АКАДЕМИЯ НАУК СССР СИБИРСКОЕ ОТДЕЛЕНИЕ ИНСТИТУТ ГЕОЛОГИИ И ГЕОФИЗИКИ

Препринт № 15

С.А. Кутолин, В.А. Кутолин

СТРУКТУРНО-ТЕПЛОФИЗИЧЕСКАЯ ТЕОРИЯ ВЯЗКОСТИ МАГМАТИЧЕСКИХ РАСПЛАВОВ

BBETTEHLE

В настоящее время в области изучения вязкости магматических расплавов накоплен обширный и разносторонний материал, включающий экспериментальные данные и теоретические построения. Эти теории используют представления физики, кимии и физической кимии для описания зависимости вязкости как функции температуры, давления, состава и строения расплава, в том числе в области существования субликвидусных фаз. Несмотря на стройность и кажущуюся непротиворечивость теоретического аппарата и в ряде случаев корошее совпадение теории с результатами эксперимента, в области теории вязкости, в том числе и магматических расплавов, возникла своеобразная проблемная ситуация.

С одной стороны, применение к силикатным и алюмосиликатным расплавам (О.А.Есин, П.В.Гельд /2/, Л.Н.Шелудяков /15/, Э.С.Персиков /ІО/) формулы Аррениуса - Френкеля - Зіринга (сокращенно формулы АФЭ) в виде экспоненциальной зависимости вязкости от температуры и кажущейся энергии активации расплава свидетельствует о применимости к расплавам теорий Я.И.Френкеля /ІЗ/ и Е. /16/, а с другой стороны (Г.М.Панченков /9/, Л.Н.Шелудяков /15/), предлагаются более сложные теоретические построения о физической и физико-химической природе вязкости расплавов, причем в большинстве современных работ предпочтение отдается теории конфигурационной энтропии вязкости силикатных расплавов /17,19,20,21,24, 26.28/. Оставляя в стороне обсуждение по существу достоинств недостатков этих теорий вязкости, можно указать на иной путь решения возникшей проблемной ситуации, в основе которого анализ теплофизических закономерностей реологических сред. Как известно, теория подобия и физические модели такого подобия/5/, теория теплопроводности /7/ позволяют оперировать с представлениями, в которых отсутствуют так часто встречающиеся в теории расплавов большие значения энергии активации и вариация предэкспонен-

циальных членов в пределах нескольких порядков, что даже для кинетики химических процессов вызывает возражение у специалистов /3/, а тем более представляется труднообъяснымым явлением пля описания вязкости расплавов, где, скажем, для магматических составов эти величины связиваются не столько с химическими реакциями в васплаве, сколько с явлением деполимеризации мостикового (ковалентного) кислорода в сетке силиката MILN алимосиликата. Можно сказать, что существующий аппарат теории теплопроводности и физической химии пригоден для аналитического описания: во-первых, зависимости вязкости с температурой и давлением от состава расплава; во-вторых, количественного описания состава расплава как функции степени поляризации немостикового кислорода и его эффективного координационного числа, т.е. в частности, теорети чески получить "критерий деполимеризации К", использованный Э.С. Персиковым / 10/; в-третьих показать, что эмпирические уравнения для расчета вязкости в субликвидусных расплавах могут быть выведены из представлений правила фаз как для равновесных. так и псевдоравновесных систем. При этом во всех указанных случаях не требуется введения представлений кажущейся энергии активации вязкости расплава, а величина предэкспоненциального члена для магматических расплавов определяется теплофизическими критериями и может быть вычислена в рамках используемого метода.

ТЕМІЕРАТУРНАЯ ЗАВИСИМОСТЬ ВЯЗКОСТИ МАГМАТИЧЕСКИХ РАСПЛАВОВ

Предположим, что температуропроводность и теплоотдача магматического расплава близки между собой. Для того чтобы охарактеризовать это равенство численно и в пространстве, и во времени можем воспользоваться критериями подобия соответственно Фурье (Fo) и Био (Bi), как это представлено, например, в книге А.В.Лыкова /7/. Тогла:

$$F_{0} = \frac{a t}{\bar{R}^{2}} , \qquad (I)$$

где критерий Фурье - ^{Fo} есть число, которое характеризует температуропроводность α (см 2

нате \bar{R} (см), Критерий Био как критерий теплоотдачи в теории теплопроводности задан соотношением (2

$$Bi = \frac{\alpha}{\lambda}H,$$
 (2)

где α — коэффициент теплопередачи, α — коэффициент теплопроводности, α — геометрическая координата тепловой конвекции критерия Био, величина которого характеризуется безразмерным числом Ві. Для макромолекулярных процессов аналогичный критерий Био записывается в [12],

$$Bi = \frac{D}{\beta \bar{R}} \tag{3}$$

где β — скорость теплоотдачи, D — коэффициент диффуэии (см² Поэтому размерности произведения [$\beta \bar{R}$] тождественны размерности [D], т.е. имеет место [$\beta \bar{R}$ =[D], \bar{R} — геометрический параметр. Тогда в силу принятого условия близости температуропроводности и теплоотдачи ($\alpha \approx \beta$) магматического расплава критерий Био может быть записан в микромолекулярной форме (4):

$$Bi = \frac{Dr}{\alpha \, \bar{R}} \tag{4}$$

где размерность $[Dr] = [\alpha R]$, r — радиус диффундирующего из мости-ковой структуры O° ($\equiv Si - O - Si \equiv$) в немостиковое O° ($\equiv Si - O - Me^{\circ}$) состояние. R — геометрический параметр перехода типа: $O^{\circ} \longrightarrow O^{\circ}$. Теорией подобия, поскольку она оперирует с критериями подобия в форме отвлеченных чисел, не накладывается никаких условий, кроме самих величин критериев, при переходе от макропроцессов к макромолекулярным явлениям и микропроцессам.

По-видимому, именно в этом и состоит одно из основных достоинств метода подобия при описании явлений в форме моделей примой аналогии, как это показали И.М. Тетельбаум, Я.И. Тетельбаум/II/ на многочисленных примерах решения практических задач, в том числе по геологии и геофизике.

Учитывая температуропроводность расплава в форме критерия \mathcal{F}_0 (I) и теплоотдачу в форме критерия \mathcal{B}_i (4), можем написать скорость ионной поляризации немостикового кислорода 0 в расплаве:

$$Dr = B_i F_0 \frac{\bar{R}^3}{t} c_i \sqrt[3]{c}. \qquad (5)$$

Тогда по определению $\widehat{\mathcal{R}}$ в условии (4) величину $\widehat{\mathcal{R}}^3/t$ следует считать скоростью электронной поляризации (см $^3/c$) немостикового кислорода, которая для некоторой скорости поляривации А пусть не превышает среднегеометрической фликтуации температуропроводности расплава, т.е. определяется величиной не более $\sqrt{\widehat{\mathcal{R}}}$. Тогла имеем:

$$\bar{R}^3/t = A\sqrt{f_0} \qquad (6)$$

Из (5) и (6) получаем:

$$Dr = ABi \sqrt{F_6} \cdot F_6 = A \cdot T_i \cdot F_6 \tag{7}$$

где 77 назван А.В.Лыковым /7/ критерием Тихонова, макрофизическое определение которого дается соотношением:

$$T_i = B_i \sqrt{F_0} = \frac{\alpha \cdot \sqrt{t}}{\sqrt{\lambda c \gamma}} = \frac{\alpha}{\varepsilon} \sqrt{t}$$
, (8)

где С, у, соответственно удельная теплоёмкость и плотность расплава, а є — коэффициент тепловой активности тела. Критерий Тиконова численно равен отношению количества тепла, передаваемого к единице поверхности тела в первую единицу времени при разности температур между поверхностью расплава и окружающей средой в один градус, к коэффициенту тепловой активности расплава. Таким образом, условие (6), которое кажется несколько искусственным, не нарушает общей теплофизической модели расплава, а, наоборот, позволяет учитивать такое явление, как конвенция (условие третьего рода), в рамках критерия Тихонова.

Полученные результаты позволяют написать известный закон диффузии Эйнштейна (8)

$$Dr = \frac{RT}{6\pi\eta} , \qquad (8)$$

где γ — вязкость расплава в пуазах, используя критерии подобия уравнения (7). Отсюда можно получить уравнение для расчета вязкости как функции температуры и критериев ті , Fo , или ві, Fo , в форме соотношения:

$$\gamma = \frac{RT}{6\pi ABiF_0\sqrt{F_0}} = \frac{RT}{6\pi A\overline{li}F_0} . \tag{9}$$

Ясно, что в зависимости от характера поляризации немостикового кислорода в магматических расплавах различных составов будет изменяться и степень поляризации немостикового кислорода 9 (которая, как в дальнейшем будет показано, может быть рассчитана, например, и как степень деполимеризации расплава, введенная П. Сосье /27/ и Дж. Карроном /18/ и широко использованная Э. С. Персиковым /10/. Степень поляризации немостикового кислорода для расплава с повышением температуры Т выше температуры ликвидуса Т_л можно считать относительной величиной порядка:

$$\theta_{T} = \frac{T - T_{\Lambda}}{T_{\Lambda}}$$
,

которая будет изменяться в зависимости от величины критериев \mathtt{Ti} и \mathtt{Fo} , $\mathtt{T.e}$

квидуса расплава \mathcal{T}_A эта величина будет полностью определяться степенью поляризации θ немостикового кислорода в структуре расплава и значениями величин Ti и Fo . Тем самым, зная функциональную зависимость $\theta=(\mathrm{Ti}$, Fo), можно по θ расплава заданного состава определить Ti и Fo , а следовательно, при данной величине \mathcal{T}_A определить вязкость расплава.

Для расчета величин ті и го по данным θ , или наоборот, можно воспользоваться (см. рисунок I) номограммой $\theta = f$ (ті , го), приводимой в работе А.В.Ликова /7/. Из уравнения (9) фактически следует:

$$\ell g \eta^{meop} = \ell g \frac{RT}{6\pi Bi F_0 \sqrt{F_0}} - \ell g A \tag{10}$$

и, полагая для температуры 🛴 ликвидуса вязкость:

$$\ell g \eta_{\Lambda}^{mec\varphi} = \ell g \frac{RT}{6\pi Bi F_0 \sqrt{F_0}}$$
 (II)

получаем:
$$\ell g \eta^{meop} = \ell g \eta_{\Lambda}^{meop} - \ell g A$$
 (I2)

Если скорость электронной поляризации немостикового кислорода С определяется единичным объемом электронной поляризации A=I, то теоретическая вязкость в точности равна теоретической вязкости расплава при температуре ликвидуса:

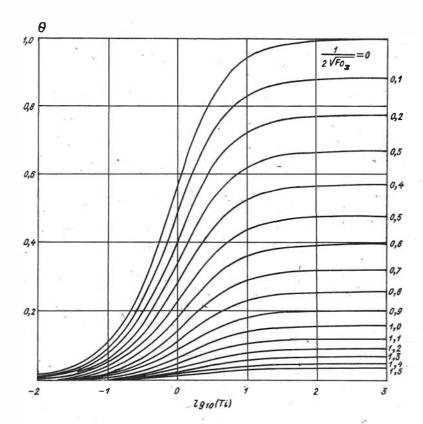
$$\ell g \eta^{meop} = \ell g \eta_{\Lambda}^{meop} . \tag{13}$$

В этом случае, задаваясь величиной θ при условии равенства температуропроводности теплоотдаче расплава, т.е. F_o = Ві , можно определить теплофизические условия, при которых экспериментальная вязкость расплава и её теоретическое значение совпадают, т.е. имеет место равенство:

$$lg\eta_{\Lambda}^{3} = lg\eta^{meap} . \tag{14}$$

В табл. І приведени результати такого расчета для расплавов гранита, андезита, толеита, лерцолита, дунита, где в качестве функции основности пород сопоставляются величини степени поляризации немостикового кислорода θ , структурно-химический показа — тель основности пород, который вичисляется по методике 3.С.Персикова /ІО/ как степень деполимеризации расплава $K=0^-/0^0$ по формуле (15) и термодинамический показатель основности $\Delta Z_{298}^{\prime\prime}$, предложенний А.А.Маракушевым /8/.

$$K = 0^{-}/0^{\circ} = \frac{2(0 - 2H)}{H}$$
. IOO, (15)


где *()* - число грамм-ионов кислорода и H - число грамм-ионов сеткообразователя в расплаве для данного состава горной породы.

Из табл. І следует, что формула (10) – (14) и необходимие расчеты по номограмме (см. рисунок) удовлетворительно описывают уменьшение вязкости расплава с увеличением температуры. Увеличение температуропроводности и теплоотдачи, определяемое ростом критериев $F_{\rm o}$ и Bi соответствует уменьшению вязкости и сопровождается, естественно, увеличением степени поляризации немостикового кислорода θ в расплаве. Величина же θ изменяется симбатно

Показатели основности магматических пород

и теплофизическая характеристика их расплавов

		The second second second second			*			Total Commence	A CONTRACTOR OF THE CONTRACTOR	
Средний состав пород /10/	Темпе- ратура ликви- луса ($T_{ m I}$), к	Темпе- ратура ликви- пуса (T_{Λ}) , к	утеор	98	τ6	lg Ti: 1	245	θ	¥	4 Z 298
Гранит ($N_{H_{20}} = 0$)	1323	8,0	7,8	0,005	0,005	7,8 0,005 0,005 -3,417 7,07	70,7	0	0,03 I,02	1,02
Ppahur $(N_{H_2O} = 2 \text{ Mac. \%})$	1173	9	6,04	0,025	0,025	6,04 0,025 0,025 -2,379 3,16	3,I6	0	15,3	. 1
Андезит ($N_{H,O} = 0$)	1373	4,46	4,6I	01 ° 0	4,6I 0,IO 0,IO	-I,485 I,58	I,58	, 0	I7,2 I,88	I,88
TOJENT $(N_{H,0} = 2 \text{ Mac.}\%)$	1373	2,53	2,52	2,52 0,70 0,70	0,70	-0,230 0,598 0,40	0,598	0,40	85,2	ı
Jepucar ($N_{H_{20}} = 0$)	I623	0,707	0,720	0,720 4,00 4,0	4,0	0,894	0,894 0,250	0 0,72 2	215	4,07
Inhat $(N_{H_20} = 0)$	1973	-0,737	-0,750.17,00.17,00	17,00	12,00	I,827	0,12	98,0	372	4,84

Зависимость между степенью поляризации немостикового кислорода расплава и критерием Тихонова для разных значений критерия Фурье

структурно-химическому показателю основности пород (степень деполимеризации расплава) К и термодинамическому показателю основности $\Delta Z_{298}^{\rho_2 O}$. Из результатов расчета, приведенных в табл. I и номограмми (рисунок), следует достаточно любопытный факт, чтобы оставить его незамеченным. При весьма малых величинах температуропроводности и теплоотдачи расплава, когда степень поляризации немостикового кислорода в расплаве близка нулю, десятичный логарифм критерия Тихонова стремится ко вполне определенной величине: $\ell q \bar{t} = -3.5$. Можно лишь предположить, что именно

теплофизическим фактом и объясняется одизкое по ведичине значение десятичного логарифма вязкости предекспоненциального члена для большинства расплавов в известной формуле Аррениуса—Френкеля—Эйринга, когда оказывается $\varrho_{\eta_o} \approx -3.5$ /IO/.

Симоатность изменения величин θ и K в одределении основности магматических пород и сходство в определении этих понятий по своей физико-химической природе позволяет надеяться на более строгое определение этих понятий на основе, например,представлений структурной химии.

СТЕПЕНЬ ПОДЯРИЗАЦИИ НЕМОСТИКОВОГО КИСЛОРОДА МАТМАТИЧЕСКИХ РАСПЛАВОВ

Поскольку теплофизическая картина расплава определяет степень поляризации немостикового кислорода, то важным моментом является точное определение величины θ для расплавов силикатов, алимосиликатов, магматических расплавов различного состава. От точности определения величины θ зависит точность личины F_0 , по которой согласно условию, принятому для расплава, когда температуропроводность равна теплоотдаче, т.е. F_0 = Bi , можно определить F_0 , наоборот, задаваясь F_0 = Bi , по величине F_0 находили θ (см. рисунок).

Пусть процесс поляривации мостикового кислорода O_k° и его превращения в немсстиковый кислород 0 $^-$ подчиняется схеме:

$$O_k^{\circ} - kO^-$$
,

тогда можно считать, что степень поляризации немостикового кислорода есть произведение ионности кислорода ι_{\circ} вещества данного состава на число независимых компонентов K, учитывающих химическую рекомбинацию числа атомов немостикового кислорода k0 в расплаве и их превращение в мостиковый кислород O_k 0. Таким образом, можно написать

$$\theta = i_0 \cdot K = i_0 \left(k - 1 \right) \,. \tag{16}$$

Поскольку к в описании величини числа атомов немостикового кислорода ко есть среднее число атомов, окружающих данный атом, относящийся или к катиону, или к аниону расплава, то можно рассматривать величину к как среднее геометрическое от величины координационного числа, образуемого немостиковыми кислородами и по-

этому $k=\sqrt{\kappa_Z}$, т.е. (I6) можно записать в форме соотношения:

$$\theta = i_0 (k-1) = i_0 (\sqrt{(KZ-1)}). \tag{17}$$

Ионность кислорода, например, в соединении $M_m A O_7$, будет по С.С.Бацанову /I/ равна:

$$\dot{L}_0 = \frac{Z_A L_A + m Z_M L_M}{Z_A + m Z_M} \,, \tag{18}$$

где Z_A , Z_M — заряды ионов атомов в соединении; ℓ_A , ℓ_M — ионности связей A — 0 и M — 0 с учетом их вадентностей, значения которых могут онть взяты из таблиц I и II приложения в монографии C.C. Бацанова I, c. 28I-286/. Так, например, в $CaCO_3$:

$$i_0 = \frac{4 \text{ C}-0^{+2} \text{ Ca}-0}{6} = 38 \% \text{ mpm} \quad \text{i C}-0^{=0,15} \text{ m} \quad \text{i Ca}-0^{=0,84} / \text{I2}/.$$

Из (17) следует любопытный вывод. Если ионность кислорода соединения не равна нулю, то во всяком случае, величина поляривании немостикового кислорода θ может быть близкой к нулю в том случае, если координационные числа (КЧ) немостикового кислорода невелики. Это значит, что расплавы веществ однотипного состава могут обладать различной величиной КЧ и, следовательно, иметь различные значения θ при близких

личной зависимостью вязкости от температури и давления. $\mathfrak C}$ целью иллюстрации возможности использования разобранных представлений произведем соответствующие расчеты величины $\mathfrak B$ для расплавов породообразущих минералов, рассчитивая величины степени ионности кислорода $\mathfrak t_0$ по формуле (18) и привлекая осображения о значениях КЧ для этих минералов. Можно полагать, что в ряду: кварц — альбит — ортожлаз — жадентовый состав (Na Al Si2 06) при атмосферном давлении величины КЧ поляризованного немостикового кислорода в структуре сетки будут невелики. По существу степень ковалентности мостикового кислорода по оценкам длинноволновой ИК-спектроскопии достаточно велика, и поэтому в этих случаях можно положить $\mathfrak B \approx 0$, т.е. (КЧ-I) ≈ 0 .

В таблице 2 приведени расчетние значения $\theta=\theta$ (i_o , KY) и показатели основности породообразущих минералов: термодинами-ческий показатель $\Delta Z_{1200}^{H_20}$, степень деполимеривации расплава К и условный потещиал ионивации у . Обращает на себя внима-

ние тот факт, что о оказывается фактически непрерывной функцией, которая в пределах заданных КЧ изменяе

 $\Delta Z_{/200}^{H_20}$ и Y. В таблице 3 приведены результат

сти данных расплавов породообразующих минералов, вычисленные по формуле (11) для температуры ликвидуса \mathbf{T}_{π} по данным теплофизических параметров во , ті , ві , которые были определены по расчетным значениям величин в (табл. 2) и номограмме (см. рисунов). Результати расчета вязкости хорошо совпадают с ампирическими значениями и могут тем самым также служить характеристикой основности расплава. На примере данных табл. 2 убеждаемся, что рассматриваемая структурно-теплофизическая модель расплава удовлетворительно описывает изменение вязкости с температурой. Более того, сопоставление результатов расчета вязкости при температуре ликвидуса, приведенных в табл. І и 2, убеждает в том, что таблиц по вязкости и теплофизическим карактеристикам могут служить "стандартом", по которому для расплава неизвестного состава, по известной в эксперименте вязкости, могут быть оценены его теплофизические характеристики, степень поляризации вого кислорода, а сами табл. І и 2 могут служить шкалой основности магматических пород и породообразувацих минералов в области их температур ликвидуса. В области температуры ликвидуса при величинах теплофизических критериев Фурье Fo << 0,33 и Био Bi << 0,33 экспериментальное значение вязкости лежит в области $10^8 + 10^6$ пуаз ($9 \approx 0$); при критериях температуропроводности и теплоотдаче 0,33<< Fo = Bi \leq 1 ведичина вязкости расплава $\eta = 10^4 - 10^2$ пуаз ($\theta = 0.22 + 0.50$); B COMPACTE I.5 & Fo =Bi & 7.2 $\eta = 10^{1.87} + 1.12$ пува ($\theta = 0.56 + 0.80$), а в области Fo=Bi > I5 вязкость расплавов при температуре ликвилуса $\eta < 0.20$ пувз ($\theta = 0.90 + 0.97$). Чем выше степень полиривации немостикового кислорода в расплаве, тем меньше вязкость расплава при температуре ликвидуса.

Таблица 2 Сопоставление результатов расчета степени поляризации немостикового кислорода θ с показателями основности породообразующих минералов

Вещество	Степень ионности кислорода	КЧ	θ	∆Z ^Н 2 ⁰ 1200, ккал	К	У, ккал/моль	Киспр
KAlsi ₂ 0 ₆ (лейцит)	0,52	2	0,22	0,537	0	195,7	II8
NaAlSiO ₄ (нефелин)	0,44	4	0,44	2,055	0	185,2	220
Caal ₂ Si ₂ O ₈ (анортит)	0,46	4	0,46	I,458	- 0	197,0	230
KAlsio ₄ (кальселет)	0,56	4	0,56	2,463	0	182,4	280
самдзі ₂ 0 ₆ (диопсид)	0,52	6	0,75-	I,546	200	191,7	375
MgSiO3 (энстатит)	0,54	6 -	0,78	I,858	200	19 7, I	390
Pe ₂ SiO ₄ (фаялит)	0,43	8	0,79	I,872	400	- I89,0	395
Мg ₂ SiO ₄ (форстерит)	0,49	8	0,90,	4,006	400	184,5	450
Ca ₂ SiO ₄ (ларнит)	0,53	8	0,97	, 5,818	400	169	500

Таблица 3 Результаты расчета вязкости расплавов породообразущих минералов по данным степени полиризации немостикового кислорода θ при температуре ликвидуса T_{π}

Вещество	т", к	6	Po	, Bi	1gTi	lgn, Teop,	lgn, no,	/ D, Å
sio ₂ (кварц)	I953	0	0,007	0,007	-3,200	7,62	7,7	5,75
Naalsi ₃ 0 ₈ (альбит)	I393	0	0,009	0,009	-0,038	7,20	7,16	9,40
каlsi ₃ 0 ₈ (ортоклаз)	I423	0 ,	0,012	0,012	-2,852	6,9I	6,94	9,58
Naalsi ₂ 0 ₆ (аналытим)	I4I3	0	0,021	0,021	-2,492	6,30	6,10	8,62
KAlsi ₂ 0 ₆ (лейцит)	I959	0,22	0,33	0,33	-0,715	3,48	3,42	8,84
Naalsio4 (нефелин)	I799	0,44	0,80	0,80	- 0,I44	2,49	2,45	7,66
Caal ₂ Si ₂ O ₈ (анортит)	1823	0,46	0,90	0,90	-0,068	2,37	2,38	7,87
KAlsio ₄ (кальсилит)	2023	0,56	I,50	I,50	0,262	I,87	I,79	7,90
самсsi ₂ 0 ₆ (диопсид)	I664	0,75	4,I ·	4, I	0,910	0,705	0,695	8,82
MESio3 (SHCTATHT)	1813	0,78	5,9	5,9	I,I45.	0,350	0,351	6,83
Pe2SiO4 (фаялыт)	I47 8	0,79	7,2	7,2	1,273	0,048	0,049	8,64
мg ₂ SiO ₄ (форстерит)	2163	0,90	23	23	2,022	-I,036	-I,065	7,64
Ca ₂ SiO ₄ (Japhet)	2403	0,97	30	30	2,194	-I,277	-I,306	8,17

СТЕТЕНЬ ПОЛЯРИЗАЦИИ НЕМОСТИКОВОГО КИСЛОРОДА © И СТРУКТУРНО-ХИМИЧЕСКИЙ ПОКАЗАТЕЛЬ ОСНОВНОСТИ ПОРОД К (степень деполимеризации расплава)

Величина степени деполимеризации К оказывается разрывной функцией основности расплава. Этот момент усложняет возможность оперирования с такой величиной при количественных практических расчетах. Действительно, Э. С. Персиков указывает следувщие пределы операции с величинами К , расчет которых производится по формуле (15): I) 0 ≤ K ≤ I7; 2) I7 ≤ K ≤ I00; 3) I00 ≤ K ≤ 400. Таким образом, величины степени деполимеризации расплава К практически могут быть использованы в различных формулах для вязкости, что увеличивает неоднозначность метода расчета. Учитывая, что по своей физической сущности величины е и К близки представляют собой один и тот же подход к определению поляризации немостикового кислорода 0 в структуре расплава, состоянием которого определяется вязкость расплава, можно рассматривать величину в как удовоенное значение степени деполимеризации немостикового кислорода, отнесенное к І литру (1000 мл) расплава (19). (20).

 $\theta = \frac{2K}{1000} , \qquad (19)$

$$K = i_0 - \frac{KY - I}{2} \cdot 10^3$$
 (20)

"Исправленные" значения величин К в форме Киспр приведени в табл. 2. При этом можно отметить разумную корреляцию между К и Киспр с учетом высказанных замечаний. Однако расчет 9 по данным К трефует уяснения масштаба значений величини $\ell g A$ в уравнении (I2), которая для расчетных значений е по формуле (17) была принята равной нулю по условию (I3), поскольку А есть скорость рефракции немостикового кислорода, т.е. изменение рефракции в единицу времени (см³/с). Если в качестве величини А избрать относительный объем рефракции Р³ немостикового кислорода, отне сенный к относительному объему поляризуемостей всех немостиковых кислородов 0° в 1000 мл расплава, можно сказать, что такая относительная величина А в единицу времени будет ведичиной постоянной и равной в точности \mathcal{I} , так как

 $P = \frac{3}{4} \, \pi \, N \alpha$, где P — рефракция, α — поляризуемость, α — число Авогадро и отношение: $(0.75 \, P/N \alpha)^3 \equiv \Lambda = \pi^3$.

Поэтому, если величина Θ оценивается через величину K как удвоенная степень деполимеризации, отнесенная к IOOO мл расплава, т.е. как Θ = 2K/IOOO, то формулу (I2) следует записать, принимая во внимание A = π^3 :

$$\ell g \eta^{meop} = \ell g \frac{RT}{6\pi Bi E \sqrt{E}} - \ell g \pi^{3}. \tag{2I}$$

Полученный результат не является надуманным, а отражает изменение "масштаба" измерения величины θ при ее расчете через K. Оценка "масштаба" такого перехода в формулах (12) и (21) убеждает в справедливости сделанных допущений, в том числе и относительно величины $A = \pi^3$, поскольку предлагаемый "способ выражения концентрации" θ , отнесенный к 1000 мл расшлава и величина $A = \pi^3$ отличаются друг от друга, принимая во внимание условие о "средней геометричности" явления (6) на $\frac{\sqrt{1000} - \pi^3}{\sqrt{1000}}$. 100% = 1,9%.

Поэтому (21) тождественно (22):

$$lg\eta^{meop} = lg \frac{RT}{6\pi\sqrt{1000'}BiE\sqrt{E_0'}} = \frac{RT}{6\pi^4BiE\sqrt{E_0'}}$$
(22)

Таким образом, уравнение (22), по которому можно вычислить вязкость расплава при температуре ликвидуса, когда величина степени поляризации немостикового кислорода расплава 9 оценивается по данным структурно-химического критерия Э. С. Персикова К как величина $\theta = 2K/1000$, отличается от уравнения (II) - (14) только "масштабным фактором" √1000. В табл. 4 приведены результаты расчета вязкости расплавов горных пород и по уравнению (22), когда 9 = 2К/I000, которые сопоставлены с экспериментальными величинами вязкости и расчетными величинами вязкости по методу Э.С. Персикова /10/, расчеты которого по вязкости расплавов осуществлялись полуэмпирическим методом на основании экспоненциальной зависимости вязкости от температуры. Настоящие расчеты проведены на основании теоретической формулы (22) и хорошо согласуются как с экспериментальными данными, так и с данными полуэмпирического метода Э.С.Персикова. Кроме того, табл. 4 иллострирует в том числе и тот факт, что структурно-химический критерий К может быть ис-

Таблица 4 Вязмость расплавов горных пород, структурно-химические (θ , κ) показатели и теплофизические критерии расплава

Порода, данные из /10/	K	θ = 1000	T,K	$lg_{R_{2}}$	Bi	.Po	+lgTi	<i>ед</i> р теор. по /22/	<i>lg</i> ηтеор по /10/
Лунный базальт	I93	0,384	I668	I,0	0,694	0,694	-0,235	I,I	0,83
Базальт Апохончич	I03	0,206	I373	I,82	0,309	0,309	-0,757	1,92	I,98
Базальт	91	0,182	I473	2,08	0,277	0,277	-I,I04	2,06	2,05
Базальт Апохончич	70	0,140	I573	I,9I	0,227	0,227	-I,276	2,31	I,98
Андезит	19	0,038	I573	3,8	O,III	O,III	-I,4I8	3,07	3,2
Андезит .	30	0,060	I673	3,89	0,148	0,148	-I,232	2,79	2,43
Гранит средний	5	0,010	I373	_	0,005	0,005	-3,417	6,35	6,64
Дунк т	380	0,76	2153	0,35	5,165	5,165	I,059	-0,92	-0,93

пользован в рассматриваемой структурно-теплофизической модели расплавов без применений категорий "энергия активации" и "предакспоненциальний член" уравнения вязкости $\Lambda\Phi \Im$.

ВЯЗКОСТЬ И ФИЗИКО-ХИМИЧЕСКИЕ, ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА И СТРУКТУРА РАСПЛАВА

С увеличением температуры расплава выше температуры ликвидуса возрастает температуропроводность и теплоотдача расплава. т.е. увеличиваются значения критериев Го и Ві.В полном соответствии с этими фактами вязкость расплава должна уменьшаться, что и поптверждается расчетами. При этом, например, для расплавов в сии Na₂0 -Si₀2 происходит с возрастанием темпе-CTEMAX Li20-SiO2 ратуры увеличение степени подяризации немостикового кислорода $\theta = \iota_0$ ($\overline{\text{KY}} - I$), связанное с изменением координационного числа. Естественно полагать, что при определенных внешних условиях воздействия на расплав (температура, давление) возможно не возрастание КЧ, но и его уменьшение, что может привести как к повышению, так и к понижению вязкости, например, при повышении давления. Тем самым, по величине вязкости расплава можно судить и о температуропроводности, теплоотдаче расплава, и о степени поляризации немостикового кислорода в расплаве, изменении его динационного числа (табл. 5). Из таблицы 5 следует, что с увеличением температуры расплава понижение вязкости связано С ростом

Вязкость и структурные теплофизические свойства некоторых силикатных расплавов в зависимости от температуры

Содерг оки		T,K	for	Вi	Fo	₽q Ti	Θ		θ 1)2_κυ	ĸu_
мол. %	Mac.%	, 1,1	l g√3	Б.	FO	eg it	9	¹ 0.	10 = 110	1102
					Li ₂ 0	- S10 ₂				
30	I7,6	1473	2,06	I,I	I,I	0,061	0,46	0,46	4,18	8
		I573	I,74	I,5	I,5	0,262	0,57	0,46	5,01	IO
		I673	I,45	2,0	2,0	0,447	0,62	0,46	5 , 5I	IO
		1773	I,2	2,7	2,7	0,640	0,67	0,46	6,03	12
				1	Ma ₂ 0	- S10 ₂				
4 0	40,9	I273	2,65	0,6	0,6	-0,329	0,36	0,47	3,12	6
		I473	I,75	I,5	I,5	0,262	0,57	0,47	3 ,3 2	6
		I673	1,15	2,7	2,7	0,640	0,67	0,47	5,88	I2

температуропроводности и теплоотдачи вследствие роста координационного числа немостикового кислорода KY, что, соответственно, при заданной ионности кислорода сопровождается ростом степени поляризации немостикового кислорода. То, что значение координационного числа немостикового кислорода 0^- принимает в ряде случаев необичние численние значения, отличние от 4 и 6, связано скорее всего с тем, что расчет по формуле (17) производится на один атом немостикового кислорода 0^- . Следовательно, значения KY, рассчитанние на два атома 0_2^- (молекулу) немостикового кислорода принимают всегда значение, кратное 2. Однако вполне возможно, что и нечетние значения координационного числа немостикового кислорода существуют в расплаве как форма нарушения ближнего порядка между атомами, форма, которая и обуславливает ионную проводимость расплава.

Воспользуемся формулой Герцога, приведенной в учеснике И.И.Котккова /4/ по физической химии, для определения молекулярного веса расплава:

$$M = \frac{(RT)^3}{152 \cdot N^2 \pi^2 \eta^3 D^3 V} {23}$$

Запишем формулу Эйнштейна диффузии немостикового кислорода для I моля расплава:

$$r = \frac{RT}{6\pi N\eta D} , \qquad (24)$$

где N - число Авогадро. Возведем (24) в третью степень и поделим на соотношение (23), получаем:

$$\frac{r^3}{M} = \frac{3}{4} \frac{V}{N\pi} \tag{25}$$

и для удельного объема v = I имеем соотношение

$$r = (3,96 \text{ I}0^{-25} \text{ M})^{1/3} \text{ cm}.$$
 (26)

которое позволяет оценить размер диффундирующих в расплаве частиц D = 2r по формуле (27), зная молекулярный вес расплава М:

$$\mathcal{D} = \frac{2}{10^{-8}} \cdot (3,96 \cdot 10^{-25} \cdot \text{M})^{1/3} \text{ }^{\circ}$$
 (27)

Результаты расчета, приведенные в табл. З для расплавов породообразующих минералов, близки к описанным в литературе /IO/ и свидетельствуют, вообще говоря, о том, что размеры частиц в расплаве идентичны или дискретному аниону с размером ~ 5 Å, или удвоенной его величине.

Попитаемся теперь разобраться в том, как структура расплава с размерами частиц $\mathcal{D}=2$ влияет на диффузию немостикового кислорода 0^- , например в минералах горных пород при температуре ликвидуса. В какой степени межанизм такой диффузии отличается от механизма диффузии мостикового кислорода в минералах горных пород, в расплавах которых при температуре ликвидуса степень поляризации немостикового кислорода $\Theta\cong 0$ (кварц, альбит, ортоклаз)? Наконец, какими межанизмами и теплофизическими величинами будет при температуре ликвидуса обуславливаться электропроводность и как можно представить себе раздельный вклад мостикового и немостикового кислорода в такую электропроводность на примере расплавов породообразующих минералов?

Из уравнения Герцога (23) для молекулярной диффузии расплава при температуре T_{Λ} можно написать уравнение (28), связывающее через инвариант вязкость ρ , коэффициент диффузии D и молекулярный вес расплава. При эффективной температуре переноса единицы

объема кислорода в расплаве, равной $T_{a\tilde{b}} = \tilde{T}_{\pi}^3$,

$$\mathcal{D}_{7}\sqrt[5]{M} = T^{5} \cdot const / \sqrt[5]{V}, \qquad (28)$$

где отношение: const/ $\sqrt[3]{V}$, определяется лишь величиной удельного объема, равной по (26) единице. Таким образом, соотношение const / $\sqrt[3]{V}$, которое может бить близко 2 + I2 (см. цитируемый учебник И.И.Котюкова /4/), можно рассматривать как аффективное координационное число частиц, диффундирующих в расплаве. На основании табл. 2, где приводятся значения КЧ для минералов горных пород, выберем const/ $\sqrt[3]{V}$ = 6. Тогда имеем соотношение (29) для расчета коэффициента диффузии единици объема расплава по данным табл. 3:

$$D = \frac{6 \, T_{\Lambda}^{3}}{2 \, \sqrt[3]{M'}} \,. \tag{29}$$

Определив таким независимым способом коэфициент диффузии кислорода по уравнению, которое не является следствием рассматриваемой структурно-теплофизической теории расплава (СТТР), мож но по уравнениям (\mathcal{S}) и (\mathcal{S}), (\mathcal{T}) оценить, наконец, значение коэфициента A, который заведомо принимали близким единице и который до сих пор имел смысл "масштабного" фактора в определении скорости электронной поляризации (рефракции) немостикового кислорода в расплаве. Таким образом, из (\mathcal{S})— (\mathcal{T}) и (\mathcal{S} 9) должно следовать:

$$A = \frac{6 \, T_{\Lambda}^{3}}{7 \sqrt[3]{M'} \, Bi \cdot F_{0} \cdot \sqrt{F_{0}}} \tag{30}$$

Наконец, зная величину D, по уравнению Нернста /4/, сравнивающему коэффициент диффузии с абсолютными значениями скорости движения катиона и аниона ℓ_{k} : ℓ_{Q} , получим :

$$D = \frac{1}{2RT_{k}} \left(\frac{1}{\ell_{k}} + \frac{1}{\ell_{\alpha}} \right)$$
 (31)

Полагая, что скорость $\ell_{\rm f}=2\,\ell_{\rm c}$ (это вполне разумно, так как по данным табл. 3 размеры диффундирующих частиц лежат в пределах

$$2r = 5A \times 2r \approx 10 A$$
), MMeem:

$$D = \frac{1}{2RT_h} \left(\frac{3\ell_\alpha}{2\ell_\alpha \ell_\alpha} \right) = \frac{1}{4RT_h \ell_\alpha}$$
 (32)

Габлица

#	н
F COMMENTER	JIMKBAHIY CH. 1
the second or other party of the	температуре
-	иди
-	минералов
-	oobaa younx
	породоп
	расплава
	параметров
	-химических
,	физико-
	значений
	расчета
	Результаты

	Вещество	×	F-IOBCM	0	D, CM2/0	A ₃ ,	-	io la.105, lh.105, Ua ca/c ca/c	$\ell_{k.10^5}$, $c_{M/c}$	Ua	UR	700.	٧ ^
	Sio, (KBapu)	90,09	2,88 0	0	II4,I2	0,80	0,37 0,17	0,17	0,34	10,9	8,18	32,8	I2,I
_	MAIS1308 (SIEGHT)	262,18	4,70	0	253,78	I,55	0,50	II.0	0,21	J,6	3,8	4,8	2,4
-	KA151308 (oprownas) 278,18	278,18	4,79	0	264,84	0,80	0,50	OI.0	0,20	Ι,4	8.8	4,2	2,I
_	KA1S1 ₂ 0 ₆ (лейцит)	218,12		0,22 7	7,50.IO ⁵	0,53	0,52	0,25.10-4 0,50.10-4	0,50.10-4	4,4.IO-4	8,8 IO-4	I,3.I0-3	6,9-10-4
-	KAIS104 (KAJIBCKLINT)	158,06	3,95	0,56 7	7,65.107	E0 I	99,0	0,20.10-6	0,40.10-6	4,9·IO-6	4,9·10 ⁻⁶ 9,8·10 ⁻⁶ 1,5·10 ⁻⁵	I,5.10-5	8,2·IO
-	MgS103 (SHCTGTET)	I00,38	3,42	0,78	2,70.109	. 60°I	0,54	0,65.10	1,3.10-8	8,5.10-7	2,01.0,3	7,5 IO-7	4,0-IO-7

Откуда получаем:

$$\ell_{\alpha} = \frac{3}{4RT_{\Lambda}D}$$

$$\ell_{k} = \frac{3}{2RT_{\Lambda}D}$$
(33)

Знание абсолютных скоростей -по текловсоп внои кинеживц ределить значение подвижностей монов (U_{Q}, U_{k}) в расплаве, оценить значение вивалентной электропроводности и величину электропроводности д расплава, связанных известными в физической химии соотношения-MM /4/:

$$U_{a} = 96500 \text{ N la}$$

 $U_{k} = 96500 \text{ N 2 la}$, (34)

где **F** = 96500 - постоянная Фарадея; Л - число граммэквивалентов анионов из расчета анионов, содержащих 4-валентный кремний, С = М/4 (М - молекулярный вес расплава) в 1000 мл расплава. T.e. N = I000/C.

$$\lambda_{\infty} = U_{\alpha} + U_{k} \tag{3}$$

 $\lambda_{v} = i_{o}(U_{\alpha} + U_{k}),$ где i_0 - степень основности кислорода минерала породы (см. табл. 2).

В табл. 6 приведены результаты расчетов значений физико-химических параметров расплава породообразующих минералов при температуре ликвидуса Т".

Среднее арифметическое А = 0,977

Как показывают результаты расчета по уравнению (30), среднее арифиетическое значение величины A = 0,977, что действительно близко I. Это важный результат теории. Он показывает, что уравнения для расчета вязкости (10)- (12) применими к явлениям микромолекулярного порядка в расплавах. Следует иметь в виду, этот результат получен путем расчета коэффициента диффузии $\mathcal D$ размера диффундирующих частиц в расплаве по формуле Терцога, выведенной независимым методом. Таким образом, теплофизические критерии теплоотдачи и теплопроводности пригодни для описания микромолекулярных явлений диффузии в расплавах горных пород. Сам фактор А имеет вполне определенный физический смысл. Это скорость рефракции немостикового кислорода в расплаве; когда температуропроводности \sqrt{F} о \rightarrow I. то R/t = A, по формуле (6). Равенство А=І означает для расплава минералов горных пород, что скорость изменения рефракции кислорода есть довольно медленний процесс, и поэтому именно ей, наиболее медленной стадией процесса, лимитируется диффузия и изменение вязкости с температурой. Действительно, в ряду: фаялит (Fe_2SiO_4) - форстерит (Mg_2SiO_4)ларнит ($^{\mathrm{Ca}}_{2}\mathrm{SiO}_{4}$) рефракция кислорода ($^{\mathrm{R}}_{\mathrm{o}}$), по данным С.С.Бацанова-/I/, составляет 3,68 см 3 ; 3,43 см 3 и 3,92 см 3 . Следовательно, скорость изменения рефракции кислорода за каждые 4 секунды составит соответственно величины $A = \frac{R_0}{4} = 0,92 \text{ cm}^3/\text{c}; 0,86\text{cm}^3/\text{c};$ 0,98 см³/с, что весьма близко расчетным значениям для рассматриваемого класса. Итак, можно считать доказанным, что стадией диффузии в расплавах минералов горных пород является диффузия кислорода. Табл. 6 позволяет оценить по приведенным в ней расчетным величинам коэффициентов диффузии и параметрам электропроводности расплава, какой из конкурирующих процессов (мостиковый или немостиковый кислород) дает основной вклад в явление диффузии и алектропроводность расплава. Совершенно очевидно, что при величинах степени поляризации немостикового кислорода, лю ($\theta = 0$), вся электропроводность расплава определяется броуновским процессом фликтуаций только мостикового кислорода. С увеличением степени поляризации немостикового кислорода, например, за счет введения в расплав окислов щелочных, таллов, паров води коэффициент диффузии немостикового кислорода возрастает (на несколько порядков). Поэтому роль мостикового кислорода падает в механизме электропроводности расплава. Результати табл. 6 свидетельствуют, что немостиковый кислород не принимает фактически участия в межанизме алектропроводности расплава, так как он поляризует катиони щелочного, щелочноземельного металла в расплаве, образуя сложные иони, подвижность которых меньше, чем флюктуация мостикового кислорода, но концентрация таковых в сиду образования немостикового кислорода в расплаве падает, что и понижает электропроводность расплава. Данный расчет проведен относительно разделения вклада мостикового и немостикового кислорода в дифрузию и электропроводность расплава, но он не касается расчета дифрузии и электропроводности ионов и ионных комплексов. Разумеется, в этом последнем случае все параметры да и результаты расчета будут другими.

ТЕОРИЯ ВЯЗКОСТИ СУБЛИКВИДУСНЫХ МАГМАТИЧЕСКИХ РАСПЛАВОВ

Экспериментальное изучение реслогических свойств субликвидусных гетерогенных (жидкость — кристалл — газ) магматических расплавов сопровождается обычно обработкой полученных данных по одному из следующих уравнений:

Теоретическое уравнение Эйнштейна используется при концентрациях кристаллической фази $\Phi < 0, I$:

$$\gamma = \gamma_{\mathbf{f}} (\mathbf{I} + 2, \tag{37})$$

где Φ — объемная доля твердой фази; η_{so} — соответствующие эффективная вязкость смеси и вязкость жидкой фази.

При 0,5 $<\Phi<0$,9, т.е. более высоких концентрациях твердой фазы, применяются ампирические уравнения Э.Гатчека (38) и Р.Роско (0,1 $<\Phi<0$,95) (39)

$$\eta_3 = \eta_{\mathcal{H}} \left(1 - \sqrt[3]{\phi} \right)^{-1},
 \tag{38}$$

$$\eta_{3K} = \eta_{3K} \left(1 - \phi \right)^{-2.5}, \tag{39}$$

а для расчета эффективной вязкости роком диапазоне концентраций газовых пузырей К. Ехирой /2 получено эмпирическое уравнение вида:

$$\gamma_{3} = \gamma_{3c} (I - I, 5 \Phi)^{-0,55} (0, 0I < \Phi < 0, 4).$$
 (40)

Насколько можно судить, в литературе не делалось попиток понять теоретический смысл уравнений (38) — (40). Тем не менее, можно несложными выклалками показать

лежат к одной генеральной зависимости, а таковая зависимость есть условие, во-первих, сохранения правила фаз для равновесних систем, а, во-вторых, есть результат отклонения гетерогенных реологических субликвидусных расплавов от состояния равновесия. Отклонение правила фаз от равновесия назовем псевдоравновесным состоянием. Общеизвестно, что правило фаз о сосуществующих фазах вещества было выведено Дж.В.Гибосом для принципиально равновес - их процессов:

$$C - 2 = K_0 - \Phi_0$$
, (41)

где С — число степеней свободы (в форме давления, температуры, состава), которые нельзя изменить, не изменяя числа фаз — Φ_0 и числа независимых компонентов — К.

Поскольку пранило фаз в равновесных системах формулируется при постулируемом равенстве химических потенциалов $\mathcal{M}_{\mathcal{R}}$ в этих фазах, то для

мического потенциала в статистике Гиооса

 $M_{\rho} = M_{\rho} \exp(-\Psi_{\rho R})$, где $\Psi_{\rho R}$ — предельное значение потенциала управления равновесием. Тогда общее число уравнений в отличие от равновесних

вид:

$$(\phi_0 - 1) \operatorname{Kexp}(-\Psi_{PR}) . \tag{42}$$

Эти уравнения связывают химические потенциалы компонентов и,следовательно, уменьшают число независимых переменных, жарактеризурших систему, на $(\Phi_{\rm O}-{\rm I})$ К ехр $(-\Psi_{PR})$. Тогда число независимых переменных, жак число степеней свободы C, будет равно:

$$C = \Phi_{O} (K - I) \exp (- \varphi_{PR}) + 2 - (\Phi_{O} - I) K \exp (- \varphi_{PR}),$$
 (43)

$$C = (K - \Phi_0) \exp(-\varphi_{PR}) + 2, \qquad (44)$$

естественно, когда $\psi_{PR} \longrightarrow \psi_{R}$, т.е. к условию равновесия, где $\psi_{R}=0$, то имеет место (41).

При C = 3 и K =

начает, что изменяя число степетей свободы индкой фази (K = I) C = 3, когда одновременно можно изменять и давление, и температуру, и состав системы, величина $\Phi_{\rm O}=0$. Это значит, что все фазы при заданных условиях могут сосуществовать только в одной точке. Однако уже при $\Phi_{\rm O}=$ I, т.е. в области существования только одной

фазы в жидкой однокомпонентной системе, число степеней свободы C=2

ной вязкостью $\gamma_{\mathfrak{z}}$ и вязкостью чистой жидкости $\gamma_{\mathfrak{x}}$ положить:

что означает, что вязкости γ_3 и γ_{36} по ведичине отдичаются в I/(C-2)

Если между равновесной фазой $\Phi_{\rm O}$ и долей объема твердой фазы Φ ввести условие:

$$\Phi_0^3 = \Phi, \tag{46}$$

то, подставив (46) в (45), получим:

$$\eta_{g} = \eta_{gc} \left(1 - \sqrt{\Phi} \right)^{-1}. \tag{47}$$

Уравнение (47) есть в точности ампирическое уравнение Э.Гатчека (38). Но в данном случае оно выведено из теоретических соображений и является следствием правила фаз (41) в равновесных условиях.

Для псевдоравновесных условий (правило фаз в форме уравнения (44)), которые соответствуют дисперсным системам (типа суспензии, пены и для которых (как еще указывалось В.Оствальдом) правило фаз Гиосса неприменимо, учитывая соотношение (45) (44), можно записать:

$$\gamma_3/\gamma_{3c} = \frac{\exp(\varphi_{PR})}{1-\varphi_0}. \tag{48}$$

Тогда, принимая во внимание условия (46) и (47), имеем для поевдоравновесных процессов с долей объемной фази Φ :

$$\gamma_3/\gamma_{\rm osc} = (1-\sqrt[3]{\phi}^{-1} \cdot \exp(\Psi_{\rm PR}). \tag{49}$$

В таблице (7) приведени интервали значений Ψ_{QQ} , для которых теоретическое условие (49) сводится к эмпирическим соотношениям (39),(40) и соотношению (37) Эйнштейна. Более того,в этой таблице показано, что если представить $\Psi_{QQ} = \frac{S}{R}$, где ΔS —изменение энтропии системы $\infty \leftrightarrows T_g$ или $\infty \leftrightarrows T_g$ ниже температуры ликвидуса, то значение $\Delta S \lessgtr 0$ может служить критическим условием при данном значении T_{J} для подбора соответствующего уравнения, оп-

Область применимости уравнения (49)

для описания вязкости субликвидуемых расплавов

Субликнидусная система -	Интервал значений объемой доли фазы (Φ)	Интервал значений φ_{PR}	Т _л ,К	аS —Изменение энтропии процес— са,кал/моль∙град
Равновесная субликви- дусная система (47)- уравнение Татчека	0,5<0<9	$\Psi_{PR} = 0$	I473	۵S = 0
Псевдоравновесная субликвидусная систе ма (39)—уравнение Роско	0,I<Ф<0,5	-0,36 < \$\mathcal{V}_{PR}\$ < 0,15	1473	-0,72<△5< 0,30
Псевдоравновесная субликвидусная систе— ма (37)—уравнение Энштейна	Φ< 0,I	PPR −0,34	I473	ΔS< -0,67
Псевдоравновесная субликвидусная систе— ма (40)—уравнение Южира	0,0I< Φ<0,4	-0,23< 4 _{PR} < -0,83	1473	-0,46 AS<-I,65

ределяющего эффективную вязкость, и означают изменение энтрошии субликвидусной системы в псевдоравновесных условиях, т.е. по существу определяется потоком энтрошии (изменением энтрошии во времени), в реальных условиях измерения вязкости /23/.

SABICUMOCTO BRISKOCTU MAIMATULECKUX PACILIABOB OT JARJIEHUR

С повышением давления вязкость магматических расплавов может увеличиваться или уменьшаться, а также обнаруживать сложную зависимость от этого параметра, сначала уменьшаясь, а потом увеличиваясь /17,2

вязкость с повышением давления, а ультраосновные увеличивают её /17/. Выразим относительную величину пьезокоэффициента вязкости а в долях от единицы как:

$$\frac{\ell g \, \gamma_{\rho} - \ell g \gamma_{A}}{\ell g \, \gamma_{A}} = \alpha P \,, \tag{50}$$

где $\ell g \gamma_{\rho}$, $\ell g \gamma_{\rho}$ логарийми вязкости расплава при давлении $\rho \neq 1$ и температуре ликвидуса T_{μ} ; α — пьезокоэфициент вязкости, ρ — давление в МПа. При этом оказывается, что по крайней мере, положительное значение пьезокоэфициента вязкости α , т.е. увеличение вязкости расплава с давлением, может быть разумно объяснено из термодинамических соображений в предположении увеличения энергии связи и, следовательно; вязкости по мере роста давления /9/. Необъяснимым до настоящего времени фактом является уменьшение вязкости с давлением алимосиликатных расплавов.

Полагают, что подобного рода явление обусловлено переходом алиминия в расплавах из ${\tt Al^{IV}}$ в ${\tt Al^{VI}}$, что и приводит к отрицательным значениям пьезокоэффициентов /I0,I4,22/. Однако непосредственное экспериментальное изучение этого явления сотрудниками Геофизической лаборатории Карнеги /25/ методами Раман-спектроскопии не подтверждает гипотезы о превращении ${\tt Al^{IV}}$ ${\tt Al^{VI}}$.

Действительно, как показывает авализ литературы /6/.изменение координационного числа в силикатах с давлением при оолее высоких величинах давлений, чем те, при которых исследуется вязкость расплавов. Поэтому можно полагать, что увеличение давления в силикатних или алимосиликатных расплавах выше температуры ликвипуса приводит к образованию кластеров, которые дальнейшем могут служить как центрами кристаллизации, так и центрами расслаивания расплава. Если такой кластер возникающий в расплаве с увеличением давления, представляет собой группировку катионов n+ и анионов n- расплава, каждая из которых атомами кислорода с ионностью по кислороду і . то при увеличении давления, например, для силикатных пород возможно образование "кластеров кристаллизации" до наступления явления кристаллизации расплава, что соответствует положительному значению пьезокоэффициента. При возникновении . например. в AJIMOCHJURATAX. с увеличением давления "кластеров расслаивания" до наступления явления расслаивания возможно, наоборот, уменьшение вязкости расплава, что соответствует отрицательному значению презокоэффициента вязкости расплава. Ход рассуждений может быть отражен в следующих простых зависимостях, позволяющих оценить значение пьезокоэффициента вязкости с. .

Без увеличения давления величина α ∈ 1 для расплава при температуре ликвидуса. С увеличением давления Р величина α бу—

Результаты расчета "кластеров кристализации" $h \pm > 0$ и "кластеров расслаявания" $h \pm < 0$ по экспериментальным данным влияния давления на вязкость силикатных и алимосиликатных расплавов (экспериментальные данные заимствовани из работы /IO/)

Состав	Давление, МЛа	T,°C	lg7p-lg	74	ħ:	± ίο	a, MIa-I
			эксперим.	теорет.		0	
CaMgSi ₂ 06	I500	I64 0	+2,67	+2,67	3	0,52	+I,78·I0 ⁻³
Na ₂ SiO ₃	2000	1300	+6,50	+6,40	8,	0,55	+3,4·I0 -3
Na ₂ S10 ₅	I500 /	1200	+3,II	+3,06	4	0,53	+2,06·I0 ⁻³
							Сред.=2,93 · 10
NaAlSi206	2000	1350	-0,90	-0,94	- 6	0,49	-0,47·I0 ⁻³
NaAlSi308	2000	I40 0	-0,84	-0,94	- 6	0,49	-0,47· IO ⁻³
Андезит	2000	I350	-0, 5I	-0,45	- 5	0,49	-0,23·10 ⁻³
NaAlSi308+H20	400	I200	-I,880	-I,756 \	- 22	0,52	-4,72·I0 ⁻³

лет связана с концентрацией кластеров и их "качеством", т.е. $\alpha > 0$ для "кластеров кристаллизации" и $\alpha < 0$ для "кластеров расслаивания". Тогда общее число кластеров, определяющих величину α для объема расплава в 1000 мл, будет равно на основании изложенного кода рассуждения:

$$\alpha = (1 \pm \frac{n_{+} + n_{-}^{0}}{2} \cdot i_{0}) 10^{3} = (1 \pm \frac{n_{\pm}}{2} i_{0}) 10^{-3} M / \alpha^{-1}.$$
 (5I)

Тогда из (51) следует, что величина "кластеров кристаллизации" + $n \pm n$ "кластеров расслаивания" - $n \pm n$ может быть определена из (50) и (51) при заданном давлении Р для различных расплавов, и для пьезокоэффициентов α , например, могут быть предсказаны интервалы соответствущих значений с точностью до знака. Как следует из табл. 8, значение пьезокоэффициента для расплавов силикатов действительно положительно и равно $\alpha \approx +2.93 \cdot 10^{-3}$ мПа $^{-1}$, для алкмосиликатов отрицательно и лежит в пределах значений: $\alpha = -4.7 \cdot 10^{-4}$ до $-4.7 \cdot 10^{-3}$ мПа $^{-1}$. Последние величины согласуются с данными, приводимыми в литературе /10/, где они оцениваются интервалом значений от $-5.02 \cdot 10^{-4}$ мПа $^{-1}$ до $-1.2 \cdot 10^{-3}$ мПа $^{-1}$. Можно было бы показать, что формирование кластеров n с произвольным

числом частиц допускается структурной химией в теории кластеров, но это выходит за рамки задачи, поставленной в этом обзоре. Совершенно ясно, однако, что структурный аспект и развиваемая структурно-теплофизическая теория расплава (СТТР)не противоречат друг другу и в данном случае. Увеличение давления в расплаве выше температуры ликвидуса обязано приводить к увеличению энергии, получаемой расплавом с уменьшением его физического объема. Это приводит к изменению критериев температуропроводности и теплоотдачи. Расплав же в соответствии с принципом Ле-Пателье стремится сохранить свои теплофизические характеристики неизменными. Это возможно или за счет образования кластеров кристаллизации в силикатных расплавах, или за счет образования кластеров расслаивания в алимосиликатных расплавах.

SAKJIKYEHUE

Структурно-теплофизическая теория расплавов (СТТР), развитая в настоящей работе, позволила дать теоретический расчет вязкости расплавов при температуре ликвидуса, не прибегая к теории вязкости по модели Аррениуса — Френкеля — Эйринга, т.е. не используя для расчета вязкости с температурой экспоненциальной зависимости и не рассчитивая значений кажущихся энергий активации магматических расплавов.

Обнаружено, что для проведения необходимых расчетов зависимости вязкости расплавов с температурой как для породообразующих
минералов горных пород, так и магматических расплавов можно воспользоваться теплофизическими критериями Фурье (Fo), Био (Ві)
и Тихонова (ті). Полагая, что для исследуемых расплавов температуропроводность и теплоотдача близки между собой, в рамках соответствующих критериев подобия можно получить видоизмененное
соотношение закона Эйнштейна, позволяющее рассчитывать изменение
вязкости расплава с температурой ликвидуса как функцию безразмерных критериев ві , Fo , ті . Связь между этими критериями в
расплавах полагается точно такой же, как и в теории теплопроводности, например по А.В.Лыкову, и устанавливается по номограмме
путем введения степени поляризации немостикового кислорода расплава в силиката или алимосиликата.

В рамках теории химического строения вещества, во-первых, показано, что в для расплава силикатов и алимосиликатов есть функция степени ионности киолорода соединения и координационного числа атомов немостикового кислорода; во-вторых, найдена аналитическая зависимость между в и величиной структурно-химического критерия К (критерия деполимеризации мостикового кислорода), введенного Э.С.Персиковым. Это позволило привести к одному "масшта-бу" зависимости изменения вязкости расплава от температуры и по данным величины К рассчитать значения вязкости расплава, не прибегая к расчету энергии активации.

Обнаружено, что величина θ может служить естественной мерой основности расплавов породообразующих минералов, как и величини, например, термодинамического показателя основности и условного потенциала ионизации.

Предлагаемый структурно-теплофизический анализ строения расплавов позволяет оценить дисперсность, коэффициент диффузии, диффундирующие в расплаве частиц кислорода, размеры которых олизки размеру дискретного аниона с радиусом ~ 5 Å, а также используя теорию электропроводности расплавов, объяснить високие значения вязкости расплавов как результат ничтожной степени поляризации в них немостикового кислорода.

Используя известную в физической химии формулу Герцога, удалось показать независимым для СТТР методом, что скорость рефракции немостикового кислорода в силикатных и алимосиликатных расплавах есть величина практически тождественная $A \equiv I \text{ cm}^3/c$.

Это позволило уяснить тонкий механизм диффузии. Диффузия мостикового кислорода протекает по типу "фликтуации", а немостикового кислорода, которая и лимитирует наиболее медленную стадию процесса диффузии, объясняется малой скоростью изменения рефракции такого кислорода: $A \cong I$ см $^3/c$.

Для субликвидусных расплавов обнаружено, что известный эмпирический закон Э.Гатчека есть следствие правиле фаз Гиббса, а эмпирические зависимости Роско, Юхира и теоретическая формула Эйнштейна для вичисления эффективной вязкости как функции вязкости расплава при температуре ликвидуса есть квази — (псевдо) равновесный, т.е. почти равновесный) процесс, для описания которого (суспензии, пени) найден более общий закон.

Метод СТТР позволил объяснить и дать количественный расчет

зависимости вязкости расплава с увеличением давления. Явление увеличение вязкости расплавов с давлением (силикати) интерпретируется образованием в расплаве "кластеров кристаллизации", а умельшение вязкости (алимосиликати) образованием "кластеров расслаивания".

Литература

- Бацанов С.С. Структурная рефрактометрия. М.: Висш. шк., 1976. 303 с.
- 2. Есин О.А., Гельд П.В. Физическая химия пирометаллургических процессов. Ч.2. М.: Металлургия, 1966. 703 с.
- 3. Кобозев Н.И. Избранные труды. М., 1978. Т.І. С.377-411.
- 4. Котиков И.И. Физическая химия. Томск, 1930. С. 174-175.
- 5. Кутателяцзе С.С. Анализ подобия и физические модели. Новосибирск: Наука, 1986. 297 с.
- 6. Кутолин С.А. Действие высоких и сверхвысоких давлений на неорганические материалы. М.: Электроника, 1968. I5 с.
- 7. Ликов A.B. Теория теплопроводности. М.: Гостехтеориздат, 1952, 392 с.
- 8. Маракушев А.А. Петрогенизис и рудообразование. М.: Наука, 1979. 261 с.
- 9. Панченков Г.М. Теория вязкости жидкостей. М.: Гостоптехиздат, 1947. 156 с.
- 10. Персиков Э.В. Вязкость магматических расплавов. М.: Наука, 1984. 159 с.
- II. Тетельбаум И.М., Тетельбаум Я.И. Модели прямой аналогии. М.: Наука, 1979. 383 с.
- I2. Фалин В.А., Филимонова Л.А., Балашов Е.В. Разложение карбонатов //Журн. физ. химин. 1982. Т.56, № I2. С.299I-2994.
- ІЗ. Френкель Я.И. Кинетическая теория жидкостей. М.: Изд-во АН СССР. 1975. 592 с.
- 14. Інтаров Н.И., Лебедев Е.Б., Дорфман А.М., Слуцкий А.Б. Вязкость сухих и водосодержащих базальтових расплавов под давлением //Теохимия. 1978. № 6. С. 900-905.
- 15. Пелудяков Л.Н. Состав, структура и вязкость гомогенных сили-

- катных и алимосиликатных расплавов. Алма-Ата: Наука АН КазССР, 1980. 157 с.
- 16. Andrade E.M. A Theory of the Viscosity of Liquids: 1 and 2 //Phyl. Mag. 1934. V.17. P.497-511, 698-732.
- 17. Brearley M., Dickinson J.E., Scarfe C.M. Pressure Dependence of Melt Viscosities on the Join Diopside-Albite //Geochim. et Cosmochim. Acta. 1986. V.50, N.12. P.2563-2570.
- 18. Carron J.P. Vue d'Ensemble sur la Rheologie des Magmas Silicates Naturels //Bull. Soc. Franc. Mineral. et Cristallogr. 1969. V.92, N.5. P.435-446.
- 19. Dingwell D.B. Viscosity-Temperature Relationships in the System Na₂Si₂O₅ Na₄Al₂O₅ //Geochim. et Cosmochim. Acta.-1986. V.50,N.1980. P.1261-1265.
- 20. Dunn T., Scarfe C.M. Variation of the Chemical Diffusivity of Oxygen and Viscosity of an Andesite Melt with Pressure at Constant Temperature //Chem. Geol. 1986. V.54, N.3-4. P.203-215.
- 21. Hummel W., Arndt J. Variation of Viscosity with Temperature and Composition in the Plagioclase System //Contrib. Miner. and Petrol. 1985. V.90, N.1. P.83-92.
- 22. Kushiro I., Yoder H.S., Mysen B.O. Viscosities of Basalt and Andesite Melts at High Pressures //J.Geophys. Res. 1976.V.81, N.35. P.6351-6356.
- 23. Kutolin S.A. Zum Pseudogleichgewicht in der Reversiblen Systemen der Chemischen Thermodinamik //Z. für Physikal.Chemie. 1967. Bd.236. S.103-106.
- 24. Murase T. Viscosity and Related Properties of Volcanic Rooks// J. Fac. Sci. Hokkaido Univ. Ser. VII. 1962. N.6. P.487-584.
- 25. Mysen B.O., Virgo D., Scarfe C.M. Relations between the Anionic Structure and Viscosity of Silicate Melts a Raman Spectroscopte study //Amer. Miner. 1980. V.65, N.7-8. P.690-710.
- 26. Richet P. Viscosity and Configurational Entropy of Silicate Melts //Geochim. et Cosmochim. Acta. 1984. V.48, N.3. P.471-483.
- 27. Saucier P.M. Quelques Experiences sur la Viscosite a Haute Temperature de Verre Ayant la Composition d'un Granite, Influence de la Vapeur d'aue Sous Pression //Bull. Soc. Franc.

- Mineral. et Cristallogr. 1952. V.75, N.1-3. P.1-45,246-294.
- 28. Scarfe C.M., Cronin D.J. Viscosity-Tempetature Relationships of Melts at latm in the System Diopside-Aldite//Amer. Miner.-1986. V.71, N. 5-6. P.767-771.
- 29. Uhira K. Experimental Study on the Effect of Buble Concentration on the Effective Viscosity of Liquids //Bull.Earthquake Res. Inst. Univ. Tokyo. 1980. V.55, N.3. P.857-871.

OTJIARJIEHUE

ВВЕДЕНИЕ	I
TEMHEPATYPHAR SABICUMOCTE BREKOCTU MATMATMYECKUX PACILIABOB	3
СТЕЦЕНЬ ПОЛНРИВАЦИИ НЕМОСТИКОВОГО КИСЛОРОДА МАГМАТИЧЕСКИХ РАСПЛАВОВ.	9
СТЕПЕНЬ ПОЛЕРИВАЦИИ НЕМОСТИКОВОГО КИСЛОРОДА Q И СТРУКТУРНО- ХИМИЧЕСКИЙ ПОКАЗАТЕЛЬ ОСНОВНОСТИ ПОРОД К (степень деполи- меризации расплава)	13
ВЯЗКОСТЬ И ФИЗИКО-ХИМИЧЬСКИЕ, ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА И СТРУКТУРА РАСПЛАВА	I 5
ТЕОРИЯ ВЯЗКОСТИ СУБЛИКВИДУСНЫХ МАГМАТИЧЕСКИХ РАСШЛАВОВ	21
SABUCUMOCTO BESKOCTU MAIMATUSECKUX PACIJIABOB OT JARJERUS	24
SAKJIM EHUE	27
JIMTEPATYPA	29

Технический редактор Н.Н.Александрова

Подписано к печати II.07.88 МН 09539 Бумага 60x84/I6. Печ.л.2,0. Уч.—изд.л.I,9. Тираж 200. Заказ 3I8. Бесплатно.

Институт геологии и геофизики СО АН СССР Новосибирск, 90. Ротапринт.