Y "' X, M "' x-2 , N "' x- 1 , it follows that as q0 "' X goes down, the 
term "' M becomes the principal term in the equation (11.36). (This follows from 
the obvious fact that w~ and w~ decrease as X goes down.) In this case we have 

G.,~ 1 +Z/w. (11.40} 

After substituting (11.40) in (11.39), integrating, and taking into account the 
initial value (11.38), we obtain 

e. 
{(0.} = {(0) + (Axo)- 1 j D dO., {(0} = 1 + Z(3xo - 1)(2xo)-1 (11.41) 

0 

The following facts are taken into account in (11.41). Z depends on the tem­
perature of the fluid Tt and changes little in time. H "' T(pp) and depends on 
G.; however, this dependence is weak -In G •. The second term in (11.41) can be 
significant only for very small bubbles (Z ::» 1) at the initial stage ofthe movement 

w. > 1, when it can be approximately taken that 
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When 
(11.42) 

we have 
(11.43) 

Using the solution of the problem (11.41) under the condition (11.33}, it is 
possible to show that after integrating in (11.41), the relationship (11.43) gets the 
following form 

w~ = H8.>.o(8*)A - 1x01 , 

>.0(8*) = 1- exp( -1/8*)- (1/8*) Ei(1/8*), 8* = t/To 

(11.44) 

Using the asymptotics for the functions (11.12), the given relation can be rep­
resented in the form of the following approximate ones 

H 8• { 1 - (1/8*) exp( -1/8*), 

w~ = Axo (1/8*)[1 + ln(8* frp) + 8* /2], 

8* «: 1' 
(11.45} 

8* ~ 1 

or 

{ 
HXt 
AXil' 

wa = 
* X 

kl/} To ln[(e/rp)(t/To)], 

t «: To, 

(11.46) 
t ~To 

However when t ~ a2 (4Kt), intensive heat transfer to the skeleton of the 
medium decreases, and the whole medium begins to get heat. In this case it 
is possible to take 

H8. 
e(8.) ~ e<o) +-A 

Xo 
(11.47) 

It is evident that the upper expression in (11.46} coincides with the condition 
(11.42), since both of the expressions reflect the case when the volume of the 
bubbles is small compared to the volume of the surrounding water. 

11.3 Permeability Change under Electric Field 

It was shown in §§11.1, 11.2 that as electric current passes through a micro het­
erogeneous medium, bubbles of liquid migrate towards thin "hot" capillaries of 
the medium. This is caused by the temperature gradients and the temperature 
dependence of the surface tension in the liquid. In the thin capillaries, the bubbles 
grow due to the inflow of the heat released by the electric current. The grow­
ing bubbles shut the capillary cross-sections; this causes the permeability and the 
electric conductivity of the medium to drop. 
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The shut-o:tf a capillary cross-section can happen in two ways. First of all, it 
can be caused y merging of the bubbles when their densities become sufficiently 
large and the istance between them becomes of the order of their radii 

l -1/3 2 
a "' n0 R:j a, 10Aw: R:j 1 (11.48) 

Second of all, the capillaries can be shut by solitary growing bubbles, i.e., when 

(11.49) 

Consider the case when the initial radii of all bubbles in the fluid are the same 
and equal to a0 ; we shall also neglect the changes of these initial radii during the 
bubble's movement from a pore to a capillary. Furthermore, we shall neglect the 
change of the current density, as the growing bubbles shut the cross-section of the 
capillary. Estimates show that it drops not more than by a factor of two up till 
an all but total shut-off of the capillary by the growing bubble. 

According to (11.13) 

ae(t)/8r < 0, 8e(t)f8rt > 0 

Therefore the greatest rates the bubble growth are to be observed in the thinnest 
r1-capillaries of the largest r 1-chains. This, however, does not mean that the 
cross-sections of these capillaries are going to be the first to be shut off. 

The condition of a capillary shut-off due to the merging of the bubbles (11.48), 
with regard to (11.44}, has the following form 

When (11.49} is satisfied we have 

H9.Aox01[t/To(r)] R:j 4n.r3 

(11.50) 

(11.51) 

After taking into account the change of the density for bubbles, we obtain 

A= n.(4/3}7rag(l/r}2 , Ae = E3u' P!1l- 1 

It is possible to calculate the time dependence for the permeability of the 
medium by changing order relationships with equalities in (11.51}, (11.52) and 
solving them with respect to t(r, r1 }, which is the period of shut-off for a capillary 
of radius r in an r 1-chain. For small (11.47} and large (the lower expression in 
(11.45)) heat losses, respectively, we obtain the following explicit relationships for 
t(r, rt}, 

t(r,rt} R:j xo/(10HAe4>2 (rt))(r/rt}4 , t «:To 

t(r,rt} R:j "(pr2 /(4eK-t) exp [ 10~~~~(rt} (r/rt}4r-2], t >To, 

(11.52) 
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when the bubbles merge in the case described by {11.48). When the bubbles grow 
in the case described by {11.49), the relationships are as follows 

Aoxo (lfao) 3 ( r ) 4 r 
t(r,rt) ~ HAe 4>2 (rt) r1 l' t ~To 

{11.53) 

t »To 

It is clear from the expressions presented above that the shut-off time for a 
capillary goes up sharply as its radius goes up and r1 decreases. This phenomenon 
is especially notable when the intensive heat outflow to the skeleton of the medium 
takes place {the lower expressions in {11.52), {11.53)). When r = r1 and the 
bubbles merge we have 

{11.54) 

when the bubbles grow we have 

t ~To 
{11.55) 

The lower expressions in {11.48), {11.55) imply that when intensive heat ex­
change takes place t( Tt) is minimal in the large r1 -chains. As some of the ways for 
the fluid and current flow are shut off in these chains, a considerable rearrange­
ment of the current in the medium takes place there, and the study of the further 
development of colmatation becomes substantially more difficult. Therefore we 
shall confine ourselves to the case of the steady-state heat exchange {11.47), when 
the medium receives heat as a whole. In this case, according to the upper expres­
sions in {11.54), {11.55), if the heat exchange with the skeleton of the rock is not 
too intensive, the values of t( r1 ) either decrease as r 1 goes up, or undergo little 
change. This corresponds to the shut-off of the thinnest r 1-chains by the bubbles. 
However no notable increase of the current in the large r 1 -chains is likely to be 
detected, and the hierarchy of the r 1-chains with respect to their conductivities 
is preserved. Conductivities of those r1-chains, for which t <: t(rt), is determined 
primarily by the conductivities of the r1-capillaries, since the shut-off periods for 
other capillaries in the r1-chain are much greater than t(rt). After the r 1-capillary 
is shut off, the current in the chain vanishes, and further heating of the capillaries 
in the chain (and consequently, growth of bubbles there) stops. Actually, a certain 
heat exchange with the medium does take place. The r1-capillaries shut off by 
the bubbles gradually (over a period of To(rt) ~ rU4K-t) cool down; part of the 
vapor in the bubbles condenses; the bubbles diminish in size; and the r 1-capillary 
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resumes to conduct current. Consequently the fluid gets heated again, then the 
bubbles grow, and the capillary is shut off. Thus, as electric current passes through 
the medium, colmatation effects are cyclic. This is also confirmed by experimental 
studies of cores saturated with a conducting leaching solution. The results of these 
studies will be discussed in detail below. 

According to the upper expression in {11.54), when the losses due to the heating 
of the skeleton of the medium are not too intensive (for instance, in micro grained 
media) and the liquid contains a good deal of gas (i.e., when the density of the 
bubble germs n. is large), merging of the vapor bubbles in the thin capillaries 
dominates in the colmatation of the medium. Furthermore colmatation will take 
place almost at the same time in all r1-chains of the rock. This must have a 
visual impression of abrupt termination of the fluid flow in the rock. As for the 
time dependencies ofthe permeability and the electric current flowing through 
the medium, they must have a typical form of the percolation relations near the 
percolation threshold 

K(t) ~ K{O){l- tftp)a', 

I(t) ~ J{O){l - t/tp)P•, 

tp =<a*, t(rl), Tc > 

where the exponents at and f3t must be of the order of unity {less than one). 
If the density of the bubble germs is relatively small, then the merging of the 

bubbles and their independent growth may rival in some chains. When the heat 
exchange between the liquid and the skeleton takes place (this happens when the 
specific heat of the rock is large, as in fractured media), colmatation can be long­
lasting. It is also possible in this case that a complete colmatation of the medium 
is not achieved. 

We shall now compare the obtained results to those of an experimental study 
of electric treatment of a sandy-argillaceous medium saturated with a leaching 
solution. The parameters of the medium, the liquid, and the electric treatment are 
to be set to equal those in the experiment, i.e., the specific electric conductivity of 
the fluid, 0'1 = 1.7 n-1m-1 ; the characteristic size of a pore and a grain, I= 2·10-4 

m; the cross-section of the experimental tubes (see §9.2), S 0 = 9 · 10-4 m2 ; the 
number of conducting channels, in order of magnitude, No ~ S0 /12 = 2.3 ·104 ; the 
average capillary radius, r ~ 8 · to-5 m; the amplitude of the alternating electric 
field intensity, Eo = 180 V Jm; the energy input density, qp !:'::! 5.5 · 104 watt per 
m3 • Typical values of bubble radii and densities at NTP (p = 0.1 MPa, To = 293 
K {20° C), T& = 373 K {100° C)) are a0 =10-6 m, n. ~ 1013 m-3 • 

It follows from {11.15) and {11.17) for the parameters specified and for the vis­
cosity J.t = 10-3 Pa· s, that the time for establishing of a steady state movement, 
Ty "' 10-7 seconds, is much less than the characteristic time of movement for a 
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Figure 72: Plots for the time dependencies of the permeability 1, the electric 
resistance 2 of the medium (a} and the electric field intensity {b) in experiments 
on electric treatment of media saturated with leaching solutions 

bubble in the temperature field, r 9 "' 104 seconds. This fact confirms the validity 
of the speculation on the movement of bubbles being quasi-uniform. Experimental 
data (fig.72} yield r 9 ~ 1.5 hours {5 · 103 seconds). The overestimated calculated 
value of r 9 was obtained because an overestimated value of JL and an underesti­
mated value of x' were used in substituting in the formula {11.17}. (When the 
temperature grows form 20° C to 100° C, the viscosity drops by a factor of three, 
and x' increases by more than 20%.) In the estimates, the constant values of JL 
and x' were used, which correspond to T = 20° C. Taking account of the changes 
in these quantities as the temperature of the liquid grows, yields a result which is 
much closer to the experimental one, r 9 ~ 1.1 hours (4 · 103 seconds). 

Having got inside the capillary, the bubbles begin to grow. The first stage 
of the growth takes place for T < Tb. For the specified parameters of the field, 
medium, and liquid, the temperature in the liquid inside the capillary reaches n 
after t ~ 1.6 hours. This result agrees adequately with the experiment, where a 
sharp drop of the electric conductivity occurs at the time t = 1.5 hours. An earlier 
termination of the flow (see fig. 72) is due to the fact that the grown bubbles 
impede the fluid flow to a greater extent than they impede the current flow in the 
medium. Up to the instant of merging, the growth of the bubbles is described by 
equations (11.36)- (11.38). 

The parameters defined in deducing these equations have the following values, 
A = 2.5 · 10-4 , Ao = 4 · 10-5 , X = 2.54 · 10-5 s-1 • The quantities H and 
Z depend on the temperature inside the bubble and vary within the following 
ranges, H = (2.14 + 1.44} · 103 , Z = 1.45 + 1.18. 
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Suppose that the relationships {11.40) and {11.47) hold, i.e., we neglect the 
outlined variations of Hand Z. In this case, according to {11.34), e(o) ~ 2.5, and 
the condition {11.42) holds for a/ao > 1.5. It follows accordingly that 

3 HB* 2 
w* ~ -A ~ 1.8 · 10 t 

Xo 

This implies that a/ao "' 10 when t"' 10 seconds. 

{11.56) 

If, however, we suppose that the capillary is shut off for a"' r = 8 ·105 m, then 
t ~ 0.8 hours. 

{11.56) implies that 

Therefore 

and the left side of ( 11.36) is of the order of 

w*w~ + 3/2(w:)2 ~ -{4 · 1011 + 2 · 108 ) 

The term in the right side of the equation is of the order of 

It follows that for the given characteristic parameters, the dynamic terms in the 
Rayleigh-Lamb equation may indeed be neglected. Thus this equation assumes 
the form {11.40), and the dynamics of the bubble growth is taken into account in 
the equation {11.35). 

Thus the following stages of the reversible change of the permeability for a mi­
cro heterogeneous medium as the electric current passes through it can be outlined, 
based on the theoretical analysis and the obtained experimental data. 

1. Increase of the electric conductivity and the permeability of the medium 
caused by the destruction of the bounded fluid on the surface of capillaries 
and by the decrease of its viscosity. At the same stage, the migration of 
bubbles of fluid towards the thin capillaries of the medium, which are heat 
sources, takes place. 

2. Termination of the growth of the electric conductivity and the permeability 
and the formation of a "platform" in I<(t) and E{t) coordinates. At this 
stage, the growth of bubbles of vapor takes place at a temperature less than 
the boiling point. These bubbles shut off the capillaries and make up for the 
increase of the electric conductivity and the permeability of the fluid caused 
by the increase of the capillary cross-sections. 
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3. The stage of colmatation in the strict sense of the word. The bubbles shut 
off the capillaries completely, and a sharp drop of the permeability (down to 
zero) and a substantial decrease of the electric conductivity (by several tens 
of times) occurs. Compared to the two previous ones, this stage is several 
hundreds of times shorter. 

In some cases (e.g., in the media with a specific heat of the solid part of the 
rock much greater than that of the saturating fluid), complete colmatation of 
the medium might be impossible for actual values of the energy release density 
provided by customary sources of electric energy. 



Chapter 12 

Effects of Acoustic Waves 
on Irreversible Change of 
Permeability of a Saturated 
Porous Medium 

Along with the electromagnetic fields, the acoustic fields are extensively used for 
managing the conducting properties of reservoir rocks. Some properties of acoustic 
treatment make it essentially different from electric treatment. We shall consider 
the main features in the behavior of saturated porous media in an acoustic field. 

The following mechanisms of interaction between the acoustic field and a satu­
rated porous medium, which cause irreversible changes in the permeability of the 
latter, are possible. 

1. Dissipation of the energy of a viscous Poiseuille flow in the case of mutual 
displacement of the liquid and solid phases. Increase of the temperature in 
the liquid results in the increase of its pressure and in the corresponding 
increase of the pore channel radii, for example, because of the destruction of 
the cement in the thin capillaries or on the surface of the capillaries. 

2. Destruction of the surface layer of pore channels under tangential stress 
generated at the interface of the solid and the viscous liquid phases during 
the flow of the latter. 

3. Cavitation in the pore channels as the acoustic wave passes through the 
medium. The small "cumulative" jets formed when the cavitation bubbles 
collapse, destroy the surfaces of pore channels and thus increase their radii. 

199 
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4. Dissipation of the acoustic field energy due to the "flawless" movement of 
the fluid in the pore channels, when the total displacement of the fluid in 

any physically small volume vanishes. Temperature increase causes the same 

effects as those stated in 1. 

Analyze the probabilities and the nature of realization of each of the mentioned 

mechanisms in the process of acoustic treatment of the medium in reservoir setting, 

for the parameters of an ultrasonic wave source. 

12.1 Dissipation of Energy in Viscous Poiseuille 

Flow 

If a total flow Q develops due to the displacement of the fluid with respect to the 

solid skeleton, Poiseuille flow directed along the gradient of the external pressure 

Vp, takes place in the chains of the IC skeleton. 
However the existence of such flow is possible only for the frequencies lower 

than a certain value, called the characteristic frequency: 

(12.1) 

The first to obtain this result was M. A. Biot (1956) [97], who got it studying 

the solutions to the equation for the non-steady state fluid flow in porous media 

Ptdvfdt = -mVp + F- (~t/ K)v 

in the interval of relatively low frequencies (vo < 105 Hz). For frequencies higher 
than Voc, the relative displacement of the fluid and the skeleton of the rock does 
not take place, i.e., the solid and the liquid phases move in phase. Estimate the 

value of Voc· Take IL "' w-3 Pa·s, P! "' w-3 kg·m-3 and the averaged radius of 

the capillary chain to be < r >. 
To calculate < r >,use the model function (4.9) which reflects the qualitative 

behavior of actual f(r) well. In this case< r >= a*a*(a*- a*)- 1 ln(a* fa*). We 

assume, as usual, that a*>> a* and set a* fa*"' 103 + 104 "'e7 +e10 and therefore 

< r >"' lOa*. Since a* "' w-6 m can be taken as the minimal radius of the 
conducting capillaries where Poiseuille flow is still realized [88], we have 

< r >"' 10-5 m (12.2) 

After substituting the above-mentioned values of /L, PJ, and< r >in (12.1), we 

obtain Voc "' 104 Hz. It can be thus inferred that for Poiseuille flow to take place 

in the medium and for the "first" mechanism of the acoustic energy transfer to be 

realized, the frequency of the treatment must be lower than v0 "' 104 Hz. Since 
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ultrasound, i.e., the oscillations with frequency no less than v0 EO!! (1.5 + 2.0) · 104 

Hz, is going to be used, the obtained estimate does not allow to decide whether 
the considered mechanism is or is not going to work at this frequency. 

Therefore we will analyze the possibility of its realization more closely. The 
velocity profile in a capillary for Poiseuille flow is described by the following rela­
tionship (89), 

(12.3) 

where r is the capillary radius, r0 is the distance from the axis of the capillary, and 
Vp is the local pressure gradient in the given capillary. In this case the average 
velocity in the capillary is 

(12.4) 

and the flow is 

Since for each marked chain we have q = const, it follows that 

Therefore 
v(ro) ""r~fr4 , ovforo ""2rofr4 

and the release of energy per unit time per unit length of a capillary is 

r 

E' ""j<ovf8r0 )2rodr0 ""r-4 

0 

i.e., when there exist non-vanishing total flows under the action of the acoustic 
wave one could expect localization of the dissipated energy release in the thinnest 
capillaries. However it is clear that in the considered case of the acoustic wave 
propagation, no integral displacement of the fluid in the capillary chain is observed 
when a fixed cross-section of the fluid passes through several capillaries of the chain. 

The average velocity of Poiseuille flow in a capillary with a variable cross­
section can be estimated using the relationship {12.4), with the average capillary 
radius substituted for radius. 

After substituting (12.2} in {12.4), we obtain the characteristic velocity< v >EO!! 

2.5 . w-2 mfs. 
At the frequency v0 = 20 kHz, the period of the directed motion is T /2 = 

v01 /2 = (1/4}10-4 s and the displacement during this period is ill 
=< v > T /2 "" w-6 + w-7 m. This value is substantially less than the char­
acteristic length of a capillary in the chain, since it is assumed that the lengths of 
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capillaries exceed their cross-sections, and therefore characteristic capillary length 
is l > w-6 m. 

The presented estimate shows that under acoustic treatment with frequency 
within the kilohertz range, the release of energy due to the dissipation during 
the directed Bow of a viscous fluid is not observed. Consequently, unlike in the 
case of electric action, the effect of localization of the energy release in the thinnest 
capillaries, which limit the hydraulic conductivity of the medium, does not appear, 
either. 

12.2 Destruction of Surface Layer in Pore Chan­
nels under Tangential Stress 

When the surface of the pore channels, or at least a part of it, is covered with 
a cementing clayey solution drift (or, as in the pre-filter zone of the well, with 
mud drift) which has low shear strength, the shear stress developing at the phase 
interface during the fluid flow can cause destruction and further hydrodynamic en­
trainment of the solid particles from the boundary layer. Consequently the radius 
of the conducting capillaries increases by the value of thickness of the entrained 
low-strength boundary layer. This results in the increase of the permeability of 
the medium. 

Investigate the reality of this effect appearing in the medium, given the char­
acteristic values of the corresponding parameters. Calculate the tangential force 
Fr with which the fluid acts on a unit length of a cylindrical circular capillary (89]. 
From the momentum equation for a liquid cylinder of radius r we have 

{12.5) 

where 6p is the pressure difference at a distance l. The tangential stress acting 
on the surface of the channel by Navier - Stokes law equals 

8111 6p r 
Ts = -p, 8ro ro=r = -~- 2 (12.6) 

The Hagen - Poiseuille formula (12.3) for the profile of velocities for the fluid 
in the capillaries was used in deriving the resultant expression (12.6). After ex­
pressing 6pfl in terms of the stress T8 from (12.6) and substituting the obtained 
relation in (12.5), we find the value of the applied tangential force per unit length 
of a capillary in the following form 

Fr = 211TT8 

To obtain the critical value of the shear force, when the removal of the layer 
from the surface takes place, we substitute the quantity T8 with the shear strength 
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of the surface layer u.: F-r = 211"ru •. Furthermore introduce the parameter 

r 'T = o.sp1 < v >2 /3'-1 

where {3' = F-r / S' and S' = 211"r is the area of a unit surface of the capillary to 
which the shear force F-r is applied. The parameter r -r characterizes the ratio of 
the hydrodynamic head P! < v >2 /2 to the critical shear stress {3' that can be 
endured by the capillary surface without destruction. Obviously {3' = u., and 
therefore finally 

r-r = P! < v >2 u-;1/2 
Fulfillment of the condition 

{12.7) 

is the criterion for the destruction and entrainment of the surface layer from the 
capillary surface by the flow. 

Estimate the quantity r -r and verify the fulfillment of the condition {12.7). 
Taking account of the velocity profile v( r0 ) in a capillary, we obtain 

r 

< v >= ~ j 211"v(ro)ro dro = 8
1 r 2Vp 

'/l"T ~ 
0 

where "'Vp is the pressure gradient in the considered volume of the medium. Es­
timate "'Vp using the characteristic values for the parameters of acoustic action. 
Wavelength ,\ is of the order 10-1 m, and the amplitude of the pressure wave is 
Po. ,..., 10 Pa; therefore, the characteristic value of "'Vp ,..., Po./,\ = 105 Pa/m. The 
average value of the pore channel radius for a reservoir rock is of the order of 10-5 

m, as can be seen from {12.2) as well as (48). For our estimates, take the capillar­
ies that are thicker by one order, i.e., those with radii r ,..., 10-4 m. In this case 
< v >- 10-1 m/s, < v >2 - 10-2 m2 fs2 , and P! < v >2 /2 ,..., 1/2 · 10 Pa. Since 
the shear strength of clay is no less than 103 Pa, while this value for mud is as a 
rule no less than 10 - 102 Pa (84), it can be seen from the presented estimate that 
the "shear stress mechanism" can work only for very large capillaries. However 
in such capillaries, where maximal flow rates are realized, visible clay depositions 
can hardly be found. Thus the given mechanism is unable to substantially change 
both the radii of thick capillaries (since the layer of depositions on their surface is 
minor) and the radii of thin capillaries, where the hydraulic head is too small. 

12.3 Cavitation in Pore Channels under Acous­
tic Action 

As an acoustic wave passes through a saturated porous medium, the effect of cavi­
tation may appear, if negative pressures exceeding the tensile strength of the fluid 
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Figure 73: A sketch of a capillary junction element for capillaries with different 
radii 

in the absolute value develop at the relief stage. Consider two possible mecha­
nisms for the development of negative pressure during ultrasonic action. This can 
happen at the junctions of capillaries with different radii during the flow from the 
thicker to the thinner one and at the relief stage of the traveling pressure wave in 
the fluid. 

1. Suppose two capillaries in a chain form a junction of the type presented in 
fig. 73. As was shown by the estimates presented above, the displacement of the 
fluid during a half-period of the wave in a capillary chain is rather small ("' 10-7 

m); however, in the immediate vicinity of the junction, as the fluid passes from 
the thick capillary to the thin one, the increase of the flow rate and the pressure 
drop take place. We will estimate this pressure drop using Bernoulli's integral 
along a horizontal flow tube, when the z-coordinate is constant. In this case the 
gz term can be included in the general constant, so that the following equality can 
be written 

(12.8) 

The quantities marked with index "0" correspond to the thick capillary, and 
those without an index, to the thin one. From the mass conservation equation we 
have pvSk = canst, where Sk is the area of the cross-section of the capillary, and 
we obtain 

(12.9) 

where r and r0 are the radii of the corresponding capillaries. After substituting 
(12.9) in (12,8), we obtain 

(12.10) 

since we are discussing the case when (rfr0 )4 « 1. 
The average velocity < v > of Poiseuille flow along a chain in the high pressure 

phase can be estimated using the average radius < r > of a capillary chain for a 
given function f(r). In this case 

(12.11) 
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On the other hand [85), the mass velocity is 

- Ot -lc-1 
"-PaP! 1 
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{12.12) 

where C1 is the velocity of sound in the fluid. In this case, as in {12.9), after 
taking into account {12.11) we obtain 

vf < v >"' (< r > /r)2 

and using {12.12) and the fact that < v >"' ii, 

"!:!! _1!2.._ (< r >)2 
P!Cf r 

After substituting this value of v in {12.10), we finally obtain the formula for the 
pressure difference when the fluid passes from a thick capillary to a thin one: 

p=Po-! ~ (<r>)4 
2 P!C} r 

{12.13) 

For a fluid, P!C} "' 1 GPa; Pa "'0.01- 0.1 MPa for the considered phenomena. 
As it was demonstrated above, one can take < r >"' 10-5 m and the minimal value 
of radius r "' 10-6 m. In this case < r > fr "' 10, ( < r > /r)4 "' 104 , and if the 
background pressure of the order 10 MPa is taken as Po, we obtain from {12.13) 
that p "' 107 - {1/2) · 10-4 • 104 "' 107 - {1 + 0.1) "' 107 Pa. This means that 

in a reasonable range of radii of the joining capillaries (rfr0 < 10), the pressure 
difference, as fluid passes from a thick capillary to a thin one, is of the order of 
the wave amplitude Pa, and therefore no negative pressure develops with respect 
to the high reservoir pressure Po. 

If we take an "exotic" case < r > fr "' 102, i.e., r "' w-7 m, then ( < r > 
fr )4 "' 108 and p "' -1 GPa. At such values of negative pressure one can expect the 
effect of cavitation to work. For the mentioned rarefaction pressure, the existing 
hydrodynamic pressure, and the given frequency of action, estimate the range of 
radii of the cavitating gas bubbles. 

Suppose that due to some reasons, the so-called germs, i.e., bubbles of gas, 
exist inside the fluid. Formed inside the cone of depression during the evolution 
of gas because of the local temperature, concentration and other fluctuations, 
these germs can oscillate in the pressure wave and collapse with the formation of 
cumulative jets directed towards the interface of the fluid and the solid capillary 
surface [89, 90). As in the approach [91), consider the variation of the initial 
pressure Po in the fluid in the vicinity of the oscillating bubble with initial radius 
ao. If we neglect the elasticity of vapor, the pressure of the gas inside the bubble 
is 

Pn =Po+ 2xfao 



206 CHAPTER 12. ACOUSTIC WAVES AND PERMEABILITY 

-z 

-4 

-6 

Figure 74: Relation between the pressure in the fluid around the bubble and 
the extent of its growth {plotted according to the data of L. K. Zaremba and 
V. A. Krasilnikov) Code of the curves - ao, m 

As the pressure around the bubble drops, its radius increases by Ea times. 
Suppose that the expansion of the bubble is isothermal and that the mass of gas 
inside the bubble does not change. In this case the external compensating pressure 
is 

{12.14) 

Use {12.14) to estimate the maximal negative pressure that can be endured by 
a fluid with identical bubbles of initial radius ao. Consider the derivative dp0fdE 11 • 

Rupture of the fluid takes place only when the curve p0(e-a) has an extremum, 
since after the curve passes its extremum, the expansion of bubbles continues with 
the pressure going up. Typical p0(Ea) curves are represented in fig. 74 for two 
different values of the parameter ao. After setting the derivative dp0jdEa to zero, 
we obtain the following from {12.14) for the critical value of the variable, 

E* = a ~ ao (Po+ 2x) 
2 X ao 

The minimal size of the cavitating germ can be estimated from the condition of 
the fluid rupture. This condition implies that the total pressure must be negative 
and must exceed in absolute value the critical pressure Poe, which corresponds to 

{2x/ao)3 
{12.15) 

3{Po + 2xfao) 

For the value p"' -1 GPa when Po "' 10MPa, IP/Pol » 1, and the equation 
{12.15) can be rewritten in the form 

7p2Po(ao/2x)3 = 1- 7p2(aof2x) 2 
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After assuming that x"' 7 · w-2 newtons per meter, we obtain 

(12.16} 

where ao is measured in meters. For the expression (12.16} to have physical sense, 

i.e., for a0 to be greater than zero, it is necessary that a0 < w-11 m, as it can 
be seen from the right side of (12.16}. In this case we obtain a0 < w- 10 + w-9 

m. That is, if we choose the minimal value of a0 of the mentioned, we obtain 
amin "' w-u m, or w-2 nm, a value that is less than the characteristic size of the 
atom by an order of magnitude. 

The maximal size of a cavitating bubble can be estimated using the relation 
for the resonance frequency of small oscillations 

1 
Vr =­

ao 

where 'Yp is the isentropic exponent for vapor. 

{12.17} 

Since the germs with a less than the resonance radius a0 oscillate with a bigger 
amplitude, which causes the rupture of the fluid, these germs cavitate. After 
representing {12.17} in the form 

and transforming it into the equation 

we obtain that for Po "' 10 MPa, 'Yp = 1.4, x = 7 · 10-2 newtons per meter, 
PI = 103 kg/m3 , Vr = 2 · 104 s- 1 , amax "' 10-2 m. 

Since all germs of the initial size amin < a < amax must cavitate, it follows 
that for the given negative pressure, germs of virtually any size can cavitate in 
capillaries of all radii. However, due to the fact that the presented investigation 
is valid only for r < w-7 m, where there is no Poiseuille flow, and therefore for 
those capillaries which do not contribute to the permeability of the medium, the 
cavitation effect cannot appear in any significant quantities. If we also take into 
account the fact that we considered a rather improbable case of capillary junction, 
when rfr0 "'102 and the boundary between them is very sharp (see fig. 73, AA'­
plane), whereas the cross-sectional views of actual reservoir rocks demonstrate a 
more gradual change of radii of the capillary chains (see fig. 73, dotted line), and 
the fact that the cavitational destruction in any case takes place only in the closest 

vicinity of the plane of contact of the capillaries, we should admit that for the given 
parameters of the process, i.e., p0 "' 10 MPa, Pa "'0.1 MPa, the cavitational effect 
may be neglected. 
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2. Directly at the unloading stage of the traveling wave, for the given Po 
and Pa, cavitation in the fluid cannot develop, either. This follows clearly from 
the relationship (12.15), which shows that after the value Pa is substituted for p 
in this expression, the sum (Pa + Po) never becomes negative, and cavitation is 
therefore impossible in principle. In [92] an interval Po± l:l.ph of pressures, called 
the metastable zone, was established experimentally. Supposedly, outgassing and 
cavitation take place for low intensity of the acoustic field, if the difference between 
the reservoir pressure Po and the saturation pressure of the fluid with the gas lies 
in the mentioned interval. However the presented data, concerning the change 
of the velocity of sound in the saturated medium and the volume of the released 
gas, do not permit to make any definite conclusions on the physical picture of 
the processes that take place here (in particular, the development of cavitation), 
let alone the quantitative parameters of these phenomena. Therefore there is no 
reason to think that at the given amplitude and intensity of the acoustic action 
and such high reservoir pressure cavitation may develop in the pore space filled 
with the fluid. 

12.4 Dissipation of Acoustic Energy Due to Ther­
mal Slide 

It was established in §12.1 that when there is no integral flow in a chain, the 
mechanism of the acoustic energy dissipation due to thermal slide is possible. The 
characteristic feature of this mechanism is the vanishing of the total flow of the 
fluid, even within a single capillary. 

Since the capillary length is assumed to be much greater than the radius, a 
capillary can be considered having infinite length, so that boundary effects on 
the capillary junctions can be neglected. Consider the fluid movement in a cap­
illary under the outlined condition and under the action of a pressure wave with 
amplitude Pa and frequency vo 

p = Pa cos[21r(vot- xf -\)] (12.18) 

where -\ is the wavelength, whose correlation with the frequency is expressed by 
the well-known formula AVo= Cm (Cm is the velocity of sound in the medium). In 
writing out the relationship (12.18), it was supposed that the wave propagates in 
the direction of the x-axis, which coincides with the axis of the capillary. For such 
relative location of the wave vector k and the capillary axis, the action upon the 
fluid of a longitudinal simple harmonic wave in the capillary is maximal. The closer 
(k, x) to zero, the less the components of pressure and the corresponding velocity 
of the movement along the capillary, and therefore the less the considered effect. 
The point is that the velocity of thermal slide is proportional to the gradient of 
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Figure 75: Profile of velocities of the fluid in a capillary for the thermal slide 

the developing temperature profile (93]. The given temperature profile is caused 
by different degrees of compression of the medium by the propagating pressure 
wave. Since the temperature of the medium is proportional to pressure (8.17), and 
consequently the gradient oftemperature is proportional to the gradient of pressure 
\lT "' \lp, it follows that the maximal velocity of thermal slide compensating 
Poiseuille flow is directed as \lp, i.e., as k. Under the outlined assumptions, 
the presence of thermal slide along the capillary surface results in the velocity 
profile represented schematically in fig. 75. This profile can be described by the 
relationship 

v(ro) = -(1/4tt)\lp[(r- bt)2 - r~] + "Yr\7T1J[ro - (r- bt)] (12.19) 

where Ot is the thickness of the thermal flow layer, which has the order of the 
diffusion layer thickness (93] (the latter is equal to several times the free path for 
molecules of the fluid); "YT is the proportionality factor in the expression for the 
velocity of thermal slide (93] vr = "Yr\lT; 17(·) is Heavyside's function. Using 
(12.19), compute the flow of fluid in a capillary 

r 

q = 21fPJ j v(ro) ro dro 

0 

Having set it to zero, we obtain the correlation between the gradients of pressure 
and temperature 

(12.20) 

Dissipation of energy due to the internal friction for Poiseuille flow (per unit length 
of a capillary) equals 

r 

E1 = 27f/L J (8vf8ro) 2ro dro 
0 

(12.21) 

The corresponding heating of the fluid with specific heat cr by !::.T degrees absorbs 
the energy equal to 
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Although the heat conductivity of water and the surrounding rock are of the 
same order("' 1 watt per meter-Kelvin), we shall neglect the heat transfer from 
the fluid to the solid skeleton in the zero approximation. In this case we obtain 
the condition 

E1 =E2 

Using this condition and relationships (12.19) - (12.21), we obtain 

(V'p)2 1 r3 
D.T=-----

8p. PJCT ht 

For a simple harmonic wave (12.18) we have 

D.T = 7r2 r3p~(2J.LPJCr.A2 ht)- 1 sin2 [27r(vot- x/.A)] 

After averaging (12.22) over the wave period 

1/vo 

< D.T >= v0 j D.Tdt 
0 

(12.22) 

we obtain an expression for the temperature increase in a capillary with radius r 
after a period of T11 of action of a simple harmonic wave source with frequency Vo 

and intensity Ib: 
(12.23) 

where Qp is the coefficient of transmission showing the extent to which the ultra­
sonic wave is reduced as it passes from the source through the liquid filling the 
well and through the partition of the well into the rock. 

The obtained relationship (12.23) shows that the considered thermal slide 
mechanism permits to qualitatively explain and quantitatively estimate the con­
sequences of acoustic action upon a saturated porous medium. If the process does 
not cause phase transitions in the liquid phase, then the formula (12.23) shows 
how the temperature and the pressure increases in the fluid depend on the ratio of 
the parameters of the fluid and the medium and on the operating conditions. The 
effect of phase transitions (here, the gas release) can be estimated, at least qualita­
tively, by taking into account the relations p.(r'), cr(r'), Cm(r'), where r' is the 
parameter that characterizes gas release, e.g., volumetric or mass concentration of 
gas bubbles in the liquid. 

12.5 Gas Colmatation During Acoustic Action 
on Porous Media 

As in the case of electric action (see chapter 11), gas colmatation of a fluid­
containing rock, as the fluid gets heated due to the dissipation of acoustic energy, 
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Figure 76: Qualitative picture of the change in the porometric curve of the form 
a*fr2 (1) after electric treatment (2) 

is a mechanism that competes in its consequences with the four already analyzed. 
If we consider the movwmwnt of bubbles in a micro heterogeneous medium sat­
urated with a fluid in an acoustic field, as in §11.2 for an electric field, we can 
infer from (12.23) that the situation here is opposite to the one discussed in §11.2 
for electric current. That is, in the thinner capillaries, the temperature increases 
slower than in the thicker ones. If we take into account the relation between the 
surface tension and the temperature, we come to the conclusion that the thick 
("hot") capillaries thus become the stable centers of attraction for the bubbles 
from the thinner ("cold") capillaries. 

Even a rough preliminary estimate shows, as in the case of electric action 
(chapter 11), that the characteristic period r* of colmatation coincides in order of 
magnitude with the characteristic period r. of attaining the critical temperature 
Tk. 

To carry out this estimate, we shall use the simplest, but also the most typical 
form of the function f(r), f(r) = a*fr2 • It can be easily shown using the results 
of §1.2 that 

{12.24) 

where a: is the minimal capillary radius after treatment (fig. 76). This means that 
the change of the permeability K with respect to the initial coefficient K 0 is caused 
primarily by the right shift of the left limit of the function J(r). Deformation of 
the form of the curve f(r) in itself affects the behavior of K to a substantially 
smaller extent. Therefore to determine the permeability change, it is necessary to 
estimate the change of the minimal radius in the distribution J(r). 

As many times before, take a*~ 10-6 m, and let the depositions on the surface 
of the capillaries be represented by a widespread type of cement (see §8.1) with a 
range of strength 10-1 - 10 MPa [84]. For our estimates, we shall use the largest 
value of the crushing strength of the cement a* ""' 10 MPa and determine the 
characteristic period r. of heating necessary to increase the pressure in the fluid 
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up to p ""' u* ""' 10 MPa. 
We have already mentioned that the correlation between temperature and pres­

sure is established by the expression (8.17). For water we have aT :::::: 0.2 · 10-3 

K-1 , /h :::::: 5 Pa-1, and for oil, aT :::::: 10-3 K-1 , f3T :::::: 10 Pa-1 . The ratio of 
proportionality factors aT/ f3T equals 2.5 in both cases. Therefore the lengths of 
the critical temperature intervals t:l.T., for which the pressure increase is t:l.p""' u*, 
coincide in order of magnitude: t:l.T. ""' 10 K. In this case it follows from (12.23) 
that the minimal duration r. of the thermo-acoustic action on the capillaries with 
r ""' 10-6 m for Vo =20kHz, Ib = 2 watt per cm2 ' and Qp = 10-1 is approximately 
equal to 5 · 103 seconds. 

We will use the formula (11.14) to find r* after estimating the temperature 
gradient "VT appearing at the micro level. The following points will be taken into 
consideration. Although the thick capillaries with r > 10-4 m are the first to get 
heat, and therefore, the first to colmatate, they make a very small contribution 
to permeability. Therefore cutting the function f(r) in the interval of large r 
virtually does not affect the change of K, while the principal interest is with the 
range (10-6 < r < 10-5 ) m. Since we have supposed that the capillary length 
l » r, we will take l ""' 10-3 m as the characteristic length. To analyze the 
temperature regimes in adjacent capillaries of different radii, return to the model 
representation of a capillary junction (see fig. 73). 

Let the ratio of radii of the joining capillaries be maximal, i.e., of the order 
10, and consequently, the radius of the larger capillary be r ""' 10-5 m. The 
characteristic longitudinal size in the chain is""' l (capillary length); therefore, the 
time of the temperature equalization after its difference occurs between different 
points in the capillary chain is 

(12.25) 

For example, ~~:~o) "' 0.4 · w-6 m2 fs for oil, and from (12.25) we have r~ of 
the order of several seconds. The temperature difference between the capillaries 
of different radii develops during the specified period of establishment (12.25), 
since for larger periods, equalization of the temperatures will take place caused by 
both the heat transfer in the fluid and by the backflow of heat into the skeleton 
of the rock. Note that both of the mentioned processes are identical in terms of 
the characteristic time intervals, since the coefficients of temperature conductivity 
for oil and sandstone differ only by a factor of two, i.e., have the same order of 
magnitude (~~:~o) ~ 0.4 ·10-6 m2 fs, ~~:~•) ~ 0.8 ·10-6 m2 fs), while the characteristic 
size of a grain in the rock and characteristic capillary length in a grained medium 
obviously coincide (l""' 10-3 m). 

In this case we have 

t:l.T = T(r0 , r') - T(r, r') = - 11'
4 

Qp r3 [1 - (ro) 3] v5Ibr' 
4 J.tCTCm Ct r 



12.5 GAS COLMATATION 213 

It follows that for r - 10-5 m, r 0 fr - 10-1 , vo = 20 kHz, 10 = 2 watt per cm2 , 

qp = 10-1, we get 6.T - -1 K. Consequently the temperature gradient is of the 
order of 6.Tfl- -103 Kfm. 

As a matter of fact, since actual cross-sections of the pore channels change 
gradually, i.e., in the vicinity of the considered section the ratio r fr0 ::/: 10, but 
is substantially smaller (approximately, 1 - 2}, so that we should take an average 
value from the considered interval (10-6 - 10-5 ) mas r, the estimate ofthe quantity 
VT should be decreased by a factor of 10, which yields VT/e- -102 K/m. 

After taking x.' = 0.11 · 10-3 Jf(m2 ·K) for oil [87), from (11.14} we find the 
velocity of steady state movement of bubbles from the capillaries with r - 10-6 

m to the larger ones. (We set the characteristic size of bubbles able to move freely 
inside the capillaries with r - 10-6 m to equal ao ,..., 10-7 m.) This velocity is 
v,..., (1/6} ·10-6 mfs. Hence the time necessary for the gas bubbles to accumulate 
in the "hotter" capillaries from the given ranger < 10-5 m is r* ,..., lfv ~ 6 · 103 

seconds. 
It follows from (11.15} that the relaxation time for the velocity of bubbles with 

radii a0 - 10-7 m is r 11 - 10-8 seconds, a value obviously less than r 9 = r*, 
and therefore the assumption about the quasi-uniform nature of the movement of 
bubbles is justified in the considered case as well. 

So during the period - r* the gas bubbles move from the thinnest capillaries 
to the closest thickest ones and accumulate in the latter. 

It should be added that during such migration from the "cold" capillaries to 
the "hot" ones, as well as after it is finished and the bubbles accumulate in the 
"hot" capillaries, the bubbles grow due to the inflow of heat (see §11.2} released 
as the acoustic wave passes through the medium. The growing bubbles cut off 
the cross-section of the capillaries, so that the whole chain is "shut off," and the 
permeability of the medium drops. 

The mentioned processes causes gas colmatation of the volume of the medium 
in the acoustic field. If we compare the two periods r. ~ 5 ·103 sand r* ~ 6 ·103 s, 
we can see that the characteristic times of the two competing effects are very close. 
At the same time, the period of migration r* somewhat exceeds (approximately, 
by 20%} the time of attaining the maximal permeability. 



Chapter 13 

Effect of Acoustic Action on 
Well Production 

Estimates and calculations presented in chapter 12 show that when a medi­
um undergoes acoustic treatment at the most common frequency of "" 104 Hz, 
the mechanism of the acoustic energy dissipation due to the development of the 
so-called "thermal slide," a "flawless" motion of fluid, plays the principal part in 
the alteration of conducting properties of the medium. The dissipative character 
of the energy release in separate capillary groups permits to explain the feature of 
the acoustic treatment of reservoirs caused by the cumulativity of this treatment. 
Localization of the energy release in separate capillary groups causes the destruc­
tion of the cementing substance {clay, biotite, etc.) and its being carried away 
from the group. This substance is weak, and therefore the thermoelastic stress 
developing in the medium is sufficient to destroy it. 

Since permeability is proportional to r 4 , where r is the capillary radius, even a 
small change of the effective capillary radius suffices to alter its conducting prop­
erties, and consequently to alter the effective permeability of the whole medium. 

At the same time, as the duration of acoustic treatment goes up, one can 
run across a substantial local increase of temperature in some groups of micro 
capillaries {12.23). This phenomenon can cause the release of gas phase in such 
capillaries. As a result, gas colmatation can develop, and the permeability of 
the medium can drop sharply to as low as zero. The given effect causes natural 
limitations of either the duration or the intensity of acoustic treatment. 

215 
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Figure 77: Plan of a laboratory facility used to determine the change of the 
permeability of a medium after acoustic treatment: a - general view; b - top view 

13.1 Laboratory Research on Permeability of Me­
dia after Acoustic Treatment 

An experiment was conducted, using the method described in chapter 6, to deter­
mine the change of the conducting properties of an artificial medium simulating a 
natural reservoir, under ultrasonic treatment. 

Experimental set-up. The facility used for the experiment is presented in 
fig. 77. The artificial medium was a homogeneous blend of Lubertsy sand and 
clay in the 9:1 ratio. The given blend, if packed tightly, corresponds in its basic 
geophysical and physicomechanical properties to the dense sedimentary sandstone­
type rocks. 

Having been mixed thoroughly, with some water added to avoid the restraint 
of air, the artificial medium was placed in layers in the container A around the 
well B. Every layer placed was tramped, after which the next one was placed over 
it, and so on, until the whole volume A was filled. On levels 1 - 10 in the medium, 
electrodes were set. The character of their setting in the plan is shown in fig. 77, 
b. Electrodes 2 - 10 were set at equal distances t::.L = w-1 m from each other. 
The distance from the bottom of the model to electrode 1 was 4 · w-2 m, and 
between electrodes 1 and 2, 6 · w-2 m. The bottom part of volume A was made 
of a permeable material and touched the surface of the fluid filling the container 
c. 

At the first stage of the experiment the medium was kept at the atmospheric 
pressure for 24 hours, for the height distribution of saturation to develop, corre­
sponding to the radii distribution of pore channels. Resistances between the first 
and all successive electrodes were then measured. 

At the preliminary stage, a series of such measurements was taken in order 
to find the characteristic value of the experimental error caused by the unsteady 
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conditions of the environment, such as the change of humidity and external tem­
perature, atmospheric pressure, possible variations in the mineralization of water, 
etc. 

At the second stage acoustic action upon a saturated layer composed of the 
sandstone-type rocks was simulated. Container A was filled with water poured 
from the above for complete saturation of the medium to be achieved. After the 
medium was saturated, an ultrasonic wave source was placed in the well B, which 
was also filled with water, and the medium was treated with acoustic waves for 1 
hour. Then the source was taken out of well B. The third stage was the same as 

the first one: the medium stayed at the atmospheric pressure for 24 hours, after 
which measurements of the resistances between the electrodes were taken. 

Experimental data processing. Results of the direct processing of the 
obtained data according to the technique described in §6.2 did not reveal any 
notable change in the permeability after the acoustic treatment. This can be 
explained by the fact that the given experimental design does not permit one to 
advance into the region of the probability density function for capillaries containing 
the thin capillaries. The least radius that can "take part" in the experiment is 

If we assume complete wettability (cos 6 = 1) and take for the water-air contact, 
x = 73 · w-3 newtons per meter, we obtain for L = 1 m r0 ~ 15JLm. At the same 
time, according to [48), the characteristic value of the minimal capillary radius in 
cemented sandstone is a* ,..., 1JLm, which is less by an order of magnitude. 

Estimate the effect of the region of the small capillary radii in the function f ( r) 
on the permeability K in the developed percolational approach. The model for the 
permeability of a grained medium is most adequate for the considered medium; 
therefore, we will use the results of §2.1. Take the most simple typical exponential 
function 

/(r) = a*/r2 , r ~ a* 

In this case, after setting v = 1 to make the calculations easier, we obtain 

K-a! 
Thus the permeability of the medium is determined primarily by the quantity 

a* and not by the average value of radius < r >. Therefore for a constant value 
of a*, the value of the permeability coefficient K is constant, too. 

To observe the variation of the function /(r) in the interval of small radii 

(1 < r < lO)JLm, it is necessary to either increase the height of the volume A by an 
order of magnitude, i.e., make it 10 m, or decrease the coefficient of surface tension 
x, or, more exactly, the value of the product xcosfJ, by an order of magnitude, 
for example, by adding a surface-active substance to the fluid. 
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Figure 78: Nature of the change in the total resistance of the medium with height 
(for the facility presented in fig. 77) 

However the obtained data do permit to carry out a qualitative analysis to 
estimate the order of the change to the permeability K. Assume that the medium 
is sufficiently homogeneous and the distribution /(r) is close to delta-like in the 
vicinity of the minimal radius a*, determining the permeability of the medium. 
For the network model (with period l), the specific electric conductivity is equal 
to 

uy ~ 1r(a*jl)2u' 

and the coefficient of permeability is equal to 

{13.1) 

The change in the total resistance of the medium with height Ro(L) = u;1 (L/ S0 ), 

where S 0 is the cross-section of the specimen, can be represented graphically in 
this case, as in fig. 78, where £ 0 is the static height of the capillary rise [94). In 
the experiment conducted, the height of the specimen is less than £ 0 , but one can 
notice that as the point of inflection of the curve Ro(L) shifts along the £-axis, 
the slope of its linear segment changes. It follows from the expression for Ro(L) 
and from {13.1) that 

Comparison of the relations for K and R 0 (L) shows that 

Hence even the linear segments of relations Ro(L) permit to estimate the per­
meability change. The results of the measurements of resistances in the volume 
between the first and the successive electrodes are given in fig. 79, together 
with the characteristic systematic error of the experiment. Straight lines rep­
resent the interpolation of the points obtained, carried out with regard to the fact 
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Figure 79: Results of experimental study of the change in the total resistance of 
the medium with height (facility presented in fig. 77) 

that the curve .Ro(L) can be only increasing, and is close to linear in the consid­
ered case of a delta-like function f(r). From the plots in fig. 79 we obtain that 

Ro(L,a*)/Ro(L,a~) ~ 2.5; therefore, K(a~)/K(a*) < 6. Thus we conclude that 
as a result of acoustic action, the permeability of the studied volume has increased 
by approximately an order of magnitude. 

Equivalent studies were conducted in volume A filled with an ordinary bulk 
(not cemented) sand, a rock which corresponds to the water-bearing horizons that 
occur at small depths. 

However in this case, no notable changes in the electric conductivity and there­
fore, in the permeability after ultrasonic treatment were observed. This can be 
explained by the fact that a bulk material does not contain cement. The cement 
binds the grains of the medium, and its strength is substantially less than that 
of the grains; at the same time, it fills the pore channels due to its plasticity and 
thus reduces its hydraulic conductivity. Acoustic action causes destruction of the 
cementing layer in channels and its further entrainment by the fluid flow. This 
results in the increase of the permeability. The described mechanism works in ce­
mented rocks. In the non-cemented ones it is impossible, and acoustic treatment 
is thus ineffective. 

Theoretically, a certain increase of the hydraulic radius of the conducting cap­
illaries is possible in the non-cemented rocks, if the double electric layer is made 
thinner. Acoustic action causes destruction of the adsorptive part of the double 
electric layer. Some of the ions from the adsorptive part of the double electric 
layer pass into the solution, and the concentration Ci of ions there grows. Since 
the thickness of the double electric layer connected with the surface of capillaries 
[87] is 

it follows that as Ci goes up, Ae goes down. 
However at the same time, temperature T goes up during acoustic action, too. 
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Figure 80: Frequency dependence of the power transferred to the medium by a 

magnetostrictive oscillator (data of Zh. M. Bulatov, 1970). Curves 1 and 2 were 

obtained for water and air, respectively 

Still, in the thin capillaries, which determine the value of K, it grows slowly, so 

that the resultant effect may be the decrease of Ae· 
In any case, the mentioned effect is reversible and can take place only during 

acoustic treatment. Irreversible effect of the permeability increase in unbound soils 

is impossible for the considered intensity of acoustic action. This is pointed out 

by experimental research carried out in laboratories at the atmospheric pressure. 

This will be the more valid for the litho-static pressure of,..., 107 Pain reservoirs, 

when dilatant effects [95, 96], which can cause reconstruction of the grain packing 

structure, will not, obviously, be observed at the intensity of acoustic action used. 

13.2 Determination of Size for the Acoustic Ac­
tion Zone 

A series of experimental, as well as theoretical works is devoted to the direct 

research on the acoustic wave attenuation in saturated porous media. 
In studying the effects of acoustic action from an ultrasonic source on a satu­

rated porous medium, it is most important to determine the size of the attenuation 

zone of an ultrasonic wave in the vicinity of the well. It is in this zone only that 

the modifications in the pore space structure, which affect the fluid flow in the 

medium, can take place. 
Jt is known that the attenuation factor aw(vo) increases with frequency Vo. 

Although at low frequencies, aw(v0),..., v~, and at high frequencies, aw(v0),..., v~/2 , 
i.e., the growth of aw(vo) slows down with the increase of frequency, it is still 

evident that there is no use in carrying out acoustic treatment of the medium at 

high frequencies. No expansion of the treated portion will be observed in this case 
to make up for the increase of the labor intensity. 

Furthermore the resonance curve of the magnetostrictive oscillator (fig. 80) 

shows the energy resonance in the neighborhood of v0 = 20 kHz for the energy 
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Figure 81: Frequency dependence of the attenuation factor of acoustic waves in 
actual media {data of Zh. M. Bulatov, 1970) 

transfer from the oscillator to the medium for water. It can be inferred that during 
the acoustic treatment of media saturated with liquid, as well as when liquid is 
used as a go-between for the source and the medium, it is reasonable to use the 
low-frequency ultrasound (v0 = 20 kHz). Estimate the characteristic size Lw of 
the wave attenuation zone in the corresponding range of ultrasonic frequencies. 

Within the framework of Biot's theory [97], absorption of ultrasonic waves in 
the low-frequency range is determined by the attenuation factors for the longitu­
dinal ap and the transverse as waves, respectively, 

{13.2) 

where Cp, Cs are the velocities of the longitudinal and the transverse waves, 
respectively, E is Young's elasticity modulus of the medium, K is the coefficient 
of permeability of the medium, p is the density of the medium, P! is the density 
of the fluid, JL is the viscosity of the fluid, <P is the porosity of the medium, f3m 
is the compressibility of the medium, /38 is the compressibility of the material of 
the skeleton, f3J is the compressibility of the fluid. For the typical water-saturated 
sandstones we obtain the following values (in the units of s2 /m) using {13.2) 

"' 10-9 2 "' 0 5 10-8 2 ap = 110 , as = . · 110 (13.3) 

Consequently when v0 = 20 kHz, for the longitudinal waves, we have ap ~ 

0.4 m- 1, and for the transverse waves, as ~ 2 m-1. Since the longitudinal 
waves attenuate substantially slower, by "acoustic wave" we will further mean 
the longitudinal wave. 

The models used for the theoretical calculation of the parameters of heteroge­
neous media cannot take into account all of the medi urn's heterogeneous properties, 
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as well as the features of the phase distribution in a saturated medium with regard 
to the phase transitions. Therefore a series of experimental studies [93, 98-100] 
was performed to improve the calculated results {13.3). Outcomes of these studies 
were usually presented either as empirical, or as graphical relations. For example, 
the following empirical relation [101] is known 

{13.4) 

(in the units of sfm). In [98], 

aw = (3.2 + 8.6) . 10-5vo (13.5) 

(in the same units). This points to the fact that the aw(vo) relation is approx­
imately linear up to the frequencies v0 "' 106 + 107 Hz. For the values v0 !::!! 20 
kHz, the expressions (13.4) and (13.5) give an estimate aw "'1 m-1, which agrees 
satisfactorily with the results of the model calculations {13.3). After numerous 
experiments, the dependencies of attenuation factors on frequency for different 
media were obtained (fig. 81). On the whole, the nature of aw(vo) corresponds 

to the one predicted theoretically (aw "' v~ for v0 < 103 Hz and aw "' v~/2 for 

v0 :> 106 Hz). In the figure presented, the interval of spread for the data on the 
determination of the quantity aw for v0 = 20 kHz in dense sedimentary rocks is 
marked. It can be seen that aw R:l 1 + 10-1 m-1• Thus both the theoretical calcu­
lations and the experimental data indicate that aw is of the order of 1- 10-1 m-1 , 

a range that corresponds to the attenuation length of the order of several meters. 
However the presented results were obtained for a planar wave. In the case of a 
cylindrical wave, attenuation due to the geometric divergence of the wave should 
be taken into account [102] 

1, (r ) = 1, exp[-a(re - rw )] 
o e n refrw 

where 10(re is the acoustic wave intensity at a distance re from the axis of the well, 
/0 is the intensity in the rock at the wall of the well (at a distance rw ). Since 
rw "'0.1 m, taking account of the geometric divergence of the wave decreases its 
intensity by an order of magnitude at a distance of about 1 m. Therefore in the 
vicinity of the well, the typical attenuation distance for a wave with a frequency 
20 kHz in sandstone-type rocks is around several tens of centimeters. 

This implies that the radius Lw of the zone where the acoustic source is actually 
"felt" is a magnitude of the order of 10-1 m, or rw ~ Lw < (2 + 5)rw. 
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13.3 Calculation of Well Rate after Acoustic Ac­
tion and Results of Field Experiments 

For clarity, consider the most simple case of a perfect well in an infinitely long 
reservoir. In this case the production rate of the well per unit power of the filter 
is determined from Dupui's formula [94] 

Q = 21rK !:l.p 
f.L log(Raq/rw) 

(13.6) 

where !:l.p = p(Raq) - p(rw ). 
Now use the relationship (12.24) obtained for the typical function f(r), f(r) = 

a*/r2 (see fig. 76), and the results yielded by studying the pressure growth in the 
fluid by !:l.p "' u* in capillaries of different radii (these results were presented in 
§12.5). The mentioned analysis showed that after acoustic action is performed for 
r. ~ 1 hour, the capillaries of radii r "' 10-6 m are destroyed, and the products 
of this destruction are carried away by the fluid when the flow resumes. Capillary 
radii close to a* increase by 1.5 to 2 times. 

In this case, according to (12.24), the permeability of the medium must increase 
by a factor of 5 or 10. On the whole, this agrees with the results of the experimental 
studies in §13.1. These studies showed that after a model medium with clay 
cement underwent acoustic treatment, its permeability K did increase in the above­
mentioned ratio. 

Given such significant growth of the permeability in the vicinity of the well, 
the following method for estimating the change of Q appears more convenient. 
Suppose that the region of the sharp permeability increase near the well brings 
about some kind of new effective radius of the well. Permeability of the reservoir 
beyond this radius can be considered constant. In this case the change in the well 
production rate can be estimated as follows (according to (13.6)) 

Q ln(Raq/rw) 
Qo = ln(Raq/TeffW) 

(13.7) 

In §13.2 it was established that the size of the attenuation zone for an ultrasonic 

wave makes up several tens of em (up to a meter). Take the typical value rw ~ 
w-1 m as the radius of a production well. Note that the major change in the 

pore space structure takes place near the well, while closer to the boundary of the 
attenuation zone the effectiveness of action drops down to zero. In this case we 
can take the effective radius of the well after acoustic treatment to equal 

TeffW ~ (2 + 3)rw 

If we take Raq "' 102 -:- 103 m for the considered case of a single well, the 
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Table 13.1: 

Number Twork, 

of Well months 

1980 0 

3356 39.5 45.7 6.2 1 

2031 77.9 110.9 13.0 2 
2023 33.6 76.5 42.9 3 
2661 93.6 107.0 13.4 5 
3246 111.3 130.4 19.1 4 

3126 51.2 62.1 10.9 2 
3829 14.6 41.5 26.9 5 
1963 47.7 55.0 7.3 7 
2693 81.0 32.9 -48.1 0 
1662 77.0 77.2 -0.6 0 
1663 47.6 25.7 -21.9 0 

1682 6.6 8.7 2.1 5 
3330 58.7 79.0 20.3 6 
3329 81.1 62.9 -18.2 0 
1940 4.3 9.1 4.0 4 

1967 57.0 74.0 17.0 4 

2650 46.5 98.6 52.1 4 
2612 83.0 94.8 11.8 2 
3543 12.4 22.4 10.0 5 
3044 17.0 29.3 12.3 5 
7240 92.7 118.7 26.0 5 
7241 34.0 18.3 -15.7 0 
7144 57.0 84.0 27.0 5 
1966 17.0 20.3 3.3 3 
3530 34.3 25.6 -8.7 0 
1683 2.9 8.6 5.7 4 

2269 43.2 47.0 3.8 1 
3242 98.9 72.3 -26.6 0 
3243 92.8 44.9 -47.9 0 
2634 34.0 18.9 -15.0 1 
2652 31.2 87.9 56.7 6 
3036 51.9 58.0 5.7 2.8 

Std. Devtn. 1507 31.1 34.9 22.7 2.3 

Minimum 1662 2.9 8.6 -48.1 0 
Maximum 7241 111.3 130.4 52.1 7 

Range 5579 108.4 121.8 100.2 7 
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relationship (13.7) yields the estimate 

Q/Qo R$ 1.10 + 1.15 

If the zone of the sharp permeability increase is large, e.g., TeffW R$ 5rw, then 
the ratio Q/Qo = 1.2. 

Thus the following conclusion can be made for the sandstone-type grained 
media with a typical radius probability density function for capillaries /(r) ""r-2 

and a typical value of strength of the cementing substance u• "" 10 MPa. After 
acoustic treatment with parameters vo = 2 · 104 Hz and Pa = 1.7 · 105 Pa during 
no less than 1 hour, the production rate of an oil or water well must go up by 
approximately 10 to 15 %. This effect is irreversible, since it is associated with 
the reconstruction of the pore space structure. The obtained conclusion agrees 
adequately with numerous results of field and industrial tests carried out in the 
Tumen' district (see table 13.1). These results show a steady increase of the rates 
in production wells l:l.Q by an average of 12% after 1-hour acoustic treatment. 

13.4 Optimization of Acoustic Treatment of 
Porous Media 

Dupui's formula used in §13.3 shows that the parameters determining the well pro­
duction rate Q can change under the action of an acoustic field. These parameters 
are the permeability K and the viscosity #L· The change of the latter is reversible, 
takes place only during the acoustic treatment, and disappears after the treatment 
is stopped. Therefore the behavior of JL(vo) is not analyzed in this study, since we 
investigate the long-term change of Q and its possible causes. Thus the principal 
cause for the alteration of Q is the change of the permeability K near the well 
filter. 

Results of research (see chapters 1, 2) show that the permeability of a medium is 
primarily determined by such a characteristic of the pore space as /(r). Therefore 
to find the change of the permeability K, it is necessary to determine how the 
function /(r) changes under .acoustic action. 

It was established in chapter 12 that the main mechanism for the energy trans­
fer from the acoustic field to the fluid saturating the rock is the "thermal slide" in 
the layers adjacent to the surface of pore channels. The increase of the temperature 
l:l.T in a capillary of radius r, as a source of simple harmonic waves with frequency 
v0 and intensity 10 works for a period of T111 is determined by the formula (12.23). 
In this relationship qp is the coefficient of transmission for a source immersed in 
the well, when the fluid filling the well is used as a binding medium [102, 100). 

After taking into account the pressure p- temperature T correlation (8.17) and 
the strength u* of the cementing material filling the thinnest capillaries, according 
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to {12.23), as it was mentioned in §12.5, we obtain that the minimal time T.., of 
the thermo-acoustic action on the capillaries with r - w-6 m for v0 = 20 kHz, 
10 = 2 watt per cm2 , and qp = 10-1 is ~ 5 · 103 seconds, or T.., ~ 1.25 hours. 

Thus after the time T• elapses, a substantial increase in the radii of the con­
ducting capillaries will have taken place. This causes the increase of permeability 
according to (12.24). The obtained theoretical estimate adequately agrees with 
experimental data (see §13.1). 

Sharp increase of the permeability takes place in the attenuation zone of acous­
tic waves. The characteristic size of this zone is Lw < a;;;-1 , where aw is the at­
tenuation factor of the wave in a dissipative medium. According to the results of 
§13.3, we can take the effective radius of the well after acoustic treatment to equal 

TeffW ~ (2 + 3)rw 

where rw ~ w-1 m is the standard radius of a production well. 
Thus the effectiveness of treatment can be increased by means of the increase in 

the permeability K or the size Lw of the zone where K grows. Since the behavior 
of the first of the mentioned factors is related to the temperatrue change tl.T, 
it follows from {12.23) that to increase the efficiency of the source, one should 
increase the values of the quantities qP , v0 , 10, T11. 

As for the coefficient of transmission qp, it appears obvious that it should be 
made larger in any case, i.e., the losses occurring during the energy transfer from 
the source through the fluid filling the well and casing pipes, should be made 
smaller. The use of fluid as a binding medium is most simple practically, but at 
the same time is least effective, especially if there is a gas phase present in the 
extracted fluid [103]. In the mentioned study a way of increasing effectiveness of 
the acoustic energy transmission to the oil-bearing pool is proposed. The source 
of acoustic energy is in close contact with walls of the casing pipe. It acts on pipe 
walls to deform them in the transverse direction and make them oscillate with 
the natural frequency. Vibrators of a special construction [103], allowing for the 
automatic preservation of the system "vibrator-column" in resonance, are used for 
this purpose. In this case the parameter qP can be increased by several times. 

The remaining parameters of the process, i.e., v0 , I~, and T11 , must be optimized, 
since their variation can cause qualitatively different consequences forK. Besides, 
they are all interconnected. 

Intensity of the source is related to the power Wa transferred by it into the 
liquid phase. In its turn, W4 , as a function of v0 , has a resonance nature (see 
fig. 80). The peak of the function W4 (vo) is at the frequency v0 ~ 2 · 104 Hz. 
The value 10 ~ 1 watt per cm2 corresponds to the resonance value of W4 (v0 ). 

Therefore it is advantageous to use the most effective values, as far as the energy 
input is concerned, in operating modes: I~ ~ 1 + 2 watt per cm2 , v0 ~ 20 kHz. 
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Analysis of the interaction of the two competing processes, the increase of 
AT(vo) {and consequently, K(vo)) and the decrease of Lw(vo), with the increase 
of vo, results in similar conclusions. The zone where K increases by an order of 
magnitude or greater can be included in the so-called effective radius of the well 
Tef!W· Note that it is not all that important by how many orders of magnitude {1 
- 4) the coefficient of permeability does in fact increase. More important is the size 
Lw of the region where this takes place. At the same time, in the 1 kHz frequency 
range we have Lw "'v02 {theoretical result) or no less than the first power of the 
frequency Lw "' v01 {some of the experimental data). Since TeJJW = rw + Lw 
and the increase of frequency vo by one order of magntude causes the size Lw to 
go down by one or two orders of magnitude, this decreases the effectiveness of 
the treatment drastically: according to {13.7), the production rate of the well will 
remain almost unaffected. If we consider Lw "' 1 m a reasonable and acceptable 
value, we conclude that the optimal frequency of acoustic action is vo "' 10 kHz. 
After taking into account the above-presented reasoning about the relation Wa(vo), 
we obtain the optimal value v0 = 20 kHz again. 

When parameters /0 and v0 are set, the basic characteristic of the acoustic 
treatment regime is the duration of treatment r.. In determining the optimal 
value of r., it is necessary to take into account the development of the competing 
trends during acoustic action. On the one hand, according to {12.23), for lrl < Lw, 
AT grows proportional to Tv, and therefore so does K(r). On the other hand, due 
to the non-uniform heating of capillaries with different radii, migration of the gas 
bubbles takes place, so that they accumulate in the "hot" capillaries, where they 
grow and merge. The described phenomenon may result in gas colmatation of the 
pre-filter zone with further "cut-off'' of the well. 

If at the beginning of the treatment the effect of the growth of K prevails and 
the migration from the thin "cold" to the thick "hot" capillaries has only just 
started, then as time passes, inflation of separate pores with gas becomes more 
evident. The number of such pores begins to grow rapidly, and the colmatation 
effect dominates. As a result, the permeability goes down {if the treatment is 
continued, the permeability can vanish), and the effect of acoustic action becomes 
negative. 

Theoretical calculations show that the timer., after which the greatest increase 
of the permeability is achieved, is less than the period of colmatation r*. Therefore 
r. can be considered the optimal duration of treatment. 

Duration of the treatment r. can be calculated theoretically based on the 
expressions presented in the previous sections of the book. However this requires 
a vast amount of information about the characteristics of the saturated porous 
medium and also about the variation of these characteristics during acoustic action, 
depending on the parameters of action. In particular, it is necessary to know the 
initial radius probability density function for capillaries fo(r) and its final form 
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j(r) after treatment. It is also very important to find the frequency dependence 
of the attenuation factor of the acoustic wave o:..,(vo) for the given medium, its 
(perhaps, two-phase) saturation, and the given conditions in the reservoir. Correct 
determination of the coefficient of transmission qp for the type of equipment used is 
of special significance. If there is gas release present, the gas factor r' (quantity of 
gas released per unit mass of liquid) dependencies of the velocity of wave Cm(r'), 
the specific heat of the saturating fluid cr(f'}, its density Pt(f') and viscosity 
p(f') should be taken into account. It is also necessary to determine the strength 
of the cementing material u., u•, and some other parameters. 

Obtaining the necessary set of data requires a large number of detailed lab­
oratory and field experiments, which can cause substantial technical and orga­
nizational difficulties. Therefore it appears more reasonable to conduct a single 
resultant tune-up experiment (or, perhaps, two - a laboratory and a field one) 
to determine the time regime of treatment (i.e., the parameter r.} for the chosen 
equipment, i.e., the chosen parameters Ib, v0 , and qp. The latter are chosen, as it 
was stated above, according to the economic benefit. In particular, the frequency 
is chosen according to the resonance curve Wa(vo) of the vibrator. The obtained 
value is compared to the characteristic data on the wave attenuation o:..,(vo) for 
the quantity L.., not to be too small (less than 30 em.). Further, the acoustic field 
with Vres and the corresponding intensity Jb(vres) is used. The parameter qp is in 
any case better to be increased by choosing an adequate binding medium between 
the vibrator and the reservoir rock. For the specified vo and Ib for the given rock, 
the saturating fluid, and the external reservoir conditions, r. is determined from 
a laboratory and/or field experiment. 

For the sources used at present (v0 ~20kHz, Ib ~ 2 watt per cm2 , qp ~ 10-1 ), 

in grained sandstone-type media, theoretical calculations of the typical values for 
the parameters of the medium and the fluid give r. !::!! 1 + 1.5 hours and r• > 1. 7 
hours. Clearly, r* lies somewhat dangerously close tor •. Therefore the significance 
of the high performance of the experiment for plotting the K(rv) curve with the 
rest of parameters fixed, is obvious. Correct determination of the timer. permits 
to conduct the treatment optimally and achieve a 10 to 15% increase of the well 
production rate. An "overcautious" error- understatement of the duration r. of 
treatment - lowers the effectiveness of treatment, since in this case K, together 
with the rate Q, increases to a small extent. Overestimation of r., when r. ~ r•, 
causes a negative effect: powerful gas colmatation develops in the pre-filter zone, 
and the well is "cut off." 
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