Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке

Predictive spatial models for mineral potential mapping / Прогнозные пространственные модели для картирования потенциала полезных ископаемых

Автор(ы):Ibrahim A.M.
Издание:University of Leeds, Leeds, 2016 г., 193 стр.
Язык(и)Английский
Predictive spatial models for mineral potential mapping / Прогнозные пространственные модели для картирования потенциала полезных ископаемых

Modelling and prediction of spatially distributed data such as the secondary cassiterite mineral distributions are often affected by spatial autocorrelation (SAC); a phenomenon that violates attributes data independence in space, which leads to type1 errors in classical statistics and overfitting or underfitting in machine learning (ML) classification respectively. The concept of overfitting and underfitting of spatially distributed datasets in an ML classification has not been properly addressed by the traditional random holdout technique of model validation, and this is a challenge to the assessment of predictive spatial model performance in spatially distributed datasets.
The thesis presents an approach to predictive modelling and performance evaluation of spatially distributed secondary mineral dataset, represented as points, using supervised machine learning (ML) classification. The work involves a systematic geological data survey of the existing mineral location coordinate points and other mineralisation attributes, in the Plateau Younger Granite Region (PYGR) of Nigeria. The predictive characteristics or values are extracted from a 2D space of discrete coordinate points using GIS into an ML acceptable format, consisting of 749 by 21 dimension (i.e., observational data points by the predictive attributes), with two classes of 0 & 1 representing mineralised and non-mineralised points respectively. The attributes describing the secondary mineral formation were used to build a point based predictive spatial model for mineral potential mapping (PSMMPM) and using random holdout validation technique to assess its performance. <...>

ТематикаГеоинформационные системы, Геологическое картирование, Полезные ископаемые
Скачать
Внимание! Если Вы хотите поделиться с кем-то материалом c этой страницы, используйте вот эту ссылку:
https://www.geokniga.org/books/39566
Прямые ссылки на файлы работать не будут!
710.59