Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке
Employing two recently studied crustal-scale shear zones as type examples, this paper summarizes the major Palaeoproterozoic (Svecokarelian) shear tectonics of the central Fennoscandian Shield and demonstrates that this part of the Shield was not as stable during the Svecokarelian Orogeny as commonly assumed.
The collision of the Svecofennian island arc with the Karelian Continent first created numerous NW-SE trending folds and thrusts of stages Di and D2, which were then modified by successive shearing during stages D3 and D4. Stage D3 built up a system of N-S trending shear zones, here named the Savolappi Shear System, the type example of which is the Hir-vaskoski Shear Zone. This is a dextral strike-slip shear zone at least 150 km long and 10-30 km wide, characterized by blastomylonitic fault rocks and various structures such as hook folds, Z-fo!ds and sheath folds associated with the principal displacement zone, synthetic Riedel shears, and pinnate shears. The traces of the axial planes of F3 en-echelon folds deviate 15е—30е anticlockwise from the plane of the principal displacement zone. Other members of the Savolappi Shear System are the Pajala Shear Zone in northern Sweden and the Russian North Karelia Shear Zone in the east.
Stage D4 created a conjugate shear system called the Finlandia Shear System, the type example of which is the Oulujarvi Shear Zone. This is a NE-SW trending sinistral strike-slip shear zone more than 250 km long and 20-30 km wide across its southwestern end. It is composed of a NE-SW trending principal displacement zone, synthetic Riedel shears, and pinnate shears with antithetic Riedel shears in a NW-SE direction. Typical fault rocks within these shears are S-C mylon-ites. The axial-plane traces of F+folds of all scales diverge by 20°-40° clockwise from the plane of the principal displacement zone. The Kuopio Shear Zone is a conjugate NW-SE trending counterpart of the Oulujarvi Shear Zone. As a whole, the Finlandia Shear System forms a conjugate network of NW-SE and NE-SW trending shear zones which occupies most of the northern and central Fennoscandian Shield.
To succeed in writing a book about the age of mammals in Europe appears to be a difficult goal, especially in light of such brilliant precedents as The Age of Mammals by H. F. Osborn and The Age of Mammals by Bjo¨rn Kurten. In between this book and the 1971 version of The Age of Mammals there is not only the extraordinary scientific personality of Kurten but also thirty years of additional knowledge about fossil mammals and the environment in which they evolved.
NICHOLSON, K., HEIN, J. R, BCTHN, B. & DASGUPTA, S. Precambrian to Modern manganese mineralization: changes in ore type and depositional environment
Review
RoY, S. Genetic diversity of manganese deposition in the terrestrial geological record Precambrian deposits
GLASBY, G. P. Fractionation of manganese from iron in Archaean and Proterozoic sedimentary ores
KULIK, D. A. & KORZHNEV, M. N. Lithological and geochemical evidence of Fe and Mn pathways during deposition of lower Proterozoic Banded Iron Formation in the Krivoy Rog Basin (Ukraine)
BOHN, B. & STANISTREET, I. G. Insight into the enigma of Neoproterozoic manganese and iron formations from the perspective of supercontinental break-up and glaciation
The geological structure of the Tunka Goltsy (the Tunka Range) of the East Sayany is characterized by a complex nappe-fold structure, composed mainly of Paleozoic terrigenous and carbonate rocks and their metamorphosed analogues [1–3]. It is generally recognized that the nappe-fold structure of the East Sa-yany, including its southeastern segment, regarded as the Tunka terrain [3] or Ilchirskaya zone [4], formed in the Ordovician as a result of collision between the Tuva–Mongolian microcontinent and the Siberian continent. As referred to in [5], the Ordovician–Mid-dle Paleozoic deformations over the entire vast territory of Central Asia, from the Olkhon zone of the Pribaikalie to the North Kazakhstan, were manifested as a result of the closing of the oceanic basin and the subsequent collision between the Kazakhstan– Baikalian complex continent (including the Tuva– Mongolian microcontinent) and the Siberian continent. In the Ordovician the Olkhon nappe-overthrust zone was formed along the southeastern framework of the Siberian Craton. In addition, the metamorphism was manifested over the entire vast territory of the East Sayany that could probably be connected with nappe formation. In the Late Ordovician–Silurian, the oblique slip-thrust structures, magmatism, and meta-morphism were manifested in the Sangilen highlands and Tuva. Later, the deformations continued. In the Late Devonian–Early Carboniferous, the dextral strike-slip fault Charysh–Terektinskaya zone was formed; in the Late Carboniferous, the Kurayskaya and Kuznetsko–Teletsko–Bashkaus sinistral strike-slip shear zones were formed.
An Ultramafic Lift at the Mid-Atlantic Ridge: Successive Stages of Magmatism in Serpentinized Peridotites from the 15°N Region. Mathilde Cannat and lohn F Casey
Gabbroie Dikelets in Serpentinized Peridotites from the Mid-Atlanti Ridge at 23°20'N P. Tartarotti, M. Cannat and C. Me el
Mafic and Ultramafic Intrusions into Upper Mantle Peridotites from Fast Spreading Centers of the Easter Micropiate (South East Pacific) M. Constantin, R. Hekinian, D. Ackermand and P. Stoffers
Part I: State of the Mantle: Properties and Dynamic Evolution 1 Long-Wavelength Mantle Structure: Geophysical Constraints and Dynamical Models Maxwell L. Rudolph, Diogo L. Lourenço, Pritwiraj Moulik, and Vedran Lekić 2 Experimental Deformation of Lower Mantle Rocks and Minerals Lowell Miyagi 3 Seismic Wave Velocities in Earth’s Mantle from Mineral Elasticity Johannes Buchen 4 From Mantle Convection to Seismic Observations: Quantifying the Uncertainties Related to Anelasticity Bernhard S. A. Schuberth and Tobias Bigalke
As a result of an extensive program of structural mapping in the ultramafic section of the Oman ophiolite, maps of mantle flow below the spreading center of origin have been drawn. They reveal a mantle diapiric system in which the uppermost mantle flow diverges from diapirs 10-15 km across, which could have been spaced by an average distance of 50 km. Some diapirs could have been located off-axis.
Although plate tectonics and mantle plumes were introduced to geology at the same time in the 1960s and early 1970s by J. Tuzo Wilson and Jason Morgan, unlike plate tectonics, which rapidly collected supporters from the Earth S c i e n c e community, mantle plumes took a back seat. Yes, Hawaii was an example of a mantle plume and as oceanic plates moved over plumes they leave hotspot tracks. The prevailing attitude was one of "this is fine, but let's now move on to plate tectonics where the real excitement is." For twenty years geoscientists focussed most of their efforts on trying to understand plate tectonics and document examples of it in the g e o l o g i c record. It w a s not until the late 1980s that scientists turned some of their attention to mantle plumes, and indeed during the 1990s, when mantle plumes really "became of age", publications dealing with mantle plumes increased exponentially. Why the long period of dormancy for mantle plumes? I believe it was simply because geoscientists were overwhelmed by plate tectonics-a band wagon effect that influenced all of the Earth Sciences.
In this, the first attempt to give in English a comprehensive review of petrographic methods, it cannot be otherwise than that there should be many omissions—it is to be hoped not many errors. If any is found the author will be extremely glad to have his attention called to it, as he will also be for criticisms, or suggestions for additional material that should be included.