Добрый день, Коллеги. Важное сообщение, просьба принять участие. Музей Ферсмана ищет помощь для реставрационных работ в помещении. Подробности по ссылке
Modern geodesy as discussed in this volume started with the development of distance measurement using propagating electromagnetic signals and the launch of Earth-orbiting satellites. With these developments, space-based geodesy allowed global measurements of positions, changes in the rotation of the Earth, and the Earth’s gravity field. These three areas (positioning, Earth rotation, and gravity field) are considered the three pillars of geodesy. The accuracy of current measurement systems allows time variations to be observed in all three areas. Also the complexity of problems is such that each of the pillars interacts with each other and also with many other branches of Earth Science. This interaction is most apparent in the role that water plays in modern geodetic measurements. Every chapter in this volume mentions the role of water. It is critical because it can move rapidly and over large distances; it can exist in all three phases, gas, fluid, and solid; and modern geodetic methods are accurate enough that their measurements are sensitive to its effects. In its vapor form, its refractive properties delay microwave signals propagating through the Earth’s atmosphere. For geodetic positioning, this is a noise source but it is a signal for metrological applications. In the liquid form, it forms oceans that affect both the tidal signal and the rotation of the Earth. Also in liquid form, its mass changes the gravity field as it is moved through the hydrologic cycle. In solid form, it has a gravitational and deformation signal that changes if melting of the ice unloads the surface of the Earth. The interactions between the pillars include the elastic loading effects of changing mass loads that can be seen in the gravity field and in the positions of ground stations. The movement of water to and from the oceans can be seen with altimeter satellites whose orbital information is derived from measurements from ground stations whose positions are affected by the changing mass load. In modern, time-dependent geodetic data analysis these interactions need to be accounted for. The common interface between the geodetic methods is the coordinate systems and reference frames used to analyze data. Coordinate systems and the associated reference frames form a core theme of the chapters in this volume. Two other unifying themes are the measurement systems of geodesy that are used again throughout the volume, and interplay of errors in measurements, signals, and noise. In this chapter weexamine these three themes.
The Earth has its own magnetic field (the geomagnetic field), which is confined by the action of the solar wind into a volume called the magnetosphere (see Chapter 5.03). This field is not steady, but varies with time due partly to the interaction with the solar wind, but more importantly by its own physical processes. Direct observation of such changes has been carried out only in the last few centuries, but with indirect measurements we can understand the field behavior millions of years back in time. In this extended time frame, there is evidence that the polarity of the magnetic field reversed frequently, and that the magnetic dipole axis in very ancient times was significantly displaced from the present rotational axis (the North and South geographic Poles). It is of considerable interest how such knowledge was acquired over several centuries. We will take a brief tour of the historical events that provided important steps in formulating our understanding of the geomagnetic field. In doing so, we have to rely solely on the written records, which is the reason why only the European and Chinese histories are referred. There are many works on this topic; among them, the important ones are Mitchell (1932–46), Harradon (1943–45), Needham (1962), and Yamamoto (2003). The English translations of Chinese literature below were taken from Needham (1962). Chinese sentences given together with English were taken from the Japanese translation of this book (Hashimoto et al., 1977). When we talk about the earliest recognition of the magnetism of the Earth, we should be careful to discriminate two separate issues; that is, the attractive force exerted by a magnet on iron, and the north- (or south-) seeking property of the magnet. The former can be taken as the forerunner to the science of magnetism, while the latter is the basis for appreciation of the magnetic field associated with the Earth. Our main interest is in the geomagnetic field, but it is necessary to look into magnets first.
Much of what we refer to as geology, or more accurately geological activity on Earth, is due to the simple act of our planet cooling to space. What allows this activity to persist over the lifetime of the solar system is that the major and most massive portion of the planet, namely the mantle, is so large, moves so slowly, and cools so gradually that it sets the pace of cooling for the whole Earth.
Mineral physics involves the application of physics and chemistry techniques in order to understand and predict the fundamental behavior of Earth materials (e.g., Kieffer and Navrotsky, 1985), and hence provide solutions to large-scale problems in Earth and planetary sciences. Mineral physics, therefore, is relevant to all aspects of solid Earth sciences, from surface processes and environmental geochemistry to the deep Earth and the nature of the core. In this volume, however, we focus only on the geophysical applications of mineral physics (see also Ahrens (1995), Hemley (1998), and Poirier (2000)). These applications, however, are not just be constrained to understanding structure the Earth (see Volume 1) and its evolution (see Volume 9), but also will play a vital role in our understanding of the dynamics and evolution of other planets in our solar system (see Volume 10 and Oganov et al. (2005)). As a discipline, mineral physics as such has only been recognized for some 30 years or so, but in fact it can trace its origins back to the very foundations of solid Earth geophysics itself. Thus, for example, the work of Oldham (1906) and Gutenberg (1913), that defined the seismological characteristics of the core, led to the inference on the basis of materials physics that the outer core is liquid because of its inability to support the promulgation of shear waves. A landmark paper in the history of the application of mineral physics to the understanding of the solid Earth is the Density of the Earth by Williamson and Adams (1923). Here the elastic constants of various rock types were used to interpret the density profile as a function of depth within the Earth that had been inferred from seismic and gravitational data. Their work was marked by taking into account the gravitationally induced compression of material at depth within the Earth, which is described by the Williamson–Adams relation that explicitly links geophysical observables (g(r), the acceleration due to gravity as a function of radius, r, and the longitudinal and shear seismic wave velocities Vp and Vs).
Humanity has always been fascinated with the wandering stars in the sky, the planets. Ancient astrologists have observed and used the paths of the planets in the sky to time the seasons and to predict the future. Observations of the planets helped J. Kepler to formulate his laws of planetary motion and revolutionize the perception of the world. With the advent of the space age, the planets have been transferred from bright spots in the sky to worlds of their own right that can be explored, in part by using the in situ and remote-sensing tools of the geosciences. The terrestrial planets are of particular interest to the geoscientist because comparison with our own planet allows a better understanding of our home, the Earth. Venus offers an example of a runaway greenhouse that has resulted in what we would call a hellish place. With temperatures of around 450C and a corrosive atmosphere that is also optically nontransparent, Venus poses enormous difficulties to spacecraft exploration. Mars is a much friendlier planet to explore but a planet where greenhouse effects and atmospheric loss processes have resulted in a cold and dusty desert. But aside from considerations of the usefulness of space exploration in terms of understanding Earth, the interested mind can visit astounding and puzzling places. There is the dynamic atmosphere of Jupiter with a giant thunderstorm that has been raging for centuries. There is Saturn with its majestic rings and there are Uranus and Neptune wit complicated magnetic fields. These giant planets have moons that are similarly astounding. There is the
volcanic satellite of Jupiter, Io that surpasses the Earth, and any other terrestrial planet in volcanic activity and surface heat flow. This activity is powered by tides that twist the satellite such that its interior partially melts. A much smaller moon of Saturn, Enceladus, also has geysers that could be powered by tidal heating. Its volcanic activity releases water vapor not lava. There is another moon of Saturn, Titan, that hides its surface underneath a layer of photochemical smog in a thick nitrogen atmosphere and there are moons of similar sizes that lack any comparable atmosphere. Miranda, satellite of Uranus, appears as if it has been ripped apart and reassembled. Triton, a satellite of Neptune, has geysers of nitrogen powered by solar irradiation. Magnetic field data suggest that icy moons orbiting the giant planets may have oceans underneath thick ice covers.These oceans can, at least in principle, harbor or have harbored life. Moreover, there are asteroids with moons and comets that may still hold the clues to how the solar system and life on Earth formed. This volume of the Treatise on Geophysics discusses fundamental aspects of the science of the planets. It is focused on geophysical properties of the Earth-like planets and moons, those bodies that consist largely of rock, iron, and water, and the processes occurring in their interiors and on their surfaces. But it goes further by discussing the giant planets and their satellites as well. The better part of the volume is dedicated to the interior structure and evolution of the terrestrial planets and to their physical properties such as gravity and magnetic fields, rotation and surface–atmosphere interactions. What is the planetological context of life?
Geophysics is the physics of the Earth, the science that studies the Earth by measuring the physical consequences of its presence and activity. It is a science of extraordinary breadth, requiring 10 volumes of this treatise for its description. Only a treatise can present a science with the breadth of geophysics if, in addition to completeness of the subject matter, it is intended to discuss the material in great depth. Thus, while there are many books on geophysics dealing with its many subdivisions, a single book cannot give more than an introductory flavor of each topic. At the other extreme, a single book can cover one aspect of geophysics in great detail, as is done in each of the volumes of this treatise, but the treatise has the unique advantage of having been designed as an integrated series, an important feature of an interdisciplinary science such as geophysics. From the outset, the treatise was planned to cover each area of geophysics from the basics to the cutting edge so that the beginning student could learn the subject and the advanced researcher could have an up-to-date and thorough exposition of the state of the field. The planning of the contents of each volume was carried out with the active participation of the editors of all the volumes to insure that each subject area of the treatise benefited from the multitude of connections to other areas. Geophysics includes the study of the Earth’s fluid envelope and its near-space environment. However, in this treatise, the subject has been narrowed to the solid Earth. The Treatise on Geophysics discusses the atmosphere, ocean, and plasmasphere of the Earth only in connection with how these parts of the Earth affect the solid planet. While the realm of geophysics has here been narrowed to the solid Earth, it is broadened to include other planets of our solar system and the planets of other stars. Accordingly, the treatise includes a volume on the planets, although that volume deals mostly with the terrestrial planets of our own solar system. The gas and ice giant planets of the outer solar system and similar extra-solar planets are discussed in only one chapter of the treatise. Even the Treatise on Geophysics must be circumscribed to some extent. One could envision a future treatise on Planetary and Space Physics or a treatise on Atmospheric and Oceanic Physics. Geophysics is fundamentally an interdisciplinary endeavor, built on the foundations of physics, mathematics, geology, astronomy, and other disciplines. Its roots therefore go far back in history, but the science has blossomed only in the last century with the explosive increase in our ability to measure the properties of the Earth and the processes going on inside the Earth and on and above its surface. The technological advances of the last century in laboratory and field instrumentation, computing, and satellite-based remote sensing are largely responsible for the explosive growth of geophysics. In addition to the enhanced ability to make crucial measurements and collect and analyze enormous amounts of data, progress in geophysics was facilitated by the acceptance of the paradigm of plate tectonics and mantle convection in the 1960s. This new view of how the Earth works enabled an understanding of earthquakes, volcanoes, mountain building, indeed all of geology, at a fundamental level. The exploration of the planets and moons of our solar system, beginning with the Apollo missions to the Moon, has invigorated geophysics and further extended its purview beyond the Earth. Today geophysics is a vital and thriving enterprise involving many thousands of scientists throughout the world. The interdisciplinarity and global nature of geophysics identifies it as one of the great unifying endeavors of humanity.
Applications of seismology to the study of the Earth’s interior are only a little over 100 years old. Its tools in determining the properties of inaccessible Earth are the most powerful among all geophysical methods. The principal reasons are the availability of natural (earthquakes) or controlled (explosions and vibrators) sources of elastic waves and their relatively low attenuation with distance.
Geophysics is the physics of the Earth, the science that studies the Earth by measuring the physical consequences of its presence and activity. It is a science of extraordinary breadth, requiring 10 volumes of this treatise for its description. Only a treatise can present a science with the breadth of geophysics if, in addition to completeness of the subject matter, it is intended to discuss the material in great depth. Thus, while there are many books on geophysics dealing with its many subdivisions, a single book cannot give more than an introductory flavor of each topic.
Near-surface geophysics (NSG) was not specifically addressed in the first edition of the Treatise on Geophysics. The decision to include a new volume in the second edition of the Treatise on Geophysics on the near surface reflects the ever-growing contribution that geophysics is making to our understanding of the outermost shell of the Earth. This growth is evidenced by the formation of a new focus group in NSG within the American Geophysical Union, the largest Earth science organization worldwide, in 2006 (Figure 1). The near surface is perhaps a somewhat nebulous term that means different things to different people.
Treatise on Geophysics: Mineral Physics, Volume 2, provides a comprehensive review of the current state of understanding of mineral physics. Each chapter demonstrates the significant progress that has been made in the understanding of the physics and chemistry of minerals, and also highlights a number of issues which are still outstanding or that need further work to resolve current contradictions.